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As in all sectors of science and industry, artificial intelligence (AI) is meant to have
a high impact in the discovery of antibodies in the coming years. Antibody
discovery was traditionally conducted through a succession of experimental
steps: animal immunization, screening of relevant clones, in vitro testing,
affinity maturation, in vivo testing in animal models, then different steps of
humanization and maturation generating the candidate that will be tested in
clinical trials. This scheme suffers from different flaws, rendering the whole
process very risky, with an attrition rate over 95%. The rise of in silico
methods, among which AI, has been gradually proven to reliably guide
different experimental steps with more robust processes. They are now
capable of covering the whole discovery process. Amongst the players in this
new field, the company MAbSilico proposes an in silico pipeline allowing to
design antibody sequences in a few days, already humanized and optimized for
affinity and developability, considerably de-risking and accelerating the
discovery process.
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1 Introduction

Antibodies have long been irreplaceable tools for research. They have more recently
emerged as powerful drugs, allowing considerably higher specificity than traditional
chemicals, and offering new treatment options in a growing number of pathologies (Lu
et al., 2020). Thanks to their half-lives, antibody drugs also have long-lasting effects as
compared to small-molecules, rendering them more adapted to chronic pathologies. Many
new formats derived from antibodies have been designed allowing to exploit their exquisite
specificity (Vega et al., 2022). Antibody-drug conjugates can be used to bring chemical
drugs to the precise location where their action is to take place, which is particularly useful
for chemotherapies involving very toxic molecules (Jin et al., 2022). Using an antibody to
bring the chemotherapy to the tumor allows to increase the doses, rendering cancer
therapies more efficient, and decreasing the side-effects. T-cells expressing chimeric antigen
receptors (CAR-T cells), recognize their target cells through antibody-like receptors
(Mehrabadi et al., 2022), for example, binding to markers of cancer, and destroy them.
Bispecifics recognize two different targets and can, for example, activate immune cells in the
micro-tumoral environment (Bejarano et al., 2021).
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As currently performed, antibody discovery starts by
immunizing animals: the target is injected into an animal (mostly
mice or rabbits), together with an immune booster. The immune
system of the animal reacts by producing antibodies against this
molecule. The second step is the screening, which consists in finding,
amongst the antibodies of the animal, those binding to the target of
interest. Successive rounds of selections, mainly based on refined
binding assays (in vitro cross-species binding, paralogs binding) and
both in vitro and in vivo functional assays, are applied to downsize
the number of initial hit molecules and to identify the final “leads”,
resulting in the well-known funnel-shaped process of antibody
discovery (Hoover et al., 2021). These successive elimination
steps are highly empirical, and depend more on the scalability of
wet-lab techniques than on the importance of the information
provided. Epitope mapping is a very good example of that.
Antibody/antigen complex is highly useful for further
engineering, and mandatory for IP protection, but requires time-
consuming and low throughput methods, like the gold-standards
X-ray crystallography or NMR. As a result, epitope mapping is
carried out very late in the cycle, as a check prior patenting, whereas
it would have made much sense at the very beginning of the project,
as a decision-making element (Bauer et al., 2023).

After these first selections, only a few leads actually display the
suitable physico-chemical properties to be qualified as candidate
molecules that could be moved to preclinical and clinical trials, and
ultimately become therapeutics. Maturation steps are hence often
engaged to optimize the affinity and the developability properties
(low immunogenicity, solubility at high concentrations,
manufacturability at large scale). Sequences are herein modified,
meaning that the number of molecules to test is increased back, and
that the final molecules are, strictly speaking, different from the
originally characterized ones. A new round of validations aiming at
requalifying the matured molecule is hence necessary, hoping that
the biological properties are retained along the process.

Artificial intelligence methods are gradually replacing all these
experimental steps, lowering the attrition rate and shortening the
whole process. This technological transition happened a decade
earlier for small chemical molecules, but the complexity of biologics
prevented any transfer of technology from one area to the other and
specific methods had to be designed. Here are described some of the
AI-based innovations dedicated at antibody discovery.

