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degli Studi di Napoli ”Federico II,” Via Claudio 21, Napoli, 80125,

Italy.
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Abstract

Cavity noise control is a highly demanded research field for the manip-
ulation of noise in vehicle interiors. A very ambitious application is the
aircraft fuselage, presenting many challenges related to the simultaneous
necessity of blocking sound transmission and absorbing acoustic energy,
while fulfilling strict weight and spatial constraints. Many innovative
solutions are being investigated, such as subwavelength resonators, porous
materials and hybrid composites combining resonant and porous elements.
Also, classical active noise cancellation has a vast literature for controlling
cavity noises in vehicle interiors. The active impedance control concept
instead, with its advantages related to inherent acoustical passivity and sta-
bility, has recently prompted its technological readiness level, but still lacks
of proper optimization models. Generally, in acoustics, a surface is used to
be characterized in terms of its impedance and absorption coefficient. The
consequent optimization is based upon the maximization of the absorption
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coefficient, which means the minimization of the reflected sound field.
Nevertheless, the criteria for optimal damping of acoustic cavities, either
at a single frequency or in a frequency bandwidth, do not coincide with
the maximization of absorption coefficient in the corresponding frequencies
of interest. This is due to the impact of the surface impedance scattering
upon the global sound pressure field in the acoustic cavity. In the sound
scattering, an equal role is played by both resistive and reactive impedance
components. For this reason, the optimal resistance depends upon the
reactance, as it is the case for the equivalent well known problem in solid
mechanics, of Tuned Mass Damper optimization. In this paper, we discuss
the significance of absorption maximization in comparison with classical
modal damping optimization criteria coming from the solid mechanics
literature. Finally, a preliminary test-bench has been built in order to test
the impedance control in a small acoustic environment treated on one side
by electroacoustic resonators, and preliminary modal attenuation results
are discussed.

1 Introduction

The control of noise in acoustic cavities is a research field which interests various
industrial domains: from building acoustics, to automotive and aeronautics.
Among them, fuselage noise insulation presents the hardest challenges, notori-
ously because of weight and spatial strict constraints. A double task is demanded
for fuselage noise control: to block sound transmission from external sources, and
to absorb noise from internal source paths [1]. Large efforts have been carried
out to conceive innovative materials able to achieve higher sound insulation
performances within limited thickness [2, 3], usually exploiting the potentialities
of porous materials [4], resonators [5], or a combination of them [6,7]. Parallelly,
the suppression of structural vibration is under study and several solutions have
been proposed, such as periodic inclusions [8]. Active vibration suppression
is another interesting avenue, as proposed in [9–11] for both automotive and
aeronautic applications. In [12], the potentialities of active noise control is
examined both in terms of structural actuators and secondary noise sources. The
active noise cancellation is recently being investigated toward the integration of
machine learning algorithms in adaptive architectures [13]. In the technologi-
cal prospective of miniaturization, artificial intelligence integration and weight
reduction, along with the well-established digitalization and fast-computing
performances, active noise control is progressively gaining interest. In particular,
the active impedance control architecture and the so-called Electroacoustic Res-
onators (ERs) allows to assure passivity and stability [14], and has been recently
been employed to target also nonlinear [15–20] and nonlocal behaviours [21–28],
stepping forward in the Technological Readiness Level (TRL). In particular,
nonlocal boundary operators offer unprecedented research avenues compared to
classical local impedance control strategies, to envisage unconventional designs
for noise control in acoustic cavities. The preliminary design and optimization of
nonlocal absorbers would very much benefit from a wave propagation description
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of the acoustic field. In acoustics, the absorption coefficient is the most employed
parameter employed to characterize the efficiency of a surface impedance, and
the optimal value for total absorption is a well-known result [29], for any angle
of incidence of plane waves, except for the grazing incidence case. Nevertheless,
maximum absorption of plane waves in a limited frequency range, does not
assure maximum attenuation of the frequency response of the main system (the
acoustic cavity) in the frequency band of interest. This is due to the impact
of the surface impedance scattering upon the global sound pressure field in the
acoustic cavity. In the sound scattering, an equal role is played by both resistive
and reactive impedance components. For this reason, the optimal resistance
depends upon the reactance, as it is the case for the equivalent well known
problem in solid mechanics, of Tuned Mass Damper (TMD) optimization. From
single-degree-of-freedom (SDOF) main structures [30,31], to multimodal domain
extensions [32–34], Den Hartog equal peak gave the bases for maximizing the
attenuation of the main system modes. Other optimization methods have then
been designed for spatially distributed TMDs [35], and noise radiation in enclosed
acoustic cavities [36], based upon minimization of global metrics describing the
response of the main system.
However, in acoustics, sufficient literature upon the optimization of cavity noise
control is not equally satisfactory, to the authors knowledge. In the present paper,
we first discuss the relevance of single modal damping optimization analyses
based only on the resistive component of the surface impedance [37]. The habit
of considering purely resistive impedances comes from the maximization of the
absorption coefficient of acoustic resonators, where the maximum value is only
given by the resistive component of the surface impedance. The Plane-Wave-
Decomposition (PWD) applied to any cavity shape [38] (showed in Section 2)
allows the correlation of the optimal resistive impedance to the maximization of
modal damping, as showed by the numerical simulations of Section 3. Never-
theless, the presence of a reactive component requires a complexification of this
approach, to take into account the contribution of the scattered fields, which
is out of the scope of the present contribution. In Section 4, we analyse a 1D
cavity problem to highlight the limits of the absorption coefficient approach
on an analytical case study. Finally, in Section 5, we report some preliminary
experimental results in two test-benches: a monomodal and a multi-modal cavity,
to confirm the previous inferences and demonstrate the tunability of our local
impedance control. The main interest of this contribution relies in providing
the necessary analytical, numerical and experimental background to envisage
advanced optimization strategies for cavity noise control, such as those based
upon the Reinforcement Learning.

