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ABSTRACT: In this study, a novel stochastic formulation for the upper ocean Ekman boundary

layer is derived from scaling the generalized stochastic Craik-Leibovich equations. This formu-

lation encodes the interactions between wind, waves, and currents through the introduction of

the uncertainty of unresolved motions, using established physical parameterizations. Numerical

investigations of the time-dependent stochastic Ekman-Stokes model, incorporating wave mixing

and stochastic transport effects, reveal Ekman velocities with an increased uncertainty, a higher

kinetic energy and a stronger occurrence of extreme events, compared to traditional solutions.

Stronger correlations between zonal and meridional components are obtained, with more skewed

distributions and extreme values, particularly near the surface. A sensitivity analysis highlights

the impact of transient winds and surface waves on statistical moments. Transient winds reduce

vertical shear, deepen circulation, and increase uncertainty. Smaller surface waves also lead to

higher ensemble energy and stronger correlations. Energy and transport magnitude peak when

mean waves and wind are aligned, decreasing with rotation and redistributing current velocity

statistics. These findings underscore the model’s enhanced ability to help capture complex ocean

dynamics with improved uncertainty representation.
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SIGNIFICANCE STATEMENT: To describe the upper ocean Ekman boundary layer, a novel24

stochastic model is derived to capture the interplay between random motions induced by wind,25

waves, and currents. Accounting for the uncertainty of unresolved fluctuations, resulting Ekman26

velocities display increased variability, higher kinetic energy, and more frequent extreme events27

than traditional models. Near the surface, stronger correlations and skewed distributions are also28

revealed. Sensitivity analyses highlight impacts of transient winds and surface waves, which29

deepen circulation and increase uncertainty. Aligning wind and waves naturally maximizes energy30

and transport. This model can offer new means to describe upper ocean dynamics, providing better31

insights to anticipate ocean vertical fluxes and enhancing predictive capabilities.32

1. Introduction33

In the seminal work of Ekman (1905), an exact solution of simplified Navier–Stokes equations34

was obtained, fundamental to the theory of ocean circulation and attractive for theoretical analysis.35

The upper ocean boundary layer flow was initially conceived as steady, linear, of uniform density36

and viscosity, and driven solely by a surface wind stress. Owing to a balance between Coriolis and37

turbulent drag forces, the explicit solution displays the gradual rotation and decay of ageostrophic38

velocity with depth, presenting a spiral vertical structure (Vallis 2017). Several limitations in this39

early model have been identified, e.g. the assumption of vertically uniform eddy viscosity in the40

ocean (Large et al. 1994) and the significant modifications to near-surface currents induced by41

surface gravity waves (Huang 1979; Jenkins 1986; Xu and Bowen 1994; McWilliams et al. 1997,42

2012). Buoyancy effects can also play a crucial role in the boundary layer dynamics, particularly at43

fronts (Price and Sundermeyer 1999; McWilliams et al. 2009; Gula et al. 2014; McWilliams et al.44

2015). Although incorporating these additional effects complicates analytical solutions, advanced45

mathematical tools (Lewis and Belcher 2004; Wenegrat and McPhaden 2016b,a; Higgins et al.46

2020) and accurate numerical methods offer viable approximations.47

In this study, a stochastic approach is further considered. Building upon earlier works (Bauer48

et al. 2020; Mémin 2014; Resseguier et al. 2017), a stochastic approach can help statistically49

describe the ocean surface Ekman boundary layer. The location uncertainty framework can indeed50

consistently integrate the compounding effects of random winds, modulated and modulating surface51

waves, and turbulent mixing processes. Hereafter, we omit stratification effects, a facet to address52
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in future research once other interactions are clarified. By appropriately scaling the generalized53

stochastic Craik-Leibovich equation already outlined in Bauer et al. (2020), both steady and time-54

dependent stochastic Ekman-Stokes models are derived. The stochastic framework fully encodes55

diffusive and advective mixing effects of random fluctuations, e.g. surface winds and waves, in56

the vertical direction, alongside classic terms involved in the Ekman-Stokes model (Wenegrat57

and McPhaden 2016b,a; Higgins et al. 2020). Notably, the uncertainty representation can be58

consistently constrained with established physical parameterizations (McWilliams et al. 1997;59

McWilliams and Huckle 2006). Through large ensemble simulations, uncertainties in the Ekman60

boundary layer are then quantified, stemming from various random contributions (wind, waves,61

and turbulence), also accounting for their intermittency. Noisy fluctuations are specified to follow62

simple models. Specifically, the quadratic variation of these noise terms, corresponding to the63

process defined by the limit in probability of the square of the noise increments, matches the ideal64

Stokes drift of monochromatic linear waves and the K-profile-parameterization (KPP) for vertical65

mixing (Large et al. 1994). Yet, the resulting impacts of the noise processes are ultimately much66

more complex, and the system’s response is not at all trivial. In this study, statistical responses67

are compared to those of a traditional benchmark model, followed by sensitivity analysis of the68

proposed random model to various wind and wave parameters.69

The paper is structured as follows: Section 2 presents the proposed stochastic Ekman-Stokes70

models with detailed derivations and describes the uncertainty parameterization methods. Section 371

discusses the numerical results, including statistical diagnosis and sensitivity analysis of the random72

models. Finally, in Section 4, we draw conclusions and provide an outlook for future research73

endeavors.74

2. Stochastic formulation75

A brief review of the generalized stochastic Craik-Leibovich equations first reassesses our pre-76

vious work. The stochastic Ekman-Stokes models is then derived by appropriately scaling the77

nonlinear equations. Subsequently, we describe the uncertainty representation induced by estab-78

lished physical parameterizations.79
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a. Review of generalized stochastic Craik-Leibovich momentum equations80

The Location Uncertainty framework (Mémin 2014) emerges from a decomposition of the81

Lagrangian fluid flow into a resolved time-smooth flow component and an unresolved highly82

oscillating noise term:83

X𝑡 = X0 +
∫ 𝑡

0
v(X𝑠, 𝑠) d𝑠+

∫ 𝑡

0
σ(X𝑠, 𝑠) d𝐵𝑠, (2.1)

where X represents the stochastic Lagrangian particle trajectory, v = (𝑢, 𝑣,𝑤)𝑇 denotes the resolved84

three-dimensional (3D) velocity, 𝐵 is a cylindrical Brownian motion (see Da Prato and Zabczyk85

2014, chap. 2) defined on an infinite-dimensional Hilbert space (function space), σ = (𝜎𝑥 ,𝜎𝑦,𝜎𝑧)𝑇86

is a random correlation process defined on a space of Hilbert-Schmidt operators (mapping two87

function spaces). More detailed mathematical descriptions on this noise term definition can be88

found in Debussche et al. (2023); Li et al. (2023a,b).89

Several systems of stochastic partial differential equations (SPDEs), describing the evolution of90

key oceanic variables (such as momentum, temperature, salinity, buoyancy, and sea-surface height)91

transported along the stochastic flow described by Eq. (2.1) under various regimes, have been92

derived by Brecht et al. (2021); Li et al. (2023a); Mémin (2014); Resseguier et al. (2017); Tucciarone93

et al. (2024). These SPDEs are established through the application of stochastic calculus rules94

and adherence to fundamental physical conservation laws accompanied with classical geophysical95

approximations. For the Navier-Stokes equations, such stochastic approximations converge (in 2D96

and 3D) toward the deterministic equations as the noise vanishes (Debussche et al. 2023), providing97

strong consistency to this large scale representation in a similar way as grid convergence for large98

eddy simulations. Hereafter, we exclusively concentrate on the stochastic momentum equations99

governing incompressible fluid motions under the Boussinesq approximation, namely:100

dv+
(
(v−v𝑠) · ∇v−∇ · (a∇v) + 𝑓 ẑ×v

)
d𝑡 +

(
σ · ∇v+ 𝑓 ẑ×σ

)
d𝐵𝑡 =

(
𝑏ẑ−∇𝑝

)
d𝑡 −∇d𝑃𝑡 , (2.2a)

101

a :=
1
2
σσ𝑇 , v𝑠 := ∇ ·a, (2.2b)

102

∇ · (v−v𝑠) = 0, ∇ ·σ = 0. (2.2c)
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Here, d𝑣𝑖 denotes the temporal variation of 𝑣𝑖 at a fixed point, 𝑓 is the Coriolis frequency,103

ẑ= (0,0,1)𝑇 denotes the vertical unit vector, 𝑏 =−𝑔𝜌′/𝜌𝑜 is the buoyancy variable under Boussinesq104

approximation (where 𝑔 is the gravity constant, 𝜌𝑜 is the background water density, and 𝜌′ is the105

density anomaly), and 𝑝 represent the resolved dynamic pressure (rescaled by 𝜌𝑜).106