2 Methods and datasets in AI-based
antibody discovery methods

Artificial intelligence, theorized by Alan Turing in the 50 s, was
born with the description of genetic algorithms by J.H. Holland in
1975 (Holland, 1992). However, computers were not powerful
enough for these methods to be useful, and the real takeoff
happened 15 years later with the publication of David Golberg
Genetic Algorithms in Search, Optimization, and Machine
Learning (Golberg, 1989). AI methods have considerably
diversified and can be divided in two main categories: machine-
learning and knowledge-based methods (Figure 1). Machine-
learning methods are, by far, the most used, among which neural
networks. There are again many categories within neural networks,
the most popular being deep-learning. Once a model has been

trained or learned, for example, using a neural network, it allows
to either evaluate examples not present in the training stage, or even
generate new ones (generative AI). Language models are another
popular application of AI which bloomed after the arrival of the
iconic transformer paper “Attention is all you need” in 2017
(Vaswani et al., 2017). The model, often a deep neural network,
is fed with a corpus of texts, and it learns the meaning of word
ensembles in a context. This type of model has been generalized to
many types of objects (apart from texts), such as images,
molecules, etc.

A very important aspect of machine-learning methods in
general, is that they need to be trained on a set of data called
learning set. The result of a machine-learning campaign certainly
depends as much on the quality of this learning dataset than on the
detailed implementation. Many databases related to antibodies have
emerged these last years (Khetan et al., 2022), that can be used to
train machine-learning methods. However, most of these databases
have been themselves built using automated methods and are
lacking one or the other essential pieces of information like
affinity, aggregation parameters, or the epitope. One crucial piece
of information is the pairing between heavy and light chains, which
is missing in all the large databases. For this reason, we have
developed our own database, which contains more than
80,000 well-characterized antibodies: heavy and light chain
pairing, but also epitopes, affinities, in vitro and in vivo data,
cross-species reactivity, etc. This database is accessible through a
software platform, MAbFactory1.

3 Automatizing the different steps of
antibody discovery

3.1 Epitope mapping

The first area in which AI has been used in the context of
antibody discovery has been epitope and paratope prediction, which
consists in predicting the regions of each protein (the region on the
antibody side is called paratope and the region on the antigen side is
called epitope) involved in their interaction. Whereas initial trials at
tackling this problem only allowed to predict linear epitopes (which
represent only 10% of antibody epitopes (Rubinstein et al., 2008)),
gradual introduction of more complex algorithms, such as docking
and machine-learning trained scoring functions allowed to reach
useful accuracy levels (Zeng et al., 2023), such as epitope3D (da Silva
et al., 2022), RosettaDock (Lyskov and Gray, 2008) or MAbTope
(Bourquard et al., 2018; Tahir et al., 2021). MAbTope is docking-
based and uses a coarse-grained formalism, which requires only the
antibody sequences and allows high-throughput epitope mapping. It
allows identifying a correct epitope region in more than 80% of
cases. This method has been successfully applied to many examples
(Kizlik-Masson et al., 2017; Ashraf et al., 2019; Neiveyans et al., 2019;
Granel et al., 2020; Trilleaud et al., 2021; Vayne et al., 2021; Ugamraj
et al., 2022), including when the crystal structure of the target is
unknown, and a 3D homology model has to be built.

1 https://app-publicdemo-mabfactory-97288.azurewebsites.net/
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3.2 Screening clones

Whether working from immune animal or from already
established antibody banks, the first set of hits is mainly selected
on the recombinant target using classical biology approaches based
on hybridomas or display technologies, either in bacteriophages or
yeasts (Köhler and Milstein, 1975; Clackson et al., 1991). High
affinity is the main success criterion. This approach has three major
limitations: i/many leads displaying sub-optimal affinity or less
represented molecules are below the threshold of such
approaches and are de facto excluded from the selection, and ii/
the epitope cannot be selected, meaning that selected hits binding to
different places on the target molecule. Experimentally determining
the epitopes of these hits, or at least knowing which ones are in
competition (epitope binning) is far from trivial. The third
limitation is due to the process used for transferring the animal
immune repertoire to either bacteriophages or yeasts. Heavy and
light chain pairing is not maintained, and the resulting antibodies
are largely non-natural.

More recently, single B cells technologies have greatly improved the
process of this initial clone selection (Pedrioli and Oxenius, 2021).
Instead of building a bank from the immune repertoire, the B-cells of
the animal, which each express a unique antibody in their membrane,
can be directly selected on their affinity for the target using single-cell
technologies. The antibodies coded by the retained B-cells can then be
sequenced individually, resulting in natural-paired sequences. However,
this technology is also relying on high affinity selection, and leads
displaying sub-optimal affinity or less represented molecules are again
eliminated. Moreover, even within a few thousand clones,
experimentally characterization remains a problem.

Today, no published in silico method allows find leads against a
selected target while fully exploring the sequential space of a natural
repertoire, diverse both on the frameworks and CDRs (~109–1012 in
diversity). State-of-the-art methods still require a seed antibody to
guide the search. Deep-learning language models have had nice
successes in finding novel and better leads in very large artificial
library of CDR-degenerated parental antibodies, paving the way to
future extension to antibody repertoires (Liu et al., 2020; Mason
et al., 2021; Saka et al., 2021; Bachas et al., 2022). Examples are
mentioned in the affinity maturation section.

