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Abstract

Quantum hardware has the potential to efficiently solve computationally difficult problems in
physics and chemistry to reap enormous practical rewards. Analogue quantum simulation
accomplishes this by using the dynamics of a controlled many-body system to mimic those
of another system; such a method is feasible on near-term devices. We show that previous
theoretical approaches to analogue quantum simulation suffer from fundamental barriers
which prohibit scalable experimental implementation. By introducing a new mathematical
framework and going beyond the usual toolbox of Hamiltonian complexity theory with an
additional resource of engineered dissipation, we show that these barriers can be overcome.
This provides a powerful new perspective for the rigorous study of analogue quantum
simulators.

Introduction

The simulation of quantum systems has long been identified as a potential application for quantum
technologies1, for which long-term benefits may range from condensed matter physics to quantum
chemistry and the life sciences2,3. This problem is classically intractable, owing to exponential growth in
the number of parameters required to describe the state of a many-body system, whereas the advantage
of quantum hardware for this purpose is obvious: one merely has to prepare the required many-body
state. On a universal quantum computer, time evolution can then be discretised and approximated
by a quantum circuit, through a series of quantum gates4. This approach, known as digital quantum
simulation5, has seen extensive theoretical development6,7 and remains a promising route towards
attaining quantum advantage8. However, useful and scalable simulations remain out of reach for
near-term technology9 due to the requirement of a large universal fault-tolerant quantum computer. In
this work, we focus on an alternative approach: analogue quantum simulation.

Broadly speaking, an analogue quantum simulator consists of an engineered and well-controlled many-
body system with adjustable interactions, with the capability to prepare initial states and perform
measurements10. By tuning such a system, one aims to mimic a different target system; in this way,
computing the dynamics of the target system can be accomplished through the native time evolution
of the simulator, without requiring the application of a universal set of gates. These more modest
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Figure 1: Qutrit-to-qubit encoding energies. A sketch of the on-site energies for a system of non-
interacting qutrits under a low-energy encoding, before and after simulation in the sense introduced
by Cubitt et al.11. In this example, each qutrit is mapped to a system of two qubits. The original
Hamiltonian consists of a sum

∑
j P

(j) of rank two projectors P (j) applied to each qutrit, resulting in
energy levels 0,1,1. In order to simulate the qutrit Hamiltonian, an energy penalty of at least ∆ must
be given to one of the four local states at each site. This is a simplification: in general the simulator
sites H′

j may interact and hence local energies are not well-defined.

physical requirements promise near-term potential for analogue quantum simulation, despite the inherent
limitations fixed by a given experimental apparatus.

Characterisation of analogue quantum simulators is, unlike the digital case, relatively under-explored
from a theoretical perspective. Existing work in this direction includes that of Cubitt et al.11, in
which the authors define a notion of Hamiltonian simulation in terms of low-energy encodings: a
low-energy subspace of the simulator Hamiltonian is required to approximate the spectrum of the
target Hamiltonian. This notion has been extraordinarily successful in making complexity-theoretic
reductions between various Hamiltonians, leading to the classification of many so-called universal
families12,13,14,15,16 which have the power to simulate all of many-body physics. Such reductions do
not necessarily aim to capture experimental possibilities, however: as we prove, the relatively simple
task of encoding a system of n non-interacting qutrits into a linear number of qubits in this regime
ends up requiring a simulator system whose individual interactions scale as Ω(n). This scaling arises
due to the dimension mismatch when one encodes a qutrit into a set of qubits, resulting in unwanted
local configurations which must be prohibited in the low-energy subspace by a large energy penalty
(see Fig. 1). Similar scalings are observed to arise through the use of Hamiltonian gadgets17,18, a tool
used for many Hamiltonian reductions. Although the qutrit-to-qubit result does not extend to the case
where the n qutrits are simulated by Ω(n2) qubits, we also note that blowing up the system size may in
some cases necessitate strong interactions in order for correlations to spread fast enough through the
enlarged system.

We argue that for practical applications to large-scale many-body simulations such as for quantum
chemistry, the simulation of an n-site many-body system should not require the implementation of
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individual interactions whose magnitude scales with n. The necessity of this requirement is clear from a
logistical perspective, since an experimental device will only be able to implement a bounded range
of energy scales on for a single interaction. However, there is also philosophical motivation to be
suspicious of such scalings: a many-body Hamiltonian is inherently a modular object, and an analogue
quantum simulation should reflect this. The addition of a few qubits and local interactions to one end
of the physical system should require an analogous action on the simulator — it should not require the
adjustment of every other interaction in the system.

Despite this additional requirement of scalability, there is also a sense in which the framework of11

can be relaxed: the requirement to simulate the full physics of a target Hamiltonian in the low-energy
subspace of a simulator is unnecessary in many cases. For example, one may only wish to simulate
a specific set of local observables, or exploit symmetries to restrict to an invariant subspace under
the Hamiltonian (a regime explored, in the case of a low-energy subspace, by Aharonov et al.19).
Furthermore, as the experimental distinction between analogue and digital devices becomes increasingly
blurred9,20, it is important to consider a range of experimental possibilities beyond pure Hamiltonian
evolution, such as intermediate unitary pulses and open-system dynamics.

In this work, we propose a mathematical framework for analogue quantum simulators to address the
above points and capture the full scope of experimentally realisable systems. We additionally develop a
general characterisation for Hamiltonian gadgets, and find rigorous no-go results for their scalable use
for locality reduction. Finally, we construct a new dissipative gadget which circumvents the restrictions
we find in the pure Hamiltonian case. In the regime of scalable quantum simulators we do not expect to
talk about a simple class of universal Hamiltonians which can simulate all others in any sense resembling
previous results. On the other hand, the more general notion of simulation which we outline in this
work gives rise to a new notion of universality, not phrased in terms of Hamiltonian classification but
rather the dynamics of observables. We expect that here a resource theory of simulation should arise,
with the power of simulators related by a partial order in analogy to the theory of multipartite states
and tensor networks21,22,23.

Results

The analogue quantum simulator. In this section, we describe our mathematical framework for
analogue quantum simulation, for which further details can be found in the Methods section. The
capabilities of a simulator are characterised by a target Hamiltonian H, a set of states Ωstate, and a set
of observables Ωobs; the goal of the simulator is then to approximate the evolution of the observables in
Ωobs under H, starting from initial states in Ωstate. Restricting the set of states Ωstate may offer practical
and theoretical benefits: for example, one could reduce to those that can be reliably prepared on an
experimental device, or take advantage of the symmetries of H to restrict Ωstate to a specific invariant
subspace and simulate only the reduced Hamiltonian. Likewise, Ωobs may reflect the capabilities of the
measurement apparatus, or for a many-body system one might take advantage of a highly localised set
of observables to only simulate their Lieb-Robinson light cone24, significantly reducing the hardware
overhead necessary to simulate for small times. Such techniques have been studied in the context of
many-body state exploration25,26, and more recently in the realm of analogue simulation27.

An analogue quantum simulator can be mathematically described in terms of three components, which
we illustrate in Fig. 2. Firstly, a state encoding Estate, which maps initial states from the target
set ρ ∈ Ωstate into the simulator system. This is defined in terms of a quantum channel, allowing
one to interpret the target state as a quantum input to the simulator, in contrast to the regime of
fault-tolerant digital quantum computers whose input is ultimately classical. Next, the simulator’s
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Figure 2: Analogue and digital simulation. A schematic description of our framework for analogue
quantum simulation, in contrast with the digital approach. Both approaches aim to compute the
observable expectation value ⟨O⟩(t) = tr[Oe−itHρeitH ], given an initial state ρ. The analogue simulator,
which uses state encodings Estate and Eobs respectively, has accuracy ϵ if | tr[Oe−itHρeitH ]−tr[Eobs(O)(Tt◦
Estate)(ρ)]| ≤ ϵ.

time evolution is specified by a family of quantum channels {Tt}t∈[0,tmax]. These describe the dynamics
of the simulator, for example the evolution under a simulator Hamiltonian H ′. However, one could
also consider Tt accounting for interactions with a bath (such capability is required by the criteria for
analogue simulators given by Cirac et al.10), modelling errors, or capturing other engineered controls
reflecting the possibilities of the experimental apparatus. The final component of the simulator is
an encoding for observables Eobs, a unital and completely positive map which sends an observable of
interest O ∈ Ωobs to the relevant observable to be measured on the simulator system.

