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Abstract
It is well-known that control-flow graphs (CFGs) of struc-

tured programs are sparse. This sparsity has been previously

formalized in terms of graph parameters such as treewidth

and pathwidth and used to design faster parameterized algo-

rithms for numerous compiler optimization, model checking

and program analysis tasks.

In this work, we observe that the known graph sparsity

parameters fail to exactly capture the kind of sparsity exhib-

ited by CFGs. For example, while all structured CFGs have a

treewidth of at most 7, not every graph with a treewidth of 7

or less is realizable as a CFG. As a result, current parameter-

ized algorithms are solving the underlying graph problems

over a more general family of graphs than the CFGs.

To address this problem, we design a new but natural

concept of graph decomposition based on a grammar that

precisely captures the set of graphs that can be realized

as CFGs of programs. We show that our notion of decom-

position enables the same type of dynamic programming

algorithms that are often used in treewidth/pathwidth-based

methods. As two concrete applications, using our grammati-

cal decomposition of CFGs, we provide asymptotically more

efficient algorithms for two variants of the classical prob-

lem of register allocation. Our algorithms are asymptotically

faster not only in comparison with the non-parameterized

solutions for these problems, but also compared to the state-

of-the-art treewidth/pathwidth-based approaches in the lit-

erature. For minimum-cost register allocation over a fixed

number of registers, we provide an algorithm with a runtime

of 𝑂 ( |𝐺 | · |V|5·𝑟 ) where |𝐺 | is the size of the program, V
is the set of program variables and 𝑟 is the number of reg-

isters. In contrast, the previous treewidth-based algorithm

had a runtime of 𝑂 ( |𝐺 | · |V|16·𝑟 ). For the decision problem

of spill-free register allocation, our algorithm’s runtime is

𝑂 ( |𝐺 | · 𝑟 5·𝑟+5) whereas the previous works had a runtime of

𝑂 ( |𝐺 | · 𝑟 16·𝑟 ).
Finally, we provide extensive experimental results on spill-

free register allocation, showcasing the scalability of our ap-

proach in comparison to previous state-of-the-art methods.

Most notably, our approach can handle real-world instances

with up to 20 registers, whereas previous works could only

scale to 8. This is a significant improvement since most ubiq-

uitous architectures, such as the x86 family, have 16 registers.

For such architectures, our approach is the first-ever exact
algorithm that scales up to solve the real-world instances of

spill-free register allocation.

1 Introduction and Related Works
Many classical tasks in program analysis, compiler opti-

mization and formal verification are traditionally solved

by means of a reduction to graph problems. Examples in-

clude such well-studied and ubiquitous problems as register

allocation [8, 11], cache optimization approaches of data

packing [42] and cache-conscious data placement [3, 10],

interprocedural data-flow analysis [38], algebraic program

analysis [30] and `-calculus model checking [34], as well as

many others.

The resulting graph problems are often NP-hard [11, 33,

42] or even hard-to-approximate unless P=NP [35, 36]. Thus,

it is natural to wonder whether the most general case of the

graph problem, i.e. considering every graph as a possible in-

put instance, is indeed an appropriate model for the original

program analysis, compiler optimization or formal verifica-

tion task. In many of these tasks, the underlying graph is

either the control-flow graph (CFG) of a well-structured pro-

gram or closely related to it, e.g. obtained by taking several

copies of each vertex in the CFG. It is intuitively clear to see

that control-flow graphs of programs are quite sparse, thus

not every graph can be realized as the control-flow graph of

a real program. Hence, any approach that tries to solve the

general case of the graph problems is making the problem

unnecessarily hard.

There has been ample research on formalizing the spar-

sity of CFGs. A particularly important result in this direc-

tion is that of [43], which proved that CFGs of structured

(goto-free) programs in a wide variety of commonly-used

languages have a treewidth of at most 6. Treewidth [39] is a

measure of treelikeness of graphs. Intuitively, graphs with
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smaller treewidth resemble trees more strongly. A graph

with treewidth 𝑘 can be decomposed into small parts (called

“bags”) of at most 𝑘 + 1 vertices each, such that the bags

are connected to each other in a tree-like manner. See Fig-

ure 1 for an example and [5, 20] for a more formal treatment.

This in turn enables tree-based bottom-up and top-down

dynamic programming algorithms and divide-and-conquer

approaches [4, 40].

The result of [43] showed that the treewidth of CFGs is at

most 6 in languages such as C and Pascal andwas followed by

a number of similar results extending it to other languages,

such as Java [27], Ada [9] and Solidity [12], both theoretically

and experimentally. Thework [32] showed that the treewidth

can be 7 in some variants of C.

These bounded-treewidth results effectively opened up

a completely new direction of research. When a program-

related task, such as those in compiler optimization or veri-

fication, is reduced to a graph problem, we often need not

solve it over general graphs, but only graphs of bounded

treewidth, since they already cover the set of all possible

CFGs. Thus, we are no longer looking for polynomial-time

algorithms with a runtime of𝑂 (𝑛𝑐 ) where 𝑛 is the size of the
input, but instead aim to find so-called piecewise-polynomial
(XP) or fixed-parameter tractable (FPT) algorithms [22] with

runtimes of the form𝑂 (𝑛𝑓 (𝑘) ) and𝑂 (𝑛𝑐 · 𝑓 (𝑘)), respectively,
where the parameter 𝑘 is the treewidth and 𝑓 is an arbitrary

computable function, possibly not a polynomial. Intuitively,

since we know that the treewidth is small and at most 7 in all

the instances that we care for, i.e. CFGs, an algorithm with

a runtime of 𝑂 (𝑛𝑐 · 𝑓 (𝑘)) is effectively polynomial-time for

all real-world intents and purposes. For example, an algo-

rithm that takes 𝑂 (𝑛 · 2𝑘 ) will behave just like a linear-time

algorithm over CFGs since 𝑘 ≤ 7 and thus 2
𝑘
is a constant.

