
HAL Id: hal-04672432
https://hal.science/hal-04672432v1

Submitted on 19 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Yet another experience on TSN tools interoperability for
critical embedded networks

Philippe Cuenot, Thierry Leydier, Damien Fruchard, Massimo Barbero,
Quentin Bailleul

To cite this version:
Philippe Cuenot, Thierry Leydier, Damien Fruchard, Massimo Barbero, Quentin Bailleul. Yet an-
other experience on TSN tools interoperability for critical embedded networks. ERTS2024, Jun 2024,
Toulouse, France. �hal-04672432�

https://hal.science/hal-04672432v1
https://hal.archives-ouvertes.fr


Yet another experience on TSN tools
interoperability for critical embedded networks

Philippe Cuenot
Continental Automotive

Toulouse, France
philippe.cuenot@continental-corporation.com

Thierry Leydier
Virtualité Réelle

Saint-Orens, France
thierry.leydier@virtualitereelle.com

Damien Fruchard
Airbus Defence and Space

Toulouse, France
damien.fruchard@airbus.com

Massimo Barbero
Thales Alenia Space

Cannes, France
massimo.barbero@thalesaleniaspace.com

Quentin Bailleul
IRT Saint Exupéry
Toulouse, France

quentin.bailleul@irt-saintexupery.com

Abstract—The introduction of Ethernet into critical embedded
applications opens new needs to master and secure network
development and deployment. While Ethernet is a well known
Information Technology (IT) brick and deployed in the indus-
try on a case-by-case basis, Time-Sensitive Networking (TSN)
complements have only recently emerged in the aerospace and
automotive industries as a promising solution to provide real-
time, reliability, and availability guaranties for safety-critical
systems. The complexity and diversity of TSN mechanisms
enforce the use of specialized tools to assist the network engineer
for the design, configuration and deployment of the network
parameters. On the other hand, IETF has proposed Yet Another
Next Generation (YANG) modeling language for interoperability
in configuration and monitoring of various network devices. In
this paper, we propose to revisit and complement the YANG
standardised model in order to enable tool interoperability, with
the aim of providing these complements as open source. The
benefit of the proposed YANG model will be demonstrated on a
TSN industrial use case with a set of tools ranging from network
design and configuration to deployment on a Proof of Concept
(PoC) platform.

Index Terms—Embedded Network, Tool Interoperability, Eth-
ernet TSN, YANG model

I. INTRODUCTION

Aerospace and automotive industries are moving to Soft-
ware Defined Systems (SDS) based on virtual resource al-
location: a control layer is deployed in the system in order
to configure virtual resources for the services offered by the
specific domain application. In this sense SDS breaks the
tight coupling between the software (SW) and the hardware
(HW) of classical information systems, where dedicated de-
vice performs the domain application service. Such systems
offer an easier management of HW and SW resources for
the application but require higher design constraints for a
flexible and generic execution platform. At the same time,
classical information systems lack of scalability, flexibility and
configurability. The new SDS-related architecture paradigms
can be applied to critical embedded systems and the associated
communication network where the increase of data exchange
in terms of bandwidth, the rising number of devices deployed

in the network and the need of standardization of the network
interfaces suggest to naturally move to switched Ethernet
network, with the advantage of reuse and cost reduction on
the overall infrastructure. The critical expected properties of
embedded applications with mixed criticality traffic imply
preconditions on the network, such as tight and predictable
communication traversal time, reliable and safe communica-
tion, strong availability of data/frame exchanged coupled to
network configuration complexity. In this context, the Ethernet
Time-Sensitive Networking (TSN) can satisfy the requirements
of safety-critical embedded applications. The IEEE802.1Q [1]
standard complemented with TSN standard extensions emerg-
ing in industrial/automotive domain proposes dedicated means
to guarantee real-time and safety on these mixed criticality
embedded systems. Nevertheless, the design, the provisioning
and the verification of the application requirements of a full
TSN Ethernet network in a mixed criticality embedded system
requires the usage of specialized tools to let the network
engineer be more effective, due to the complexity of the
TSN standard. Moreover, these tools are necessary to support
certification of the final system.

To simplify exchanges between these different tools, we
propose in this article to study the use of the YANG data
model for tool interoperability purposes. As YANG is designed
for network device configuration and monitoring, we proposed
augmentations to the standard models to enable their use in the
upstream design, study, test and validation phases of critical
embedded networks. These modifications are then tested to en-
sure automated, flexible and vertical interoperability between
a network design and analysis tool and a generic hardware
test bench configuration tool. This vertical interoperability has
enabled us to explore multiple TSN safety-critical embedded
industrial use cases (from design to deployement on a hard-
ware generic test bench) in short iterative loop.

This study has been elaborated in the context of an IRT
Saint-Exupery project called EDEN project. EDEN is a multi-
domain research project (automotive, aeronautics and space)
with the aim to demonstrate confidence in TSN deployment



in critical embedded system domain.
This article digs into the details of the study proposing

the following subjects: Section II introduces TSN and YANG.
Then, section III analyses the state of art of Ethernet network
tools for embedded system. Section IV defines the approach
and organization of YANG model applied to Ethernet TSN in
the context of EDEN project. Section V documents the use of
our YANG models on the industrial use case. Next, section
VI discusses the limits of our approach. Finally section VII
resumes the conclusion and proposes future work perspective.

II. TSN AND YANG OVERVIEW

TSN provides deterministic and reliable Ethernet commu-
nication for real-time traffic, which can coexist with non-real
time data traffic. The IEEE802.1Q [1] standard complemented
with TSN standard extension is emerging in industrial do-
main: several working groups for TSN standardisation propose
TSN profiles for specific industrial domains. For example,
the Aerospace Onboard Ethernet Communications P801.2DP
standard is a profile defined for the aerospace industry.