After the encoding and time evolution steps for a given initial state ρ ∈ Ωstate and time t ∈ [0, tmax], the
simulator system lies in the state (Tt◦Estate)(ρ), upon which one measures the encoded observable Eobs(O)
for a chosen O ∈ Ωobs. The simulation has accuracy ϵ if the expectation value of this measurement
is within ϵ of its target value — that is, the expected value of measuring O on e−itHρeitH . Note that
rather than a Hamiltonian H, one could just as easily consider the simulation of an open target system,
for instance described by a quantum dynamical semigroup28,29.

For practical simulators, some constraints must be placed on the maps used in this definition. We
generally assume that both Estate and Eobs are local in a sense we define, to ensure that local errors
correspond to local noise on the target system, and that local observables can be measured locally
on the simulator system. Moreover, the time evolution channel Tt should be implementable without
the need for feed-forward measurement results for adaptive control: the lack of error correction is an
important and characteristic feature of analogue simulators.

Generalising Hamiltonian gadgets. A ubiquitous technique for Hamiltonian reductions in com-
plexity theory is the use of so-called Hamiltonian gadgets30,17,31,18. These provide a recipe to simulate
complicated many-body interactions from a more restrictive family, for example to simulate a 3-body
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Figure 3: Hamiltonian gadget characterisation. (a) The interaction hypergraph of a Hamiltonian
containing a 3-local interaction which is replaced by a 2-local gadget. The gadget property requires
that the spectrum is unchanged up to ϵ+ ζ∥Helse∥, for ϵ, ζ > 0, when restricted by a projector P ′. (b)
Structure of gadget results; boxes highlighted in yellow indicate the central argument for the energy
scaling no-go. We first formalise the desirable properties of gadgets and show that they imply a
general definition, from which we can prove the energy scaling theorem along with various combination
properties, including a generalisation of a result of Bravyi et al.31 for ground state energy (GSE)
estimation.

interaction using 2-body interactions. In this section we arrive at a general formalism for such con-
structions, in order to prove that they are associated with unavoidable energy scalings which pose
a significant challenge for experimental realisations. The usual procedure, as formulated by Bravyi
et al.18 for example, is as follows: starting from a target Hamiltonian H (which might be a single
interaction in a far larger system), one first adjoins an ancillary qubit m. On this enlarged system
one defines the gadget Hamiltonian by H ′ = ∆|1⟩⟨1|m + V , where ∆ ≫ 1 is a large parameter used to
define a low-energy subspace approximately in terms of the |0⟩ state of the mediator qubit, and V is a
relatively small term which, via a perturbative approximation, effectively simulates the target H in this
low-energy subspace.

It is not surprising that this method of construction generically requires strong interactions corresponding
to the large value of ∆ needed to provide a sufficiently high energy penalty, but it is not immediately
clear that there is no way around this cost (possibly outside of the perturbative regime). Indeed, several
works32,33,34 have explored the optimisation of Hamiltonian gadgets for practical implementation,
though generally the problem scaling interactions is not eliminated entirely. In this work we produce a
generalised framework for gadgets in order to prove a lower bound for such scalings, suggesting that
such techniques may be unsuitable for experiments on large systems. Our results are summarised in
Fig. 3(b), and full mathematical details can be found in the Methods section.

Let H be the target Hamiltonian on a Hilbert space H, and let the gadget Hamiltonian H ′ act on the
space H⊗A, for A some ancillary system. We require the following two properties of H ′, illustrated in
Fig. 3(a):
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• Accuracy: The spectrum of H should be approximated by that of H ′, in some subspace defined
by a projector P ′ ∈ Proj(H⊗A), up to error ϵ ≥ 0.

• Combination: The above property should hold even when any additional Hamiltonian Helse is
added to both H and H ′, at the expense of an additional spectral error ζ∥Helse∥, where ∥ · ∥
denotes the operator norm.

For small error parameters ϵ and ζ, these properties are — non-trivially — sufficient to force H ′ to
satisfy the following definition, which resembles previously studied notions of simulation11,18. We say
that H ′ is an (η, ϵ)-gadget (where η is a new parameter related to ζ, also measuring the ability of
the gadget to combine with other terms) for H if there exists a projector P ∈ Proj(A) \ {0} and a
unitary operator U ∈ U(H⊗A) satisfying two conditions. Firstly, U must be η-close to the identity:
∥U − I ∥ ≤ η. Then, defining the projector P ′ by P ′ = U(I⊗P )U † (so that η in some sense quantifies
how close P ′ is to a pure projection on the ancillary system), the second condition ensures that the
spectrum P ′H ′P ′ should approximate that of H, up to some multiplicity: ∥P ′H ′P ′−U(H⊗P )U †∥ ≤ ϵ.

This gadget definition expresses the quality of a gadget through two parameters: ϵ can be thought of as
the absolute error of the gadget, whilst η bounds the error incurred when the gadget is combined with
other interactions in a Hamiltonian. In particular, when ∥Helse∥ ∼ n grows with the size of the system,
η must correspondingly shrink to hold the error constant.

Despite the generality of this definition, it is sufficient to guarantee that such gadgets can be combined
in parallel. That is, given a many-body Hamiltonian H =

∑
iHi and sufficiently good gadgets H ′

i for
each of the individual terms Hi, the Hamiltonian H ′ =

∑
iH

′
i constitutes a good gadget for H. A

similar result holds for low-energy gadgets (for which the projector P ′ is replaced by a projector onto
the low-energy subspace of H ′), and also leads to a generalisation of the ground state energy estimation
result of Bravyi et al.31.

On the other hand we show that, when used for certain types of reduction, gadgets come at an
unavoidable energy cost. In particular, any attempt to simulate a k-body interaction H via a gadget
H ′ consisting of k′-body interactions for k′ < k necessarily requires interaction strengths scaling as
Ω(η−1). In order to control the absolute error of a many-body system, η−1 must grow with the size of
the system, leading to unfeasible energy scalings and constituting a significant barrier for Hamiltonian
reductions in the regime of experimentally realisable analogue quantum simulators.

Gadgets from the quantum Zeno effect. To circumvent our no-go result for scalable Hamiltonian
locality reduction, in this section we exhibit a new kind of gadget, taking advantage of the non-unitary
possibilities afforded by a general simulation channel Tt. This works by restricting the mediator qubit
to its |0⟩ state not with a strong interaction but through inertia induced by the quantum Zeno effect.
This powerful resource can be used to build a direct k-to-(⌈k/3⌉+ 1)-local gadget, without interactions
scaling with the size of the system.

The recipe for this construction is qualitatively similar to that for usual Hamiltonian gadgets: starting
from a target interaction H, a mediator qubit m is adjoined to the system, and evolves under a simulator
Hamiltonian H ′. In this case, however, H ′ need not contain an interaction ∆|1⟩⟨1|m, with ∆ scaling
with the size of the system. Instead, a dissipative channel is applied to the qubit m at regular intervals
separated by time δt. Provided that δt is small enough, the quantum Zeno effect keeps m effectively
fixed in its |0⟩ state with high probability, whilst the remainder of the system evolves as though under
the target Hamiltonian H. This is illustrated by Fig. 4, and a rigorous description can be found in the
Methods.
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Figure 4: Dissipative gadget evolution. Circuit representation of the non-unitary gadget procedure for a
single timestep. The initial state |ψ0(0)⟩H|0⟩A is evolved under a Hamiltonian H ′ for time δt, resulting
in a superposition of states with the ancillary qubit in the |0⟩A and |1⟩A positions. After applying the
dissipative channel to the A system, the system collapses to its |0⟩A state with high probability due to
the quantum Zeno effect. Meanwhile, the resulting state on the H system approximately corresponds
to evolution under a different Hamiltonian, HH.

These non-unitary gadgets may be combined with other terms in a Hamiltonian at no extra cost
(effectively corresponding to a gadget with combination error parameter η = 0), yielding an improvement
on any possible pure Hamiltonian gadget. On the other hand, the construction has various caveats:
strong interactions (though not scaling with system size) are still necessary for high accuracy of a single
gadget, and we expect that combining multiple such gadgets will require strong interactions, to suppress
the probability of any ancillary qubit transitioning into the |1⟩ state. Moreover, the precisely engineered
stroboscopic dissipation channel constitutes a new experimental challenge.

