
Reverse Engineering for exploit
writers

Jonathan Brossard, iViZ Research Team
Clubhack 2008

Pune, India

Who Am I ?
(and why am I writing this ??)

We are recruting ! Send me your CVs at :
Jonathan.brossard@ivizsecurity.com

©iViZ Techno Solutions Pvt Ltd.

Roadmap

• A (short) reminder of the ELF file
format

• Introducing the problem
• How (not) to work with proprietary
binaries anyway ?

• What to rebuild ?
• Refactoring the binary
• Refactoring in practice

©iViZ Techno Solutions Pvt Ltd.

A (short) reminder of the ELF
format

A (short) reminder of the ELF
format

A (short) reminder of the
ELF format

The ELF header : (mandatory)
typedef struct {

unsigned char e_ident[EI_NIDENT];

Elf32_Half e_type;

Elf32_Half e_machine;

Elf32_Word e_version;

Elf32_Addr e_entry;

Elf32_Off e_phoff; // offset to Program Header Table

Elf32_Off e_shoff; // offset to Section Header Table

Elf32_Word e_flags;

Elf32_Half e_ehsize;

Elf32_Half e_phentsize;

Elf32_Half e_phnum;

Elf32_Half e_shentsize; // size of a section header

Elf32_Half e_shnum; // number of section headers

Elf32_Half e_shtrndx; // offset of associated string table

} Elf32_Ehdr;

©iViZ Techno Solutions Pvt Ltd.

A (short) reminder of the
ELF format

Program Headers : (mandatory, one per segment)
typedef struct {

 Elf32_Word p_type; // Segment type (Alocate ? Null ?

Dynamic ? …)

 Elf32_Off p_offset; // offset in file

 Elf32_Addr p_vaddr;

 Elf32_Addr p_paddr;

 Elf32_Word p_filesz; // length in file

 Elf32_Word p_memsz;

 Elf32_Word p_flags;

 Elf32_Word p_align;

} Elf32_Phdr;

©iViZ Techno Solutions Pvt Ltd.

A (short) reminder of the
ELF format

Section Headers : (optional, one per section)
typedef struct

{

Elf32_Word sh_name;// index in string table

Elf32_Word sh_type; // type of section

Elf32_Word sh_flags;

Elf32_Addr sh_addr;

Elf32_Off sh_offset;

Elf32_Word sh_size;

Elf32_Word sh_link;

Elf32_Word sh_info;

Elf32_Word sh_addralign;

Elf32_Word sh_entsize;

} Elf32_Shdr;

©iViZ Techno Solutions Pvt Ltd.

A (short) reminder of the
ELF format

Symbols : (the Symbol table is an array of Elf32_sym)
typedef struct

{

 Elf32_Word st_name; // Symbol name (string tbl index)

 Elf32_Addr st_value; // Symbol value

 Elf32_Word st_size; // Symbol size

 unsigned char st_info; // Symbol type and binding

 unsigned char st_other; // Symbol visibility

 Elf32_Section st_shndx; // Section index

} Elf32_Sym;

©iViZ Techno Solutions Pvt Ltd.

©iViZ Techno Solutions Pvt Ltd.

Introducing the problem

• Proprietary binaries are commonly modified
to make the job of security analysts difficult:

- Sometimes packed (out of topic)
- Usually don’t have a symbol table
(stripped)
- More and more have a missing/corrupted
Section Header Table (sstripped, a la sstrip
from elfkickers…) and/or zeroed Section
Headers.

- We know where
the Segments are

- We know where
the Sections are
located

- The application
has a symbol table

©iViZ Techno Solutions Pvt Ltd.

Introducing the problem

Before :

After :

©iViZ Techno Solutions Pvt Ltd.

Introducing the problem

- We know where
the Segments are :
the loader/dynamic
linker can still do
their jobs

- We don’t know
where the Sections
start/end

- The application
has no symbol
table

©iViZ Techno Solutions Pvt Ltd.

Introducing the problem

• Tools based on libbfd need to read the
Section Headers to analyse it.

• Therefore, the handy GNU binutils utilities
won't manage to analyze the target (readelf,
objdump, objcopy, nm...)

• Debugging with gdb will be really uneasy :
- no symbols, so no breakpoints on symbol
names. :(
- the application doesn't even have a “main”.
How to get a prompt once the shared
libraries are loaded ?

©iViZ Techno Solutions Pvt Ltd.

Introducing the problem

•DEMO

©iViZ Techno Solutions Pvt Ltd.

How (not) to work with
proprietary binaries anyway ?

• Use tools that aren't based on libbfd ?

- Fenris (M Zalewski) : rebuilds a symbol
table for dynamically linked binaries
(moderately interresting for us)
http://lcamtuf.coredump.cx/fenris/

- Elfsh from the Eresi project (attempts to
rebuild the missing ELF section header and a
symbol table) plus its debugger, tracer…
http://www.eresi-project.org/

©iViZ Techno Solutions Pvt Ltd.

• The problem with existing tools...