This approach has been extremely successful in finding

polynomial-time (FPT) algorithms for NP-hard graph prob-

lems arising in program-related tasks, making their real-

world instances tractable. Some prominent examples are as

follows:

• After proving the treewidth bound, [43] showed that

register allocation can be approximated over graphs of

bounded treewidth 𝑘 within a factor of ⌊𝑘/2 + 1⌋ from
optimal in linear time. This leads to a 4-approximation

for CFGs. In contrast, it is well-known that the problem

is equivalent to graph coloring [11] and thus hard-to-

approximate within any constant factor over general

graphs unless P=NP.

• This was later improved to an optimal linear-time FPT

algorithm for the decision variant of register allocation,

i.e. answering whether it is possible to have no spilling

with a fixed number 𝑟 of registers [6].

• It was later shown that the problem of optimal-cost

register allocation, i.e. minimizing the total cost of

spills given a fixed number of registers, is also solv-

able in polynomial time (XP) when the treewidth is

bounded [31].

• In [7, 19], it was established that any formula in the

monadic second-order logic of graphs can be model-

checked in linear-time over graphs of bounded treewidth.

• [1, 15] showed that both data packing and cache-conscious

data-placement, which are two classical cache man-

agement problems in compiler optimization, are solv-

able/approximable in polynomial time over instances

with bounded treewidth, despite their hardness over

general instances [33, 35].

• Thework [34] showed that the winner in a parity game

whose underlying graph has bounded treewidth can

be decided in polynomial time. The well-known corre-

spondence between parity games and `-calculus/LTL

model checking makes this applicable to real-world

instances obtained from CFGs.

The bounded treewidth result has been useful even when

the original graph problem already admitted a polynomial-

time solution on all graphs. In many problems, one can ob-

tain a lower-degree polynomial algorithm by exploiting the

treewidth. For example:

• The works [13, 14] consider interprocedural data-flow

analyses, i.e. problems such as null-pointer identifica-

tion and available expressions, and provide linear-time

FPT algorithms for their on-demand variant. This is

in contrast to the non-parameterized methods’ qua-

dratic runtime [28, 38]. A similar result is obtained for

algebraic program analysis in [17].

• Various problems in linear algebra [25], includingGauss-

ian elimination and many classical qualitative and

quantitative tasks on Markov chains and Markov deci-

sion processes [2, 16] can be solved in linear-time FPT

if the underlying graph has bounded treewidth. This

is in contrast to the best-known algorithms for gen-

eral graphs which take 𝑂 (𝑛𝜔 ) where 𝜔 is the matrix

multiplication constant. A similar improvement was

recently obtained for linear programming [21].

All the advances above in program-related graph prob-

lems are based on the same fundamental intuition: CFGs

are sparse and solving problems over CFGs is very different

and often much easier than solving the same problems over

general graphs. Thus, taking this intuition to its natural con-

clusion, one should wonder if bounded treewidth sufficiently

captures the sparsity of control-flow graphs.

On the one hand, it is easy to come up with graphs of

bounded treewidth that are not realizable as a CFG. For ex-

ample, consider a graph with 𝑛 connected components, each

of which is a complete graph on 6 vertices, i.e. 𝐾6. Such a

graph will have a treewidth of 5 but is clearly not the CFG of

any structured program, given that any node in a CFG can

have an out-degree of at most two. On the other hand, the

recent work [18] shows that CFGs not only have bounded
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Figure 1. A graph 𝐺 (left) and a tree decomposition of 𝐺 (right). This example is taken from [18].

treewidth but also often have small pathwidth, i.e. they can

be decomposed into small bags that are connected to each

other not just in a tree-like manner but in a path-like manner.

It then shows that this enables much more efficient dynamic

programming algorithms and significant runtime gains for

problems such as register allocation. Intuitively, this is be-

cause dynamic programming on paths is often simpler than

on trees. However, the fundamental question remains: Is

bounded pathwidth exactly capturing the sparsity of control-

flow graphs? The answer is negative with the same coun-

terexample as above. Thus, we consider this problem: Can

we come up with a standard way of decomposing graphs

that captures exactly the set of CFGs? Is there a decomposi-

tion method that (i) enables fast dynamic programming for

problems in compiler optimization and formal verification,

and (ii) is applicable to precisely the same set of graphs as

CFGs?

In this work, we present such a decomposition based on a

graph grammar that closely mimics the grammars used for

defining the syntax of structured programming languages.

Our approach is similar both to the standard definitions of

series-parallel graphs [41] and previous program analysis

methods based on graph grammars [29, 45]. However, our

graphs are more general in the sense that they cover pre-

cisely the set of all control-flow graphs, including CFGs of

structured programs that contain break and continue state-
ments. We define a natural decomposition of CFGs based on

our graph grammar and show that it can be used for efficient

dynamic programming over the CFGs. As two concrete use-

cases, we consider two variants of register allocation which

are both classical and well-studied in the literature with both

parameterized and non-parameterized solutions. We provide

algorithms based on our decomposition that are asymptoti-

cally faster than not only the previous non-parameterized

solutions, but even the state-of-the-art approaches that ex-

ploited bounded treewidth and pathwidth.

We provide extensive experimental results in Section 4,

showing that our approach leads to significant runtime gains

in practice, too. Most notably, for the problem of spill-free

register allocation, our approach is the first algorithm that

can handle real-world instances with up to 20 registers. This

is a considerable improvement over previous methods which

could only handle 8 registers. Crucially, standard and ubiqui-

tous architectures, such as the x86 family, have 16 registers.

Thus, we provide the first exact algorithm applicable to them.

Given the efficiency of our algorithm, there is no longer a

need for approximate or heuristic methods for spill-free reg-

ister allocation. Since the NP-hardness of register allocation

was established by Chaitin in 1982 [11], the community has

been mainly focused on developing heuristics with no guar-

antees of optimality. This work finally breaks the curse and

shows that real-world instances of the problem are efficiently

solvable by an exact algorithm.

While runtime improvements for register allocation are

significant in their own right, we believe that register allo-

cation is but one example and similar improvements can be

obtained for a much wider family of program-related anal-

yses by relying on our notion of decomposition instead of

treewidth/pathwidth.

In summary, this work takes the idea of exploiting the

sparsity of control-flow graphs for faster graph algorithms

to its ultimate end and defines a decomposition notion that,

unlike parameters such as treewidth and pathwidth, captures

precisely the set of graphs that can arise as CFGs of struc-

tured programs. It then provides faster algorithms using this

new notion of decomposition for two classical problems in

compiler optimization, i.e. the minimum-cost register alloca-

tion problem and the spill-free register allocation problem.