Nevertheless, this construction provides insight into the ways in which non-unitary dynamics might be
exploited for practical analogue quantum simulation problems — indeed, similar tools have already found
applications in theory35,36 and in practice37 for digital quantum computing. In light of our theorems
implying extensive interaction scaling for qutrit-to-qubit mappings and gadget locality reduction, which
effectively serve as no-go theorems for practical universal simulators built from pure Hamiltonian
dynamics, we anticipate that similar hybrid techniques will constitute a powerful tool for attaining
useful quantum advantage with quantum simulators.

Methods

Criteria for quantum computation and simulation

In a review of the prospective possibilities of quantum computing38 the author provided a set of
requirements, now known as the DiVincenzo criteria, designed to serve as a full specification for
implementations of universal quantum computers. These are summarised in Fig. 5.

As well as concretely providing the experimentalist with a necessary set of criteria to aim towards,
the sufficiency of the DiVincenzo criteria provides the theorist with a canonical yardstick to judge
the applicability of their protocol to idealised quantum hardware. It is therefore important that such
requirements reflect exactly what can be expected from quantum technology in the long term, neither
excluding feasible technologies nor including unfeasible procedures.
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The DiVincenzo criteria for quantum computation

A. A scalable physical system with well-
characterised qubits.

B. The ability to initialise the state of the qubits 
to a simple fiducial state, such as 000… .

C. Long relevant decoherence times, much 
longer than the gate operation time.

D. A universal set of quantum gates.

E. A qubit-specific measurement capability.

The Cirac-Zoller criteria for quantum simulation

I. A system of bosons/fermions confined in a 
region in space, containing a large number 
of degrees of freedom.

II. The ability to approximately prepare a 
known quantum state – ideally pure.

III. The ability to engineer and adjust the 
values of a set of interactions between the 
particles, and possibly external fields or a 
reservoir.

IV. The capability to measure the system, 
either on specific sites or collectively.

V. A procedure for increasing confidence in 
the results of the simulation.

Figure 5: A summary of the DiVincenzo38 and Cirac-Zoller10 criteria. The DiVincenzo criteria provide
necessary and sufficient requirements for universal digital quantum computers. Similarly, the Cirac-
Zoller criteria offer a set of requirements for analogue quantum simulation, for which universality may
not be available.

A similar set of criteria for analogue quantum simulators is discussed by Cirac et al.10, also summarised
in Fig. 5. These are all natural requirements to ask of a quantum simulator, but it is noteworthy
that criterion III does not provide any restriction on the interactions that one should expect the
simulator to include. This leads to a problem which does not arise for the DiVincenzo criteria: whereas
a quantum computer can approximate arbitrary k-qubit gates from the compact set U((C2)⊗k) of
unitary transformations relatively cheaply due to the Solovay-Kitaev theorem39, the task of an analogue
quantum simulator is to implement k-qudit interactions from the unbounded set of possible Hamiltonians
Herm((Cd)⊗k). The ability to realise arbitrarily strong interactions on a physical device is clearly an
impossibility.

Thus, the key extra criterion which we demand of an analogue quantum simulator is that the encoding
of the target Hamiltonian should be size-independent. Concretely, if the Hamiltonian H to be encoded
consists of local interactions (hi)

m
i=1 on n sites then the encoding of individual terms should not depend,

for instance by polynomial scaling of interaction strengths, on the size of the physical system n. In
particular, we argue that methods for practical analogue quantum simulation must respect a limit on
the interaction strengths of the simulator Hamiltonian. The strongest interactions should be bounded by
some constant fixed by physical limitations, and the weakest interactions should be similarly bounded
from below (since sufficiently weak interactions will be overwhelmed by noise in the simulator). In
addition, in order to ensure the local and size-independent encoding of each site into the simulator, we
argue that the the simulator should grow no faster than linearly with the size of the target system. If
each site is encoded into more than O(1) simulator sites, it will be impossible to encode the full system
into a simulator of the same dimension while preserving geometric locality (without introducing scaling
interactions). We summarise these requirements with the following qualitative definition:

Definition 1 (Size-independent simulation). We say that an analogue quantum simulation is size-
independent if the simulation of a n-site Hamiltonian can be implemented scalably with n. By this, we
mean that the number of qubits used in the simulation should grow no faster than linearly in n, and the
interaction strengths necessary should remain Θ(1).

8
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Figure 6: Example Hamiltonian interaction hypergraph. A Hamiltonian H on 4 qubits, and its associated
interaction hypergraph. The Hamiltonian consists of a 3-local (orange) and a 2-local (red) term, so we
say that H is 3-local.

It is worth noting that further formalisation is required to make this definition robust. For example,
suppose we are given a Hamiltonian H = h1 + h2 where ∥h1∥, ∥h2∥ = O(n−1), which violates the
size-independence requirement. One could simply define h′1 = h1+K, h′2 = h2−K, for some K = Θ(1),
and then H = h′1 + h′2 can be written in a form which does not obviously violate Definition 1. To
exclude such possibilities, we could impose an additional requirement that H is given in a canonical
form, such as that described by Wilming et al.40.

As well as being experimentally and qualitatively desirable, encoding interactions independently has
quantitative benefits; as noted by Cubitt et al.11, for a suitably local Hamiltonian encoding, local errors
on the simulator system will correspond to local errors on the target system. For NISQ hardware, this
represents an extremely useful way to mitigate the negative effects of a noisy simulation: rather than
random scrambling, noise can be viewed as the manifestation of physically reasonable noisy effects on
the target system.

Finally, studying the power of Hamiltonians subject to interaction energies that are constant in system
size is well-motivated in its own right, from the perspective of Hamiltonian complexity. For example,
Aharonov et al.19 show that restriction to such Hamiltonians will necessarily sacrifice some sense of
universality of the simulator. Earlier results in Hamiltonian complexity theory31, however, show that in
many cases it is still possible to simulate ground state energies up to an extensive error.

Hamiltonian complexity theory

We say that a Hamiltonian H on the space of n qubits H = (C2)⊗n is k-local if it can be written as
H =

∑N
j=1 hj , where each of the terms hj acts on at most k of the qubit sites. We consider the hj

individual interactions in the Hamiltonian and make reference to the interaction hypergraph, whose
vertices are qubits and whose (hyper)edges are interactions (joining the qubits on which they act),
illustrated in Fig. 6.

Informally, the k-local Hamiltonian problem asks whether the ground state energy of a k-local Hamil-
tonian is less than a, or greater than b, for some real numbers a < b separated by a suitably large
gap. This problem lies in the QMA complexity class: the natural quantum analogue to the classical
NP, containing problems whose solutions can be efficiently verified (but not necessarily found) on a
quantum computer.
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Definition 2 (k-local Hamiltonian problem). The k-local Hamiltonian problem is the promise problem
which takes as its input a k-local Hamiltonian H =

∑N
j=1 hj on the space of n qubits H = (C2)⊗n, where

N = poly(n), and for each j we have ∥hj∥ ≤ poly(n) and hj is specified by O(poly(n)) bits.

Given a < b with b − a > 1/ poly(n), let λ0(H) denote the lowest eigenvalue of H. Then the output
should distinguish between the cases

• Output 0: The ground state energy of H has λ0(H) ≤ a.

• Output 1: The ground state energy of H has λ0(H) ≥ b.

Through the Feynman-Kitaev circuit-to-Hamiltonian construction41, it was established that the 5-local
Hamiltonian problem is QMA-complete, and subsequent works optimising the construction30 and using
gadget techniques42 reduced this further to show the QMA-completeness of the 2-local Hamiltonian
problem. Various further optimisations have been found to refine the problem and further restrict
the family of allowed Hamiltonians (see for example43,44); indeed hardness results have been shown
to hold even under the significant restriction to 1-dimensional translationally invariant systems45.
QMA-completeness is closely related to a notion of universality for simulators; an equivalence was
proved by Kohler et al.15.

The constructions involved in the aforementioned results contain Hamiltonian interaction strengths
which scale polynomially, or exponentially, with system size — such Hamiltonians are infeasible for an
analogue simulator. A notable exception to this is the work of Bravyi et al.31, in which the authors use
the Schrieffer-Wolff transformation to show that bounded-strength interactions are sufficient for one to
reproduce the ground-state energy of the original Hamiltonian up to an extensive error.