The SPDEs (2.2a) encodes physically meaningful terms. Specifically, the term σ · ∇𝑣𝑖 d𝐵𝑡107

represents the random advective processes induced by unresolved fluid motions. The diffusion108

term, ∇ · (a∇𝑣𝑖), depicts the unresolved diffusive mixing effects associated with the random109

symmetric non-negative diffusion tensor a = σσ𝑇/2, also referred to the variance tensor as it110

corresponds to the one-point-two-times covariance matrix tensor. The nonlinear term (v−v𝑠) ·∇𝑣𝑖111

involves an effective advection velocity, which adjusts the resolved velocity v by removing the112

influence of a statistical drift v𝑠 = ∇ ·a that captures the inhomogeneity of the unresolved random113

field. This turbophoresis term, referred to Itô-Stokes drift, has been interpreted as a generalization114

of the Stokes drift in Bauer et al. (2020). Both the diffusion and corrective advection terms are115

rigorously derived by applying the generalized Itô formula (see Bauer et al. 2020, Appendix B).116

The Coriolis terms 𝑓 ẑ× (vd𝑡 +σd𝐵𝑡) appear from a change of coordinates (from inertial to117

rotating) for the stochastic flow (2.1). The pressure noise d𝑃𝑡/d𝑡 (in a distribution sense) is an118

additional Lagrange multiplier enforcing the incompressibility of unresolved fluid motions. Note119

that the continuity equations (2.2c) are derived from mass conservation in the stochastic framework120

(Mémin 2014). These non-divergent constraints also ensures energy conservation for the derived121

random systems (Brecht et al. 2021; Li et al. 2023a).122

To interpret the Craik-Leibovich momentum equations in the stochastic framework, Equation123

(2.2a) can be rewritten in an equivalent form outlining the contribution of the effective advection124

velocity, denoted by v★ := v−v𝑠 hereafter. Applying a change of variable from v to v★ and assuming125

a quasi-stationary Itô-Stokes drift (dv𝑠 ≈ 0), we have126

dv★+
(
v★ · ∇+ 𝑓 ẑ×

)
(v★+v𝑠) d𝑡 +

(
σ · ∇(v★+v𝑠) + 𝑓 ẑ×σ

)
d𝐵𝑡

=

(
𝑏ẑ−∇𝑝 +∇ ·

(
a∇(v★+v𝑠)

) )
d𝑡 −∇d𝑃𝑡 . (2.3)
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Manipulating further the advection term v★ · ∇v𝑠 by a classical vector calculus identity, it comes127

the so-called generalized stochastic Craik-Leibovich momentum equations:128

dv★+
(
(v★−v𝑠) · ∇v★−∇ · (a∇v★) + 𝑓 ẑ×v★− 𝑏ẑ+∇𝑝

)
d𝑡 +

(
σ · ∇v★+ 𝑓 ẑ×σ

)
d𝐵𝑡 +∇d𝑃𝑡

=
(
− 𝑓 ẑ×v𝑠︸  ︷︷  ︸

Coriolis
Stokes

−∇ (v★ ·v𝑠)︸   ︷︷   ︸
pressure

correction

+v𝑠 × (∇×v★)︸          ︷︷          ︸
Craik-Leibovich

vortex force

− (∇×v𝑠) ×v★︸          ︷︷          ︸
Itô-Stokes

force

+ ∇ · (a∇v𝑠)︸      ︷︷      ︸
Itô-Stokes

diffusive mixing

)
d𝑡 − σ · ∇v𝑠 d𝐵𝑡︸       ︷︷       ︸

Itô-Stokes
advective mixing

. (2.4)

The first line mirrors the structure of the stochastic Boussinesq momentum equation (2.2a), with129

the only difference being the substitution of v★ for v. In contrast, the second line accentuates the130

supplementary contributions stemming from the Itô-Stokes drift acting on v★. The initial three131

terms share identical expressions with the Coriolis-Stokes force, Stokes-corrected pressure, and132

Craik-Leibovich vortex force present in the classical Craik-Leibovich momentum equation (Craik133

and Leibovich 1976; Leibovich 1980; McWilliams et al. 1997). However, in this formulation, the134

vortex force characterizes the statistical influence of the inhomogeneity carried by the diffusion135

tensor of the random field on the large-scale current. Therefore, this momentum equation can136

be viewed as a generalized stochastic representation of the Craik-Leibovich system, where the137

turbophoresis term supplants the Stokes drift associated with wave motion. This distinction prompts138

us to designate the term more broadly as the Itô-Stokes drift. It is indeed not anymore exclusively139

associated with waves motion but more generally with inhomogeneous unresolved small-scale140

fluctuations. Additionally, this stochastic formulation introduces another force, referred to herein141

as the Itô-Stokes force, which pertains to the interaction between the effective velocity and the142

vorticity of the Itô-Stokes drift. This force can be collectively considered with the Coriolis force143

to yield a corrective term. Moreover, coupling effects exist between the Itô-Stokes drift and the144

unresolved turbulent motions through both advective and diffusive processes, encoded by the final145

two terms. These terms capture surface wave mixing effects when the Itô-Stokes drift approximates146

a real Stokes drift.147

b. Nondimensional stochastic momentum equations and scaling148

The procedure is now outlined for deriving the stochastic Ekman-Stokes models by scaling the149

generalized stochastic Craik-Leibovich momentum equations (2.3). Specifically in this study, we150
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do not account for stratification effects within the boundary layer. Hence, buoyancy is assumed to151

remain constant (see Vallis 2017, chap. 5). Without loss of generality, we set 𝑏 = 0 in the following.152

The horizontal variables and Coriolis frequency are first scaled as x = (𝑥, 𝑦)𝑇 = 𝐿 x̂, u★ =153

(𝑢★, 𝑣★)𝑇 =𝑈 û, and 𝑓 = 𝑓0 �̂� . Here, the capital letters represent variable scales and hatted vari-154

ables denote nondimensional variables. Following Pedlosky (1990, chap. 4), we adopt a change155

of vertical coordinates to account for stretching in the boundary layer so that 𝑧 = 𝐻 �̂�, 𝜁 = �̂�/𝛿𝑒,156

and 𝛿𝑒 = 𝐻𝛿𝑒. Here, �̂� ≠ O(1), 𝜁 = O(1) and 𝛿𝑒 denotes the Ekman boundary layer thickness.157

The scales of vertical velocity 𝑤★ = (𝑈𝐻𝛿𝑒/𝐿)𝑤 and dynamic pressure 𝑝 = 𝑓0𝑈𝐿 𝑝 are suggested158

respectively by the continuity equation (2.2c) and classical geostrophic balance.159

The correlation operator is decomposed into horizontal and vertical components, σ = (σx,𝜎𝑧)𝑇160

with σx = (𝜎𝑥 ,𝜎𝑦)𝑇 . The derived diffusion tensor can thus be decomposed into axx = 1
2σxσ

𝑇

x ,161

𝑎𝑧𝑧 =
1
2𝜎

2
𝑧 , and ax𝑧 =

1
2σx𝜎𝑧. We propose scaling axx and 𝑎𝑧𝑧 as horizontal and vertical eddy162

viscosity coefficients, as163

axx = 𝐴ℎ âxx, 𝑎𝑧𝑧 = 𝐴𝑣 𝑎𝑧𝑧, (2.5a)

respectively. The scaling for the correlation operator and the cross component of the diffusion164

tensor follows:165

σx =
√

2𝐴1/2
ℎ
σ̂x, 𝜎𝑧 =

√
2𝐴1/2

𝑣 𝜎𝑧, ax𝑧 = 𝐴
1/2
ℎ
𝐴1/2
𝑣 âx𝑧 . (2.5b)

We next recall the Rossby number (Ro), horizontal Ekman number (Eh), vertical Ekman number166

(Ev), and the aspect ratio (𝛿), which are defined by167

Ro =
𝑈

𝑓0𝐿
, Eh =

𝐴ℎ

𝑓0𝐿2 , Ev =
𝐴𝑣

𝑓0𝐻2 , 𝛿 =
𝐻

𝐿
. (2.6)

Using these dimensionless numbers, the Itô-Stokes drift v𝑠 normalized by the characteristic scales168

of v★ scales as169

ũ𝑠 :=
u𝑠

𝑈
=

Eh
Ro

∇̂ · âxx +
Eh

1/2

Ro
Ev

1/2

𝛿𝑒
𝜕
𝜁
âx𝑧, (2.7a)

170

𝑤𝑠 :=
𝑤𝑠

𝑊
=

Eh
1/2

Ro
Ev

1/2 ∇̂ · âx𝑧 +
1

Ro
Ev

𝛿𝑒
𝜕
𝜁
𝑎𝑧𝑧 . (2.7b)