3.3 Affinity evaluation and optimization

The first step in antibody characterization is often affinity
evaluation, since the experimental technologies allow reasonably
high-throughput as compared to other in vitro assays. Rough but
large-scale evaluation is often performed in ELISA, while more
precise but low throughput evaluation is performed in SPR to
provide the ground-truth KD. However, these technologies
require the production of both antibody and antigen, limiting the
number of clones that can be evaluated. Affinity prediction from the
sequences and structures of antibody and antigen would therefore
allow the evaluation of much larger ensembles. Many computational
methods have been proposed for this task, and benchmarks
collected, but the models still have limited efficacy (Guest et al.,
2021). Moreover, many of these methods rely on the knowledge of
the accurate structural assembly of antibody and target, which is
generally not available, and certainly not for very large collections of
antibodies.

FIGURE 1
Artificial intelligence methods. Artificial intelligence methods can be divided in two main categories: knowledge-based methods and machine-
learning methods. Machine-learning methods can be further divided in evolutionary methods and neural networks. This last category contains deep-
learning methods. An artificial neuron (or node) receives input values (I1, I2, In), and computes an output value O, using a function and weights (w1, w2, wn).
Learning consists in optimizing these weights using input values for which the output value is known (learning set). The nodes are classified in five
main categories. There are many types of neuron networks, we show here only the most common ones. Finally, a neuron network is qualified as “deep”,
allowing to make deep-learning, if it has three or more layers of hidden nodes.

Frontiers in Drug Discovery frontiersin.org03

Musnier et al. 10.3389/fddsv.2024.1339697

https://www.frontiersin.org/journals/drug-discovery
https://www.frontiersin.org
https://doi.org/10.3389/fddsv.2024.1339697


Antibodies obtained either through immunization or by
screening existing antibody banks, often have insufficient
affinities. Experimental methods to enhance affinity rely on
random mutagenesis, usually restricted to the CDRs, and require
intensive wet-lab labor. Deep-learning language models proved
themselves successful at finding better binders than a parental
antibody. Using the same principle as the experimental approach,
language models start by building a library of the parental antibody
which CDR residues are degenerated and substituted in all 20 or
selected amino-acids. But the theoretical diversity to explore, even
considering only the CDRs, remains largely beyond the
interrogation by any wet-lab or computational means, and
maturation methods are constrained to consider only a few
mutated positions. As a matter of dimension, considering the
CDRH3 is 10 aa-long on average, testing its full theoretical
mutational space only raises the library to 1020. Bachas and
Mason (Bachas et al., 2022) used degenerated Trastuzumab
libraries, cloned either in bacteriophages or hybridomas, and
used their binding to a fluorescent HER2 (in FACS) to train
models which allowed them to retrieve better binders than the
parentals. They included up to 3 mutations on respectively 10 and
17 positions. Saka et al. (Saka et al., 2021) and Liu et al. (Liu et al.,
2020) created degenerated libraries of an anti-kinurenin and an anti-
VEGF-A (Rabinizumab), respectively, and trained a directed

evolution-based model from the enriched sequences along
panning rounds. The major limitation of such models, beside the
restricted number of mutations, is that they are learnt on a given
antibody-antigen pair, and that the resulting training set is not
target-agnostic. The whole procedure is not applicable to the
next target.

With the improvement of structure determination methods,
rational design of mutants has significantly increased the success
rate of affinity maturation (Li et al., 2023). Although rational design
leads to testing a much lower number of mutants than random
mutagenesis, it also requires to have precise structural data, which is
in itself a difficult task. To tackle this problem, many computational
methods allowing affinity prediction of mutants have appeared
recently (Li et al., 2023) with various success rates.
RosettaAntibodyDesign (Adolf-Bryfogle et al., 2018) is one of the
most successful.