Several TSN’s intrinsic mechanisms permit to guarantee
QoS for the traffic. The Time-Aware Shaper (TAS), proposed
in IEE802.1Qbv [2], combined with network-wide synchro-
nization provided by gPTP protocol, descrided in [3], enable
time-triggered communication. Credit-Based Shaper (CBS)
enables traffic flow regulation controlled by credit as specified
in IEEE802.1Qav [4]. Frame Replication and Elimination for
Redundancy (FRER), proposed in IEEE802.1CB [5], allows
the frame redundancy. Per Stream Filtering and Policing
(PSFP), defined in IEEE802.1Qci [6], enable flow filtering and
policing.

Yet Another Next Generation (YANG) is a data modeling
language intended for network configuration and monitoring.
It was proposed by IETF in RFC6020 [7]. YANG language
is used to describe a data structure. Instances of this data
structure can be exported in XML or JSON format. These
instances travel through the network to configure or monitor
a device using YANG-based protocol like NETCONF [8]
or RESTCONF [9]. YANG can be seen as a successor of
Management Information Base (MIB) and YANG-based pro-
tocols as a successor of Simple Network Management Protocol
(SNMP).

YANG model files are called module. To illustrate this
paragraph, a very simple module modeling a scientific article
is given as an example in Listing 1. The container article
is a high level object that groups leaf, list and even
container. In this container, a list of section is
described. A list object is a collection of key/value pair that
can contain multiple objects (e.g. leaves). In this section
list, a section-id leaf is described. A leaf is an object
that can contain only one value. An instantiation of this
module for a two-section article is given in Listing 2. YANG
also proposes a mechanism called augmentation which
allows a module, without modifying in it, to be extended
by another module. In our example, it’s possible to propose
a module that augment the section object of the article

module, to add a list that would describe tables present
in the section in the same way as the list of images.
container article {

description "Article";
list section {

key "section-id";
leaf "section-id {

type uint32;
}
leaf content {

type string;
}
list image {

key "title"
leaf "title" {

type string;
}
leaf "path" {

type string;
}

}
}

}

Listing 1: Simplified example of a scientific article YANG
module

<article>
<section>

<section-id>0</section-id>
<content>This is the first section
</content>

</section>
<section>

<section-id>1</section-id>
<content>This is the second section
</content>

</section>

</article>

Listing 2: Simplified xml instantiation of the scientific article
YANG module

In practice YANG is mainly used in the IT world to manage
large infrastructures. In this context, IETF has proposed a
number of models such as model for network and interface,
or for protocols such as IP. These models are augmented
by vendors such as CISCO or HUAWEI to model proprietary
mechanisms. In the world of TSN, standardization working
group proposes a set of standard YANG module to describe
TSN mechanisms and enable their configuration and monitor-
ing.

III. RELATED WORK

As mentioned previously, Ethernet IT device providers have
developed complete tool suites adopting YANG programmable
interfaces using NETCONF or RESTCONF protocol for Ether-
net network configuration, supervision, and maintenance [10].
A typical example is the Cisco YANG suite [11] that provides
a set of tools and plugins to learn, test, and adopt YANG model
for the supervision of an Ethernet network.

For non-IT network, the standardized Centralized Network
Configuration (CNC) architecture, part of IEEE Std 802.1Qcc
[12], is a key element of TSN standard for configuration of
embedded critical network application.



A first implementation of such CNC architecture capable
to configure a TSN network of an industrial construction
equipment, using the NETCONF protocol and YANG models,
was demonstrated in [13]. This demonstration is limited to
dynamic TAS configuration for a SMART MPSoC bridge
representative of an embedded network application distributed
by SoCe company. Despite the use of Linux service for YANG
parsing and configuration, the device set-up is operated with
specific SoCe drivers, so not applicable to different devices.

In a recent review on TSN network configuration manage-
ment [14], the authors state that despite the central role of
YANG in promoting unified network management, the current
standard still needs to be improved to cover configuration
of a network composed with different device manufacturers.
Similarly in the automotive industry, [15] promotes the use
of model-based development, validation and configuration of
TSN embedded application. But the authors state that the
TSN network configuration and scheduling algorithms are not
integrated into the existing software development tools and
require further research to enable efficient configuration of
TSN network.

Indeed, before configuring the network hardware, it is nec-
essary to design and validate the network configuration using
multiple specialized tools (e.g. tools for design, configuration,
formal analysis, simulation, ...). In order to use such a variety
of tools safely and efficiently, tool interoperability is of major
interest. Here also the YANG model can play a central role.
To answer the design need, several model-based tools for
TSN network architecture design have been proposed on the
commercial market. We can mention Pegase from RealTime-
at-Work (RTaW) [16] mostly used in automotive industry,
Chronos from General Electric [17] targeting aerospace mar-
ket, TSN designer from RealTime IT [18] or IxNetwork from
Keysight [19] addressing the IoT and industrial market. Those
products enable to explore and analyze network architecture in
order to generate the configuration of TSN mechanisms. But
to our knowledge none of them implement a feature enabling
non-proprietary tool interoperability all the way down to the
hardware network device configuration tool.

RTaW has introduced a first YANG export feature in Pegase
tool, completed by a complete tool chain in TSN Studio [20].
TSN Studio enables to configure industrial devices running
Linux with standard NETCONF protocol. Despite the use of
YANG models, there are still some dependencies to the Pegase
data model, for example with regards to the traffic definition or
the fixed labeling of physical device. The NETCONF protocol
is the only way to configure the devices, which could mismatch
the embedded systems requirements. Indeed, NETCONF is
quite heavy in term of computing resources and software stack,
and it relies on TCP which may not be determinism-friendly.
In addition, manufacturers of devices dedicated to embedded
systems offer configuration through proprietary solution that
do not support YANG interface.

As critical embedded network, industrial IoT domain im-
poses stringent requirements on the dependability and perfor-
mance of communication networks. In this context, Chahed

et al. [21] explore TSN state of the art after identifying that
the large and continuously evolving set of standards poses
challenges for adopters seeking to understand it. They exhibit
that clear understanding of use-case, available device resources
and constraints are key points and raise that the performance of
the control plane design and management operation especially
for device configuration is an important aspect aimed to be
tackled in the future.