•

DEMO

•

Hrm... so we will code our own ;)

How (not) to work with
proprietary binaries anyway ?

What to rebuild ?

• Instead of rewriting ELF parsers and debuggers,
the idea is to refactor the binary as little as
possible (do not modify the .data or .text for
instance) to make it usable by the standard tools
we may need (libbfd based tools like the ones of
binutils, GDB, etc).

• We need a Section Header Table and Section
Headers (and infos on the sections to populate
them !) for all the relevant sections.

• We need a symbol table with labels for every
function/control structure

©iViZ Techno Solutions Pvt Ltd.

Increase the size of the
binary to contain a new
Section Header Table

Modify the ELF Header to
point to our new Section
Header Table (via e_shoff)

©iViZ Techno Solutions Pvt Ltd.

Refactoring the binary :

©iViZ Techno Solutions Pvt Ltd.

Refactoring the binary

retrieve information about

the sections start/end

(make a wild guess or use

heuristics when possible)

Refactoring the binary

• Example of heuristics on
Sections :

- Entry point points to .text

- Segment types and Flags give indications on their
content

- Some sections are in a predictable order if the compiler
is known

- Patterns of bytes can be found for some sections
starts/ends (eg: .interp)

• NOTE: We don’t care if 100% of the info is not correct !

©iViZ Techno Solutions Pvt Ltd.

Allocate (append) and update
Section Headers accordingly
(don’t forget to e_shnum++ in
ELF Header).

©iViZ Techno Solutions Pvt Ltd.

Refactoring the binary

We can now use the binary with our usual
disassemblers using libbfd.

Disassemble the .text, and give names to
the destination offsets of (un)conditional
jumps and calls

Update this list with labels corresponding to
predictable offsets (eg: main()) and the
content of the .dynamic section

Add all those label/offset tuples to a symbol
table (new section SHT_SYMTAB) at the
end of the binary

©iViZ Techno Solutions Pvt Ltd.

Refactoring the binary

Refactoring the binary

• Examples of heuristics :
1) Finding main()
objdump -d -j .text ./binary \
 2>/dev/null|tac|grep \
"__libc_start_main@plt" -A 1|grep
push|grep \

 "0x[0-9a-fA-F]*" -o|awk '{print $0 "
main"}'

©iViZ Techno Solutions Pvt Ltd.

Refactoring the binary

• Examples of heuristics :
2) Finding constructors
objdump -d -j .text ./ binary 2>/dev/null \
 |tac|grep \
 "bb [0-9a-fA-F][0-9a-fA-F] [0-9a-fA-F][0-9a \
-fA-F] 0[0-9a-fA-F] 08" -A 4|grep -w 55|grep \
 "[0-9a-fA-F][0-9a-fA-F]*" -o|head -n 1|sed \
s#"^0"##gi|awk '{print "0x" $0 “ \
 __do_global_ctors_aux"}'

©iViZ Techno Solutions Pvt Ltd.

Refactoring the binary

• Examples of heuristics :
3) Finding destructors
objdump -d -j .text ./binary \
 2>/dev/null|tac|grep "80 3d [0-9a-fA-F][0-9a \
-fA-F] [0-9a-fA-F][0-9a-fA-F] 0[0-9a-fA-F] 08 \
 00" -A 10|grep -w 55|grep "[0-9a-fA-F][0-9a \
-fA-F]*" -o|head -n 1|sed s#"^0"##gi|awk \ '{print
"0x" $0 " __do_global_dtors_aux"}'

©iViZ Techno Solutions Pvt Ltd.

Refactoring the binary

• It is worth noticing that the modifications we did
on the binary affect non loadable parts of the
binary only.

• In other words, the process actually loaded in
memory is not changed : addresses in .text,
stack or heap won’t be modified (luckily from an
exploit writer POV).

• We add information relevant to the auditor and
its tools only : we don’t really care if all
information is not accurate (as long as it
helps…)

©iViZ Techno Solutions Pvt Ltd.

Refactoring in practice

DEMO

©iViZ Techno Solutions Pvt Ltd.

Conclusion
• It is possible to unstrip (rebuild a symbol table)
and even unsstrip (rebuild Section Headers) a
binary.

• From a defensive point of view, it is not possible
to remove more information from the binary
without affecting its execution (eg: a binary
without ELF header won’t be loaded properly). Go
for packers… or opensource :p

• We can now write exploits using our usual tools
without caring about those “protective” alterations.

©iViZ Techno Solutions Pvt Ltd.

Greetings

• Abhisek and Nibin from the iViZ
Research Team

• irc.pulltheplug.org #social, in particular
Silvio Cesare and Mayhem for their
ideas/tools/knowledge

• irc.blacksecurity.org
• The Clubhack staff for making the event
happen

• You for coming to this talk ;)
©iViZ Techno Solutions Pvt Ltd.

Questions ?

©iViZ Techno Solutions Pvt Ltd.

©iViZ Techno Solutions Pvt Ltd.

Thank You!

