
Jonathan Brossard
 CEO – Toucan System

jonathan@
toucan-system.com

Post Memory Corruption
Memory Analysis

Who am I ?

- Security Research Engineer at Toucan System
- Speaker at Blackhat, Defcon, HITB, H2HC, Kiwicon,

Ruxcon.
- Organiser of the Hackito Ergo Sum conference

(Paris).
- I'm the guy who comes to CCC with 90+ slides...

I don't reverse plain text

Agenda

•Stack desynchronization

Extending Pmcma

PMCMA Design

Being environment aware

A few basics

Tool available at http://www.pmcma.org

We got 10k downloads+ in 2
less than months...

… and every email we get is questioning
exploitation of remote stack overflows
instead of invalid memory writes... ;(

What's pmcma ?

It's a debugger, for Linux (maybe one day *NIX) ptrace() based.

Pmcma allows to find and test exploitation scenarios.

Pmcma's output is a roadmap to exploitation, not exploit code.

Tells you if a given bug triggering an invalid memory access is a
vulnerability, if it is exploitable with the state of the art, and how to
exploit it.

What's pmcma ?

DEMO

Coz you asked for it...

Remote stack overflow
automated exploitation

NX/SSP (stack cookies)/ASLR/PIE/STATIC
GOT/Ascii Armoring...

=> No problem, easy cheesy : can be done
with static analysis (of the libc/binary)

only.

Remote stack overflow
automated exploitation

SSP :
cookies can be bruteforced remotely
(cf Ben Hawks @ Ruxcon 2006).

Remote stack overflow
automated exploitation

FORTIFY :
- Doesn't apply all the time.
- Fails silently (this is bad !!)
- Is consistent under Linux (but not
Apple...)

Remote stack overflow
automated exploitation

PIE :
- The bug new thing (every deamon
compiled with PIE under ubuntu 10.10)
- No public exploits (untill today ;)
- We can bruteforce the saved EIP, then
get back to ret2plt or ROP.

DEMO

Now, let's move to the real
thing...

A FEW BASICS

Seriously, can we skip this
section ?

How do applications crash ?

* Stack corruptions -> stack overflows,
usually now detected because of SSP |
studied a LOT

* Signal 6 -> assert(),abort(): unexpected
execution paths (assert() in particular),
heap corruptions

* Segfault (Signal 11) -> Invalid memory
access

How do applications crash ?

* Stack corruptions -> stack overflows,
usually now detected because of SSP |
studied a LOT

* Signal 6 -> assert(),abort(): unexpected
execution paths (assert() in particular),
heap corruptions

* Segfault (Signal 11) -> Invalid memory
access

Invalid memory access

- trying to read a page not readable. often
not mapped at all.

- trying to write to a page not writable.
often not mapped at all.

- trying to execute a page not executable.
often not mapped at all.

Why do they happen ?

Because of any kind of miscomputation, really :

- integer overflows in loop counters or destination registers when
copying/initializing data, casting errors when extending registers or

- uninitialised memory, dangling pointers
- variable misuse
- heap overflows (when inadvertently overwriting a function ptr)
- missing format strings
- overflows in heap, .data, .bss, or any other writable section (including

shared libraries).
- stack overflows when no stack cookies are present...

Exploiting invalid exec

Trivial, really. Eg :

call eax

with eax fully user controled

Invalid memory reads (1/2)

Eg :

CVE-2011-0761 (Perl)

cmp BYTE PTR [ebx+0x8],0x9

Invalid memory reads (2/2)

Eg :

CVE-2011-0764 (t1lib)

fld QWORD PTR [eax+0x8]

Exploiting invalid memory
reads ?

- usually plain not exploitable
- won't allow us to modify the memory of the

mapping directly
- in theory : we could perform a user

controled read, to trigger a second
(better) bug.

Invalid memory writes

Eg :

CVE-2011-1824 (Opera)

mov DWORD PTR [ebx+edx*1],eax

How to...

To exploit invalid writes, we need to find
ways to transform an arbitray write into an

arbitrary exec.

The most obvious targets are function
pointers.

Exploiting invalid memory
writes : scenario

- Target a known function pointer
(typically : .dtors, GOT entry...).

Can be prevented at compile time : no
.dtors, static GOT...

- Target function pointers in the whole
binary ?

- Overwrite a given location to trigger an
other bug (eg : stack overflow)

Being environment aware

Problems to take into account

- Kernel : ASLR ? NX ?
- Compilation/linking : RELRO

(partial/full) ? no .dtors section ? SSP ?
FORTIFY_SOURCE ?