We expect that this kind of decomposition would also be use-

ful for the many other problems in which parameterizations

by treewidth/pathwidth were applied in the past.

2 Our Grammatical Decomposition
To define structured programs, we follow a syntax similar

to that of [43]. A program is generated from the following
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grammar:

𝑃 := 𝜖 | break | continue | 𝑃 ; 𝑃
| if 𝜑 then 𝑃 else 𝑃 fi | while 𝜑 do 𝑃 od.

(1)

Here, 𝜖 is a neutral statement that does not affect control-

flow, e.g. a variable assignment, and𝜑 is a boolean expression.

We say a program 𝑃 is closed if every break and continue
statement appears within the body of a while loop. The

semantics of a program 𝑃 will be defined in the usual manner.

In this section, we are only concerned with the control-flow

graph of a program 𝑃 . We also note that other common

constructs such as for loops and switch statements can be

defined as syntactic sugar [43].

Inspired by series-parallel graphs [44] and the approach

of [29], we define a graph grammar that builds up new graphs

by combining smaller graphs generated in the same gram-

mar. To capture all control-flow graphs, we consider three

composition operations: series, parallel and loop. Thus, we

call the graphs generated by this grammar SPL graphs. Also,

unlike series-parallel graphs which have two distinguished

terminals, i.e. start and end, our graphs have four distin-

guished vertices, namely start (𝑆), terminate (𝑇 ), break (𝐵)

and continue (𝐶). As base cases, the three graphs of Figure 2

are SPL and called atomic graphs 𝐴𝜖 , 𝐴break and 𝐴continue.

𝑆

𝑇

𝐶

𝐵

𝑆

𝑇

𝐶

𝐵

𝑆

𝑇

𝐶

𝐵

Figure 2. Atomic SPL graphs: 𝐴𝜖 (left), 𝐴break (middle), and

𝐴continue (right).

SPL graphs are generated by the repeated application of

series, parallel and loop operations that are denoted by ⊗, ⊕,
and ⊛ respectively. Formally, the set of SPL graphs is defined
by the following context-free grammar:

𝐺 = 𝐴𝜖 | 𝐴break | 𝐴continue | 𝐺 ⊗ 𝐺 | 𝐺 ⊕ 𝐺 | 𝐺⊛ . (2)

We denote an SPL graph by the tuple 𝐺 = (𝑉 , 𝐸, 𝑆,𝑇 , 𝐵,𝐶),
where 𝑉 is the finite set of vertices of the graph, 𝐸 is the

finite set of its edges, and 𝑆,𝑇 , 𝐵,𝐶 ∈ 𝑉 are the distinguished

start, terminate, break and continue vertices. We sometimes

drop 𝑉 and 𝐸 when they are clear from the context.

We nowdefine our three operations. Let𝐺1 = (𝑉1, 𝐸1, 𝑆1,𝑇1,
𝐵1,𝐶1) and 𝐺2 = (𝑉2, 𝐸2, 𝑆2,𝑇2, 𝐵2,𝐶2) be two disjoint SPL
graphs.

1. Series Operation. 𝐺1 ⊗ 𝐺2 is generated by taking the

union of 𝐺1 and𝐺2 and merging the pairs of vertices

𝑀 = (𝑇1, 𝑆2), 𝐵 = (𝐵1, 𝐵2), and 𝐶 = (𝐶1,𝐶2). The dis-
tinguished vertices of 𝐺1 ⊗ 𝐺2 are (𝑆1,𝑇2, 𝐵,𝐶). It is
easy to verify that the series operation is associative.

Figure 3 shows two examples of the series operation.

2. Parallel Operation. 𝐺1 ⊕ 𝐺2 is generated by taking

union of 𝐺1 and 𝐺2 and merging the pairs of ver-

tices 𝑆 = (𝑆1, 𝑆2), 𝑇 = (𝑇1,𝑇2), 𝐵 = (𝐵1, 𝐵2), and
𝐶 = (𝐶1,𝐶2). The special vertex tuple of 𝐺1 ⊗ 𝐺2 is

(𝑆,𝑇 , 𝐵,𝐶). Figure 4 shows an example of this opera-

tion.

3. Loop Operation. 𝐺⊛
1
is generated by adding four new

vertices 𝑆,𝑇 , 𝐵,𝐶 to 𝐺1 and then adding the following

edges: (𝑆, 𝑆1), (𝑆,𝑇 ), (𝑇1, 𝑆), (𝐶1, 𝑆), and (𝐵1,𝑇 ). The spe-
cial vertex tuple of 𝐺⊛

1
is (𝑆,𝑇 , 𝐵,𝐶). Figure 5 shows

an example of the loop operation.

We say that an SPL graph 𝐺 = (𝑉 , 𝐸, 𝑆,𝑇 , 𝐵,𝐶) is closed
if there are no incoming edges to either 𝐵 or 𝐶. There is a

natural surjective homomorphism cfg(·) between programs

and SPL graphs, defined as follows:

cfg(𝜖) = 𝐴𝜖 cfg(break) = 𝐴break cfg(continue) = 𝐴continue

cfg(𝑃1; 𝑃2) = cfg(𝑃1) ⊗ cfg(𝑃2)
cfg(if 𝜑 then 𝑃1 else 𝑃2 fi) = cfg(𝑃1) ⊕ cfg(𝑃2)

cfg(while 𝜑 do 𝑃1 od) = cfg(𝑃1)⊛

It is easy to verify that this homomorphism matches the

usual definition of control-flow graphs of programs and that

𝑃 is closed if and only if cfg(𝑃) is closed. Thus, the set of SPL
graphs is precisely the same as the set of control-flow graphs

of structured programs. Moreover, given a program 𝑃, we

can simply parse it according to the grammar in (1) and ob-

tain a parse tree, then apply our homomorphism to the parse

tree to find an equivalent parse tree of its control-flow graph

based on the grammar in (2). We call the latter a grammati-
cal decomposition of the control-flow graph. Intuitively, the

grammatical decomposition is simply the parse tree accord-

ing to grammar (2), which shows us how the control-flow

graph of the current program can be obtained by merging

the control-flow graphs of its smaller parts using one of

our three operations. Since parsing a context-free grammar

takes linear time in the size of the program, i.e. 𝑂 (𝑛), thus
we obtain a grammatical decomposition of our control-flow

graph in 𝑂 (𝑛) time, too. Figure 6 shows an example. Note

that in this example, we are also labeling the edges using

commands/conditions in the program.