As much of this Hamiltonian simulation literature focuses on specific complexity-theoretic problems,
comparatively little work has been done to actually define a mathematical framework for analogue
quantum simulation to be used in experiment. Notable recent work in this direction includes that
of Cubitt et al.11, in which the authors study methods of encoding Hamiltonians via a map Eobs :
Herm(H) → Herm(H′), which satisfy the natural requirement of preserving the spectrum of observables.
Additionally, in the case that H = ⊗n

i=1Hi is a space of many sites, they introduce the further notion of
local encodings, which map local observables in H to local observables in H′ = ⊗n′

i=1H′
i. By deriving

the most general possible form of a spectrum-preserving Hamiltonian encoding, and then imposing
natural locality conditions, the authors arrive at the following definition.

Definition 3 (Local Hamiltonian encoding11). A local Hamiltonian encoding is a map
Eobs : Lin(⊗n

i=1Hi) → Lin(⊗n
i=1H′

i) of the form

Eobs(M) = V (M ⊗ P + M̄ ⊗Q)V † , (1)

where P and Q are locally distinguishable orthogonal projectors on an ancillary space A = ⊗n
i=1Ai,

and V = ⊗n
i=1Vi where Vi ∈ Isom(Hi ⊗Ai,H′

i) for all i. Here M̄ denotes the complex conjugate of the
matrix M .

Projectors P,Q ∈ Proj(⊗iAi) are locally distinguishable if, for all i, there exist orthogonal projectors
Pi, Qi ∈ Proj(Ai) such that (Pi ⊗ I)P = P and (Qi ⊗ I)Q = Q. Generally, we consider the case of
rank(P ) > 0 (referred to as standard11), for which one can define a corresponding state encoding

Estate(ρ) = V (ρ⊗ τ)V † , (2)
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where τ is a state on A satisfying Pτ = τ .

Moreover, the authors define the following notion of simulation, which relaxes the requirements of
locality and allows for some error in the simulated eigenvalues.

Definition 4 ((∆, η, ϵ)-simulation11). A Hamiltonian H ′ ∈ Herm(H′) = Herm(⊗n
i=1H′

i) is said to
(∆, η, ϵ)-simulate a Hamiltonian H ∈ Herm(H) = Herm(⊗n

i=1Hi) if there exists a local encoding
(Definition 3) Eobs(M) = V (M ⊗ P + M̄ ⊗Q)V † such that

(i) There exists an encoding Ẽobs(M) = Ṽ (M ⊗P + M̄ ⊗Q)Ṽ † (where Ṽ ∈ Isom(H⊗A,H′) need not
have a tensor product structure as in Definition 3) such that ∥V − Ṽ ∥ ≤ η and Ẽobs(I) = P≤∆(H′)

is the projection onto the low-energy (≤ ∆) subspace of H ′, and

(ii) ∥P≤∆(H′)H
′P≤∆(H′) − Ẽobs(H)∥ ≤ ϵ.

This approach (later generalised by Apel et al.46 and refined with resource constraints by Zhou et
al.16) provides an elegant framework to capture a notion of one Hamiltonian fully simulating another.
However, we believe that this regime does not capture the scope of possibilities for analogue quantum
simulation experiments. On one hand, the formalism requires the entire physics of the target system
to be encoded into the low-energy subspace of a simulator — this rules out simulators which only
simulate part of the target system, or in a different subspace. On the other hand, the formalism is too
broad in the sense that it does not prohibit unrealistically scaling interaction strengths in violation of
Definition 1.

Framework

The generic task of an analogue quantum simulator is to estimate the dynamics of observables in a
system H under the evolution of a target Hamiltonian H, up to some maximum time tmax. In particular,
it is not always necessary to simulate the entire target system in arbitrary configurations: it may be
convenient to restrict to a particular subset of initial states Ωstate, for example lying in a subspace
invariant under the Hamiltonian or corresponding to the states which can be reliably prepared by the
simulator, and similarly to a particular subset of observables of interest Ωobs. We denote by H′ the
Hilbert space corresponding to the simulator system, and for t ∈ [0, tmax] we write Tt : D(H′) → D(H′)
for the family of time evolution quantum channels implemented by the simulator, where D(H′) is the
set of density matrices on H′. This approach, in which we view simulations in terms of individual
observables rather than the entire Hamiltonian, has been considered in earlier work25,26,27.

The minimal requirement for a simulator is that it should approximate the expectation values of the
elements of Ωobs. That is, tr[Oe−iHtρeiHt] should be close to tr[O′Tt(ρ

′)] for all ρ ∈ Ωstate and O ∈ Ωobs,
where ρ′ and O′ are some encoded versions of the states and operators respectively. Notice that, in
principle, the experimentalist could be using a completely different simulator for each choice of ρ and
O, with H′ a space large enough to contain all of them and by encoding ρ into several copies. However,
this would violate the size-independence requirement of Definition 1 if Ωobs and Ωstate both do not only
contain O(1) elements. Furthermore, it is natural to consider analogue quantum simulators as machines
taking quantum, rather than classical, input — possibly prepared by another experiment — which
cannot be cloned. For this reason, we assume that the state encoding takes the form of a quantum
channel Estate : D(H) → D(H′). Correspondingly, to accommodate for quantum outputs, we require the
observable encoding O 7→ O′ to be a unital and completely positive map Eobs : Herm(H) → Herm(H′).
This ensures that the Hilbert-Schmidt dual operator E∗

obs is a quantum channel, so measurement of
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Eobs(O) on ρ′ can equivalently be thought of as a measurement of O on a decoded state E∗
obs(ρ). This

perspective sets analogue quantum simulators apart from the framework of digital quantum computation,
for which fault-tolerant architectures require both inputs and outputs to be classical.

This definition is still sufficiently versatile to capture the simulation of global observables that are a
sum of local parts O =

∑
k Ok (a task, for example, useful for variational quantum algorithms47), in the

following way. Often the Ok cannot be simultaneously measured due to non-commutativity relations or
experimental limitations. The simplest approach to estimating O is to run many simulations, measuring
one of the Ok each time (this process can be sped up by combining simultaneously measurable terms48),
and summing the average results.

The above discussion leads us to the following definition, which is illustrated by Fig. 2.

Definition 5 (Analogue quantum simulation). Given a set of states Ωstate on a Hilbert space H, a
normalised set of observables Ωobs (i.e. ∥O∥ = 1 for all O ∈ Ωobs, where ∥ ·∥ denotes the operator norm),
a time tmax > 0, a Hamiltonian H ∈ Herm(H), and ϵ > 0, we say that a family of quantum channels
Tt : D(H′) → D(H′), for t ∈ [0, tmax] simulates H with respect to Ωstate and Ωobs with accuracy ϵ if
there exists

1. A state encoding quantum channel Estate : D(H) → D(H′) which maps states to the simulator
Hilbert space H′,

2. An observable encoding, given by a unital and completely positive map Eobs : Herm(H) →
Herm(H′),

such that ∣∣ tr[Eobs(O)(Tt ◦ Estate)(ρ)]− tr[O(e−itHρeitH)]]
∣∣ ≤ ϵ , (3)

for all ρ ∈ Ωstate, O ∈ Ωobs, and t ∈ [0, tmax].

Our use of a Hamiltonian H for the target system is mostly for simplicity; the simulation of more
general dynamics, of open quantum systems for example, can be defined analogously, with the target
Hamiltonian H replaced by any generator of a quantum dynamical semigroup28,29. It should be noted
also that Definition 5 could equivalently have been phrased in terms of a set of POVMs rather than
observables Ωobs. We use the latter for convenience in relating our work to other results. It is plausible
that one could engineer a time-dependent observable observable encoding Eobs, but here we restrict our
focus to the time-independent case to avoid the complexity of the simulation task being hidden in this
step.

By the triangle inequality, (3) holds for any convex combination of the states and observables in Ωstate

and Ωobs respectively, so we could without loss of generality assume that the two sets are convex to
begin with.

Often the simulation channels Tt in Definition 5 are taken simply as time evolution under some simulator
Hamiltonian H ′ ∈ Herm(H′), but it is useful to consider a more general case. Firstly, this allows one to
directly account for, and possibly exploit, dissipative errors in the experimental setup49. Secondly, it
enables the possibility of a more complicated simulation experiment, for example involving intermediate
measurements. Moreover, it is important to allow the simulation of open quantum systems for our
definition to be consistent with criterion III of Fig. 5. Despite the generality afforded by Definition 5,
we emphasise that experimentally practical simulations should be size-independent as in Definition 1.
That is, the implementation of Tt should not require engineering a system of size which grows more than
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linearly in n, or boundlessly scaling interaction energies. Another important constraint is that Tt should
not include the use of adaptive channels based on feed-forward measurements — hence distinguishing
the process from digital quantum computation.