Note that ∇ = (𝜕𝑥 , 𝜕𝑦)𝑇 represents the horizontal gradient from here on.171
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The advection time scale 𝑡 = (𝐿/𝑈) �̂� is imposed as the characteristic time scale. It is important172

to note that the time scale, �̂�, is not necessarily of O(1). Discussed later, two different time173

scales will indeed be used to distinctly capture a stationary and a non stationary stochastic Ekman174

model. The variance of a (cylindrical) Brownian motion also takes the scale of time, with175

𝐵𝑡 = (𝐿/𝑈)1/2 𝐵𝑡 . Moreover, the scale of unresolved pressure noise are suggested by the geostrophic176

balance 𝑓 ẑ×σd𝐵𝑡 ≈ −∇d𝑃𝑡 , hence 𝑃𝑡 =
√

2(Eh/Ro)1/2 𝑓0𝐿
2 𝑃𝑡 .177

Substituting the above scalings in Eq. (2.3), the following nondimensional stochastic momentum178

equations is obtained:179

Ro
(
dû+

(
û · ∇̂ +𝑤𝜕

𝜁

) (
û+ ũ𝑠

)
d̂𝑡

)
+
√

2Ro1/2

(
Eh

1/2σ̂x · ∇̂ + Ev
1/2

𝛿𝑒
𝜎𝑧𝜕𝜁

) (
û+ ũ𝑠

)
d𝐵𝑡

= −
(
�̂�
(
û+ ũ𝑠

)⊥ + ∇̂𝑝) d̂𝑡 −
√

2
Eh

1/2

Ro1/2

(
�̂� σ̂x

⊥d𝐵𝑡 + ∇̂d𝑃𝑡

)
+Eh∇̂ ·

(
âxx∇̂

(
û+ ũ𝑠

) )
d̂𝑡

+ Ev

𝛿𝑒
2 𝜕𝜁

(
𝑎𝑧𝑧𝜕𝜁

(
û+ ũ𝑠

) )
d̂𝑡 +Eh

1/2 Ev
1/2

𝛿𝑒

(
∇̂ ·

(
âx𝑧𝜕𝜁

(
û+ ũ𝑠

) )
+ 𝜕

𝜁

(
âx𝑧∇̂

(
û+ ũ𝑠

) ))
d̂𝑡, (2.8a)

180

𝛿2Ro
(
d𝑤 +

(
û · ∇̂ +𝑤𝜕

𝜁

) (
𝑤 +𝑤𝑠

)
d̂𝑡

)
+
√

2𝛿2Ro1/2

(
Eh

1/2σ̂x · ∇̂ + Ev
1/2

𝛿𝑒
𝜎𝑧𝜕𝜁

) (
𝑤 +𝑤𝑠

)
d𝐵𝑡

= − 1

𝛿𝑒
2

(
𝜕
𝜁
𝑝d̂𝑡 +

√
2

Eh
1/2

Ro1/2 𝜕𝜁d𝑃𝑡

)
+ 𝛿2

(
Eh∇̂ ·

(
âxx∇̂

(
𝑤 +𝑤𝑠

) )
+ Ev

𝛿𝑒
2 𝜕𝜁

(
𝑎𝑧𝑧𝜕𝜁

(
𝑤 +𝑤𝑠

) )
+Eh

1/2 Ev
1/2

𝛿𝑒

(
∇̂ ·

(
âx𝑧𝜕𝜁

(
𝑤 +𝑤𝑠

) )
+ 𝜕

𝜁

(
âx𝑧∇̂

(
𝑤 +𝑤𝑠

) )))
d̂𝑡, (2.8b)

where u⊥ = (−𝑣,𝑢)𝑇 . To further derive the equation of motions in the Ekman boundary layer, we181

make the following assumptions regarding the dimensionless numbers:182

Ro ≪ 1, 𝛿 ≪ 1, 𝛿𝑒 ∼ Ev
1/2, Eh

1/2 ∼ Ro. (2.9)

A small Rossby number mainly neglects the nonlinear advection terms, and a small aspect ratio183

ensures hydrostatic balance in the vertical. The third assumption sets the vertical friction to be as184

large as the Coriolis force in the boundary layer, even though the Ekman number remains small in185

general. The last assumption emerges from the ratio of horizontal friction to inertial acceleration186

Eh/Ro = 1/Re, where Re =𝑈𝐿/𝐴ℎ is the Reynolds number of the interior flow. In most cases of187
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geophysical interest the Reynolds number is quite large (Pedlosky 1990, chap. 4). In particular, we188

choose 1/Re ∼ Ro here. Using the above assumptions, the previous nondimensional momentum189

equations reduce to190

Rodû =

(
− �̂�

(
û+ 𝜕

𝜁
âx𝑧

)⊥− ∇̂𝑝 + 𝜕
𝜁

(
𝑎𝑧𝑧𝜕𝜁

(
û+ 𝜕

𝜁
âx𝑧

) )
+O(Ro)

)
d̂𝑡

−
√

2Ro1/2

((
𝜎𝑧𝜕𝜁

(
û+ 𝜕

𝜁
âx𝑧

)
+ �̂� σ̂x

⊥
)
d𝐵𝑡 + ∇̂d𝑃𝑡

)
+O(Ro)d𝐵𝑡 , (2.10a)

191

𝛿2Rod𝑤 =

(
− 1

𝛿𝑒
2 𝜕𝜁 𝑝 +O

(
𝛿2)) d̂𝑡 −

√
2

Ro1/2

𝛿𝑒
2 𝜕

𝜁
d𝑃𝑡 +O

(
𝛿2)d𝐵𝑡 . (2.10b)

In the following sections, a steady model with random coefficients is first derived and then a192

time-dependent random model, according to two different time scales.193

c. Steady Ekman-Stokes model with random coefficients194

To derive a steady solution, an intermediate time scale �̂� = O(1) is considered. The temporal195

variation of horizontal momentum is neglected, Eq. (2.10a) can thus be split into a prognostic196

equation of O(1) in terms of “d̂𝑡” and a diagnostic equation of O(Ro1/2) in terms of “d𝐵𝑡”. This197

splitting, based on physical scaling arguments, is also ensured from a mathematical point of view,198

by the canonical decomposition of semi-martingale (Le Gall 2016, chap. 4). Similarly, the vertical199

momentum (2.10b) reduces to two hydrostratic balances for the resolved and unresolved scales. It200

comes:201

�̂� (û+ û𝑠)⊥ = −∇̂𝑝 + 𝜕
𝜁

(
𝑎𝑧𝑧𝜕𝜁 (û+ û𝑠)

)
, û𝑠 = 𝜕

𝜁
âx𝑧, (2.11a)

202 (
�̂� σ̂x

⊥−𝜎𝑧𝜕𝜁 (û+ û𝑠)
)
d𝐵𝑡 = −∇̂d𝑃𝑡 , (2.11b)

203

𝜕
𝜁
𝑝 = 0, 𝜕

𝜁
d𝑃𝑡 = 0. (2.11c)

Following Vallis (2017, chap. 5), considering 𝑝 independent of 𝑧 facilitates the separation betwenn204

pressure-driven interior geostrophic motions and boundary layer ageostrophic motions. Let û= û𝑔+205

û𝑒 and 𝑝 = 𝑝𝑔 + 𝑝𝑒, where the Ekman layer corrections, denoted with a subscript 𝑒, are negligible206

away from the boundary layer. Combining with the hydrostasy, we have 𝑝𝑒 = 0 everywhere, hence207

there is no boundary layer in the pressure field. Restoring the dimensions, the ageostrophic velocity208
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in the Ekman layer thus satisfies209

𝑓 (u𝑒 +u𝑠)⊥ = 𝜕𝑧
(
𝑎𝑧𝑧𝜕𝑧 (u𝑒 +u𝑠)

)
, u𝑠 = 𝜕𝑧ax𝑧 . (2.12)

The resulting horizontal Itô-Stokes drift in this Ekman boundary layer is given by the vertical210

derivative of the co-variation process (ax𝑧) between the horizontal and vertical components of the211

unresolved motions. The previous vectorial equations can be rewritten as a scalar equation for the212

complex velocity u = 𝑢 + 𝑖𝑣. Together with classical boundary conditions for the momentum flux,213

the steady Ekman-Stokes model reads:214

𝜕𝑧 (𝑎𝑧𝑧𝜕𝑧u𝑒) − 𝑖 𝑓 u𝑒 = 𝑖 𝑓 u𝑠 − 𝜕𝑧 (𝑎𝑧𝑧𝜕𝑧u𝑠), (2.13a)