To overcome these limitations around configuration integra-
tion in development and validation tools as well as TSN net-
work exploration in the context of critical embedded systems,
our contribution proposes to complement standard YANG
model to enable full interoperability between TSN network
design tool chain and device configuration targeting network
exploration experiments.

IV. YANG DATA MODEL FOR TSN NETWORK

A. Preamble and initial objectives

To fully understand our approach, it is important to begin
by historically describing our issue:

• Initially, interoperability aimed to facilitate the exchange
of network models as well as TSN configurations among
various design tools (Pegase RTAW and Timaeus-Net
in the first step of our project). This initial step was
pivotal in shaping our approach to standard Yang models
and their limitations, and in subsequent decision-making
terms of design. We can refer to this as ”horizontal in-
teroperability”, as interoperability actors have similar or
closely related roles in the network development process.

• Subsequently, our objective shifted towards seeking in-
teroperability between network design tools and deploy-
ment tools on hardware platforms. Here, we can speak
of ”vertical interoperability”, as interoperability actors
have different roles. This second step introduced new
challenges.

The pursuit of vertical interoperability first faced tools lim-
itations, as tools did not often offer a means of importing
from a Yang structure and only supported a single meta-
model. Effective interoperability at that time in our project
context was thus unidirectional: RTaW-Pegase to Timaeus. The
underlying model at this time was already an augmented
model proposed by RTaW. However, this scenario was in-
teresting as it paved the way for a new potential need: the
ability of a tool to support a Yang model as an interoperability
”parameter”. When we aimed to further enhance this vertical
interoperability to ensure the sustainability of our solutions, it
became evident that adopting a cleaner approach was essential.
This involved creating a customized Yang model that we
could subsequently disseminate to the embedded network
community.

B. Requirements for a model

To create and setup the YANG model, we started with the
definition of requirements, driven by 3 principles: universality,
diversity, and reversibility.



a) Universality: Because our final aim is to ensure the
global interoperability of our network design and deployment
environment, the solution was not only to cover the network
configuration, but to have a full description of the network
shared by a large set of tools: design and configuration tools,
network simulators, deployment solutions. This first principle
of universality is crucial regarding both the structure and
content of the model. Particularly, to encompass the scope of
vertical interoperability, we need to incorporate into the model,
information that will be used in a very localized manner.
This principle also diverges from the aim of IETF and IEEE
models, which solely targeted network devices. For instance,
high level network development tools have to deal with pure
graphical information related the rendering of networks (e.g.
size and position of nodes inside a display). This kind of
information has not interest for the network deployment but
can be very important for the network designer. So a YANG
model shall support any information required along the full
network development process.

b) Diversity: At this stage, let’s introduce the concept
of perspective: for two tools playing the same role in a
network design chain, the high-level view of the network may
differ. For instance, a critical embedded network would be
highly interested in security information, whereas a standard
network may not necessarily be concerned with this issue.
Another example is openness to applications. For instance,
you can limit the traffic definition to the network or extend
this definition to the related applications. Indeed, applications
can greatly influence traffic behavior and configuration. For
example, if the application contains time-triggered temporal
constraints and if these constraints are implemented using
the time-triggered solution TAS, then the configuration of the
TAS shall match these application constraints. Therefore, we
need a solution to express these constraints inside the YANG
model. This principle of diversity will significantly increase
the size of the model; it will also lead to diversity in usage:
all elements of the model will not be used in the same way
in every network. Thus, there will be diversities in usage or
instantiations resulting from the diversity supported by the
model as well as the functional diversity of users. So a YANG
model shall support any perspective and point of view used
along the full network development process.

c) Reversibility: The YANG model shall be sufficient so
that when a tool exports a network description, it should be
able to recreate the same network description by importing
the previously exported model. Due to this principle, new
information shall be taken into account: implementation infor-
mation introduced by each tool. A highly interesting example
concerns the modeling of TAS schedulers. When this shaper
is used, the network design tool assists by calculating the
configuration tables of the TAS schedulers, which contain the
opening and closing times of gates on the output ports. This
configuration constitutes the implementation of TAS and is
specific to each TAS configuration algorithm; for example, in
Timaeus-Net, there are options that allow for adjusting the
porosity of TAS windows relative to the rest of the traffic.

The porosity of a TAS expresses the ability of time triggered
traffic to be interlaced with non time triggered traffic. If
the porosity is low, then the use of TAS will generate a
tunneling effect that will reduce the efficiency of the non
time triggered traffic. Changing this option thus leads to a
different TAS configuration and different performance for the
entire traffic. The modeling proposed by the IEEE standard
regarding TAS is very relevant regarding the configuration of
gate opening tables. Therefore, this initial information can be
reused; however, the IEEE model does not implement any
association between the gates configuration and the specific
traffic. Thus, if two flows of the same priority and profile (same
message size and periodicity) exist, it will not be possible to
infer the flows from gate management information. Respecting
reversibility can lead to an increase in information: we call
this kind of information tool-dedicated information. But other
solutions are also possible: in the case of TAS schedulers,
for example, we have chosen to address it at the level of the
import function itself. Indeed, it would have been too complex
and too specific to overload the model in order to trace
unequivocally the options of the scheduler creation algorithm.
In other words, interoperability stops at the implementation
specifics of the exchanging tools. So a YANG model shall
support any information which are mandatory to recover a
network after an export-import sequence.

d) Maintainability: To conclude this list of requirements,
adding one final principle that concerns not the creation of
the model but its utilization: the principle of maintainability.
Indeed, as soon as we recognize that standard models are
incomplete, not yet stabilized, or customizable, we must be
prepared in an interoperability scenario to encounter a YANG
model that is different from the one we are going to create.
Alternatively, for a given model, we must be prepared for
different interpretations of the same model. We will delve
into the implications of this scalability principle later in the
article. This last criteria does not directly concern the YANG
model, but rather the way the tools could be adapted to
work with such model. Our conclusion of this first activity
of requirements, was a set of mandatory information that
should be managed inside our model: topology information,
traffic information, configuration information, dependability
information, tool-dedicated information etc.