We note that Hamiltonian models of quantum computation such as quantum walks50 and previous
notions of dynamical Hamiltonian simulation51 are not consistent with our definition of analogue
simulation: such constructions also incur scalings in both the system size and in necessary evolution
time (corresponding to scalings in interaction strength, if time is normalised) which violate the size-
independence conditions of Definition 1.

Local encodings

Although Definition 5 is phrased in terms of general encoding maps, it is practically useful to ensure
that states and observables are encoded in a way which is both practical to implement and behaves
favourably with respect to noise. In this section, we present such a notion of local encodings and state
some basic properties; proofs are contained in Appendix A. A similar discussion is presented for the
stronger case of local Hamiltonian encodings of Cubitt et al.11, and a discussion of the stability of local
observable measurements to local noise is given by Trivedi et al.27.

Definition 6 (Local state encoding). Let H = ⊗n
i=1Hi and H′ = ⊗n′

j=1H′
j. We say that a state encoding

Estate : D(H) → D(H′) is local if it has a Stinespring representation of the form

Estate(ρ) = trE [U(ρ⊗ |0⟩⟨0|F )U †] , (4)

where F = ⊗kFk and E = ⊗lEl are ancillary systems and U ∈ U(H⊗ F,H′ ⊗ E) is a constant-depth
quantum circuit.

It is immediate that constant-depth quantum circuits (built from one-qubit and two-qubit gates)
preserve locality. That is, given a local operator A on H⊗ F , the operator UAU † is local (acting on
the forward light cone of the support of A) on H′ ⊗ E, and similarly for the inverse U †. In fact, it is
known in the theory of quantum cellular automata that this constraint is equivalent to representability
as a constant-depth quantum circuit52.

For simulating physical systems, one particularly desirable feature of a simulator is local error back-
propagation. That is, local noise on the simulator system should correspond in some way to local
(perhaps realistic) noise on the target system. Ideally, we would like to prove that for any state ρ ∈ D(H)
and local error channel N ′ : D(H′) → D(H′) on the simulator, there exists a corresponding local error
channel N : D(H) → D(H) on the target system satisfying

N ′ ◦ Estate(ρ)
?
= Estate ◦ N (ρ) . (5)

However, we cannot hope to prove this in general, since the noise operator N ′ may take the simulator
system outside the image of Estate. Instead we have a slightly weaker version of this statement, which is
a direct consequence of the causal structure of local state encodings.

Proposition 7 (Local error back-propogation). Let Estate : D(H) → D(H′) be a local state encoding
as in Definition 6, and let N ′ : D(H′) → D(H′) be a channel whose Kraus operators {X ′

k} each act
on O(1) sites in H′. Then there exists a channel N : D(H⊗ F ) → D(H⊗ F ) whose Kraus operators
{Xk} each act on O(1) sites in H⊗ F , and such that for all ρ ∈ H,

N ′ ◦ Estate(ρ) = trE [UN (ρ⊗ |0⟩⟨0|F )U †] . (6)
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In other words, local noise on the simulator corresponds to local noise on the target system and ancillary
encoding system. The corresponding result with locality replaced by geometric locality holds in the
case when the light cones of U are local with respect to the underlying geometry of the simulator and
target systems.

Similarly, we have local forward-propogation under such an encoding, in the sense that local operations
on a site Hi to ρ ∈ D(H) will not affect the reduced density matrix trA[Estate(ρ)], where A is the
forward light cone of Hi under U in H′.

We define local observable encodings analogously to the state encoding case.

Definition 8 (Local observable encoding). Let H = ⊗n
i=1Hi and H′ = ⊗n′

j=1H′
j. We say that an

observable encoding Eobs : Herm(H) → Herm(H′) is local if it is the adjoint (with respect to the
Hilbert-Schmidt inner product) of a local state encoding.

It is immediate from this definition that one can measure the encoded observable Eobs(O) by first
applying the constant-depth quantum circuit E∗

obs : D(H′) → D(H) to ρ′ ∈ D(H′), and then measuring
O. When O is local, we can alternatively implement the measurement via a local POVM directly on
the simulator system.

Proposition 9 (Encoded measurements). Let Eobs be a local observable encoding as in Definition 8,
and let O be a local operator on H. Then Eobs(O) can be measured using a local POVM on H′.

Applications of the framework

In this section, we discuss some basic applications of our notion of analogue quantum simulation in
the sense we have introduced in Definition 5. Firstly, we give an example of a trivial but illustrative
situation in which encoding qudits into qubits incurs an unavoidable cost for low-energy encodings, but
which is not an issue in our framework. We then demonstrate the robustness of the definition under
noise, and show that it is consistent with the existing notion of simulation given in Definition 4. Finally,
we note how Lieb-Robinson bounds can be used to reduce the overhead of simulating local observables.

Qudits to qubits To motivate this example, we first notice that the requirement of Cubitt et al.11

(Definition 4) that the simulator Hamiltonian should reproduce the target dynamics in its low-energy
subspace is too strong for some practical situations. As observed by the authors, this can require
the simulator to use strong interactions to push unwanted states out of the low-energy subspace.
Proposition 10 provides a formal statement of this fact (proved in Appendix B) in the context of
encoding a simple qutrit Hamiltonian into qubits.

Here we consider qutrits with individual state spaces C3 spanned by a basis {|↓⟩, |0⟩, |↑⟩}. We write
P

(j)
0 = |0⟩⟨0| and P (j)

↑ = |↑⟩⟨↑|, where the superscript indicates that the projectors act on the jth qutrit.

Proposition 10. Let H = (C3)⊗n be the space of n qutrits acted on by the Hamiltonian

Hn =
n∑
j=1

(P
(j)
0 + P

(j)
↑ ) . (7)

Suppose H ′
n =

∑K
j=1 h

′
j is a k-local Hamiltonian on H′ = (C2)⊗m, where m = O(n1+α), for α ≥ 0 and

k = O(1). Assume the interaction hypergraph of H ′
n has degree bounded by d = O(1).
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If H ′
n is a (∆, η, ϵ)-simulation for Hn in the sense of Definition 4, for η ∈ [0, 1) and ϵ ≥ 0, then

max
j

∥h′j∥ = Ω(n1−α(1− η2)) . (8)

From (8) we see that simulating this simple system with a low-energy encoding, an interaction hypergraph
of bounded degree, and bounded locality, requires either the qubit count or interaction energy (or a
mixture) to scale unfeasibly with n. This constitutes a violation of the requirements of Definition 1 and
imposes an unnecessary experimental requirement for the task of simulating non-interacting qutrits.
The proof of this fact follows from a dimension-counting argument, since the state space of the qutrits
cannot be surjectively encoded into the qubit simulator, see Fig. 1. In contrast, the simulation task is
trivial in our framework given in Definition 5 because the low-energy encoding requirement is relaxed.

Letting Hn =
∑n

j=1(P
(j)
0 + P

(j)
↑ ) as in Proposition 10, we can simulate all observables under Hn on

H′ = ⊗n
j=1(C2 ⊗ C2) via any isometry

V : C3 → C2 ⊗ C2 , (9)

encoding each qutrit into two qubits. To realise a simulator in the sense of Definition 5, we let

Estate : ρ 7→ V ⊗nρ(V ⊗n)† , Eobs : O 7→ V ⊗nO(V ⊗n)† , (10)

and
Tt = e−itEobs(Hn)(·)eitEobs(Hn) , (11)

which is just time evolution under a 2-local Hamiltonian with bounded strength interactions.

Although Proposition 10 does not necessarily rule out simulations in which the n qutrits are encoded
into Ω(n2) qubits, such approaches suffer from a different problem. Generally, if each qudit in a
D-dimensional system is encoded into Ω(nα) qudits for α > 0, whilst keeping the dimension fixed, then
the inflated system size will necessarily cause the distances between encoded sites to grow with n. In a
system of interacting qutrits (for which the proof of Proposition 10 still holds), this means that scaling
interactions can be necessary to overcome Lieb-Robinson bounds and ensure that correlations can
spread sufficiently fast through the enlarged system. The following simple geometric lemma provides
some intuition for a quantitative lower bound on the growing length scales in such situations.