3.4 Off-targets prediction

One parameter often underestimated during antibody discovery
is off-target binding. Indeed, if selectivity for the target is commonly
verified by evaluating the absence of binding to close homologs,
binding to unrelated proteins is usually not addressed, or very late in

FIGURE 2
Classical, AI-assisted and AI-fueled de novo discovery pipelines. In the classical discovery pipeline (left), initial candidates (hundreds to thousands)
are selected within the immune repertoire of an immunized animal, in vitro characterized (a few tens are retained) then in vivo evaluated, resulting in a few
leads. These leads are humanized and optimized for affinity and developability. The resulting antibodies are evaluated in vitro and in vivo to verify that
activity has been maintained. One of those is then selected for clinical trials. If antibodies have lost their activity during humanization and
optimization (rescue plan 1), or if the chosen candidate fails in clinical trials (rescue plan 2), new candidates have to be selectedwithin those characterized
in vitro, and later steps gone through again. In the AI-assisted discovery pipeline (center), selection, characterization and optimization steps are partially
conducted in silico, which accelerates the process, without changing its general organization. AI-based selection procedures allow to start from
databases rather than physical antibody banks. In the AI-fueled de novo discovery pipeline, starting point is a database. Moreover, some technologies,
such as those developed by MAbSilico, allow choosing the targeted epitope at the beginning. In this pipeline, all the antibodies of the initial database are
fully evaluated in parallel, resulting in a few hundred well qualified, humanized and optimized antibodies. These candidates are then evaluated in vitro and
in vivo to choose one lead for clinical trials. If this candidate fails, the next one can be chosen, without the need to repeat the whole process.
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the discovery process. Yet, there is now ample evidence that this
phenomenon, called cross-reactivity, is far from anecdotal, as it can
lead to auto-immune diseases (Cusick et al., 2012), and is most-
probably also responsible for some failures in clinical trials (Lecerf
et al., 2019; Cunningham et al., 2021; Loberg et al., 2021). However,
cross-reactivity can also be an advantage, as in the case of rituximab.
Indeed, rituximab not only binds its cognate target CD20, but also
the sphingomyelin-phosphodiesterase-acid-like-3b (SMPDL-3b),
and offers a treatment option for follicular segment
glomerulosclerosis (FSGS). Some experimental methods exist to
evaluate cross-reactivity, like tissue cross reactivity, or protein
arrays, but are lengthy and expensive. MAbSilico has developed a
computational method allowing to predict off-target binding with
good accuracy (Musnier et al., 2022). In this method, both sequence
and predicted 2D structure of antibodies are used to encode the
CDRs of the antibodies. These encodings can then be compared
using a specific score, based on the similarity of itemsets (Egho et al.,
2015). This method allowed us predicting that 238D2 (Jähnichen
et al., 2010), an anti-CXCR4 antibody, also binds hemagglutinin,
and 6 human proteins. We were able to experimentally validate these
predictions (Musnier et al., 2022). Using this method and our
database of more than 80.000 antibodies having known targets,
we are able to identify off-targets as soon as the sequences are
known, and this does not require the knowledge of the antigen’s
3D structure.

3.5 Developability prediction and
optimization

The last step of antibody discovery is the evaluation of
developability. The term developability generally covers different
aspects: (1) immunogenicity: will this antibody elicit immune
reaction when injected into human? (2) Producibility: will this
antibody have high production yields in bioproduction? (3)
Aggregation: will it be possible to make high concentration
solution, or will the antibody aggregate? The methods and
databases developed to date, are largely reviewed in (Khetan
et al., 2022). Briefly, for example, prediction of immunogenicity
is largely based on humanness scores, such as the OASis score
(Prihoda et al., 2022). These scores evaluate how close the antibody
of interest is to known human sequences, and are correlated with the
levels of anti-drug antibodies (ADA) observed in clinical trials.
Optimization of one antibody’s immunogenicity starts with its
humanization, which consists in modifying patterns to go back to
the closest human germline. MAbSilico’s CDR similarity measure
(see above) allows to performed humanization. In fact, since it can
identify the human antibody having themost similar CDRs, it can be
considered that the frameworks of the retrieved human antibody
constitute an optimal scaffold to support the CDRs. The CDRs of the
animal antibody can then be grafted into the human frameworks,
leading to a fully human candidate.

More general evaluation of developability can be obtained
through the Therapeutic Antibody Profiler (TAP) tool (Raybould
et al., 2019). This method allows to anticipate expression or
aggregation issues of antibodies based on characteristics such as
CDRH3 length, hydrophobicity within the CDRs or canonical
forms. Gentiluomo et al. (Gentiluomo et al., 2019) use

interpretable neural networks to successfully predict aggregation,
together with melting temperature. Hou et al. (Hou et al., 2020) have
developed the SOLart software, which uses both sequence and
structure, and is based on a random-forest algorithm.

Producibility prediction seems to be an even more difficult
challenge. Different studies show a correlation between the
production titer and the stability of the antibody (Goldenzweig
et al., 2016; Jain et al., 2017), especially the melting temperature and
solubility. Harmalkar et al. (Harmalkar et al., 2023) use pre-trained
language models and convolutional neural networks to predict
melting temperature. Avoiding antibodies predicted to have low
melting temperature or poor solubility is thus desirable, but is not a
guarantee of good production titers.