C. Elaboration of the YANG model

Implementing the model involves defining the classes and
relationships necessary to cover our network modeling needs.
At this stage, we are torn between two implementation ap-
proaches that need to be reconciled: a primary categorical
approach, which is to reuse existing classes and relationships
from IEEE and IETF modules whenever possible – this is
imperative, just because during the deployment phase, we will
need to leverage this information. A secondary contingent
approach is to address our principles of universality, diversity,
and reversibility. To cover the first approach, our starting point
was the set of concepts already implemented inside IETF and
IEEE standards; IETF standards contain concepts like net-



work, node, link, interface, etc.; IEEE standards contain TSN
concepts like bridge, bridge-port, TT scheduler, gPTP/PTP
instances, talkers and listeners, etc. We split these standard
concepts into 3 categories:

• concepts that can be reused as they are,
• concepts partially matching our requirements and which

have to be improved,
• concepts not mandatory for HW configuration, which are

not matching our requirements or which could not be
improved.

In the first category (concepts that can be reused as they
are), we only have concepts which are required for the
hardware configuration itself: for instance, to configure the
TAS mechanism, we need to define “gate parameter tables”
which are containing the TAS schedulers entries. The YANG
concepts defined in the ieee802-dot1q-sched module play
this role perfectly. The second category (concepts partially
matching our requirements) contains most other standard
concepts: improvement can here be done using the YANG
Augment feature. For this study, we organized the YANG
folders in order to separate what is standard, and what is
customized. Let’s note that even the most obvious concepts
must be completed to fit our needs; for instance, the IETF node
concept has been augmented to support the “manufacturer-
reference”, or the “bench-id” (host name of the node in the test
bench network, such as “PC 2”). These fields are useful when
deploying the network on a generic platform. The last category
contains concepts that are not mandatory for configuration,
and which are not generic nor detailed enough to implement
some of our needs: for instance, the talker-listener paradigm is
defined inside the ieee802-dot1q-tsn-types module and is not
relevant to implement all kind of traffics. In order to avoid
modifications or patches of the standard model, when a part
of the model was too far from our need and when it was not
possible to augment it, we preferred to create our own class
breakdown.

To address the second approach, we need to complement
our model with new classes or relationships. Here, we have
more freedom, but our approach aims to achieve a complete
and high-quality model: at this stage, we aim to ensure that
additions do not degrade the overall quality. Once again,
compromises will need to be made between the two initial
objectives (horizontal and vertical interoperability). To mea-
sure the quality of the whole, we use conventional design
criteria borrowed from the state of the art in model design:
class coherence (classes should implement only one clear and
unique concept); coupling (classes should be loosely coupled,
avoiding logical and implementation couplings); primitiveness
(each class attribute should implement information that can-
not be decomposed into elementary information or duplicate
already modeled information).

D. Model Overview

We will not expose the entirety of the model (see summary
in Table I) but will briefly present some specificities. Let’s

start with the ”additions,” which are a few modules we have
created to complement existing elements in the standards:

• Irt-tsn: This module contains information for TSN con-
figuration. The simplest example here is CBS. Although
very old and common, there is no standard for defining
the configuration of CBS parameters.

• Irt-topology, irt-interface, irt-ptp: In these three cases
associated with standard modules, we have added infor-
mative supplements such as buffer sizes, transmission
capacities, references to network nodes (for interfaces
as with ”bench-id” in the interface module presented
earlier), etc..

Now let’s talk about classes that we have created from
scratch. The simplest example is traffic modeling (Fig 1). The
irt-traffic module is intended to cover the generic needs for
defining traffic that we identified in our research project. Main
container is the ”Traffic” class: this singleton is supposed to
contain all the items used to describe a full traffic. It mainly
contains:

• A collection of flows: each flow itself contains a set of
cast ; a flow has properties (like its payload or its period)
and constraints (like a maximal latency)

• A collection of classes: a class is a high level concept to
describe QoS or standard shapers configuration.

• A collection of protocols: a protocol can be used by a
flow

• A collection of additional constraints: these constraints
are used to express applicative constraints: for instance,
for a cyclic traffic, the exchanged windows or for a
chained cyclic, the items of the chain.

E. YANG model instance life cycle in the tool chain

According to the interoperability context, several activities
are concerned: network model design, network model valida-
tion, devices configuration generation, deployment on the HW
platform, validation of the HW platform. These activities can
be organized around a workflow, creating a life cycle to enrich
the YANG instance of the network.

Parts of the YANG model have to be initialized in the
design activity, other will be created later. For instance,
the actual IP address is only assigned during the platform
deployment. This concept of life cycle can be compared to the
“config” standard YANG field used to distinguish parameters
that actually can be configured: in our case, model concepts
have to map to activities of the life cycle. Sometimes, the
same initial requirement projected onto two activities will be
implemented using two distinct YANG concepts: it is the case
of the Traffic Safety requirement. At network design level
this requirement consists in being able to define for critical
flows some redundant paths. To implement this first level of
requirement, due to the reversibility principle, we decided to
create the concept of flow cast: a cast is a set of segments;
each segment can be single or multiple; a single segment is
a path; a multiple segment is a set of paths, having same
extremities but distinct intermediate nodes to ensure safety in



Fig. 1: Class Diagram for Traffic

case of line break. Then at deployment level, the principle is to
use the FRER mechanism to implement the redundant paths.
A model complement is thus required, focusing on each node
ieee802-dot1cb-frer configuration.