=> Pmcma needs to mesure/detect those
features

ASLR

Major problem when chosing an
exploitation strategy.

ASLR : not perfect

- Prelinking (default on Fedora) breaks ASLR
- All kernels don't have the same randomization

strength.
- Non PIE binaries

=> Truth is : we need better tools to test it !

Testing ASLR

-Run a binary X times (say X=100)
-Stop execution after loading

-Record mappings.

=> Compare mappings, deduce
randomization

DEMO : being environment aware

PMCMA DESIGN

GOALS

- We want to test overwriting different
memory locations inside a process and
see if they have an influence over the flow
of execution

- We want to scale to big applications (web
browsers, network deamons...)

- We want a decent execution time

mk_fork()

The idea :

-We start analysing after a SEGFAULT
-We make the process fork() (many many

times)
-Inside each offspring, we overwrite a

different memory location

mk_fork() : benefits

Mapping looks « just like » it will when
actually exploiting a binary

No ASLR/mapping replication problem

Exhaustive and hopefully fast

How to force a process to
fork ?

1) Find a +X location mapped in memory.
2) Save registers
3) Use ptrace() to inject fork() shellcode.
4) Modify registers so eip points to shellcode.
5) Execute shellcode.
6) Wait() for both original process and offspring.
7) Restore bytes in both processes.
8) Restore registers in both processes.

Forking shellcode

;forking shellcode:
00000000 6631C0 xor eax,eax
00000003 B002 mov al,0x2
00000005 CD80 int 0x80

Original process

Executable

Writable

Executable

 …

Offspring 2

Executable

Writable

Executable

 …
Offspring 1

Executable

Writable

Executable

 …

mk_fork()

 Offspring 1

Executable

Writable

Executable

 …

mk_fork()

 Offspring 2

Executable

Writable

Executable

 …

mk_fork()

 Offspring n

Executable

Writable

Executable

 …

mk_fork()

mk_fork() : PROS

- allows for multiple tests out of a single
process

- fast, efficient (no recording of memory
snapshots)

- no need to use breakpoints
- no single stepping

mk_fork() : CONS

- Dealing with offsprings termination ?
(Zombie processes)

- I/O, IPC, network sockets will be in
unpredictable state

- Hence syscalls will get wrong too (!!)

Zombie reaping

- Avoid the wait() for a SIGCHILD in the
parent process.

- Kill processes after a given timeout,
including all of their children.

Zombie reaping : the
SIGCHILD problem

If we can have the parent process ignore
SIGCHILD signals, we won't create

Zombies.

=> We inject a small shellcode to perform
this via sigaction()

Zombie reaping : the
SIGCHILD problem

1) Find a +X location mapped in memory.
2) Save registers
3) Use ptrace() to inject sigaction() shellcode.
4) Modify registers so eip points to shellcode.
5) Execute shellcode.
6) Wait() for the process while executing

shellcode.
7) Restore bytes in +X location.
8) Restore registers in the process.

Force process grouping :
shellcode

; Sigaction shellcode: // Zombie reaper
; struct sigaction sa = {.sa_handler = SIG_IGN};
; sigaction(SIGCHLD, &sa, NULL);

_start:
 nop
 nop
 nop
 nop
 call fake
fake:
 pop ecx
 add ecx,0x18 ; delta to sigaction structure

 xor eax,eax
 mov al,0x43 ; sigaction
 mov ebx,0x11 ; SIGCHLD
 xor edx,edx ; 0x00
 int 0x80

 db 0xcc, 0xcc,0xcc,0xcc

; struct sigaction sa = {.sa_handler = SIG_IGN};
 db 01, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
 db 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
 db 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
 db 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
 db 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
 db 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
 db 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
 db 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
 db 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
 db 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00

Zombie reaping : killing the
offsprings and their children

Fortunatly, this is possible using « process
grouping »...

Process grouping

 setpgid() sets the PGID of the process specified by pid to pgid. If
 pid is zero, then the process ID of the calling process is used. If
 pgid is zero, then the PGID of the process specified by pid is made the
 same as its process ID. If setpgid() is used to move a process from
 one process group to another (as is done by some shells when creating
 pipelines), both process groups must be part of the same session (see
 setsid(2) and credentials(7)). In this case, the pgid specifies an
 existing process group to be joined and the session ID of that group
 must match the session ID of the joining process.