2 The Plane-Wave-Decomposition

The sound field into an acoustic cavity, can be decomposed upon its modal basis,
as in Eq. (1):
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p(x⃗, t) =

N∑
n=1

Anψn(x⃗) e
jΩnt, (1)

where ψn(x⃗) are the modal shape function, x⃗ = xx̂+ yŷ + zẑ is the position
vector, An are the participation factors of each mode, and Ωn the corresponding
complex eigenfrequencies multiplying the time variable t. We can decompose
Ωn = ωn + jδn in its real (natural angular frequency ωn) and imaginary part
(modal damping coefficient δn). From the approximation of Helmholtz solutions
by generalized harmonic polynomials [39], it is possible to further decompose
each mode shape function into its plane wave components, as in Eq. (2).

ψn(x⃗, t) =

R∑
r=1

Bnr e
−j⃗knr·x⃗. (2)

In Eq. (2), k⃗nr are the wavevectors with amplitude |kn| = |Ωn|/c0 (c0 is the
speed of sound) and direction r⃗ in space, while Bnr are the expansion coefficients
of ψn(x⃗) along the directions r⃗. Replacing Eq. (2) into Eq. (1), we obtain:

p(x⃗, t) =

N∑
n=1

Ane
jΩnt

∑
r

Bnr e
−j⃗knr·x⃗ =

N∑
n=1

R∑
r=1

Cnre
jΩnt−j⃗knr·x⃗, (3)

with Cnr = AnBnr the participation factors to the system response p(x⃗, t),

of each plane wave described by k⃗nr. Each exponential function of Eq. (3)

describes the wave propagation along k⃗nr. They constitute the functional basis
of the PWD, which, unlike the modal decomposition, has an explicit form [38].
As the of modes N employed in Eq. (1) determines the level of accuracy of
the modal decomposition, analogously, the number R of plane wave directions
employed in Eq. (2) determines the accuracy of the PWD. A good choice for
the directions r is an uniform sampling [38] on the sphere of radius |kn|.