F. YANG model implementation in the tools

Both interoperability objectives (horizontal and vertical in-
teroperability) suppose that each tool of the framework is
“understanding” the common YANG data model. However,
in each tool there is an element of interpretation in this
understanding of the model. For example, our YANG model
leaves some freedom for port naming (numeric, alphanumeric,
etc.); the nature of the tools will also play a role: a tool close to
hardware will rely on the hardware identification of the ports
while a high level network analysis tool can go so far as to
ignore this naming. The consequence is that each tool must be
able to adapt its own data model to the generic YANG model.
The tools must allow this adaptation to be configured, in order
to achieve maximum interoperability.

To ensure the scalability principle of interoperability, the
technique of meta-model mapping can be a solution. This
technique is based on the following principles:

• Each tool has its own meta-model, which generally
corresponds to the tool’s specific design, but also to the
underlying purpose of the tool.

• Each tool will use an external YANG meta-model, which
is different from its own meta-model. This external meta-
model will not be hard-coded in the tool but exchange-
able: the tool will therefore offer a principle to select the
external YANG meta-model.

• An additional mapping interface will be supported by the
tool, an interface that should allow aligning the elements
of the native meta-model with the elements of the external
meta-model

Fig. 2: Block diagram of the tool chain

V. THE EXPERIMENTAL SETUP

In this section, the experimental setup used to validate the
interoperability enabled by the model is presented. Starting
with a presentation of the tool chain, followed by a presenta-
tion of the industrial case study used for this setup, and finally
a feasibility study is described and discussed.

A. Tool chain

The tool chain developed as part of this work aims to
support the user from the design and configuration of a TSN
network right through to deployment on the hardware. It is
summarized in Fig. 2. It can be broken down into three distinct
tools, which are detailed below.

a) Design and validation of a TSN network: Timaeus-
Net [22] is a tool allowing the user to describe a network, its
message flows and their constraints. Using these informations,



Standard Standard changed Contribution
iana-type-if.yang ieee802-dot1q-psfp.yang irt-eden-usecases.yang

ieee1588-ptp.yang ieee802-dot1q-sched.yang irt-frer.yang
ieee802-dot1as-ptp.yang irt-interface.yang

ieee802-dot1cb-frer-types.yang irt-ptp.yang
ieee802-dot1cb-frer.yang irt-topology.yang

ieee802-dot1cb-stream-identification-types.yang irt-traffic.yang
ieee802-dot1cb-stream-identification.yang irt-tsn.yang

ieee802-dot1q-ats.yang irt-types.yang
ieee802-dot1q-bridge.yang

ieee802-dot1q-preemption.yang
ieee802-dot1q-stream-filters-gates.yang

ieee802-dot1q-tsn-types.yang
ieee802-dot1q-types.yang

ieee802-types.yang
ietf-inet-types.yang
ietf-interfaces.yang

ietf-ip.yang
ietf-network-topology.yang

ietf-network.yang
ietf-yang-types.yang

TABLE I: Lists of YANG models used

the tool proposes a configuration of the different TSN mecha-
nisms. Compliance with flows constraints such as latency/jitter
is then validated using Network Calculus Approach [23] [24]
to compute them in the worst case. When the user is satisfied
with their configuration, the tool can then export these different
parameters according to the YANG data model described
above.

b) Central YANG models storage: These YANG datas
are then imported and stored in a centralized database that
ensures compliance with the format described in the model.
The database used in our case is an open source project called
Sysrepo [25]. This database can be queried using NETCONF
and it enables interoperability between tools. In the future,
other tools (e.g a simulator or analysis tool) could also
query this database to perform computations on the network
described using Timaeus-Net or other design tools that can
export the data in the format described above.

c) Deployment on the targeted hardware network: To
deploy the network designed with Timaeus-Net on the hard-
ware, a tool called Scenario Player has been developed. This
tool begins by retrieving the configuration described in the
central database. It then allows users to describe test scenarios,
with fields such as ”duration” of the use case module, and
to completes the Timaeus-Net data by adding information
describing the test bench via a graphical user interface. To be
more precise, the user maps the objects (end stations, switches,
interfaces, ...) described in Timaeus-Net to the test bench
hardware using above-mentioned fields such as ”bench-id” and
”manufacturer-reference”. The tool then uses these fields to
complete the data with the MAC and IP addresses of each
device and generate forwarding and ARP tables. These com-
pleted datas are then sent back to the central YANG database
for storage and potential use by other tools. Next, Scenario
Player configures the various test bed devices (switches, end-
stations, traffic generators, measurement instruments) using the
completed datas describing the previously designed config-
uration. Finally, it executes the scenario described, enabling

experimental measurements to be carried out on complex use
cases.

Note that none of the devices used in the test bed sup-
ports a standardized configuration/monitoring protocol such as
NETCONF, RESTCONF or other configuration protocol more
suited for the critical embedded world. Therefore, Scenario
Player translates the configuration of each device according to
the proprietary configuration protocol. However, NETCONF
is used by our tools to exchange data with the SYSREPO
database (the four arrows in Fig. 2).

B. Spatial use case

The following industrial case study was used to investigate
the interoperability capabilities of the model described above.
This case study is based on the unification and replacement
of a satellite’s current networks (i.e. MIL-STD-1553 and
SpaceWire) using a single 1Gb/s TSN network with 4 switches
and 14 end stations. It is described in detail by Chaine et al.
in [26].

However, due to hardware limitations (e.g. number of ports
or FRER support on Network Interface Cards (NICs)), the
case study was reduced to the topology described in Fig. 3.
It consists of 5 switches and 10 end stations. The switches
SWOBC A and SWRIU A have been introduced to overcome
the limitation of FRER use on NICs for two end stations, i.e.
OBC A FhI and RIU A. From a traffic point of view, there
are 101 flows, which have been transposed from the flows
transiting on the MIL-STD-1553 and SpaceWire networks
currently in use. Theses heterogeneous flows carry a payload
between 2 and 1472 bytes with burst from 1 to 4788 packets.
They are grouped by similarity into 13 traffic classes. The
lowest latency and jitter constraints for each traffic class are
summarized in Table II. To meet these constraints, Timaeus-
Net has proposed and configured different TSN latency control
mechanisms (i.e. CBS and TAS) for the different traffic
classes. The use of the TAS imposes a network-wide common
clock. This is provided by the gPTP synchronization protocol.