3 Register Allocation
As an application of our concept of grammatical decompo-

sition, we consider the problem of minimum-cost register

allocation as formalized in [31]. A cost is assigned to each

allocation of variables to registers, which is supposed to

model the time wasted on spills or rematerialization. We

note that this is a more general formulation of the problem

than those of [18, 43] which only focus on deciding whether

it is possible to avoid spilling altogether and obtain a cost of

zero. See Section 3.3. In [31], a treewidth-based algorithm is

provided which obtains an optimal register allocation in XP

time 𝑂 ( |𝐺 | · |V|2· (𝑡+1) ·𝑟 ), where 𝐺 is the control-flow graph,
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𝑆1

𝑇1

𝐶1

𝐵1 ⊗ 𝑆2

𝑇2

𝐶2

𝐵2

= 𝑀

𝑆1

𝑇2

𝐶

𝐵

𝑆1

𝑇1

𝐶1

𝐵1 ⊗ 𝑆2

𝑇2

𝐶2

𝐵2

= 𝑀

𝑆1

𝑇2

𝐶

𝐵

Figure 3. Two examples of the series operation ⊗.

𝑀1

𝑆1

𝑇1

𝐵1

𝐶1 ⊕ 𝑀2

𝑆2

𝑇2

𝐶2

𝐵2

= 𝑀1

𝑆

𝑀2

𝑇

𝐶

𝐵

Figure 4. An example of the parallel operation ⊕.

𝑀1

𝑆1

𝑀2

𝑇1

𝐶1𝐵1 ⊛

= 𝑀1

𝑆1

𝑆 𝐵 𝐶

𝑀2

𝑇1

𝐶1𝐵1

𝑇

Figure 5. An example of the loop operation.

V is the set of program variables, 𝑡 is the treewidth of 𝐺

and 𝑟 is the number of available registers. If both 𝑟 and 𝑡 are

constants, then this is a polynomial-time algorithm. How-

ever, since the treewidth of programs in languages such as C

can be up to 7 [32], this algorithm’s worst-case runtime over

CFGs is𝑂 ( |𝐺 | · |V|16·𝑟 ). In this section, we present an alterna-
tive algorithm using our grammatical decomposition which

provides a significant runtime improvement and runs in time

𝑂 ( |𝐺 | · |V|5·𝑟 ). This is a huge asymptotic improvement over

the algorithm of [32].

3.1 Problem Definition
Suppose we are given a program 𝑃 with control-flow graph

𝐺 = cfg(𝑃) = (𝑉 , 𝐸, 𝑆,𝑇 , 𝐵,𝐶) . Let [𝑟 ] = {0, 1, . . . , 𝑟 − 1} be
the set of available registers and V the set of our program

variables. Every variable 𝑣 ∈ V has a lifetime lt(𝑣) which
is a connected subgraph of 𝐺. See [37] for a more detailed

treatment of lifetimes. Since lifetimes can be computed by

a simple data-flow analysis, we assume without loss of gen-

erality that they are given as inputs to our algorithm. For a

5



while 𝑥 ≥ 1 do
if 𝑥 ≥ 𝑦 then
𝑥 ← 𝑥 − 𝑦;
break
else
𝑦 ← 𝑦 − 𝑥 ;
continue
fi
od

𝜖 break 𝜖 continue

; ;

if

while

𝐴𝜖 𝐴break 𝐴𝜖 𝐴continue

⊗ ⊗

⊕

⊛

𝑀1𝐵1 𝑆1 𝑀2

𝑇 𝑆 𝐶1

𝐶𝐵 𝑇1

𝑥 < 1

𝑥 ≥ 1

𝑥 ≥ 𝑦 𝑥 < 𝑦𝑥 ← 𝑥 − 𝑦

𝑦 ← 𝑦 − 𝑥break

continue

Figure 6. A program 𝑃 (top left), its parse tree (top right), the corresponding parse tree of𝐺 = cfg(𝑃), aka the grammatical

decomposition of𝐺 (bottom left) and the graph𝐺 = cfg(𝑃) (bottom right). The edges of the graph are labeled according to the

commands/conditions of the program.

vertex 𝑣 or edge 𝑒 of 𝐺, we denote the set of variables that

are alive at this vertex/edge by 𝐿(𝑣) or 𝐿(𝑒). An assignment
is a function 𝑓 : V→ [𝑟 ] ∪ {⊥} which maps each variable

either to a register or to ⊥ . The latter models the variable

being spilled. An assignment is valid if it does not map two

variables with intersecting lifetimes to the same register. We

denote the set of all valid assignments by 𝐹 .

The interference graph of our program 𝑃 is a graph I =
(V, 𝐸I) in which there is one vertex for each program variable

and there is an edge {𝑢, 𝑣} if the variables𝑢 and 𝑣 can be alive

at the same time, i.e. lt(𝑢) ∩ lt(𝑣) ≠ ∅. Any valid assignment

𝑓 is a valid coloring of a subset of vertices of I with colors

in [𝑟 ] . This correspondence between register allocation and

graph coloring is well-known and due to Chaitin [11]. We

note that for every vertex 𝑣, the set 𝐿(𝑣) of variables alive at
𝑣 forms a clique in I.

We provide an example taken from [26]. Figure 7 shows a

program 𝑃 and its control-flow graph𝐺 = cfg(𝑃), including
live variables at each vertex, and the interference graph I.
Our goal is to color a subset of vertices of I with 𝑟 colors,
where 𝑟 is the number of available registers. A complete

coloring with 4 colors is shown in the figure. This avoids

any spilling. We also show a partial coloring with 3 colors

and some spilling.