215

𝜌𝑜𝑎𝑧𝑧𝜕𝑧u𝑒 |𝑧=0 = τ𝑤, 𝜌𝑜𝑎𝑧𝑧𝜕𝑧u𝑒 |𝑧=−𝐻 = 0, (2.13b)

where τ𝑤 denotes the surface wind stress. In the general case, this elliptic partial differential216

equation (PDE) includes random coefficients such as the diffusion tensor a, the Itô-Stokes drift217

u𝑠, and the wind stress τ𝑤. It is important to note that the derived formulation (2.13) incorporates218

the vertical diffusive mixing effect of the Itô-Stokes drift, and represents a generalization of the219

classical steady Ekman model with Coriolis-Stokes force.220

Following the method proposed by Wenegrat and McPhaden (2016b), an approximated analytical221

solution can be proposed for (2.13). To that purpose, we first vertically differentiate (2.13a) and222

then multiply by 𝜌𝑜𝑎𝑧𝑧 to form an equation for the Ekman current stress τ𝑒 = 𝜌𝑜𝑎𝑧𝑧𝜕𝑧u𝑒, which223

reads:224

(𝑎𝑧𝑧𝜕2
𝑧𝑧 − 𝑖 𝑓 )τ𝑒 = −(𝑎𝑧𝑧𝜕2

𝑧𝑧 − 𝑖 𝑓 )τ𝑠, (2.14a)
225

τ𝑒 (0) = τ𝑤, τ𝑒 (−𝐻) = 0. (2.14b)

Similarly, τ𝑠 = 𝜌𝑜𝑎𝑧𝑧𝜕𝑧u𝑠 represents the derived Itô-Stokes stress. Wenegrat and McPhaden (2016b)226

propose solving their generalized Ekman model, which shares the same left-hand side differential227

operator with Eq. (2.14a) but with different right-hind side forces, by initially approximating a228

solution to the homogeneous equation using the Wentzel-Kramer-Brillouin (WKB) method. Then,229

the authors solve for the inhomogeneous solution using the method of variation of parameters.230
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Precisely following their detailed derivation to solve our boundary value problem (2.14), the full231

solution of Ekman stress is given by232

τ𝑒 (𝑧) = τ𝑤

(
𝑎𝑧𝑧 (𝑧)
𝑎𝑧𝑧 (0)

)1/4 sinh
(
𝜃 (𝑧)

)
sinh

(
𝜃 (0)

) +∫ 0

−𝐻
𝐺 (𝑧, 𝜁)

( (
𝑖 𝑓 𝑎−1

𝑧𝑧 − 𝜕2
𝑧𝑧

)
τ𝑠

)
(𝜁) d𝜁, (2.15a)

233

𝜃 (𝑧) =
√︁
𝑖 𝑓

∫ 𝑧

−𝐻
𝑎−1/2
𝑧𝑧 (𝜁) d𝜁 . (2.15b)

Here, 𝐺 denotes a symmetric Green function defined by234

𝐺 (𝑧, 𝜁) = 𝑎
1/4
𝑧𝑧 (𝑧)𝑎1/4

𝑧𝑧 (𝜁)√︁
𝑖 𝑓 sinh

(
𝜃 (0)

) 𝑔(𝑧, 𝜁), 𝑔(𝑧, 𝜁) =


sinh

(
𝜃 (𝑧)

)
sinh

(
𝜃 (𝜁) − 𝜃 (0)

)
if 𝜁 > 𝑧

sinh
(
𝜃 (𝜁)

)
sinh

(
𝜃 (𝑧) − 𝜃 (0)

)
if 𝜁 < 𝑧

. (2.15c)

The accuracy of the WKB approximate solution has been further discussed in Wenegrat and235

McPhaden (2016b), to generally show small errors for small vertical Ekman number (Ev). Once236

this Ekman stress is found, the Ekman current solution satisfying (2.13) can be recovered by237

u𝑒 = − 𝑖

𝜌𝑜 𝑓
𝜕𝑧 (τ𝑒 +τ𝑠) −u𝑠 . (2.16)

Integrating this relation vertically, a modified relation for the Ekman transport, T𝑒 =
∫ 0
−𝐻 u𝑒 (𝑧) d𝑧238

reads:239

T𝑒 = − 𝑖

𝜌0 𝑓

(
τ𝑤 +τ 0

𝑠

)
−T𝑠 . (2.17)

It shows that the Ekman transport T𝑒 is modified by both the surface Itô-Stokes stress τ 0
𝑠 := τ𝑠 (0)240

and the Itô-Stokes transport T𝑠 =
∫ 0
−𝐻 u𝑠 (𝑧) d𝑧. Nevertheless, the Ekman-Stokes transport T𝑒 +T𝑠 is241

rotated 90◦ from the left of the effective surface stress τ𝑤 +τ 0
𝑠 , hence satisfies the classical integral242

relation. Moreover, the vertical velocity induced by the Ekman layer, usually referred to as the243

Ekman pumping, can be derived by integrating the continuity equation (2.2c) for the ageostrophic244

component, namely245

𝑤𝑒 (−𝐻) = 1
𝜌𝑜 𝑓

∇×
(
τ𝑤 +τ 0

𝑠

)
−∇ ·T𝑠 . (2.18)

Accordingly, the Ekman pumping is now modified by both the curl of the surface Itô-Stokes246

stress and the horizontal divergence of the Itô-Stokes transport. Through the Itô-Stokes drift, it247
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incorporates the statistical effect of the inhomogeneity of the small-scale velocity component. It248

absorbs wavy motions, but also other physical processes affecting small-scale velocity fluctuations,249

as well as the effect of its vertical mixing. This relation can be beneficial for numerical ocean250

models at coarse resolution, providing a means to parameterize the Ekman-Stokes layer without251

explicitly solving the Ekman current (2.14) due to limited vertical resolution.252

d. Time-dependent stochastic Ekman-Stokes model253

In this case, a fast time scale is considered by applying a change of time coordinates (Crowe254

and Taylor 2018), such that �̂� = �̂�/Ro, and hence 𝐵𝜏 = 𝐵𝑡/Ro1/2. Therefore, equations (2.10a) and255

(2.10b) boils down to256

dû =

(
− �̂� (û+ û𝑠)⊥− ∇̂𝑝 + 𝜕

𝜁

(
𝑎𝑧𝑧𝜕𝜁 (û+ û𝑠)

) )
d�̂�

−
√

2
(
�̂� σ̂x

⊥ +𝜎𝑧𝜕𝜁 (û+ û𝑠)
)

d𝐵𝜏 −
√

2∇̂d𝑃𝜏, (2.19a)

257

𝜕
𝜁
𝑝 = 0, 𝜕

𝜁
d𝑃𝜏 = 0. (2.19b)

Unlike the steady case, the contributions of the “d̂𝑡” and “d𝐵𝑡” terms on the momentum evolution258

can no longer be separated. Both terms have exactly the same scales. Again separating the259

pressure-driven geostrophic motions, the wind-driven ageostrophic motions in the Ekman layer260

satisfy the following dimensional SPDE under complex notations:261

du𝑒 =

(
− 𝑖 𝑓 (u𝑒 +u𝑠) + 𝜕𝑧

(
𝑎𝑧𝑧𝜕𝑧 (u𝑒 +u𝑠)

) )
d𝑡 − (𝑖 𝑓σx +𝜎𝑧𝜕𝑧 (u𝑒 +u𝑠)) d𝐵𝑡 , (2.20a)

262

𝜌𝑜𝑎𝑧𝑧𝜕𝑧u𝑒 |𝑧=0 = τ𝑤, 𝜌𝑜𝑎𝑧𝑧𝜕𝑧u𝑒 |𝑧=−𝐻 = 0. (2.20b)

This stochastic formulation extends the classical time-dependent Ekman-Stokes model263

(McWilliams et al. 1997), incorporating the vertical unresolved advective process of Ekman cur-264

rent, the random unresolved Coriolis force, and both the diffusive and advective vertical mixing265

effects of the Itô-Stokes drift.266

Finding analytical expression of strong (pathwise) solutions to a SPDE with multiplicative267

noises is extremely challenging. A general representation of solutions can be used to study the268

well-posedness of the proposed SPDE. For instance, the notion of mild solutions (see Da Prato and269

13



Zabczyk 2014, chap. 6) can be defined as a temporal convolution of nonlinear/force and noise terms270

by an analytical semigroup generated by the linear operator of the SPDE. Additionally, a general271

representation for the statistical moments of a solution to the SPDE can be formulated based on272