Lemma 11. Let {xi}ni=1 be the points in a hypercube of side length L ∼ n1/D in the square lattice
xi ∈ ZD. Let E : xi 7→ Xi ⊆ ZD be a map which encodes each point xi into a connected set of points in
ZD such that |Xi| = Ω(nα) and Xi ∩Xj = ∅. Let d(x, y) : ZD × ZD → Z be the taxicab metric on ZD.

For a radius R = O(L), and any y ∈ ZD, the number of encoded points intersecting with the ball of
radius R centred at y is bounded by

|BR(y)| := |{Xi : ∃x ∈ Xi with d(x, y) ≤ R}| = O
(
n1−min{α,1/D}) . (12)

Letting λ = min{α, 1/D}, we see that there are at most O(n1−λ) sites Xj within radius R = O(L) =
O(n1/D) of any Xi. On the other hand, there are at least Ω(n1−λ) of the xj within radius O(n(1−λ)/D)
of xi in the original lattice. In particular, this implies that there exist a pair of sites xi, xj with
d(xi, xj) = O(n(1−λ)/D) whose encodings have d(Xi, Xj) = Ω(n1/D) — in the encoded system, the
distance is increased by a factor of nλ/D.

The scalings here apply as a result of the requirement that analogue quantum simulators reproduce
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the dynamics of a target system. In other situations, such as adiabatic quantum simulation in which
an approximately simulated ground state is the only requirement, encodings with superlinear qubit
overhead are possible53,54.

Noisy analogue simulators Suppose we have quantum channels Tt, for t ∈ [0, tmax] which simulate
some H ∈ Herm(H) with respect to Ωstate and Ωobs up to accuracy ϵ as in Definition 5, corresponding
to encoding maps Estate and Eobs.

In practice, the experimental setup will suffer from noise in the steps of state preparation, evolution, and
measurement. This will correspond to noisy versions of the above maps, which we denote by T̃t, Ẽstate,
and Ẽobs. For any O ∈ Ωobs, ρ ∈ Ωstate, we may bound the additional error in observable expectation
values incurred by the noisy maps by

| tr[Eobs(O)(Tt ◦ Estate)(ρ)]− tr[Ẽobs(O)(T̃t ◦ Ẽstate(ρ)]|
= | tr[O

(
E∗
obs ◦ Tt ◦ Estate − Ẽ∗

obs ◦ T̃t ◦ Ẽstate
)
(ρ)]

≤ ∥E∗
obs ◦ Tt ◦ Estate − Ẽ∗

obs ◦ T̃t ◦ Ẽstate∥1→1

≤ ∥E∗
obs − Ẽ∗

obs∥1→1 + ∥Tt − T̃t∥1→1 + ∥Estate − Ẽstate∥1→1 , (13)

where ∥ · ∥1→1 denotes the one-to-one norm ∥Λ∥1→1 = supρ ∥Λ(ρ)∥1 (defined as the induced trace
norm55 — note that this is in particular upper bounded by the diamond norm), and E∗ denotes the
Hilbert-Schmidt dual of a superoperator E . Hence the noisy simulator T̃t also simulates H with respect
to Ωstate and Ωobs, up to error

ϵ′ ≤ ϵ+ sup
t

∥Tt − T̃t∥1→1 + ∥Estate − Ẽstate∥1→1 + ∥E∗
obs − Ẽ∗

obs∥1→1 . (14)

Local Hamiltonian simulation in a subspace Suppose that H ′ is a (∆, η, ϵ)-simulation of H as
defined by Cubitt et al.11 (Definition 4), corresponding to encodings Estate and Eobs, with the projector
Q = 0. Here we show that the time evolution channel under H ′, (·) 7→ e−itH

′
(·)eitH′ gives a simulation

in our sense, Definition 5.

We make use of the following lemmas. Lemma 12 ensures that measurement and time evolution are
consistent with the encodings of Definition 4, and Lemma 13 bounds the error of (∆, η, ϵ)-simulations
under time evolution.

Lemma 12 (Cubitt et al., Proposition 411). If Estate and Eobs are encodings as in Definition 4 and (2),
then for all observables O and states ρ on the target system H,

tr[Eobs(O)Estate(ρ)] = tr[Oρ] . (15)

Moreover if the encoding is standard (rank(P ) > 0 in Definition 4) then

e−iEobs(H)tEstate(ρ)eiEobs(H)t = Estate
(
e−iHtρeiHt

)
. (16)

Lemma 13 (Cubitt et al., Proposition 2811). Let H ′ be a (∆, η, ϵ)-simulation of H in the sense of
Definition 4 corresponding to encodings Eobs, Estate. If ρ′ is a state in the simulator system H′ satisfying
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Eobs(I)ρ′ = ρ′, then for all t

∥e−iH′tρ′eiH
′t − e−iEobs(H)tρ′eiEobs(H)t∥1 ≤ 2ϵt+ 4η . (17)

Combining these lemmas, we see that for any observable O and state ρ on H,

| tr[Eobs(O)e−iH
′tEstate(ρ)eiH

′t]− tr[Oe−iHtρeiHt]|

= | tr[Eobs(O)
(
e−iH

′tEstate(ρ)eiH
′t − e−iEobs(H)tEstate(ρ)eiEobs(H)t

)
]|

≤ ∥O∥(2ϵt+ 4η) . (18)

Hence the channels Tt : ρ′ 7→ e−iH
′tρ′eiH

′t, for t ∈ [0, tmax] simulate H in the sense of Definition 5 with
respect to any Ωstate and Ωobs, up to error

ϵ′ ≤ 2ϵtmax + 4η. (19)

This provides some consistency between existing work and our notion of simulation; we have shown
that evolution under a simulator Hamiltonian in the sense of Cubitt et al.11 constitutes an analogue
quantum simulator in our framework given by Definition 5.

Short-time simulation with Lieb-Robinson bounds One advantage of only requiring the simula-
tion of a particular set of observables Ωobs in Definition 5, as opposed to reproducing the entire physical
system, is that one can take advantage of the limited spread of correlations for short-time dynamics24.
The idea of exploiting Lieb-Robinson bounds to reduce necessary hardware overhead has already been
considered for the study of many-body quantum states on quantum computers25,26, and more recently
in the setting of analogue simulators27. We explain here how the latter fits into our framework.

Consider the case of a Hamiltonian Hn on a d-dimensional lattice of n qubits H ∼= (C2)⊗n, such that

Hn =
n∑
x=1

hx , (20)

where the hx is a nearest-neighbour local interaction with ∥hx∥ ≤ 1, translated to position x in the
lattice, so that Hn is translationally invariant.

If one is only interested in simulating the finite-time dynamics of a few local observables Ωobs which
are contained within a small neighbourhood of the origin, starting from a state ρ = |0⟩⟨0|⊗n, then it is
sufficient (up to exponentially small error) to simulate a far smaller subsystem, corresponding to the
Lieb-Robinson light cone, as in Fig. 7. This situation is studied by Trivedi et al.27, in particular for the
thermodynamic limit n→ ∞.

Let Hm =
∑m

y=1 hy be the simulator Hamiltonian, defined identically to Hn but on a lattice of size
m < n, H′ ∼= (C2)⊗m. We encode ρ and O simply by restricting them to the smaller subsystem. Then
a simulation of an observable O ∈ Ωobs up to accuracy ϵ, satisfying

| tr[Oe−iHntρeiHnt]− tr[Eobs(O)e−iHmtEstate(ρ)eiHmt]| ≤ ϵ , (21)

can be accomplished in the large-n regime for all t ∈ [0, tmax] if one takes m = O
(
logd(1/ϵ) + tdmax

)
(see Trivedi et al.27, Lemma 1).
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Figure 7: Simulation with Lieb-Robinson bounds. Simulation of a 1-dimensional spin system under a
Hamiltonian H for time t. In theory, the system extends infinitely, but to estimate the value of a local
observable O it is only necessary to simulate a subsystem corresponding to the Lieb-Robinson light
cone.

Modular encodings and gadgets

In this section, we focus on the case of a simulator channel Tt given by time evolution under a local
simulator Hamiltonian H ′, which should reproduce the dynamics of the local target Hamiltonian
H =

∑
iHi. In light of the size-independence requirement of Definition 1, it is natural to encode each

Hi term separately into some term H ′
i, but systematically doing so is a non-trivial task: we need the

encoded terms to interact with each other in a way which mimics the original system.