A cost function [31] is a function 𝑐 : 𝐸 × 𝐹 → [0,∞). For
an edge 𝑒 ∈ 𝐸 of the control-flow graph, which corresponds

to one command of the program, 𝑐 (𝑒, 𝑓 ) is the cost of run-
ning this command when the registers are allocated as per

𝑓 . We assume that 𝑐 (𝑒, 𝑓 ) only depends on the allocation

decisions for variables that are alive at 𝑒. Following [31], we

further assume constant-time oracle access to evaluations

of 𝑐. In practice, 𝑐 is often obtained by profiling. Different

optimization goals, such as total runtime or code size, may

be modeled by choosing a suitable function 𝑐.

The problem of optimal register allocation provides 𝑃,𝐺, 𝑟,V, 𝑐
and the lifetimes of variables as input and asks for an as-

signment 𝑓 ∈ 𝐹 that minimizes the total cost, i.e. our goal is

to

minimize

∑
𝑒∈𝐸

𝑐 (𝑒, 𝑓 )

by choosing the best possible 𝑓 .

3.2 Our Algorithm
We now show how to perform dynamic programming on

the grammatical decomposition of our control-flow graph

𝐺 to find an optimal register allocation. Our algorithm is

quite simple and elegant. We process our grammatical de-

composition in a bottom-up fashion and for every subgraph

𝐻 = (𝑉𝐻 , 𝐸𝐻 , 𝑆𝐻 ,𝑇𝐻 , 𝐵𝐻 ,𝐶𝐻 ) appearing in the grammatical

decomposition, define the following dynamic programming

variables:

Opt[𝐻, 𝑓 ′] = The minimum total cost

∑
𝑒∈𝐸𝐻 𝑐 (𝑒, 𝑓 )

of an assignment 𝑓 over 𝐻 such that

𝑓 |𝐿 (𝑆𝐻 )∪𝐿 (𝑇𝐻 )∪𝐿 (𝐵𝐻 )∪𝐿 (𝐶𝐻 ) = 𝑓
′.

Intuitively, for every possible assignment 𝑓 ′ of the variables
that are alive at any of the distinguished vertices (𝑆𝐻 ,𝑇𝐻 , 𝐵𝐻 ,𝐶𝐻 ),
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while 𝜑1 do
𝑎 ← 𝑏 + 𝑐;
𝑑 ← −𝑎;
𝑒 ← 𝑑 + 𝑓 ;
if 𝜑2 then
𝑓 ← 2 · 𝑒
else
𝑏 ← 𝑑 + 𝑒;
𝑒 ← 𝑒 − 1
fi
𝑏 ← 𝑓 + 𝑐
od

𝑆

{𝑏, 𝑐, 𝑓 }

𝑇

∅

𝐵

∅

𝐶

∅

𝐶1

{𝑏, 𝑐, 𝑓 }

𝐵1

∅

{𝑏, 𝑐, 𝑓 }

{𝑎, 𝑐, 𝑓 }

{𝑐, 𝑑, 𝑓 }

{𝑐, 𝑑, 𝑒, 𝑓 } {𝑐, 𝑒, 𝑓 }

{𝑐, 𝑓 }

{𝑏, 𝑐, 𝑓 }

𝑎 ← 𝑏 + 𝑐

𝑑 ← −𝑎

𝑒 ← 𝑑 + 𝑓

¬𝜑2, 𝑏 ← 𝑑 + 𝑒

𝜑2, 𝑓 ← 2 · 𝑒
𝑒 ← 𝑒 − 1

𝑏 ← 𝑓 + 𝑐

𝜑1

¬𝜑1

𝑎

𝑏

𝑐

𝑓

𝑒

𝑑

𝑎

𝑏

𝑐

𝑓

𝑒

𝑑

𝑎

𝑏

𝑐

𝑓

𝑒

𝑑

Figure 7. An Example Program 𝑃 (top left), its control-flow graph 𝐺 = cfg(𝑃) (top right) in which every vertex is labeled by

its set of live variables in red, the interference graph I (bottom left), a coloring of all vertices of I with 4 colors corresponding

to allocating all variables to 4 registers (bottom center), and a coloring of a subset of vertices of I with 3 colors corresponding

to spilling the variables 𝑎 and 𝑓 (bottom right).

we are asking for the minimum total cost of an assignment

𝑓 over all variables that agrees with 𝑓 ′ and extends it. Af-

ter we compute our Opt[·, ·] values, the final answer of the
algorithm, i.e. the minimum cost of a register allocation, is

simply min𝑓 Opt[𝐺, 𝑓 ] .
Wenow showhow to compositionally computeOpt[𝐻, 𝑓 ′]

for any SPL graph 𝐻 assuming that we have already com-

puted Opt[·, ·] values for the SPL subgraphs of 𝐻. This is

done by casework:

• Atomic Graphs: If 𝐻 ∈ {𝐴𝜖 , 𝐴break, 𝐴continue}, then 𝐻
does not have any vertices other than the distinguished

vertices (𝑆𝐻 ,𝑇𝐻 , 𝐵𝐻 ,𝐶𝐻 ). Thus, all variables that are
alive at any point in 𝐻 are also alive at one of the

distinguished vertices and we simply set Opt[𝐻, 𝑓 ′] =
𝑐 (𝑒, 𝑓 ′) for every partial allocation 𝑓 ′. Here, 𝑒 is the
unique edge in 𝐻.

CompatibleAssignments.We say two partial assignments

𝑓1 : V1 → [𝑟 ] ∪ {⊥} and 𝑓2 : V2 → [𝑟 ] ∪ {⊥} are compatible

and write 𝑓1 ⇆ 𝑓2 if ∀𝑣 ∈ V1∩V2 𝑓1 (𝑣) = 𝑓2 (𝑣). Informally,

𝑓1 and 𝑓2 never make conflicting decisions on any variable

𝑣 but we have no restrictions on variables that are decided

only by 𝑓1 or only by 𝑓2. In other words, 𝑓1 and 𝑓2 can be

combined in the same total assignment.

• Series Operation: If 𝐻 = 𝐻1 ⊗ 𝐻2, then we have

Opt[𝐻1 ⊗ 𝐻2, 𝑓
′] =

min

𝑓 ′ ⇆ 𝑓 ′
1

𝑓 ′ ⇆ 𝑓 ′
2

𝑓 ′
1
⇆ 𝑓 ′

2

©«Opt[𝐻1, 𝑓
′
1
] + Opt[𝐻2, 𝑓

′
2
] −

∑
𝑒∈𝐸𝐻

1
∩𝐸𝐻

2

𝑐 (𝑒, 𝑓 ′
1
)ª®¬ .