Wiener chaos expansion (Mikulevicius and Rozovskii 1998, 2004). However, analytically solving273

the expansion coefficients corresponding to the solutions of a very high-dimensional system of274

deterministic PDEs remains difficult. Instead, in Section 3, the statistical moments for solutions275

of the SPDE (2.20), incorporating other random parameters are investigated through numerical276

simulations, using the Monte Carlo method.277

First, let us exemplify important integral properties of the conditional mean solution. Assuming278

the random correlation operator σ and the cylindrical Brownian motion 𝐵 are independent, and279

taking the expectation of Eq. (2.20a) with respect to the conditional probability distribution of σ,280

we deduce the following PDE for Eσ [u𝑒] := E[u𝑒 |σ]:281

𝜕𝑡E
σ [u𝑒] = −𝑖 𝑓

(
Eσ [u𝑒] +u𝑠

)
+ 𝜕𝑧

(
𝑎𝑧𝑧𝜕𝑧 (Eσ [u𝑒] +u𝑠)

)
. (2.21)

This resulting PDE remains random, with Eσ [u] a function of σ which is random. Integrating282

vertically, it comes an initial value problem with random parameters for the conditional mean283

Ekman transport, Eσ [T𝑒] (𝑡) =
∫ −𝐻

0 Eσ [u𝑒] (𝑧, 𝑡) d𝑧, which reads284

d
d𝑡
Eσ [T𝑒] = −𝑖 𝑓Eσ [T𝑒] +

1
𝜌𝑜

(
τ𝑤 +τ 0

𝑠

)
− 𝑖 𝑓T𝑠 . (2.22a)

Its solution is given by285

Eσ [T𝑒] (𝑡) = 𝑒−𝑖 𝑓 𝑡Eσ [T𝑒] (0) +
1
𝜌𝑜

∫ 𝑡

0
𝑒−𝑖 𝑓 (𝑡−𝑟)

(
τ𝑤 +τ 0

𝑠

)
(𝑟) d𝑟 −T𝑠

(
1− 𝑒−𝑖 𝑓 𝑡

)
. (2.22b)

We recall that the Itô-Stokes drift u𝑠 is assumed to be quasi-stationary (hence T𝑠 is also), whereas286

the wind stress τ𝑤 and the vertical diffusion coefficient 𝑎𝑧𝑧 are possibly time-dependent (and287

consequently τ 0
𝑠 = 𝑎𝑧𝑧𝜕𝑧u𝑠 |𝑧=0 as well). Taking the divergence of the previous equation, we obtain288
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the following solution for the conditional mean Ekman pumping at the lower boundary:289

Eσ [𝑤𝑒] (𝑡) = cos( 𝑓 𝑡)Eσ [𝑤𝑒] (0) +
(
cos( 𝑓 𝑡) +1

)
∇ ·T𝑠 +

1
𝜌𝑜

∫ 𝑡

0
sin

(
𝑓 (𝑡 − 𝑟)

)
∇×

(
τ𝑤 +τ 0

𝑠

)
(𝑟) d𝑟

+ cos( 𝑓 𝑡)∇×
(
Eσ [T𝑒] (0) +T𝑠

)
+ 1
𝜌𝑜

∫ 𝑡

0
sin

(
𝑓 (𝑡 − 𝑟)

)
∇ ·

(
τ𝑤 +τ 0

𝑠

)
(𝑟) d𝑟. (2.23)

The Ekman pumping resulting from the unsteady Ekman-Stokes boundary layer depends on both290

the divergence and curl components of the initial Ekman transport, the steady Itô-Stokes transport,291

and the time-dependent effective surface stress. Note again that the additional terms compared to292

the classical case are related to the surface Itô-Stokes stress τ 0
𝑠 .293

e. Consistent physical parameterization for uncertainty representation294

In most of our previous works (Bauer et al. 2020; Resseguier et al. 2021; Brecht et al. 2021; Li295

et al. 2023a; Tucciarone et al. 2024), the noise was parameterized through a spectral decomposition296

of the correlation operator σ. Stationary as well as time-evolving representations, performed297

with proper orthogonal decomposition, dynamic mode decomposition, wavelet basis, or auto-298

similarity assumptions, have been used for the definition of data-driven or model-based noises.299

The corresponding diffusion tensor a and the resulting Itô-Stokes drift v𝑠, defined in (2.2b),300

are then directly obtained from the noise basis function definition. In the present work, an301

opposite approach is somehow considered: given specific physical parameterizations for the vertical302

diffusion coefficient 𝑎𝑧𝑧 and the horizontal Stokes drift u𝑠, objectives are to derive the corresponding303

vertical and horizontal components of the unresolved random flow component σd𝐵𝑡 . Besides, the304

randomness of the correlation operator σ, which acts as an additional random source, is induced305

by a parameterized wind process and a steady distribution of the surface wave direction. For the306

sake of simplicity and without loss of generality, we present the formulation for one-dimensional307

boundary layer models in the following sections.308

1) Random wind and wind stress309

We adopt here the random wind parameterization proposed by McWilliams and Huckle (2006).310

The total wind u𝑎 is decomposed into its time average u𝑎 and fluctuations u′
𝑎. Each of the fluctuating311

15



wind components is modeled as an independent Ornstein-Uhlenbeck (OU) process,312

du′
𝑎 = − 1

𝑇𝑎
u′
𝑎 d𝑡 +

√︂
2
𝑇𝑎

Σ𝑎 dW𝑡 , (2.24)

where𝑇𝑎 denotes the memory time, Σ𝑎 stands for the standard deviation of u′
𝑎, both conditioning the313

transient behavior of the OU process, and W𝑡 =𝑊𝑥
𝑡 + 𝑖𝑊

𝑦
𝑡 with 𝑊𝑥

𝑡 and 𝑊
𝑦
𝑡 being two independent314

standard Brownian motions. These two Brownian motions are assumed mutually independent from315

the cylindrical Brownian motion involved in the definition of the unresolved current component316

σd𝐵𝑡 , as they are attached to processes originating from different physical medias (atmosphere317

and ocean). This independence also ensures that the conditional mean Ekman transport solution318

discussed in the previous section remains valid.319

The ocean surface wind stress τ𝑤 follows the classical bulk formula, quadratic with respect to320

the total wind u𝑎:321

τ𝑤 = 𝐶𝐷𝜌𝑎 |u𝑎 |u𝑎 = 𝜌𝑜𝑢
2
∗𝑒

𝑖𝜃∗ , (2.25)

where 𝐶𝐷 is the air-sea drag coefficient, 𝜌𝑎 is the air density, 𝑢∗ is the friction velocity, and 𝜃∗322

denotes the angular direction of the wind stress. It is important to note that the resulting parameters323

τ𝑤, 𝑢∗, and 𝜃∗ are random, leading to additional randomness in other parameters as discussed324

subsequently.325

2) Vertical diffusion coefficient326

For the vertical diffusion, the well-established K-Profile Parameterization (KPP) model (Large327

et al. 1994; McWilliams and Huckle 2006) is considered to represent the vertical eddy viscosity328

𝑎𝑧𝑧 within the turbulent surface boundary layer. This parameterization is nonlocal and adheres the329

predictions of Monin-Obukhov similarity theory along with other extensions (Fox-Kemper et al.330

2022). It is formulated as follows:331

𝑎𝑧𝑧 (𝑧) = 𝑐1𝑢∗ℎ𝐺 (𝜁), 𝜁 = −𝑧/ℎ, ℎ = 𝑐2
𝑢∗
𝑓
, (2.26a)

where 𝑐1 and 𝑐2 are constants that determine the amplitude and shear of 𝑎𝑧𝑧, ℎ is the boundary332

layer depth, and 𝐺 is a smooth function of the normalized depth 𝜁 . We adopt a specific version of333
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𝐺 proposed by McWilliams and Huckle (2006), which includes an additional regularization term334

very near the ocean surface:335

𝐺 (𝜁) = 𝜁 (1− 𝜁)2 +H(𝜁0 − 𝜁) (𝜁 − 𝜁0)2

2𝜁0
, (2.26b)

where H denotes the Heaviside step function. This KPP model is illustrated in Fig. 1 (a). Analyzed336

by McWilliams and Huckle (2006) in physical terms, the final regularization term represents337

an extra mixing phenomenon occurring within the oceanic boundary layer, possibly taking into338

account surface gravity wave breaking and mixing confined within a shallow layer with a thickness339

of 𝜁0ℎ (where 𝜁0 is assumed to be sufficiently small). Since 𝑢∗ is random, both the diffusion340

coefficient 𝑎𝑧𝑧 and the boundary layer depth ℎ are also random. Note that more complex schemes341

based on second-moment closure (Mellor and Yamada 1982; Harcourt 2013, 2015) could be further342

investigated following a similar construction.343

3) Stokes drift and wave stress344

Consider a steady, monochromatic, deep-water wave with surface elevation, to leading order in345

wave steepness, expressed as 𝜂 = 𝛼 cos(𝑘𝑥−𝜔𝑡), where 𝛼 is the wave amplitude, 𝑘 is the horizontal346

wavenumber, 𝜔 = (𝑔𝑘)1/2 is the angular frequency satisfying the deep-water dispersion relation.347

The corresponding horizontal components of the Stokes drift are approximately given by (Phillips348

