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 6 
The authors thank the discussers for their interest in the paper as well as their comments. The 7 
discussers raised a number of issues related to continuum finite element (CFE) simulation of steel 8 
wide-flange beam-columns. These issues are addressed in this closure based on pertinent literature 9 
and supplemental CFE simulations. 10 
 11 

 12 
Before addressing the specific debate, the authors would like to clarify a few key issues with 13 
regards to their modelling approach that were not conveyed correctly by the discussers.  14 
 15 
a) The discussers appear to mistakenly assume that the authors used an Explicit Solver to 16 

conduct the analysis reported in the paper. The authors used an Implicit Solver (ABAQUS 17 
Standard, v6.11) in Cravero et al. (2020) as well as prior related work (Elkady and Lignos 18 
2015, 2018b) on steel wide-flange beam-column stability. The employed Implicit Solver 19 
involves Newton's method with double precision. The default convergence criteria of 0.5% 20 
on the relative force and moment residuals have been used. 21 

b) The material model used in CFE simulations is the Voce and Chaboche constitutive law 22 
(Voce 1948; Armstrong and Frederick 1966; Chaboche 1989) available in 23 
ABAQUS/Standard with one backstress as reported in prior work by Elkady and Lignos 24 
(2018b). In that respect, it is not clear how the discussers computed the model parameters 25 
for a second backstress as stated in their discussion. 26 

 27 
Considering all above, including other aspects of the model (i.e., use of rigid elements) the 28 
approach outlined and used by the discussers is not the same as that proposed and utilized by the 29 
authors. Notwithstanding these differences, the raised issues are addressed below in detail. 30 
 31 
Use of Local and/or Global Imperfections in Nonlinear Analysis of Wide-Flange Beam-32 
Columns 33 

34 
imperfections (GIs) in CFE models to properly simulate the behavior of wide-flange beam-35 
columns under monotonic and cyclic loading. By simulating the response of one of the 12 36 
specimens presented in Cravero et al. (2020) using ABAQUS and LS-DYNA, the discussers 37 

ion that GIs generally need to be considered in CFE models, is 38 
overly conservative and software-dependent. The discussers attribute their conclusion to the 39 
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numerical precision of the ABAQUS solver which, unlike the LS-DYNA solver, does not appear 40 
to capture/trigger the geometric nonlinear effects, introduced by small deformations, in the first 41 
few elastic cycles, as the discussers observe in their LS-DYNA Explicit analyses. 42 
 43 
As stated earlier, ABAQUS Implicit solver, with double-precision is what the authors have used 44 
throughout their studies on stability of beam-column members. In ABAQUS Explicit, double 45 
precision is mainly used for highly nonlinear problems, such as the one discussed in the paper. In 46 
fact, ABAQUS Explicit would warn against a single-precision run on the account of potentially 47 
large round-off errors, unless a large number of time increments (usually above 300k) are 48 

49 
(ABAQUS/Standard 2009). Moreover, based on Fig. 1a presented by the discussers, the column 50 
web out-plane displacement values are in the neighborhood of 0.05 mm, which is substantially 51 
larger than the machine epsilon for single precision floating point numbers ( ). 52 
Accordingly, what the discussers claim to be the reason for the observed differences between the 53 
results of ABAQUS and LS-DYNA Explicit solvers is not related to the precision of a standard 54 
finite element program. If single precision were to be used with an Explicit solver, round-off errors 55 
in each step would accumulate and produce incorrect results. Of course, in an Implicit static 56 
analysis this is not an issue because the time step is much larger than that used in Explicit analysis. 57 
As such, round-off errors would not accumulate in this case given that the Implicit solver satisfies 58 
a convergence tolerance to compute the forward solution. 59 
 60 
Considering that any CFE software (a) uses the same precision (double) and (b) explicitly 61 
considers a geometric nonlinearity transformation, the benchmark numerical solution for an 62 

- Implicit solver because unlike 63 
the Explicit one, it simply guarantees convergence between numerical solution steps. Moreover, 64 
significant spurious oscillations that can potentially arise in the numerical solution of an Explicit 65 
dynamic solver (Belytschko 1974; Maheo et al. 2011; Belytschko et al. 2014; Bathe 2019) will not 66 
occur. If both solvers are properly employed, then they should trace the same solution (at least for 67 
the elastic problem) as established by numerical analysis and finite element procedures. With the 68 
above aspects in mind, Fig. 1a herein illustrates that when a perfect geometry is used (i.e., no 69 
imposed GIs) the elastic solution (i.e., magnified response shown up to 200mm cumulative drift) 70 
as computed by the ABAQUS Implicit  71 