3 2D simulations

Let us start with the simplest case of a 2D rectangular acoustic cavity of sizes
Lx, Ly with rigid walls. In that case, the mode shapes have the analytical form:

ψm,n(x, y) = cos

(
mπx

Lx

)
cos

(
nπy

Ly

)
, (4)

where the indices m,n assume the values m = 0, 1, 2, 3... and n = 0, 1, 2, 3... .
Eq. (4) can be rewritten in terms of plane waves, as:

ψm,n(x, y) = A1e
jkx,1x +A2e

jkx,2x +B1e
jky,1y +B2e

jky,2y, (5)

with kx,1 = −kx,2 = mπ/Lx, ky,1 = −ky,2 = nπ/Ly, and A1 = −A2,
B1 = −B2. Eq. (5) is the PWD of the acoustic modes of a rectangular
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cavity. From Eq. (5), we can easily retrieve the main directions of plane wave
propagation, also called elevation angles θm,n [40]:

θ(1)m,n = atan

(
ky,1
kx,1

)
= atan

(
nLx

mLy

)
; (6a)

θ(2)m,n = atan

(
ky,2
kx,2

)
= −θ(1)m,n; (6b)

Figure 1. Finite Element mesh of the 2D rectangular cavity with positions
of the monopole source and the acquisition point, treated on one side by the
normalized mobility ηwall.
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Figure 2. Frequency response at the measurement point, for a monopole source
of volume flow rate per unit length Q = 1 m2/s, and varying ηwall.

In open field, we know [41] that plane waves impacting a surface with incident

angle θ
(1)
m,n are totally absorbed if the surface exhibits a local surface impedance

Zopt
wall = ρ0c0/ cos θ

(1)
m,n, where ρ0 is the static air density. Observe that cos θ

(1)
m,n =

cos θ
(2)
m,n, therefore we can drop the superscript and refer directly to cos θm,n. In
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terms of normalized mobility ηwall = ρ0c0/Zwall, we have ηoptwall = cos θm,n. As
long as the PWD holds, we expect maximum attenuation of mode m,n if an
entire wall of the cavity is treated by ηoptwall. In order to check the validity of
such inference, we can analyse the frequency response of our rectangular cavity,
subjected to a monopole source, and with a wall treated by varying ηwall, as
showed in Fig. 1.
Fig. 2 shows the frequency response obtained by Finite Elements (FEs) in
Comsol, for a monopole source with volume flow rate per unit length Q = 1
m2/s, and varying ηwall from 0.1 to 2. Notice that for very law values of ηwall

we approach the condition of rigid wall, which presents resonance frequencies

given by fRigid
res = c0

2

√
m2

L2
x
+ n2

L2
y
, with m = 1, 2, 3... and n = 1, 2, 3.... Instead, by

increasing ηwall we approach the open condition, and the resonance frequencies
for a rectangular cavity with one open end (and all the other rigid) are fOpen

res =
c0
2

√
m2

4L2
x
+ n2

L2
y
, with m = 0, 1, 3, 5... and n = 0, 1, 2, 3... . This explains why some

resonances are exchanged with antiresonances when ηwall moves from the lowest
to the highest values.
Let us now focus on the frequency range dominated by longitudinal modes, i.e.
n = 0 and θm,0 = 0. According to the above inference, ηoptwall = cos θm,n = 1.
On top of Fig. 3 the frequency response in the frequency range dominated by
longitudinal modes is showed for few values of ηwall. Observe how for ηwall = 1
(in solid green), the resonances and antiresonances disappears, as total absorption
is achieved at the treated boundary. On bottom of Fig. 3, we identify the values
of cos θm,n at the resonance frequencies, in case of untreated (rigid) wall.
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Figure 3. Frequency response at the measurement point, with varying ηwall

(top), and cos θm,n at the resonance frequencies fres in the rigid case (bottom),
between 100 and 550 Hz.