1977, chap. 4)349

u𝑠 (𝑧) =𝑈0𝑒
2𝑘𝑧𝑒𝑖𝜃𝑠 , (2.27a)

where 𝑈0 = 𝜔𝑘𝛼2 represents the Stokes drift magnitude, and 𝜃𝑠 is the wave propagation direction.350

This Stokes drift velocity is nonlinear with respect to the wave amplitude and decays exponentially351

with depth from the ocean surface, Fig. 1 (b).352

In reality, surface gravity waves exhibit a broad-band spectrum, leading to a more complex353

vertical profile for the Stokes drift (Huang 1971; Jenkins 1989). The randomness inherent in the354

KPP model results in the derived wave stress amplitude τ𝑠 = 𝑎𝑧𝑧𝜕𝑧u𝑠 being equally random. To355

capture the uncertainty in the wave propagation direction, we parameterize it using a Gaussian356

distribution:357

𝜃𝑠 ∼ N(Θ𝑠,Σ
2
𝑠 ), (2.27b)
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where Θ𝑠 and Σ𝑠 denote its mean and standard deviation, respectively. Note that the wave stress τ𝑠358

is consequently random but non-Gaussian.359

4) Unresolved random flow360

Given a diffusion coefficient 𝑎𝑧𝑧 and a Stokes drift u𝑠, the vertical and horizontal components of361

the unresolved noise flow are specified by the following projection formulation:362

�̃�𝑧 d𝐵𝑡 =
√

2
∑︁
𝑛

〈
𝑎1/2
𝑧𝑧 , 𝑒𝑛

〉
𝑒𝑛 d𝛽𝑛, (2.28a)

363

σ̃x d𝐵𝑡 =
√

2
∑︁
𝑛

(〈
𝑎−1/2
𝑧𝑧 𝑈𝑠, 𝑒𝑛

〉
+ 𝑖

〈
𝑎−1/2
𝑧𝑧 𝑉𝑠, 𝑒𝑛

〉)
𝑒𝑛 d𝛽𝑛, (2.28b)

364

U𝑠 =

∫ 𝑧

−𝐻
u𝑠 (𝜁) d𝜁 =𝑈𝑠 + 𝑖𝑉𝑠, (2.28c)

where {𝑒𝑛} is a set of orthogonal basis functions of the real-valued Hilbert space 𝐿2( [−𝐻,0],R)365

equipped with the inner product ⟨ 𝑓 , 𝑔⟩ =
∫ 0
−𝐻 𝑓 (𝑧)𝑔(𝑧) d𝑧, {𝛽𝑛} is a set of independent standard366

Brownian motions, and U𝑠 denotes antiderivative of Stokes drift. This latter reduces to u𝑠/(2𝑘)367

for the Stokes drift velocity corresponding to the monochromatic deep-water wave as defined in368

(2.27a). Better approximations of U𝑠 could be further explored for more accurate expression of u𝑠.369

Note that Eq. (2.28b) is only defined within the support of the function 𝑎𝑧𝑧, and we simply impose370

zero horizontal noise σx d𝐵𝑡 outside the support.371

The diffusion processes corresponding to the previous noise formulation are then given by372

�̃�𝑧𝑧 =
∑︁
𝑛

〈
𝑎1/2
𝑧𝑧 , 𝑒𝑛

〉2
𝑒2
𝑛, ãx𝑧 =

∑︁
𝑛

〈
𝑎1/2
𝑧𝑧 , 𝑒𝑛

〉 (〈
𝑎−1/2
𝑧𝑧 𝑈𝑠, 𝑒𝑛

〉
+ 𝑖

〈
𝑎−1/2
𝑧𝑧 𝑉𝑠, 𝑒𝑛

〉)
𝑒2
𝑛. (2.29)

Parseval’s theorem shows that the reconstructed diffusion coefficients are globally identified with373

the vertical viscosity and the antiderivative of Stokes drift:374 ∫ 0

−𝐻
�̃�𝑧𝑧 (𝑧) d𝑧 =

∫ 0

−𝐻
𝑎𝑧𝑧 (𝑧) d𝑧,

∫ 0

−𝐻
ãx𝑧 (𝑧) d𝑧 =

∫ 0

−𝐻
U𝑠 (𝑧) d𝑧. (2.30a)

With the assumption that the basis functions {𝑒𝑛} are localized, meaning that each of them is375

significant only in a small localized region of the domain with negligible overlapping support,376
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Parseval’s theorem is valid almost pointwise, and we obtain the approximation:377

�̃�𝑧𝑧 (𝑧) ≈ 𝑎𝑧𝑧 (𝑧), ãx𝑧 (𝑧) ≈ U𝑠 (𝑧). (2.30b)

Consequently, the resulting Itô-Stokes drift ũ𝑠 = 𝜕𝑧ãx𝑧 approximates the given Stokes drift u𝑠.378

Although the noise is specified through simple models of diffusion (KPP) and Itô-Stokes statistical379

drift (Stokes drift of monochromatic waves), its normal distribution is not trivial to specify. It380

depends nonlinearly on random parameters. Its response to small variations of the parameters is381

not straightforward to infer. Furthermore, the resulting noise acts as both an additive noise and an382

advection process (transport noise), which is non-Gaussian.383
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Fig. 1. Illustration depicting the K-Profile Parameterization (KPP) viscosity coefficient alongside a zonal

Stokes drift profile.

384

385

3. Statistical analyses386

In this section, statistical properties of the proposed time-dependent stochastic Ekman-Stokes387

model (2.20) are investigated. Large-ensemble simulations are performed using a Monte Carlo388

method. The numerical schemes employed for simulating the SPDE, as well as for the Markovian389

wind stress process, are detailed in Appendix A.390
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The proposed model is first compared to a traditional benchmark model that does not account391

for stochastic transports and wave-mixing effects. Subsequently, we conduct comparative studies392

involving various wind and wave parameters.393

a. Comparison with a benchmark model394

The ensemble statistics derived from the proposed parameterized SPDE (2.20), referred to as395

p-SPDE, are first compared with those of a benchmark model (McWilliams et al. 1997) solely396

considering the Coriolis-Stokes force, driven by the parameterized PDE, designated as p-PDE:397

𝜕𝑡u𝑒 + 𝑖 𝑓 (u𝑒 +u𝑠) = 𝜕𝑧 (𝑎𝑧𝑧𝜕𝑧u𝑒). (3.1)

This comparison is conducted under identical initial and boundary conditions. The common398

parameters between both simulations are listed in Table 1. Specifically, we assume the mean399

direction for both wind and wave to be zonal. It is noteworthy that the selected surface wave400

amplitude 𝛼 = 0.8 m and wavelength 𝜆 = 60 m (or wavenumber 𝑘 = 2𝜋/𝜆 ≈ 1.05 m−1) proposed401

by McWilliams et al. (1997) imply a Stokes drift magnitude 𝑈0 ≈ 0.068 m s−1 and a Stokes layer402

depth ℎ𝑠 = 1/(2𝑘) ≈ 4.775 m. Additionally, it is pertinent to mention that the transient wind level403

in this scenario is set to be equal to the mean wind level (Σ𝑎 = 𝑢𝑎 = 5 m s−1) to emphasize the404

rectification of the Ekman layer (McWilliams and Huckle 2006).405

Under these parameters, the probability density functions (PDFs) for the surface forcings (wind,406

wind stress, and derived wave stress in the p-SPDE), after reaching the statistically stationary407

states, are shown Fig. 2. These bivariate PDFs are estimated from the ensemble vector fields by a408

non-parametric Kernel Density Estimation (KDE) method using Gaussian kernels. As anticipated,409

Fig.2 (a) illustrates the Gaussian nature of the wind vector u𝑎 with uncorrelated components,410

implying independence in the Gaussian case. However, the non-linearity of the bulk formula411

(2.25) results in a non-Gaussian distribution for the wind stress τ𝑤. Fig.2 (b) reveals that the412

distribution is skewed towards the left of the mean value. Additionally, Fig. 2 (c) highlights a413

significant bias in the distribution of the surface wave stress vector τ 0
𝑠 = 𝜌𝑜𝑎𝑧𝑧𝜕𝑧u𝑠 |𝑧=0 derived in414

the p-SPDE (2.20).415

With these parameterized distributions, we proceed to the analysis of the response of the two419

random models. Fig. 3 compares the ensemble mean and spread of the Ekman velocity components,420
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Table 1. Common parameters used for simulations.