Explicit solver 72 
in LS-DYNA in the elastic loading phase. Referring to Fig. 1b, both the ABAQUS Explicit and 73 
Implicit solvers provide similar solutions even in the nonlinear regime. Only minor differences are 74 
observed at large inelastic deformations that are attributed to kinematic effects introduced in the 75 
Explicit analysis. 76 
 77 
While the authors do not have access to specific (and important) details of the numerical models 78 
developed by the discussers (e.g., hourglass control for the employed shell element formulation, 79 
loading rates, time step, numerical damping, mass or time scaling, energy balance to ensure how 80 
small is the kinetic and viscous energies with respect to the internal energy, all this because of the 81 
use of the Explicit solver), it is believed that the initial small elastic out-of-plane web deformations 82 
that the discussers observe in their analysis with a perfect geometry (no GIs) are attributed to 83 
spurious oscillations that arise in the numerical solution of an Explicit dynamic solver (Belytschko 84 
1974; Maheo et al. 2011; Belytschko et al. 2014; Rackauskaite et al. 2017; Bathe 2019). 85 
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Particularly, CFE software, including LS-DYNA (Haufe et al. 2013; Jim et al. 2014; LS-DYNA 86 
2017)87 
these oscillations, which are often referred to a (Rust and Schweizerhof 88 
2003) could lead to erroneous simulated responses. The magnitude of these oscillations, as well as 89 
the numerical noise associated with Explicit solvers, is dependent on a number of parameters (some 90 
of which are listed above) including the finite element formulation and size, part interactions, 91 
boundary condition formulations, use of stiff elements, as well as the loading rates (i.e., it needs 92 
benchmarking). Most importantly, a CFE modeler has no systematic way to control the amplitude 93 
of spurious oscillations introduced by an Explicit solver because of their random nature. To that 94 
end, prior work with LS-DYNA (e.g., Rust and Schweizerhof 2003; Rackauskaite et al. 2017) as 95 
well as ABAQUS/Explicit (e.g., El Jisr et al. 2020) suggest carefully validated practices to 96 
properly benchmark an Explicit solver to address the above issues, particularly when dealing with 97 
quasi-static and/or a broad range of stability-sensitive problems. In the examined case (Specimen 98 
A4), these oscillations/imperfections are forgiving and seem to act as an alternative buckling-99 
trigger to explicitly modeled GIs within an Implicit solver environment as discussed in prior related 100 
work (Rust and Schweizerhof 2003).  101 
 102 
Considering all above, the discussers do use imperfections in their analysis but these are of 103 
different nature than those suggested by the authors. As shown in this closure, these 104 

Explicit solver rather than numerical precision considering the 105 
presented comparisons with the Implicit solver with double precision and the same geometric 106 
transformations within the CFE software. 107 
 108 
Final Considerations and Recommendations 109 
The authors think that global and/or local GIs as well as other model attributes (e.g., the inclusion 110 
of residual stresses) are certainly not always necessary to predict the behavior of wide-flange 111 
beam-columns depending on particular load and geometric configurations. For instance, a well-112 
known case in the context of this debate is the stability of stocky wide-flange members (Newell 113 
and Uang 2008) when attaining a stable equilibrium path even at large inelastic lateral drift 114 
demands (i.e., 6% rads) as well as cases in which high compressive axial load demands dominate 115 
the member response (Fell et al. 2009; Lamarche and Tremblay 2011). In the above two cases the 116 
role of local GIs is not likely to influence the member behavior. This conclusion, however, cannot 117 
be held in general. 118 
 119 
Prior experimental work on the systematic characterization of the hysteretic behavior of wide-120 
flange beam-columns under multi-axial monotonic and cyclic loading across scales by the authors 121 
(Suzuki and Lignos 2015; Elkady and Lignos 2018a; Cravero et al. 2020) as well as other 122 
researchers (Newell and Uang 2008; Lamarche and Tremblay 2011; Cheng et al. 2013; Ozkula et 123 
al. 2017; Cheng et al. 2018) during the past decade demonstrate that the role of initial GIs (local 124 
and/or global) is substantiated in predictive CFE modelling of wide-flange beam-columns when 125 
these feature slender profiles and their hysteretic response is dominated by early onset of local 126 
buckling or by coupled member and local geometric instabilities. The significance of accurate steel 127 
material modelling has also been stressed. The above findings have also been corroborated by 128 
results of two blind analysis competitions that were organized a few years ago by NIST-ATC 129 
(2018) to predict the cyclic behavior of deep wide-flange beam-columns. 130 
 131 
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The authors propose a systematic modelling approach that may be used for conventional 132 
133 
134 

quantified in prior work; most importantly they are FE-platform independent, and they are 135 
consistent with structural stability concepts (Galambos 1998) as well as observations from physical 136 
experiments.  In brief, this approach includes: 137 
 138 
a) A rate-independent multiaxial plasticity model along with a systematic methodology to tackle 139 

the well-known model parameter non-uniqueness (de Castro e Sousa et al. 2020). 140 
b) Quantitative residual stress patterns due to hot rolling (Sousa and Lignos 2017) that may not 141 

necessarily be important for yield or peak strength predictions but are certainly important when 142 
it comes to torsional stiffnesses of wide-flange cross-sections due to their influence on the 143 
Wagner constant (Trahair 1993). 144 

c) Quantitative introduction of initial GIs to properly simulate the onset of nonlinear geometric 145 
instabilities in beam-columns undergoing a softening equilibrium path (Elkady and Lignos 146 
2018b) nd 147 

idealize within the CFE software including welded base 148 
plates and fabrication work. The use of GIs in nonlinear analysis is consistent with core 149 
concepts of structural stability (Galambos 1998), which are also included in our design 150 
standards when it comes to stability verification of structural members (AISC 2016; Ziemian et 151 
al. 2018). 152 

d) The use of a nonlinear geometric transformation as well as an Implicit solver with the tolerance 153 
characteristics discussed earlier. For standard member  stability verification, which is the 154 
particular problem under question herein, the use of Implicit solvers is recommended simply 155 
because an Explicit solver comes with a number of challenges to overcome. For the problem in 156 
question i.e., member stability verification, the computational cost by using an Implicit solver 157 
is not prohibitive even with a personal computer. 158 

 159 
160 

within a system-level simulation, the authors are of the opinion that this existent difficulty can be 161 
comfortably overcome through systematic rules to assign GIs at the member level. Particularly, at 162 
the system level, GIs can be defined to each member during the assembly of the CFE model by 163 
using scripting tools such as Python that can be seamlessly integrated into any commercial CFE. 164 
In this case, for instance, local GIs could be based on conventional plate buckling theory rather 165 
than buckling eigenvalue analysis. However, the use of spurious oscillations attributed to the 166 
Explicit solver is not recommended for this or any other purpose. 167 
  168 
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