4 Chaining them all: de novo
antibody discovery

De novo antibody design holds the hope of being able to generate
a highly affine, soluble, non-immunogenic, and epitope-directed
antibody starting only from the name of the target. It implies
mastering, at least, affinity prediction, structural characterization,
and developability assessment. Solutions aiming at solving each
pitfall are developed, as mentioned above, but they are still used
individually along the funnel-shaped process dictated by the
classical biological pipeline. Chaining them all together, in a
virtuous circle, is certainly one key to success.

The whole design process must start by creating candidates,
either randomly which would imply subsequent rational selection,
or rationally, by “walking” on the target structure. Language-based
approaches were expected to fulfill the first approach at high
throughput but they are, as described above, still highly limited
on the antibody diversity that can be injected in the computations
(Liu et al., 2020; Mason et al., 2021; Saka et al., 2021; Lim et al., 2022).
The approach proposed by Aguilar Rangel et al. (Aguilar Rangel
et al., 2022) is based on a structural approach, computing CDR and
epitope peptide complementarity. Authors show that the method
can design de novo CDR peptides, which can then be grafted into
nanobodies binding to three different targets (human serum
albumin, SARS-CoV-2 spike protein, and trypsin), although with
limited affinities. The method proposed by Anishchenko et al.
(Anishchenko et al., 2021), which computes a structural
evaluation of randomly generated and modeled peptides, proved
accurate for protein design, but has not yet been applied to
antibodies.

At MAbSilico, we have designed our own algorithms for the
different steps, which allowed us to finally chain them all, unlocking
our ability to de novo design antibodies. Our new in silico pipeline is
target-agnostic and epitope-driven, and was successful at designing
binders against the immune checkpoint inhibitor TIGIT (T-cell
immunoreceptor with Ig and ITIM domains, unpublished) and
against the Receptor-Binding Domain of SARS-CoV-2 (data
presented at the Antibody Engineering and Therapeutics 2023;
Amsterdam). In the latter project, thousands of paired VH/VL
sequences were obtained from COVID-19 vaccinated patients,
modeled and selected against chosen epitopes of the RBD. We
identified 5 candidates, displaying nM and sub-nM affinities, and
cross-neutralizing several viral strains (pre- and post- Omicron
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lineage emergence). Our method was successfully scaled. In fact,
starting from a collection of 4.25 × 1012 VH/VL pairs (artificially
reconstituted from 1.7 × 106 VH, and 2.5 × 106 VL sequences
obtained by NGS of a human scFv library), 16 VHs and 22 VLs were
predicted as affine binders on a specified epitope of TIGIT. Amongst
the 352 possible pairings, 94% were binding in an ELISA assay, and
after developability optimization, the best binder had sub-
nanomolar affinity in BLI. We were also able to de novo design
binders against a GPCR, whose 3D structure has not yet been
determined and for which we built several homology models.
This demonstrates that our method does not require an
experimental structure of the target.

5 Concluding remarks

In silico methods are being developed to replace or support
antibody selection and their molecular characterization and
optimization. As shown Figure 2, AI-based methods covering one
step of the classical funnel-like discovery pipeline are undoubtedly
useful, but they do not change the global shaping of discovery.

De novo AI-fueled methodologies, such as the one developed by
MAbSilico allow to generate a few tens to a few hundred well-
qualified leads, which are predicted to have high affinity, low off-
target binding and good developability (Figure 2). These candidates
can then be tested in vitro and in vivo, without the need to optimize
or humanize them before clinical trials, which eliminates the risk of
losing activity in the process. The chances of success are
consequently much higher than in the classical process. Finally,
the initial in silico step only takes up to 21 days, considerably
shortening the process, and drastically abating the costs as the
number of biological assays needed is decreased and the chances
of success increased.

Among all characterization steps, the prediction of one
antibody’s biological function remains the least amenable to in
silico prediction, as the molecular mechanisms involved are either
not fully understood, or highly complex and target-specific.
Targeting a precise epitope can partially circumvent this issue.
For example, targeting the interaction region of a ligand on its
receptor will in most cases inhibit the action of the ligand. However,
antibodies having the same epitope can have different functions as
illustrated by Zaitseva et al. (Zaitseva et al., 2023). These authors
have generated different variants of an anti-Fn14 (fibroblast growth
factor (FGF)-inducible 14) antibody, and show that, despite all
binding the same epitope, they have different biological functions.
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