Zombie reaping : forcing
process grouping

1) Find a +X location mapped in memory.
2) Save registers
3) Use ptrace() to inject setpgid() shellcode.
4) Modify registers so eip points to shellcode.
5) Execute shellcode.
6) Wait() for the process while executing

shellcode.
7) Restore bytes in +X location.
8) Restore registers in the process.

Force process grouping...
;
; setpgid(0,0); shellcode
;

_start:
nop
nop
nop
nop
mov eax,0x39 ; setpgid
xor ebx,ebx
xor ecx,ecx
int 0x80

db 0xcc, 0xcc

Zombie reaping :
final details

From now on, to kill a process and all of its
children :

kill (-pid, SIGTERM) ;

IPC, I/O, invalid syscalls

One possibility is to recode correct
execution on the original process (after
clearing signals and ignoring the
SEGFAULT).

Then replay/fake the syscalls on the
offsprings.

=> Minimal userland « virtualization ».

PMCMA : FEATURES

Exploiting invalid memory
writes via function pointers

We now want to find all the function pointers
called by the application from the instruction

which triggered the SEGFAULT until it
actually halts.

(including pointers in shared libraries!!)

Finding all the function
pointers actually called

1) Parse all the +W memory, look for possible
pointers to any section

1 bis) optionally disassemble the destination and see
if it is a proper prologue.

2) use mk_fork() to create many children
3) in each children, overwrite a different possible

function pointer with a canari value (0xf1f2f3f4).
4) Monitor execution of the offsprings

Finding all the function
pointers actually called

Overwritten pointer leads to execution of
canari address 0xf1f2f3f4

<=> We found a called function pointer.

Finding all the function
pointers actually called

DEMO

So what can we test now ?

Invalid write anything anywhere :

attacker has full control over data written
and destination where written

=> GAME OVER

So what can we test now ?

Overflows (in any writtable section but the
stack) :

Simply limit the results of pmcma to this
section.

So what can we test now ?

What if the attacker has little or no control
over the data being written (arbitrary
write non controled data, anywhere) ?

Partial overwrites and
pointers truncation

If we can't properly overwrite a function
pointer, maybe we can still truncate one
(with the data we don't control) so that it

transfers execution to a controled
memory zone ?

Exemple :

--[Function pointers exploitable by truncation with 0x41424344:
At 0xb70ce070 : 0xb70c63c2 will become 0xb70c4142 (lower truncated by 16 bits, dest perms:RW)
At 0xb70e40a4 : 0xb70ca8f2 will become 0xb70c4142 (lower truncated by 16 bits, dest perms:RW)
At 0xb70ec080 : 0xb70e5e02 will become 0xb70e4142 (lower truncated by 16 bits, dest perms:RW)
At 0xb731a030 : 0xb7315da2 will become 0xb7314142 (lower truncated by 16 bits, dest perms:RW)
At 0xb73230a4 : 0xb732003a will become 0xb7324142 (lower truncated by 16 bits, dest perms:RW)
At 0xb732803c : 0xb7325a36 will become 0xb7324142 (lower truncated by 16 bits, dest perms:RW)
At 0xb76a80d8 : 0xb7325bf0 will become 0xb7324142 (lower truncated by 16 bits, dest perms:RW)

One more situation...

Sometimes, an attacker has limited control
over the destination of the write (wether

he controls the data being written or not).

Eg : 4b aligned memory writes.

Exploiting 4b aligned
memory writes

We can't attack a function pointer directly,
unless it is unaligned (rare because of

compiler internals).

 Pmcma will still let you know if this
happens ;)

Exploiting 4b aligned
memory writes : plan B

Find all « normal » variables we can
overwrite/truncate, and attempt to trigger
a second bug because of this overwrite.

Finding all unaligned
memory accesses

Setting the unaligned flag in the EFLAGS
register will trigger a signal 7 uppon next

access of unaligned memory
(read/write).

Finding all unaligned
memory accesses

DEMO

Finding all unaligned
memory accesses

DEMO x86_64

Defeating ASLR : Automated
memory mapping leakage

How does WTFuzz did it at CansecWest
2010 to win the pwn2own contest against

IE8/Windows 7 ?

Overwrite the null terminator of a JS
string to perform a mem leak uppon

usage (trailing bytes).

Defeating ASLR with an
arbitrary write ?

In the original process :
- use ptrace() PTRACE_SYSCALL
- record the calls to sys_write() and

sys_socketall() (wrapper to sys_send() or
sys_sendto()...), including : where is the
data sent ? How many bytes ?