Fig. 4 focuses on the frequency range between 600 and 900 Hz, where
modes with n ≠ 0 (of the rigid case) are dominant. At the bottom of Fig.
4, the cos θm,n is plotted against the corresponding resonance frequencies fres,
in case of untreated (rigid) wall. The acoustic cavity with fully rigid walls
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present three modes in this frequency range, corresponding to values of cos θm,n

equal to 0.4, 0.65 and 1, for modes 5, 6 and 7, respectively. On top of Fig. 4,
the frequency response is plotted for several values of ηwall. Observe how, for
ηwall = 1, the resonances are not annihilated. The values of ηwall equal to 0.4
and 0.6, corresponding to approximately the total absorption condition for θm,n

of modes 5 and 7, present significant attenuation. In particular, ηwall = 0.4
totally eliminates the resonance of mode 5, while being suboptimal around 730
Hz, where a longitudinal mode is dominant (cos θm,n = 0 for mode 6). The
presence of multiple principal direction of propagation in a narrow bandwidth,
entails delicate optimization processes, which can nevertheless benefit from the
PWD. This analysis provide an interesting perspective to physically interpret
the results reported in [37].
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Figure 4. Frequency response at the measurement point, with varying ηwall

(top), and cos θm,n at the resonance frequencies fres in the rigid case (bottom),
between 600 and 900 Hz.

Nevertheless, purely real impedances are not physically realisable as they do
not respect the reality condition [42]. As complex impedances, such as resonators,
are of concern, a significant complexification of this approach is required, where
the impact of the surface impedance on both incident and scattered plane waves
of the frequency response must be taken into account. This is out of the scope
of the present paper. In the next section, we demonstrate the limitations of the
approach based upon the maximization of the absorption coefficient, in a simple
1D case study.

4 Maximum absorption versus optimal modal
damping

Let us consider an acoustic cavity, where only 1D propagation is allowed, as the
one in Figure 5.
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Figure 5. Sketch of the 1D cavity.

The boundary conditions are: ṽ(x = −L) = v0 and ṽ(x = 0) = p̃(x = 0)/ZER,
where v is the acoustical velocity along x and ZER the acoustic impedance of a
SDOF resonator. This problem can be solved analytically in frequency domain,
giving:

p̃(x, ω) = ρ0c0v0
e−jk0x +Rejk0x

ejk0L −Re−jk0L
, (7)

where R = (ZER − ρ0c0)/(ZER + ρ0c0). The resonator SDOF impedance
reads:

ZER(jω) =MERjω +RER +
KER

jω
, (8)

where MER, RER and KER are the mass, resistance and stiffness coefficients.
In order to keep the same values as the experimental ERs, we define MER =
µMM0 and KER = µKK0, where M0 and K0 are the mass and stiffness of the
electroacoustic resonator without control. Their values are M0 = 0.354 kg/m2

and K0 = 3.067× 106 Pa/m.
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Figure 6. Frequency response of the sound pressure field at x = 0 divided by
v0, around the first resonance.

In Figure 6, we show the analytical frequency response of the sound pressure
at x = 0 divided v0, in case of µM = 1 and µK such that the resonant frequency
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of the resonator coincides with the first resonance of the 1D cavity. Apparently,
the optimal damping for the attenuation of the first mode is close to 2ρ0c0. From
this simple calculation we can verify that the maximum absorption condition at
resonance, given by RER = ρ0c0, does not correspond to the optimal damping
of the mode, as the two side-peaks are enhanced.
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Figure 7. Frequency response of the sound pressure field at x = 0 divided by
v0, around the first resonance.

Figure 7 shows the same frequency response in case of µM = 0.2. As expected,
the efficient bandwidth is enlarged, while the optimal resistance is reduced to a
value close to RER = ρ0c0. Indeed, by reducing the mass term (and therefore
the stiffness term as well), the reactive component becomes less important and
we approach the condition of purely resistive impedance for which the maximum
absorption criteria coincides with the maximum modal damping. In the next
section, we discuss some preliminary result of tunable ERs lining a wall of a
small cavity.

5 Experimental results

In order to experimentally test cavity modes attenuation by impedance control,
we have employed the ERs. Each ER is composed of a speaker (the actuator) and
four microphones able to retrieve the average pressure on the speaker diaphragm.
Each sides of the cell measures about 5 cm, with a speaker diameter of about
4 cm. By a programmable digital control algorithm, it is possible to enforce
the electrical current in the ER speaker coil based upon the measured pressure,
so that to drive the velocity of the speaker membrane and achieve a desired
surface impedance on the diaphragm. The control algorithm is based upon the
model-inversion strategy, and is detailed in [14] along with some elements of its
electronic architecture. The surface acoustic impedance targeted by the control
algorithm has the form:
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Zd(jω) =Mdjω + rdρ0c0 +
Kd

jω
, (9)

where Md is the desired acoustic mass, rd is the desired acoustic resistance
normalized to ρ0c0, and Kd is the desired acoustic stiffness.