Traffic class Id 1 2 3 4 5 6 7 8 9 10 11 12 13
Lowest latency constraint (ms) 33 100 125 N/A N/A 31.25 125 1 125 125 N/A N/A N/A
Lowest jitter constraint (ms) N/A 1 10 N/A 0.001 N/A 0.5 0.1 N/A N/A N/A N/A N/A

TABLE II: Lowest duration constraint for each traffic class

To meet availability requirements, three synchronization do-
mains are used. And finally, the flows between OBC A FhI
and RIU A are replicated using the FRER mechanism on the
first switch in the path and eliminated on the last.

Fig. 3: Unified TSN network satellite topology (view from
Timaeus-Net)

C. Feasibility study

To illustrate the interoperability of our augmented YANG
model, the case study described above is designed, configured,
validated and deployed using the tool chain.

The first step in this tool chain is to design and configure the
network. The topology and message flows (periodicity, size,
latency constraints, etc.) of the satelitte case study are first
described in Timaeus-Net. Then, after exploring several con-
figurations using formal analysis and optimization algorithms,
a configuration is selected and then exported as a set of xml
files following the data format described in the YANG model.
These files are then loaded into the database using NETCONF.

Scenario Player then queries the database using NETCONF
to retrieve the network described and configured above. It
then enriches this data with the information required for
deployment on the hardware. For example, each switch, end
station and network interface described in Timaeus-Net is
assigned to a switch, end station or interface available on the
test bench. These assignments also trigger the addition of data
such as the forwarding tables needed to configure flow paths,
or the information needed to configure traffic generators such
as source and destination mac addresses and VLAN numbers
for each flow. These new datas are then sent to the database,
once again using NETCONF, for future use by Scenario Player
or other tools.

All the data are then parsed, separated by device and used
to configure the corresponding devices. In this case study, two
types of switch from two different manufacturers, 3 desktop
computers running Ubuntu 20.04 totalling 8 NICs, and 2

FreeRTOS targets are automatically configured using the data
stored in the database.

Although imperfect, the following metrics illustrate well the
complexity of the case study deployment, due to the number of
parameters to be configured, and the importance of the effort
put into tool interoperability.

The first of these metrics is the number of leaves stored
in the database. When first imported, this number is 4138
leaves. After adding test bed specific datas, it increases
to 6462 leaves. The distributions are detailed in Table III.
We can note that 87.4% of the leaves in the first import
are additions proposed by our contribution. 93% of these
are linked to the description of traffic crossing the network.
After adding test bed specific datas, our contribution represents
only 58.7% of the leaves. This is mainly due to the
creation of forwarding tables stored in the ieee-bridge model
and the addition of ARP tables in the ietf-interface model.
Other industrial case studies designed and deployed with this
toolchain showed different distributions (e.g. 10301 leaves,
45% of which came from our contribution), explained by
differences such as fewer flows with more hops, different TSN
mechanisms and larger numbers of interfaces. The differences
caused by the choice of TSN mechanisms are illustrated in
Table IV, which shows three different configurations on the
same topology of an industrial automotive network use case.
Table V describes a metric that is more stable to changes of
use case. It details the distribution of leaf types used to meet
our interoperability needs. We can see that few data types
are needed (114 after enrichment) to describe and deploy a
network, but it’s the instantiation of these that greatly increases
the number of leaves. Take the example of the 41 leaves
needed to describe a flow, but the instantiation of this model
for 101 flows leads to the use of 3483 leaves on the
satellite use case. We also note that 66.7% of the leaf types
used in this use case originate from our contribution, which
highlights the shortcomings of standard models in terms of
tool interoperability.

The second metric is the number of commands made by
Scenario Player to configure the 15 devices that reach 2919.
This total is broken down into 2199 commands for switches
and 720 commands for end stations.

The next metric is the time required to deploy a case study
on the hardware. Using the data exported by Timaeus-Net,
an experienced user can perform model enrichment in less
than ten minutes, and automatic hardware configuration takes
less than two minutes. Without this tool interoperability, an
experienced user would need at least 8 hours and 45min to
reproduce the configuration described in Timaeus-Net. This
duration is deducted from the time needed to configure the
PL A switch by hand (35min multiplied by 15 devices). This



Original import Enriched import
Standard IRT Standard IRT

ietf-network 143 106 143 133
ietf-interface 352 112 646 156
irt-usecase 0 0 0 3
ieee-bridge 0 0 1841 0
irt-traffic 0 3382 0 3483
ieee1588-ptp 25 18 39 18
Total 520 (12.6%) 3618 (87.4%) 2669 (41.3%) 3793 (58.7%)

TABLE III: Distribution of the standard and IRT leaf instantiations for the two importations of the use case in the central
database

Configuration CBS FRER Std Irt Total
1 No No 990 (27%) 2729 (73%) 3719
2 Yes No 990 (23%) 3241 (77%) 4321
3 No Yes 990 (26%) 2799 (74%) 3789
4 Yes Yes 990 (23%) 3311 (77%) 4391

TABLE IV: Distribution of the standard and IRT leaf instan-
tiations after first importation of three network configurations
of an automotive use case

duration is probably very optimistic, as the PL A is the switch
with the simplest configuration (82 commands). Moreover, this
metric does not take into account the possibility of human
error.

And finally, on the other side of the tool chain, this interop-
erability allows us to change design tools without impacting
the rest of the chain.

VI. DISCUSSION AND LIMITS

We demonstrated the feasibility and benefits of tool interop-
erability using YANG models in the previous section, however
there are limitations which are discussed in this section.