This problem can be tackled using perturbative gadgets. Perturbative gadgets were initially introduced
by Kempe et al.42 as a means of proving QMA-completeness of the 2-local Hamiltonian problem by
reduction from the 3-local case30, and have since been used extensively in the field of Hamiltonian
complexity theory. In this work, we especially focus on the use of gadgets for Hamiltonian locality
reduction, though it should be noted that perturbative gadgets can also be used to simplify the structure
of the interaction hypergraph17 and in general to reduce Hamiltonians to more restrictive families of
interactions56,57,44. Moreover, beyond Hamiltonian complexity-theoretic results, gadgets can be tailored
to improve the performance of variational quantum algorithms34.

In this work, we introduce a formalism which we argue encompasses any attempt at gadgetisation, in a
sense which we make precise (Definition 14), in order to prove general properties of such constructions.
Note that our approach, and the (η, ϵ) accuracy parameters, are closely related to those used in other
definitions of simulation11,18. We refine the approach of the latter by generalising to a potentially
non-perturbative regime and by considering the feature of combining well with other interactions as a
generic requirement for gadgets. We use these results to argue that any size-independent encoding of
a Hamiltonian H into another H ′ cannot reduce the locality of interactions (for example, reducing a
3-local Hamiltonian to a 2-local Hamiltonian).

The setup is as follows: we consider a large system H = ⊗n
i=1Hi, within which a local interaction

H ∈ Herm(H) acts on a subsystem of O(1) sites. With the introduction of a small ancillary system A,
we aim to replace H by some gadget H ′ ∈ Herm(H⊗A), which acts on O(1) sites in H and A.

A simulator Hamiltonian in the sense of Definition 5 need not necessarily capture the entire spectrum
of its target Hamiltonian. In this case, however, we are thinking of H as a single interaction in a
larger system, and as such we cannot generally assume that its eigenspaces will be preserved under
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time evolution. Therefore, we require as a minimum that H ′ should (when restricted to some subspace
defined by a projector P ′) approximately reproduce the full spectrum of H. Moreover, for H ′ to be a
useful gadget, it must combine well with other Hamiltonian terms acting on H. That is to say, there
should exist P ′ ∈ Proj(H⊗A) such that P ′(H ′ +Helse ⊗ I)P ′ approximates the spectrum of H +Helse,
for any Helse ∈ Herm(H) (see Fig. 3(a)). We formalise this with the following definition.

Definition 14 ((ζ, ϵ)-gadget property). Given a Hamiltonian H ∈ Herm(H) acting on a system
H = ⊗n

i=1Hi, and H ′ ∈ Herm(H ⊗ A) for A an ancillary system, we say that (H ′,A) satisfies the
(ζ, ϵ)-gadget property for H if there exists P ′ ∈ Proj(H ⊗ A), P̃ ∈ Proj(A) \ {0} such that, for any
Helse ∈ Herm(H), there exists a unitary ŨHelse ∈ U(H⊗A) with

∥P ′(H ′ +Helse ⊗ I)P ′ − ŨHelse

(
(H +Helse)⊗ P̃

)
Ũ †
Helse

∥ ≤ ϵ+ ζ∥Helse∥ . (22)

In other words, (H ′,A) satisfies the (ζ, ϵ)-gadget property for H if, when restricted a subspace defined
by P ′, H ′ +Helse ⊗ I approximates the spectrum of H +Helse up to error ϵ+ ζ∥Helse∥. Notice that P̃
is almost arbitrary; its rank determines the multiplicity of each eigenvalue of H +Helse in the simulator
system, but otherwise it can be rotated by ŨHelse , which rotates the eigenvectors of (H +Helse)⊗ P̃
approximately onto those of P ′(H ′ +Helse ⊗ I)P ′.

As noted by Cubitt et al.11, there are two distinct types of gadgets used in literature:

• Mediator gadgets, in which ancillary qubits are inserted between logical qubits to mediate
interactions, and

• Subspace gadgets, in which single logical qubits are encoded into several physical qubits, restricted
to a two-dimensional subspace by strong interactions.

Definition 14 encompasses the former, but not the latter. Qualitatively this is because whereas mediator
gadgets replace interactions, subspace gadgets replace entire qubits, including all of the interactions
they take part in. It would be possible to extend our formalism to subspace gadgets, by restricting the
range of Helse in Definition 14 to terms which do not interact with the target qubit. We do not consider
this here, however, for brevity and because subspace gadgets do not reduce the locality of interactions,
which is our primary motivation for this section.

Although Definition 14 is a natural requirement, it is not convenient to work with due to the appearance
of the general Helse acting on the entire of H, upon which Ũ depends. The following alternative
definition does not suffer from this problem.

Definition 15 ((η, ϵ)-gadget). Let H ∈ Herm(H) be a Hamiltonian on a Hilbert space H, and let A be
an ancillary Hilbert space. For H ′ ∈ Herm(H⊗A), we say that (H ′,A) is a (η, ϵ)-gadget for H if there
exists P ∈ Proj(A) \ {0} and U ∈ U(H⊗A) such that

∥U − I ∥ ≤ η , ∥P ′H ′P ′ − U(H ⊗ P )U †∥ ≤ ϵ , (23)

where P ′ = U(I⊗P )U † ∈ Proj(H⊗A).

The advantage of Definition 15 is that it is stated in terms of a local rather than global property.
Assuming that H,H ′, P ′ act on only O(1) sites in H and A, we can without loss of generality restrict to
this significantly smaller subspace to check whether H ′ is a gadget. This is in contrast with Definition 14,
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which requires us to in principle consider interactions over the full n-site space in order to check the
gadget property.

To motivate the use of Definition 15, we show that the above notions are in correspondence; things that
look like gadgets are always gadgets, and vice-versa. This is formalised by the following two theorems,
proved in Appendix C.

Theorem 16 ((η, ϵ)-gadgets have the (ζ, ϵ)-gadget property). Suppose that (H ′,A) is a (η, ϵ)-gadget
for H. Then (H ′,A) satisfies the (ζ, ϵ)-gadget property for H, where ζ = O(η).

Theorem 17 (The (ζ, ϵ)-gadget property requires a (η, ϵ)-gadget). Suppose that (H ′,A) satisfies the
(ζ, ϵ)-gadget property for H, where H, H ′, and P ′ act on O(1) sites in H = ⊗n

i=1Hi. Then (H ′,A) is a
(η, ϵ′)-gadget for H, where η = O(ϵ) +O(ζ

1
2 ) and ϵ′ = O(ϵ) +O(ζ).

The roles of the η and ϵ parameters are to bound the error in the eigenvectors and eigenvalues respectively.
Roughly speaking, η quantifies how well the gadget combines with other terms, and ϵ quantifies the
spectral error of the gadget in isolation. A good gadget requires both of these parameters to be small.
In the next section we present a 3-to-2 local gadget which is an extreme case of this, with ϵ = 0 at the
cost of a large η error.

Prior work in Hamiltonian complexity theory has focused on gadgetisation in the context of ground state
estimation30,44,18 or simulation in a low energy subspace11; as a result, a case of particular relevance is
when P ′ projects onto the low-energy subspace of H ′. For ∆ ∈ R, we write P≤∆(H′) for the projector
onto the span of the eigenvectors of H ′ with eigenvalues in the range (−∞,∆].

Definition 18 ((∆, η, ϵ)-gadget). Let H ∈ Herm(H) be a Hamiltonian on a Hilbert space H, and let A
be an ancillary Hilbert space. For H ′ ∈ Herm(H⊗A), we say that (H ′,A) is a (∆, η, ϵ)-gadget for H if
there exists P ∈ Proj(A) \ {0}, and U ∈ U(H⊗A) such that P≤∆(H′) = U(I⊗P )U †, and

∥U − I ∥ ≤ η , ∥P≤∆(H′)H
′P≤∆(H′) − U(H ⊗ P )U †∥ ≤ ϵ . (24)

In other words, the pair (H ′,A) satisfy Definition 15, in the special case where we can use P ′ = P≤∆(H′).

Notice that Definition 18 imposes a significantly stronger requirement on H ′ than Definition 15; a priori
there is no reason to expect that there will exist any choice of P and U such that P≤∆(H′) = U(I⊗P )U †.
Definitions 15 and 18 are sufficient to guarantee desirable combination properties, and are satisfied by
widely-used constructions.