Figure 8. Photo of the 1D acoustic cavity.

Figure 9. Absorption coefficient spectra (a) and Power-Spectral-Density (b)
of sound pressure at one microphone in the frequency range around 1250 Hz, for
various target resistances.

The first test-bench is the classical Kundt’s tube, see Figure 8, where only
1D propagation is involved in the frequency range of interest. The conclusions
of the previous section are confirmed by the results showed in Figure 9. The
case of a resonance frequency fres = 680 Hz is compared to the case of targeting
1280 Hz, to demonstrate the tunability of our ER. Around 1280 Hz, a mode of
the 1D cavity is present, which explains the peak of the Power-Spectral-Density
(PSD) when the ER resonance is placed at 680 Hz, and its impact on the cavity
response is very low. By targeting 1280 Hz, the corresponding resonance is
attenuated. As expected, the case of rd = 1 entails more significant side-peaks
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with respect to the case of rd = 2. Instead, by reducing the mass term µM from
1 to 0.5, it is possible to enlarge the bandwidth, attenuate the original peak
along with the side-peaks, for rd = 1. This confirms the above discussion about
the dependence of the optimal resistance upon the mass coefficient.

Figure 10. Experimental test-bench: box cavity with randomly placed acquisi-
tion points, lined wall (bottom-left) and noise source (top right).
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Figure 11. Power-Spectral-Density of sound pressure at one microphone location
in the frequency range 760-960 Hz (top), for various target resistances.

The second experimental setup to test the cavity modes control is a small
box made up of wood, of dimensions Lx = 0.5 m, Ly = 0.35 m, Lz = 0.105 m,
with randomly placed microphones, as it is showed in Fig. 10. One face of the
cavity is treated by 12 ERs covering almost the entire surface of size Ly × Lz.
A noise source is placed on a corner of the opposite face. Fig. 11 shows the
PSD of the sound pressure at one microphone location, in the frequency range
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760-960 Hz, for various target normalized resistances rd. The target acoustic
mass is fixed, while the desired acoustic stiffness is adjusted to tune the resonance
frequency of Zd(jω) to about 840 Hz, which is the natural frequency of mode 6
dominating this bandwidth, in case of rigid walls. The PSDs are compared to
the case of no-control applied to the ERs (Control-off), which leads the ERs to
feature a mass-like behaviour at these frequencies. From Fig. 10, the maximum
attenuation at resonance, with minimum impact on the side peaks, looks to be
achieved for values close to rd = 2.

6 Conclusions

In this paper, we have discussed the significance of the absorption coefficient
parameter to assess the optimal behaviour of a resonator in an acoustic cavity.
The optimal absorption for oblique plane waves can be correlated to the maxi-
mum cavity mode attenuation, in case of purely resistive impedances, thanks
to the Plane Wave Decomposition, as described in Section 2. Nevertheless,
the research of an optimal purely resistive impedance, as done in [37], is not
significant when resonators are concerned (and in general when the reactive
terms cannot be discarded). This is demonstrated on a simple 1D case study in
Section 4: only when the mass term (and therefore the reactive component) of
the impedance becomes very low, the optimal resistance can be approximated
by the one providing the unit absorption at the resonator resonance. Then,
a 1D experimental test-bench with an Electroaoustic Resonator is employed
for parametrically varying the resistance of the resonator, confirming the pre-
vious conclusions. Finally, a multi-modal acoustic cavity is employed to test
the tunability of our Electroacoustic Resonators. Next steps will involve the
derivation of the optimal mass-dependent resistance by applying the equal peak
method as in solid mechanics [30], and the study of the effect of the acoustically
treated surface on both monomodal and multimodal environments. These tools
will provide comparison case-studies for the testing of reinforcement-learning
optimization algorithms.
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