Parameters Value Description

𝑓 0.73× 10−4 s−1 Coriolis frequency

𝜌𝑜 1000 kg m−3 Water density

𝜌𝑎 1 kg m−3 Air density

𝐶𝐷 1.3× 10−3 Air-sea drag coefficient

u𝑎 5 m s−1 Mean wind speed

Σ𝑎 5 m s−1 Standard deviation of transient wind

𝑇𝑎 1 day Memory time of fluctuation wind

𝑐1 0.4 von Kármán constant

𝑐2 0.7 Constant in boundary layer depth

𝜁0 0.05 Normalized depth of shallow layer

𝜅𝑏 10−4 m2 s−1 Background uniform viscosity

𝛼 0.8 m Surface wave amplitude

𝑘 1.05 m−1 Wavenumber of Stokes drift

Θ𝑠 0◦ Stokes drift mean direction angle

Σ𝑠 5◦ Standard deviation of wave angles

𝐻 256 m Vertical domain depth

𝑁𝑧 512 Number of Chebyshev points

𝑁𝑟 1000 Number of random realizations

Δ𝑡 30 min Timestep
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Fig. 2. Contour plots of probability density function for (a) the wind u𝑎, (b) the wind stress τ𝑤 and (c) the

derived surface wave stress τ 0
𝑠 after 30 days. In each panel, darker-colored contours represent higher density and

+ marks indicate the ensemble mean.

416

417

418

along with the ensemble mean kinetic energy (MKE, defined as the energy of the mean solution) and421

eddy kinetic energy (EKE, defined as the sum of variance components) densities. Additionally, we422

examine the Pearson correlation coefficient (PCC) for the Ekman velocity components. Compared423
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to the p-PDE, the p-SPDE considering the additional wave mixing and stochastic transport effects424

produces a smoother profile of mean Ekman velocities with a higher spread over depth, indicating425

greater uncertainty (Fig. 3 (a,b)). This smoother mean profile is due to the diffusion brought by426

the Itô-Stokes drift.427

Additionally, the p-SPDE yields higher MKE and EKE with larger differences between them428

(Fig. 3 (c)), and stronger correlation between the zonal and meridional components (Fig. 3 (d))429

throughout the depth. These differences are particularly pronounced near the ocean surface. Note430

that both models exhibit higher EKE than MKE throughout the depth, a negative correlation in the431

upper 50 m and a positive correlation in the subsequent 100 m.432
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Fig. 3. Comparison of the ensemble mean (solid lines in (a) and (b)) and spread (shaded areas in (a) and

(b)) for the Ekman velocity components, the ensemble mean kinetic energy density (solid lines in (c)) and eddy

kinetic energy density (dashed lines in (c)), as well as the Pearson correlation coefficient for the Ekman velocity

components (d), using different random models (represented by different colors). Note that these ensemble

statistics are averaged over the last 20 days of a 30-day simulation.

433

434

435

436

437

Higher-order ensemble statistics of the random models can also be examined. The local skewness438

and kurtosis of the Ekman velocity components over time and depth are illustrated in Fig. 4. The439

skewness measures the asymmetry of distribution around its mean, and the (excess) kurtosis440

measures the “tailedness” of the distributions, i.e., the extremity of large values. It is common441

practice to include a −3 correction for the kurtosis estimator to provide a simple comparison442

to the (univariate) normal distribution, which has a zero value in that case. Distributions with443

positive (resp. negative) kurtosis produce more (resp. fewer) extreme events than the normal444

distribution. Skewness and kurtosis in the upper 100m-depth are shown in Fig. 4, noting that these445
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normalized statistics are not well-defined for the deeper regions with poor variance. Compared to446

the p-PDE, the p-SPDE frequently exhibits more positive skew for the zonal component (Fig. 4447

(a,e)), more negative skew and for the meridional component (Fig. 4 (b,f)), and more extremes for448

both components (Fig. 4 (c,d,g,h)), all predominantly occurring in the upper 50 m.449
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Fig. 4. Comparison of the ensemble skewness and kurtosis for the Ekman velocity components over time and

depth using different random models (grouped by rows). A one-day low-pass filtering is applied to these time

series of statistics at each point.

450

451

452

Statistical analyses are also conducted on the vertically integrated Ekman transport, Fig. 5.453

Compared to the p-PDE, the zonal transport component of the p-SPDE exhibits the same zero454

mean but higher uncertainties over time (Fig. 5 (a)), and almost the same zero skew but with455

slightly more extremes (Fig. 5 (c)). The meridional transport component of the p-SPDE shows456

a larger mean in magnitude with higher variance (Fig. 5 (b)), as well as more negative skew and457

more frequent extremes (Fig. 5 (d)).458

The bi-variate PDFs for both instantaneous and time-averaged surface current velocity and463

Ekman transport are estimated and illustrated Fig. 6. Unsurprisingly, the p-SPDE exhibits higher464

variances than the p-PDE in both cases. Notably, the p-SPDE demonstrates a much stronger465

negative correlation for the surface current velocity compared to the p-PDE, which is consistent466

with the PCC shown in Fig.3 (d). For the proposed random model, the PDF of the surface current467

appears to be rotated approximately by 45 degrees to the left from the PDFs of the wind and wave468
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462

stresses (Fig. 2 (b,d)), while the PDF of Ekman transport seems to be rotated approximately by 90469

degrees to the left from those surface stresses.470
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Fig. 6. Comparison of PDFs for (a) instantaneous surface Ekman velocity (u0
𝑒) after 30 days and (b) its time-

average (u0
𝑒) over the last 20 days, as well as for (c) instantaneous Ekman transport (T𝑒) and (d) its time-average

(T𝑒), using different random models (p-PDE in blue and p-SPDE in red). In each panel, the colored signs“+”

indicate the mean.
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474

To further highlight the differences between the two schemes, the wind is stopped after 30 days of475

simulation, by setting τ𝑤 = 0, while maintaining the last day’s coefficient 𝑎𝑧𝑧 as a steady diffusion476

together with a stationary Stokes drift u𝑠. The two random models are then run without surface477

momentum flux for several more days. Results, Fig. 7, demonstrate significant differences in their478

statistics. For instance, the mean Ekman spiral size of the p-PDE (Fig. 7a) quickly shrinks (the479

Ekman current profile becomes nearly centered at the origin) whereas the p-SPDE (Fig. 7b) almost480

preserves its mean spiral structure. Only its current speed decreases over time. Figures 7 (c,481
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d) show that both the mean and spread of the surface current speed |u0
𝑒 |, as well as the Ekman482

transport magnitude |T𝑒 | for the two random models, rapidly decrease, reaching both steady states483

within one week. However, the residual mean values and uncertainties are significantly higher in484

the p-SPDE than in the p-PDE. This can be understood from equations (2.16), (2.17) and (2.22b)485

with τ𝑤 = 0. These results indicate that the p-SPDE transitions from a wind- and wave-driven486

model to a wave-driven model after the wind stops.487
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Fig. 7. Evolution comparison after wind stopped for (a, b) mean Ekman spiral, (c) mean and spread of surface

current speed, and (d) mean and spread of Ekman transport magnitude, using different random models. The

wind is stopped after 30 days of simulation. The mean Ekman spirals at different days in (a, b) are represented by
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adjacent points.
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b. Comparison across transient wind levels493

Sensitivity analyses to the wind gustiness are performed for the p-SPDE. For this purpose, various494

ensembles are simulated according to a range of Σ𝑎 values while keeping the other parameters in495

Table 1 invariant. Illustrated in Fig. 8 (a,b), a higher variable wind reduces the vertical shear of the496

mean Ekman current, induces deeper circulation, and results in higher uncertainty. Figure 8 (c)497

demonstrates that increased wind variability leads to larger MKE and EKE throughout the depth,498

and in particular near the surface. Figure 8 (d) shows weaker negative correlation at the surface499

but with stronger variations. As described in Section 2e, increased gustiness results in a higher500

diffusion coefficient 𝑎𝑧𝑧 (and hence a higher magnitude of the correlation 𝜎𝑧 for the unresolved501
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motions). It also leads to a larger derived surface wave stress τ 0
𝑠 , which amplifies both the wave502

mixing and stochastic transport effects in the p-SPDE.503
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and the correlation coefficient for the Ekman velocity components (d), with respect to different transient wind

levels (represented by different colors).
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The ensemble skewness and kurtosis of the zonal Ekman velocity component with respect to508

different Σ𝑎 values are illustrated Fig. 9. More skewed distributions with higher kurtosis are509

obtained, reflecting an increase in extreme events over time and near the surface. Not shown,510

similar results were observed for the meridional component.511
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Fig. 9. Comparison of the ensemble kurtosis for the zonal Ekman velocity component over time and depth

with respect to different transient wind levels (grouped by columns).