The correctness of this calculation is an immediate

corollary of the definition of our series operation. By

construction, we have 𝐿(𝐵𝐻1
) = 𝐿(𝐵𝐻2

) = 𝐿(𝐵𝐻 ) and
𝐿(𝐶𝐻1

) = 𝐿(𝐶𝐻2
) = 𝐿(𝐶𝐻 ) and also 𝐿(𝑇𝐻1

) = 𝐿(𝑆𝐻2
).

Moreover, every edge of 𝐻1 and 𝐻2 is preserved in

𝐻1 ⊗𝐻2. Thus, the total cost is simply the sum of costs

in the two components. We should also be careful not

to double-count the cost of edges that appear in both

𝐻1 and 𝐻2. Thus, we subtract these. Of course, the

partial assignments 𝑓 ′, 𝑓 ′
1
and 𝑓 ′

2
should be pairwise

compatible.
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• Parallel Operation: This case is handled exactly as in

the series case:

Opt[𝐻1 ⊕ 𝐻2, 𝑓
′] =

min

𝑓 ′ ⇆ 𝑓 ′
1

𝑓 ′ ⇆ 𝑓 ′
2

𝑓 ′
1
⇆ 𝑓 ′

2

©«Opt[𝐻1, 𝑓
′
1
] + Opt[𝐻2, 𝑓

′
2
] −

∑
𝑒∈𝐸𝐻

1
∩𝐸𝐻

2

𝑐 (𝑒, 𝑓 ′
1
)ª®¬ .

This is because our parallel operation also preserves

all the edges in 𝐻1 and 𝐻2. Note that we might have

edges that appear in both 𝐻1 and 𝐻2, e.g. we might

have both (𝑆𝐻1
, 𝐵𝐻1
) and (𝑆𝐻2

, 𝐵𝐻2
) which are the same

as the edge (𝑆𝐻 , 𝐵𝐻 ). Thus, the total cost is the sum of

costs in the components 𝐻1 and 𝐻2 minus the cost of

their common edges. As before, we should also ensure

that the partial assignments are all compatible.

• Loop Operation: Suppose 𝐻 = 𝐻⊛
1
. In this case, by our

construction, 𝐻 has the same vertices and edges as

𝐻1 except for the introduction of the four new distin-

guished vertices (𝑆𝐻 ,𝑇𝐻 , 𝐵𝐻 ,𝐶𝐻 ) and five new edges

𝑒1 = (𝑆𝐻 , 𝑆𝐻1
), 𝑒2 = (𝑆𝐻 ,𝑇𝐻 ), 𝑒3 = (𝑇𝐻1

, 𝑆𝐻 ), 𝑒4 =

(𝐶𝐻1
, 𝑆𝐻 ) and 𝑒5 = (𝐵𝐻1

,𝑇𝐻 ). Thus, our total cost is
simply the total cost in 𝐻1 plus the cost incurred at

these new edges. Therefore, we have:

Opt[𝐻⊛
1
, 𝑓 ′] = min

𝑓 ′
1
⇆𝑓 ′

(
Opt[𝐻1, 𝑓

′
1
] +

5∑
𝑖=1

𝑐 (𝑒𝑖 , 𝑓 ′ ∪ 𝑓 ′1 )
)
.

This concludes our algorithm which computes the cost of an

optimal assignment 𝑓 . As is standard in dynamic program-

ming approaches, 𝑓 itself can be obtained by retracing the

steps of the algorithm and remembering the choices that led

to the minimum values at every step.

Theorem3.1. Given a program 𝑃 with variablesV and control-
flow graph 𝐺 = cfg(𝑃), the number 𝑟 of available registers
and a cost function 𝑐 (·, ·) as input, our algorithm above finds
an optimal allocation of registers, i.e. an optimal assignment
function 𝑓 , in time 𝑂 ( |𝐺 | · |V|5·𝑟 ).

Proof. Correctness was argued above. We do a casework for

runtime analysis:

• At atomic graphs, we are considering partial assign-

ments 𝑓 ′ over variables that are alive at any of the

four distinguished vertices. Let 𝑎 be one of these dis-

tinguished vertices. The set 𝐿(𝑎) of alive variables at
𝑎 forms a clique in the interference graph I. Thus, any
valid 𝑓 ′ can assign 𝑓 ′(𝑣) ≠⊥ to at most 𝑟 variables 𝑣

in 𝐿(𝑎). Moreover, no two variables can be assigned

to the same register. Given that |𝐿(𝑎) | ≤ |V|, the total
number of possible assignments for variables in 𝐿(𝑎)
is at most(

|V|
𝑟

)
· 𝑟 ! +

(
|V|
𝑟 − 1

)
· (𝑟 − 1)! + · · · +

(
|V|
0

)
· 0! ∈ 𝑂 (𝑟 · |V|𝑟 ).

Thus, the total number of 𝑓 ′ functions is at most𝑂 (𝑟 4 ·
|V|4·𝑟 ) given that we have four distinguished vertices.

Our algorithm spends a constant amount of time for

each 𝑓 ′, simply querying the cost of a single edge.

• When 𝐻 = 𝐻1 ⊗𝐻2, we note that we have 𝐵𝐻 = 𝐵𝐻1
=

𝐵𝐻2
and𝐶𝐻 = 𝐶𝐻1

= 𝐶𝐻2
. Similarly, we have𝑇𝐻1

= 𝑆𝐻2
.