First limitations are about the design of the model itself,
according to the criteria that we have defined. The universality
and diversity principles have conduct us to cover all points of
view and all needs for modeling a network and associated traf-
fic. This has led to add or amend missing elements being to the
standard models. However, these standard models will evolve
and will certainly be partially completed. As a consequence,
our add-on shall be updated.

The reversibility principle has highlighted that the cost of
implementing an import feature is much higher than that of
cost for the export features. Therefore, for a commercial tool
the benefits of importing is limited because it does not provide
any direct extra features in its own solution.

The last principle, namely maintainability, leads to establish
a specific implementation which consists in considering the
YANG meta-model as a parameter of the interoperability
features. This can be complex especially if the tool does
not implement a meta-model to manage its data and/or if it
contains limitations. Indeed, some tools of the tool chain are
more or less impacted than others by change in the associated
models. For example, Timaeus-Net has its own internal meta-
model. The data mapping with the YANG model is direct, so
a change in model can be handled easily by a few change
in the transformation mapping. Unlike Scenario Player that

implements a simple parser from YANG to the proprietary
configuration tools of the various devices, any change in the
YANG model may require more consequent code evolution.
This enforces the question of the stability of YANG models
and the interconnection between the model and the tools.

Other limitations are inherent to the standard YANG models.
One can cite the lack of completeness between the various
module creators, for example such as the IETF or IEEE, or the
restrictions imposed by certain models. For example, the fact
that the standard interface model proposed by the IETF only
enables the modeling of single device interfaces is a significant
limitation when using the YANG model to describe a network
that will inevitably contain multiple devices. This limitation
arises from the fact that it’s not possible to reference YANG
elements which are not explicitly defined as prototypes
from another element. Therefore, it’s not possible to create
for each node of the network, the collection of its interfaces.
In our case, we used workaround in such cases but standard
evolution may be needed. Note that, this limitation is not
encountered with the normal use of YANG, but only when
trying to describe a complete network, as in our work.

Finally, the last limitation is economic. Indeed, the market
of TSN network design and configuration tool for critical
embedded system is very fragmented and today established as
a niche market whereas tool interoperability is a competitive
criteria. The deployment of YANG models as core technol-
ogy for vertical and horizontal tool interoperability standard
for classical IT domain, even supported by vendor specific
extension (e.g. with proprietary YANG augments), needs to
be organized around an alive and open industrial ecosystem.
This would enable to increase the YANG models maturity and
enlarge the community for additional TSN tool market such as
network simulator, network verification and validation, etc. to
foster a non-competitive technology facilitating tool supplier
collaboration with positive return on invest. Through the work
presented in this article with the support of industrial partners
and IRT Saint Exupéry hosting TSN research activities, this
contribution aims to push forward a YANG ecosystem related
to embedded critical system.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose to augment the standard YANG
models to ensure vertical interoperability of the tools needed to
develop and deploy complex TSN networks. We illustrate the
usefulness of this new model by using it to connect two tools



Original import Enriched import
Standard IRT Standard IRT

ietf-network 8 14 8 15
ietf-interface 16 4 19 5
irt-usecase 0 0 0 3
ieee-bridge 0 0 8 0
irt-traffic 0 41 0 42
ieee1588-ptp 7 3 11 3
Total 31 (33.3%) 62 (66.7%) 46 (40.4%) 68 (59.6%)

TABLE V: Distribution of the standard and IRT leaf type for the two importations of the use case in the central database

used to design and configure a satellite’s critical embedded
TSN network and deploy it on hardware targets. The proposed
models and augmentations are delivered in open source
[27] to initiate an ecosystem dedicated to TSN tool interop-
erability for embedded critical application. However, this first
version needs to be challenged by commercial products that
aim to offer interoperable solutions for TSN networks in order
to evolve.

Several future works are envisioned around this model in
a follow up project. First, we planned to extend the model
to support more feature like instrumentation devices. Other
tools, such as a network simulator, are also planned to be
connected to the central database to take advantage of this
unique interface and will most probably require new additions
to the model. Finally, this work will also be continued to
propose a YANG-based configuration and monitoring protocol
adapted to the world of critical embedded systems.

ACKNOWLEDGMENT

The authors thank all people and industrial partners involved
in the EDEN project. The French Research Agency (ANR)
and the partners of IRT Saint-Exupéry Scientific Cooperation
Foundation support this work: Airbus Operations, Airbus De-
fence and Space, CNES, Continental Automotive, INPT/IRIT,
ISAE-SUPAERO, ONERA, Safran Electronics and Defence,
Thales Alenia Space and Thales Avionics.

REFERENCES

[1] “Ieee standard for local and metropolitan area networks–bridges and
bridged networks,” IEEE Std 802.1Q-2022 (Revision of IEEE Std
802.1Q-2018), pp. 1–2163, 2022.

[2] “Ieee standard for local and metropolitan area networks – bridges and
bridged networks - amendment 25: Enhancements for scheduled traffic,”
IEEE Std 802.1Qbv-2015 (Amendment to IEEE Std 802.1Q-2014 as
amended by IEEE Std 802.1Qca-2015, IEEE Std 802.1Qcd-2015, and
IEEE Std 802.1Q-2014/Cor 1-2015), pp. 1–57, 2016.

[3] “Ieee standard for local and metropolitan area networks–timing and
synchronization for time-sensitive applications,” IEEE Std 802.1AS-2020
(Revision of IEEE Std 802.1AS-2011), pp. 1–421, 2020.

[4] “Ieee standard for local and metropolitan area networks– virtual bridged
local area networks amendment 12: Forwarding and queuing enhance-
ments for time-sensitive streams,” IEEE Std 802.1Qav-2009 (Amendment
to IEEE Std 802.1Q-2005), pp. 1–72, 2010.

[5] “Ieee standard for local and metropolitan area networks–frame replica-
tion and elimination for reliability,” IEEE Std 802.1CB-2017, pp. 1–102,
2017.