512

513

To further quantify the sensitivity to a wider range of Σ𝑎 values, we focus on the time-averaged514

ensemble statistics of diagnostic variables. Figure 10 (a) shows that both global MKE and EKE515
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increase with higher transient wind, with EKE rising more rapidly than MKE, especially when the516

transient wind exceeds half of the mean wind component. Figure 10 (b) demonstrates that both the517

mean and variance of the estimated boundary layer depth increase with transient wind. Figure 10518

(c) illustrates that the Ekman transport magnitude |T𝑒 | significantly grows with wind. Figure 10519

(d) indicates that the mean angle of T𝑒 is around 100 degrees (relative to the left of the mean wind520

direction) with a slight increasing trend, while the uncertainty of this angular distribution increases521

rapidly with wind.522
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Fig. 10. Comparison of the ensemble statistics for diagnostic variables across various transient wind levels.

The MKE and EKE are represented by different colors in (a). The mean and uncertainty are depicted using

error bars in (b)-(d). These ensemble statistics are averaged over the last 20 days. It is noteworthy that circular

statistics (Fisher 1993) are particularly computed in (d).
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c. Comparison across wave parameters527

Next, the sensitivity analyses is performed for the p-SPDE to the wavelength 𝜆 (or wavenumber528

𝑘) and the mean angle Θ𝑠 of the Stokes drift, respectively. The same metrics are used in the529

following analysis.530

1) Wavelength531

Fig. 11 evidences that a smaller surface gravity wave results in smoother vertical profiles of the532

mean Ekman current with higher uncertainty (a,b), higher densities of MKE and EKE (c), and533

stronger correlation (d). These trends are particularly notable near the surface. Furthermore, as534

shown in Fig. 12 (a,c), both global MKE and EKE, as well as the mean and uncertainty of the535

transport magnitude, decrease with increasing wavelength. Fig. 12 (b) depicts a slight decreasing536

tendency for the mean and variance of the estimated Ekman layer depth with increasing wavelength.537
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Additionally, Fig. 12 (d) illustrates an even smaller decreasing trend for the Ekman transport angles.538

It is worth noting that a smaller wavelength leads to greater magnitude and vertical shear of the539

Stokes drift, Eq. (2.27a), thereby amplifying the wave mixing effects in the p-SPDE (2.20).540
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2) Mean angle544

Fig.13 evidences that waves with a higher rotation from the left of the zonal wind increase both545

the mean and variance of the zonal Ekman velocity (a) while decreasing those of the meridional546

component (b) in the upper 100 meters. Additionally, they induce weaker correlation in the upper547

25 meters and stronger correlation in the subsequent 50 meters (c). In this scenario, the zonal548

component exhibits lower positive skew, whereas the meridional component shows higher negative549
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skew near the surface, Fig.14. This indicates a redistribution of the ensemble statistics between the550

two components.551
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Fig. 14. Comparison of the ensemble skewness for the Ekman velocity components over time and depth with

respect to different mean angles.

554

555

Global metrics, Fig.15 (a,c), further demonstrate that both MKE and EKE, as well as the mean556

and uncertainty of the transport magnitude, reach a maximum when the mean wave direction is557

aligned with the mean wind direction, decreasing symmetrically with higher rotations to either558

side. It is noteworthy that in the aligned case, the derived wave stress simply enhances the wind559

stress. Unsurprisingly, the response of the Ekman transport angle follows the variation of the mean560
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wave directions, as shown in Fig.15 (d). The difference between these output and input angles561

remains almost invariant.562
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4. Conclusions563

In this study, a novel stochastic formulation is developed to describe the upper ocean Ekman564

boundary layer. This formulation couples the contributions of random fluctuations with the bound-565

ary layer dynamics through an uncertainty representation of unresolved motions, fully consistent566

with established physical parameterizations.567

Through numerical investigations, the statistical responses of the proposed time-dependent568

stochastic Ekman-Stokes model are analyzed. Comparisons are performed with a benchmark569

model solely driven by the Coriolis-Stokes force. Incorporating wave mixing and stochastic trans-570

port compound effects, the stochastic model exhibits smoother mean Ekman velocity profiles with571

increased uncertainty, along with higher mean kinetic energy (MKE) and eddy kinetic energy572

(EKE). Additionally, numerical results display stronger correlations between zonal and meridional573

components, with higher-order statistics indicating more skewed distributions and extreme value574

occurrences, particularly near the surface.575

Sensitivity analyses revealed that increased wind variability reduces vertical shear, deepens576

circulation, and increases uncertainty and higher-order moments. Similarly, smaller surface waves577

would lead to higher MKE, EKE, and stronger correlations. Ensemble energy and Ekman transport578

magnitude peak when mean waves and wind were aligned, decrease with wind-wave misalignment,579

redistributing current velocity statistics. In terms of sensitivity, the primary source of uncertainty580

is associated with the wind, followed by the waves, with their direction being the final source of581
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uncertainty. These findings underscore the enhanced capability of the proposed model to possibly582

capture and interpret the complex interactions and dynamics of Ekman currents.583

Looking ahead, future research avenues include extending the stochastic Ekman-Stokes model to584

incorporate stratification effects (Price and Sundermeyer 1999; McWilliams et al. 2009; Gula et al.585

2014; McWilliams et al. 2015) and exploring the distinct impacts of wave mixing and stochastic586

transport on thermal front evolution (Crowe and Taylor 2018, 2019). It is important to point out that587

the retro-action of the waves, possibly modulated by upper ocean random currents, on the wind588

stress, particularly on the atmospheric wave-induced turbulent components (Ayet and Chapron589

2022), has not been taken into account in this study. Along the proposed stochastic framework,590

developing more accurate noise term to better represent fully coupled ocean/atmosphere Ekman591

models (Lewis and Belcher 2004) would be particularly interesting.592

Additionally, further investigation of the nonlinear stochastic Craik-Leibovich equations through593

numerical studies, particularly employing large-eddy simulations (LES) to include ocean Langmuir594

circulation (McWilliams et al. 1997; Harcourt and D’Asaro 2008; McWilliams et al. 2012; Sullivan595

and McWilliams 2019), offers promising directions for advancing our understanding of turbulent596

ocean processes and enhancing predictive capabilities.597
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APPENDIX A601

Numerical schemes602

A pseudo-spectral Chebyshev method (Boyd 2001) is employed for the vertical discretization603

of the boundary layer models. The so-called Chebyshev points, denoted as �̂� 𝑗 = cos( 𝑗𝜋/𝑁𝑧), 𝑗 =604

0, . . . , 𝑁𝑧, are depicted in Fig. A1. Geometrically, these points represent the projections on [−1,1]605

of equispaced points on the upper half of the unit circle. Hence, the projection nodes are denser606

near the two boundaries than in the mid-regions, which proves advantageous for boundary layer607

problems and for representing the Stokes drift near the ocean surface. The grid points of the608

vertical domain depth 𝐻 are constructed using a linear transformation, 𝑧 𝑗 = −𝐻 ( �̂� 𝑗 +1)/2. Then,609

the Chebyshev spectral derivative and integration operators are built on these points to solve a610

(S)PDE for non-periodic functions with high accuracy.611
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Fig. A1. Geometrical visualization of Chebyshev points (red points) as the projections on [−1,1] of equally

spaced points on the upper half of unit circle.

612

613

A linear-implicit Euler scheme (Jentzen and Kloeden 2011, chap. 8) is used for the time stepping614

of the SPDE (2.20), namely615

u𝑛+1
𝑗 = (𝐼 𝑗 ,𝑘 − 𝐴 𝑗 ,𝑘Δ𝑡)−1 (u𝑛

𝑘 +𝐹
𝑛
𝑘 (u𝑠)Δ𝑡 +𝐺𝑛

𝑘 (u
𝑛,u𝑠)Δ𝐵

)
, (A1)
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Here, u𝑛
𝑗

denotes the discrete value of the Ekman current velocity u𝑒 on the node 𝑧 𝑗 at time 𝑡𝑛,616

𝐴 = −𝑖 𝑓 𝐼 +𝐷𝑎𝑧𝑧𝐷 represents the discrete linear operator of the SPDE, where 𝐼 denotes the identity617

matrix and 𝐷 represents the Chebyshev differentiation matrix (Trefethen 2000, chap. 6). The618

terms 𝐹 and 𝐺 correspond to the right-hand side forcing term of Eq. (2.20a).619

Additionally, we consider an exact scheme for the wind using the Markovian property of the620

Ornstein-Uhlenbeck process (2.24), expressed as:621

u𝑛+1
𝑎 = u𝑎 + (u𝑛

𝑎 −u𝑎)𝑒−Δ𝑡/𝑇𝑎 +Σ𝑎

√︁
1− 𝑒−2Δ𝑡/𝑇𝑎ξ𝑛, (A2)

Here, 𝜉𝑛 = 𝜉𝑛𝑥 + 𝑖𝜉𝑛𝑦 where 𝜉𝑛𝑥 and 𝜉𝑛𝑦 are independent random variables following a standard normal622

distribution.623
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