Thus, 𝑓 ′, 𝑓 ′
1
and 𝑓 ′

2
need to jointly choose a register

assignment for the variables that are alive at one of five

vertices: 𝑆𝐻1
,𝑇𝐻1

,𝑇𝐻2
, 𝐵 and𝐶. An argument similar to

the previous case shows that there are 𝑂 (𝑟 5 · |V|5·𝑟 )
such assignments.We also note that 𝐸𝐻1

∩𝐸𝐻2
has𝑂 (1)

many edges since any such edge must be connecting

two distinguished vertices and we have only four such

vertices. Thus, the total runtime here is also 𝑂 (𝑟 5 ·
|V|5·𝑟 ).
• When𝐻 = 𝐻1 ⊕𝐻2, a similar argument applies. In this

case, we have 𝑆𝐻 = 𝑆𝐻1
= 𝑆𝐻2

,𝑇𝐻 = 𝑇𝐻1
= 𝑇𝐻2

, 𝐵𝐻 =

𝐵𝐻1
= 𝐵𝐻2

and𝐶𝐻 = 𝐶𝐻1
= 𝐶𝐻2

. Thus, we need to look

at assignments for live variables at only four different

vertices and our runtime is 𝑂 (𝑟 4 · |V|4·𝑟 ).
• Finally, when 𝐻 = 𝐻⊛

1
, we are introducing four new

distinguished vertices. So, it seems that we have to

consider the live variables at eight vertices in total,

i.e. the distinguished vertices of both 𝐻 and 𝐻1. How-

ever, note that 𝐵𝐻1
has only one outgoing edge in our

control-flow graph𝐺 which goes to𝑇𝐻 . Thus, we have

𝐿(𝐵𝐻1
) ⊆ 𝐿(𝑇𝐻 ). For similar reasons, 𝐿(𝑇𝐻1

) ⊆ 𝐿(𝑆𝐻 )
and 𝐿(𝐶𝐻1

) ⊆ 𝐿(𝑆𝐻 ). Therefore, we only need to con-

sider the program variables that are alive at one of

the five vertices 𝑆𝐻 ,𝑇𝐻 , 𝐵𝐻 ,𝐶𝐻 and 𝑆𝐻1
. An argument

similar to the previous cases shows that our runtime

is 𝑂 (𝑟 5 · |V|5·𝑟 ).
Finally, our algorithm has to process the grammatical decom-

position in a bottom-up manner and compute the Opt[·, ·]
values at every node. We have 𝑂 ( |𝐺 |) nodes. Thus, the total
worst-case runtime is𝑂 ( |𝐺 | · 𝑟 5 · |V|5·𝑟 ). Following [31] and
other works onminimum-cost register allocation, we assume

that 𝑟 is a constant. Thus, our runtime is 𝑂 ( |𝐺 | · |V|5·𝑟 ). □

Parallelization.We note that our algorithm is perfectly par-

allelizable since at every SPL subgraph 𝐻, one can compute

the Opt[𝐻, 𝑓 ] values for different 𝑓 functions in parallel.

Thus, if we have 𝑘 threads and 𝑘 is less than the number of

possible partial functions 𝑓 , then our runtime is reduced to

𝑂

(
|𝐺 | · |V |5·𝑟

𝑘

)
.

3.3 Spill-free Register Allocation
We remark that the works [6] (SODA 1998) and [18] (OOP-

SLA 2023) provide linear-time algorithms with respect to

the size of the CFG for the decision problem of existence

of a spill-free register allocation, i.e. setting 𝑐 (𝑒, 𝑓 ) = 0 if 𝑓

is valid and allocates all variables to registers meaning that

it does not map anything to ⊥ and 𝑐 (𝑒, 𝑓 ) = +∞ otherwise,
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and simply asking whether an assignment with zero total

cost is attainable. This is a special case of the problem we

considered above. Unlike the general case, works on this spe-

cial case often do not consider 𝑟 to be a constant and analyze

their runtimes based on both |𝐺 | and 𝑟 . The former work

provides an algorithm with a runtime of 𝑂 ( |𝐺 | · 𝑟 2·𝑡 ·𝑟+2·𝑟 )
where 𝑡 is the treewidth of the control-flow graph. The latter

uses a different parameter, namely pathwidth, and obtains a

runtime of 𝑂 ( |𝐺 | · 𝑝 · 𝑟𝑝 ·𝑟+𝑟+1). Given that the treewidth of

a structured program in languages such as C can be up to

7 [32] and the pathwidth is also empirically observed to be no

more than 17 in [18], these approaches provide runtimes of

𝑂 ( |𝐺 | · 𝑟 16·𝑟 ) and𝑂 ( |𝐺 | · 𝑟 18·𝑟+1) respectively. Moreover, [18]

(Figure 9) observes that the vast majority of real-world pro-

grams have a pathwidth of 6 or lower. For these instances,

their runtime would be 𝑂 ( |𝐺 | · 𝑟 7·𝑟+1). While this is appli-

cable to a majority of real-world CFGs, it does not cover all

of them. In general, there is no known constant bound on

the pathwidth of CFGs and thus [18]’s algorithm has a much

higher running time in the theoretical worst case.

We now show that our algorithm above significantly im-

proves the time complexity, i.e. the dependence on 𝑟, for the

spill-free register allocation problem, as well.

Theorem 3.2. The algorithm of Section 3.2 can be directly
applied to spill-free register allocation, i.e. the case where the
cost 𝑐 (𝑒, 𝑓 ) is zero when 𝑓 does not map anything to ⊥ and
+∞ otherwise, and solves the problem in time 𝑂 ( |𝐺 | · 𝑟 5·𝑟+5).

Proof. The proof is exactly the same as that of Theorem 3.1,

with one additional observation as follows: If we have |𝐿(𝑎) | >
𝑟 for some vertex 𝑎 of the control-flow graph, i.e. if there are

more than 𝑟 variables alive at the same time, then the answer

to spill-free register allocation is “no”. This is because the

vertices in 𝐿(𝑎) form a clique in I. Thus, we only have to

consider the case where |𝐿(𝑎) | ≤ 𝑟 for every 𝑎. Therefore, in
the analysis of the proof of Theorem 3.1, when we consider

the variables that are alive at 𝑘 ≤ 5 vertices, we can be sure

that there are at most 𝑘 · 𝑟 such variables. Hence, our total

runtime is 𝑂 ( |𝐺 | · 𝑟 5 · 𝑟 5·𝑟 ) = 𝑂 ( |𝐺 | · 𝑟 5·𝑟+5). □

Further Optimization. There is also a simple optimization

which can improve the performance of our algorithm in

practice. For the spill-free register allocation problem, we

do not have any register preferences. Thus, renaming and

permuting registers does not invalidate a valid assignment.