[6] “Ieee standard for local and metropolitan area networks–bridges and
bridged networks–amendment 28: Per-stream filtering and policing,”
IEEE Std 802.1Qci-2017 (Amendment to IEEE Std 802.1Q-2014 as
amended by IEEE Std 802.1Qca-2015, IEEE Std 802.1Qcd-2015, IEEE
Std 802.1Q-2014/Cor 1-2015, IEEE Std 802.1Qbv-2015, IEEE Std
802.1Qbu-2016, and IEEE Std 802.1Qbz-2016), pp. 1–65, 2017.

[7] M. Björklund, “YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF),” RFC 6020, Oct. 2010. [Online].
Available: https://www.rfc-editor.org/info/rfc6020

[8] R. Enns, M. Björklund, A. Bierman, and J. Schönwälder, “Network
Configuration Protocol (NETCONF),” RFC 6241, Jun. 2011. [Online].
Available: https://www.rfc-editor.org/info/rfc6241

[9] A. Bierman, M. Björklund, and K. Watsen, “RESTCONF Protocol,”
RFC 8040, Jan. 2017. [Online]. Available: https://www.rfc-editor.org/
info/rfc8040

[10] J. Schönwälder, M. Björklund, and P. Shafer, “Network configuration
management using netconf and yang,” IEEE communications magazine,
vol. 48, no. 9, pp. 166–173, 2010.

[11] “Cisco yang suite,” https://developer.cisco.com/yangsuite/.
[12] “Ieee standard for local and metropolitan area networks–bridges and

bridged networks – amendment 31: Stream reservation protocol (srp)
enhancements and performance improvements,” IEEE Std 802.1Qcc-
2018 (Amendment to IEEE Std 802.1Q-2018 as amended by IEEE Std
802.1Qcp-2018), pp. 1–208, 2018.

[13] I. Álvarez, A. Servera, J. Proenza, M. Ashjaei, and S. Mubeen, “Im-
plementing a first cnc for scheduling and configuring tsn networks,” in
2022 IEEE 27th International Conference on Emerging Technologies
and Factory Automation (ETFA), 2022, pp. 1–4.

[14] B. Shi, X. Tu, B. Wu, and Y. Peng, “Recent advances in time-sensitive
network configuration management: A literature review,” Journal of
Sensor and Actuator Networks, vol. 12, no. 4, 2023. [Online]. Available:
https://www.mdpi.com/2224-2708/12/4/52

[15] M. Ashjaei, L. L. Bello, M. Daneshtalab, G. Patti, S. Saponara, and
S. Mubeen, “Time-sensitive networking in automotive embedded sys-
tems: State of the art and research opportunities,” Journal of systems
architecture, vol. 117, p. 102137, 2021.

[16] “Pegase, realtime-at-work,” https://www.realtimeatwork.com/
rtaw-pegase/.

[17] “Chronos, general electric,” https://www.ge.com/research/project/
time-sensitive-networking-tsn.

[18] “Tsn designer, realtime it,” https://www.realtime-it.de/en/index.php/
tsn-designer/.

[19] “Ixnetwork, keysight,” https://www.keysight.com/sg/en/products/
network-test/protocol-load-test/ixnetwork.html.

[20] “Tsn studio, realtime-at-work,” https://tsn.studio/.
[21] H. Chahed and A. Kassler, “Tsn network scheduling—challenges and

approaches,” Network Journal, vol. 3, pp. 585–624, 2023.
[22] M. Barbero, T. Leydier, P. Cuenot, D. Fruchard, and B. Attanasio, “How

to design a safe Ethernet TSN network on spacecraft application,” in
Data Systems in Aerospace (DASIA 2023), 2023.

[23] J.-Y. Le Boudec and P. Thiran, Eds., Network Calculus. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001, pp. 3–81. [Online].
Available: https://doi.org/10.1007/3-540-45318-0 1

[24] L. Zhao, P. Pop, and S. Steinhorst, “Quantitative performance compari-
son of various traffic shapers in time-sensitive networking,” 03 2021.

[25] “Sysrepo storing and managing yang-based configurations for unix/linux
applications,” https://www.sysrepo.org.

[26] P.-J. Chaine, M. Boyer, C. Pagetti, and F. Wartel, “TSN Support for
Quality of Service in Space,” in 10th European Congress on Embedded
Real Time Software and Systems (ERTS 2020), Toulouse, France, Jan.
2020. [Online]. Available: https://hal.science/hal-02441327

[27] “Eden yang, irt saint exupéry,” https://sahara.irt-saintexupery.com/
embedded-systems/eden-yang.

https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8040
https://developer.cisco.com/yangsuite/
https://www.mdpi.com/2224-2708/12/4/52
https://www.realtimeatwork.com/rtaw-pegase/
https://www.realtimeatwork.com/rtaw-pegase/
https://www.ge.com/research/project/time-sensitive-networking-tsn
https://www.ge.com/research/project/time-sensitive-networking-tsn
https://www.realtime-it.de/en/index.php/tsn-designer/
https://www.realtime-it.de/en/index.php/tsn-designer/
https://www.keysight.com/sg/en/products/network-test/protocol-load-test/ixnetwork.html
https://www.keysight.com/sg/en/products/network-test/protocol-load-test/ixnetwork.html
https://tsn.studio/
https://doi.org/10.1007/3-540-45318-0_1
https://www.sysrepo.org
https://hal.science/hal-02441327
https://sahara.irt-saintexupery.com/embedded-systems/eden-yang
https://sahara.irt-saintexupery.com/embedded-systems/eden-yang

	Introduction
	TSN and YANG overview
	Related Work
	YANG data model for TSN network
	Preamble and initial objectives
	Requirements for a model
	Elaboration of the YANG model
	Model Overview
	YANG model instance life cycle in the tool chain
	YANG model implementation in the tools

	The experimental setup
	Tool chain
	Spatial use case
	Feasibility study

	Discussion and limits
	Conclusion and future work
	References