Defeating ASLR with an
arbitrary write ?

Create many offsprings using mk_fork().
-In each of them : overwrite a different location

with dummy data.
-Follow execution using PTRACE_SYSCALL
-Monitor differences : a different address or a

bigger size means a memory leak :)

Extending Pmcma

Means of modifying the flow
of execution without function

pointers

Call tables.
Calling [Offset+register]

=> This is also already performed
automatically using pmcma.

Pointers and ASLR

If overwritting a given function pointer isn't
practical because of ASLR : is it possible

to overwrite a pointer (in an other
section) to a structure containing this
function pointer ? Would this « other

section » be less randomised ?

Finding pointers to structures
containing function pointers

Executable

Writable (high
ASLR)

Executable

 …

Writable (no ASLR)

 Executable

Complex structure
…

void* f(a,b,c)

Finding pointers to structures
containing function pointers

We'd like to have the debugged process create a
new section, with a given mapping (to ease

identify).
Modify a possible pointer per offspring (use

mk_fork()).
Monitor execution : is the offspring calling a
function pointer from our custom mapping ?

Forcing a process to create a
new mapping :

1) Find a +X location mapped in memory.
2) Save registers
3) Use ptrace() to inject mmap() shellcode.
4) Modify registers so eip points to shellcode.
5) Execute shellcode.
6) Wait() for the process while executing

shellcode.
7) Restore bytes in +X location.
8) Restore registers in the process.

;
; old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_SHARED|MAP_ANONYMOUS, 0, 0) shellcode:
;

_start:
nop
nop
nop
nop

xor eax, eax
xor ebx, ebx
xor ecx, ecx
xor edx, edx
xor esi, esi
xor edi, edi

mov bx, 0x1000 ; 1 page
mov cl, 0x3 ; PROT_READ|PROT_WRITE
mov dl, 0x21 ; MAP_SHARED|MAP_ANON

push eax
push eax
push edx
push ecx
push ebx
push eax

mov ebx, esp
mov al, 0x5a ; sys_mmap
int 0x80

; eax contains address of new mapping

db 0xcc, 0xcc, 0xcc, 0xcc

In case all of the above failed...

Can we trigger secondary bugs by
overwritting specific memory locations ?

Testing exhaustively arbitrary
writes

Testing exhaustively arbitrary
writes

Complexity is huge !

Still doable with Pmcma, with no guaranty
over the time of execution.

Testing exhaustively arbitrary
reads

In the same veine, attacker controled
invalid reads can trigger secondary bugs,

which will be exploitable.

=> We can test the whole 4+ billions
search space (under x86 Intel

architecture), or just a few evenly chosen
ones.

Stack desynchronization

W^X is a problem.

Even if we can overwrite fully a function
pointer and modify the flow of execution...

what do we want to execute in 2011 ?

Stack desynchronization

Instead of returning directly to shellcode in +W
section (hence probably not +X) :

-Return to a function epilogue chosen so that esp
will be set to user controled data in the stack.

- Fake stack frames in the stack itself.
- Use your favorite ROP/ret2plt shellcode

Stack desynchronization :
Exemple : sudo

- stack is ~1000 big (at analysis time)
- we find a function pointer to overwrite (at

0x0806700c)
- we overwrite it with a carefully chosen

prologue (inc esp by more than 1000)

Stack desynchronization :
Exemple : sudo

jonathan@blackbox:~$ objdump -Mintel -d /usr/bin/sudo
...
 805277a: 81 c4 20 20 00 00 add esp,0x2020
 8052780: 5b pop ebx
 8052781: 5e pop esi
 8052782: 5d pop ebp
 8052783: c3 ret

Stack desynchronization :
Exemple : sudo

We can control the destination where esp is
going to point : simply use an

environment variable

TOTO=mydata sudo

Stack desynchronization :
Exemple : sudo

We then forge fake stack frames in the stack itself

- « Nop sled » : any pointer to 'ret'
Eg :804997b: c3 ret
- Then copy shellcode to .bss byte per byte using

memcpy via ret2plt
- Use GOT overwrite to get pointer to mprotect() in the

GOT (ROP)
- call mprotect to make .bss +X via ret2plt
- return to shellcode in .bss

DEMOS

Future Work

- port to more architectures (Linux x86_64
on the way, arm...)

- port to more OS (Mac OSX, *BSD)
- port to Windows (hard)
- add tests for other bug classes

Questions ?

Thank you for coming

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94