Similarly, if an assignment is invalid, renaming registers can-

not fix the conflicts. Thus, register assignments that are the

same modulo register renaming are the same to us. This

means we only need to store one representative from each

equivalence class as the canonical representation. This signif-

icantly reduces the number of dynamic programming values

that our algorithm has to compute.

4 Experimental Results
In this section, we provide experimental results comparing

our algorithm for spill-free register allocation with previous

approaches that are based on treewidth and pathwidth. More

specifically, given an input program, our goal is to find the

smallest number 𝑟 of registers that would suffice for spill-free

allocation. As mentioned above, spill-free register allocation

is a special case of register allocation with minimum cost,

where the cost is zero if there is no spilling and infinite other-

wise. We chose this problem for our experimental evaluation

for two reasons: (i) Most of the previous works in the liter-

ature focus on this variant, and (ii) In general, there is no

standard approach to choosing the cost function 𝑐 and each

compiler defines this function differently according to its

own setting and use-cases, often based on dynamic analysis

and profiling. However, spill-free allocation is well-defined

and the same in all compilers.

Baselines.We compare our spill-free register allocation al-

gorithm with the previous state-of-the-art methods that pa-

rameterize based on pathwidth [18] and treewidth [6]. To

the best of our knowledge, these are the only exact and non-

heuristic algorithms for spill-free register allocation in the

literature. Other methods, such as [43], are approximate and

thus not directly comparable.

Implementation. We implemented our approach in C++
and integrated it with the Small Device CCompiler (SDCC) [23,

24]. SDCC already contains a heavily-optimized variant of

the algorithms of [32, 43] to find tree decompositions. More-

over, [18] provides SDCC support for path decompositions

and implementations of both their own algorithm and [6]

in SDCC. Thus, both previous state-of-the-art parameter-

ized algorithms were already available in SDCC. Despite

our approach being perfectly parallelizable, we did not use

parallelization in our experiment in order to provide a fair

comparison with the available implementations of previous

methods, which are not parallel.

Machine. Our results were obtained on a Linux machine

with an Intel i9-12900HK processor (14 cores, 20 threads, 24

MB cache) and 32 GB of memory.

Benchmarks.We followed [18] in our setup. We used the

SDCC regression test suite as our set of benchmarks, which

consists of 15,888 instances. These benchmarks are all embed-

ded programs which are expected to be executed in systems

with limited resources. Thus, spilling constitutes an impor-

tant performance bottleneck for them and spill-free register

allocation with the minimum possible number of registers

is highly desirable. We set a time limit of 10 minutes and a

memory limit of 4 GB per benchmark.

Number of Registers. In [18]’s experiments, the number of

registers 𝑟 is limited to 8. Their approach simply gives up if

no spill-free allocation with 8 registers exists. This is the max-

imum number of registers that can be practically supported
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Figure 8. Histogram of the minimum number of registers

required for spill-free allocation. The 𝑥 axis is number of

registers and the 𝑦 axis is the number of instances requiring

that many registers. The 𝑦 axis is in logarithmic scale.

by either [18] or [6], due to their exponential runtime and

memory dependence on 𝑟 . Given that we have improved this

exponential dependence from 𝑟 16·𝑟 to 𝑟 5·𝑟+5 (Thereom 3.2),

we observed significant practical runtime improvements, too,

and our approach can handle up to 20 registers in practice.

Thus, we raised the maximum number of registers to 20. This

is a huge improvement since [6, 18] were only applicable to

domain-specific embedded architectures with up to 8 regis-

ters, whereas we can, for the first time, support much more

general and ubiquitous architectures such as the x86 family,

used in most modern computers, which have 16 registers.

Failure Statistics. Our approach successfully handled all

input instances within the prescribed time and memory lim-

its, either finding the optimal number of registers needed for

spill-free allocation or reporting that more than 20 registers

are required. Figure 8 shows a histogram of the number of re-

quired registers. In contrast, the pathwidth-based algorithm

of [18] and the treewidth-based approach of [6] both failed

in 554 instances, including all instances requiring more than

8 registers.

Runtimes. Figure 9 shows a comparison of the runtimes of

our algorithm vs the treewidth-based approach of [6] and

the pathwdith-based approach of [18], when we set 𝑟 ≤ 20.

The average runtimes were 3.87 microseconds for our ap-

proach, 21,544 microseconds for [18] and 1,191,284 microsec-

onds for [6]. These averages are excluding the instances over

which the previous methods failed. The runtimes were domi-

nated by 704 instances for the treewidth-based approach and

24 instances for the pathwidth-based approach in which they

were unusually slow, presumably due to high treewidth/path-

width. Excluding these outlier instances, the average runtime

was 33.88 microseconds for [18] and 372.34 microseconds

for [6].

Discussion. In summary, the exponential asymptotic run-

time improvements of Theorem 3.2 are also evident in prac-

tice and our approach is the first exact algorithm for spill-free

register allocation that can scale up to realistic architectures

with up to 20 registers, such as the x86 family. Given the

efficiency of our approach, obtaining an average runtime

of merely 4 microseconds per instance, we believe there is

no longer a case for using approximations or heuristics in

spill-free register allocation and, despite its NP-hardness

and hardness-of-approximation in theory, this problem is

efficiently solved by our method for all practical instances.

5 Conclusion and Future Work
In this work, we provided a grammar-based decomposition

for control-flow graphs of structured programs which (i) pre-

cisely captures the set of control-flow graphs and (ii) enables

bottom-up dynamic programming in a manner similar to

algorithms that exploit treewidth and pathwidth. As an appli-

cation of our decomposition method, we improved the best

known asymptotic runtimes for two classical problems in

compiler optimization, namely spill-free and minimum-cost

register allocation, by exponential factors with respect to the

number of variables and registers. We provided extensive

experimental results comparing our approach with previous

state-of-the-art parameterized algorithms. Most notably, our

approach is the first exact algorithm for spill-free register al-

location that can handle ubiquitous architectures such as x86,

which have 16 registers. Previous approaches were limited to

only 8 registers and could only be applied to domain-specific

architectures such as embedded systems with few registers.

As future work, we believe that our decomposition has the

potential to lead to similar significant runtime improvements

for a wide variety of tasks in compiler optimization, program

verification and model checking which are currently handled

by treewidth/pathwidth-based methods.
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