Examples of gadgets

Lemmas 4-7 of Bravyi et al.18 can be naturally adapted to give several constructions for (∆, η, ϵ)
gadgets, which we use to demonstrate that Definition 15 encompasses commonly-used techniques. In
the following we take H′ = H⊗A, and A ∼= C2. For V an operator on H′ we write it in block-diagonal
form with respect to the basis of A as

V =

(
V00 V01
V10 V11

)
, (25)

where, for instance, V00 = (I⊗⟨0|)V (I⊗|0⟩).
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Lemma 19 (First-order gadgets, adapted from Bravyi et al.18). Suppose H ∈ Herm(H) and V ∈
Herm(H′) are such that

∥H − V00∥ ≤ ϵ

2
. (26)

Then H ′ = ∆H0 + V defines a (O(∆), η, ϵ)-gadget for H, where H0 = I⊗|1⟩⟨1|, provided that ∆ ≥
O(ϵ−1∥V ∥2 + η−1∥V ∥).

Lemma 20 (Second-order gadgets, adapted from Bravyi et al.18). Let H ∈ Herm(H), and suppose
V (1), V (0) ∈ Herm(H′) are such that ∥V (1)∥, ∥V (0)∥ ≤ Λ, V (0)

10 = V
(0)
01 = V

(1)
00 = 0, and

∥H − V
(0)
00 + V

(1)
01 V

(1)
10 ∥ ≤ ϵ

2
. (27)

Then H ′ = ∆H0 +∆
1
2V (1) + V (0) is a (O(∆), η, ϵ)-gadget for H, where H0 = I⊗|1⟩⟨1|, if

∆ ≥ O(ϵ−2Λ6 + η−2Λ2) . (28)

Lemma 21 (Third-order gadgets, adapted from Bravyi et al.18). Let H ∈ Herm(H), and suppose
V (2), V (1), V (0) ∈ Herm(H′) are such that ∥V (2)∥, ∥V (1)∥, ∥V (0)∥ ≤ Λ, V (1)

10 = V
(1)
01 = V

(0)
10 = V

(0)
01 = 0,

V
(2)
00 = 0,

∥H − V
(0)
00 − V

(2)
01 V

(2)
11 V

(2)
10 ∥ ≤ ϵ

2
, and V

(1)
00 = V

(2)
01 V

(2)
10 . (29)

Then H ′ = ∆H0 +∆
2
3V (2) +∆

1
3V (1) + V (0) is a (O(∆), η, ϵ)-gadget for H, where H0 = I⊗|1⟩⟨1|, if

∆ ≥ O(ϵ−3Λ12 + η−3Λ3) . (30)

We illustrate the application of these lemmas to our definition with the following ubiquitous gadgets
from Oliviera et al.17:

Given a target Hamiltonian H = A⊗B ∈ Herm(HA ⊗HB), the subdivision gadget on HA ⊗HB ⊗HC

(where HC
∼= C2) is defined by

H ′ = ∆H0 +∆
1
2V (1) + V (0) , (31)

where

H0 = I⊗ I⊗|1⟩⟨1| , (32)

V (1) =
1√
2
(−A⊗ I+ I⊗B)⊗X , (33)

V (0) =
1

2
(A2 ⊗ I+ I⊗B2)⊗ I . (34)

Then by Lemma 20 we see that, for sufficiently large ∆, (H ′,HC) defines a (O(∆), η, ϵ)-gadget for H
(see Fig. 8(a)).

Given a target Hamiltonian H = A ⊗ B ⊗ C ∈ Herm(HA ⊗ HB ⊗ HC), the 3-to-2 local gadget on
HA ⊗HB ⊗HC ⊗HD (where HD

∼= C2) is defined by

H ′ = ∆H0 +∆
2
3V (2) +∆

1
3V (1) + V (0) , (35)
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Figure 8: Existing gadgets. (a) Interaction hypergraphs of a 2-system interaction before (above) and
after (below) the use of the subdivision gadget. (b) Interaction hypergraphs of a 3-system interaction
before (above) and after (below) the use of the 3-to-2 gadget.

where

H0 = I⊗ I⊗ I⊗|1⟩⟨1| , (36)

V (2) =
1√
2
(−A⊗ I+ I⊗B)⊗ I⊗X − I⊗ I⊗C ⊗ |1⟩⟨1| , (37)

V (1) =
1

2
(−A⊗ I+ I⊗B)2 ⊗ I⊗ I , (38)

V (0) =
1

2
(A2 ⊗ I+ I⊗B2)⊗ C ⊗ I . (39)

By Lemma 21 we see that, for sufficiently large ∆, (H ′,HD) defines a (O(∆), η, ϵ)-gadget for H (see
Fig. 8(b)).

We provide the following example to illustrate the importance of the η parameter as a quantifier of how
well a gadget combines with other terms.

Let H = A⊗B ⊗ C ∈ Herm((C2)⊗3) be a 3-qubit interaction, and diagonalise A, B, and C as

A = λA0 |0⟩⟨0|+ λA1 |1⟩⟨1| , B = λB0 |0⟩⟨0|+ λB1 |1⟩⟨1| , C = λC0 |0⟩⟨0|+ λC1 |1⟩⟨1| . (40)

Let H ′ ∈ Herm((C2)⊗4) be defined as

H ′ = λB0 (A− λA0 I)⊗ I⊗ I⊗C
+ λB1 I⊗(A− λA0 I)⊗ I⊗C
+ λA0 I⊗ I⊗B ⊗ C , (41)

and let P ′ ∈ Proj((C2)⊗4) be

P ′ = (I⊗|0⟩⟨0| ⊗ |0⟩⟨0|+ |0⟩⟨0| ⊗ I⊗|1⟩⟨1|)⊗ I . (42)

Then in fact the restriction of H ′ to the image of P ′ exactly reproduces the spectrum of H. This
hence defines a 3-to-2 (η, 0)-gadget — or a (∆, η, 0)-gadget, if one adds a term of the form O(∆)(I−P ′)
to H ′. The caveat is that this gadget has a large η parameter, and hence it does not combine well
with other interactions. For instance, in Definition 15 we might take P = |0⟩⟨0| ⊗ I⊗ I⊗ I, and
U = (F⊗ |0⟩⟨0|+ I⊗ I⊗|1⟩⟨1|)⊗ I, where F is the two-qubit swapping operator. This gives η = 2.

The construction of H ′ can be thought of as splitting the A qubit into two qubits (see Fig. 9), and
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Figure 9: The exact 3-to-2 gadget. The (blue) 3-local interaction between A, B, and C is replaced by a
series of (blue) 2-local interactions, where the A site has been split into two sites A1 and A2. However
after this process, the 2-local interaction (red) between A and another qubit E is replaced by two
3-local interactions between E,A1, B and E,A2, B. Compare this with Fig. 8(b), for which additional
interactions on qubit A will remain on qubit A of the gadgetised Hamiltonian without any need for
adjustment.

controlling whether the first or second qubit is excited depending on the value of the B qubit. Therefore,
if the full Hamiltonian contains another interaction term which acts on the A site in H, then the locality
of this term will be increased under the gadgetisation procedure. Such a gadget cannot be used to
systematically reduce the locality of a Hamiltonian with many interactions.

Gadget combination results

The following results show that gadgets satisfying Definition 15 or Definition 18 can be systematically
combined as desired. Our techniques and proofs extend prior work31,17,58, using the convenient formalism
of the direct rotation59. The scalings of the parameters η′, ϵ′ are not necessarily optimal, though they
sufficient for application to the subdivision and 3-to-2 gadget constructions exhibited above. The proofs
of our gadget combination results can be found in Appendix D.

We summarise the setup below, which will be used throughout the following results.

Setup 22. Let H ∈ Herm(H) be a Hamiltonian on n sites, H = ⊗n
i=1Hi. Assume H =

∑N
i=1Hi, where

N = O(n), such that each Hi acts on at most k = O(1) of the sites Hi, and each site participates in at
most d = O(1) interactions. Assume also that H has bounded interaction strengths, that is, ∥Hi∥ ≤ J
for all i.

In the below propositions we consider a family (depending on n) of gadgets (H ′
i,Ai) for Hi, with Ui, Pi,

and P ′
i defined as in Definition 15, for each i. Assume that Ai consists of O(1) ancillary sites and that

H ′
i is a local Hamiltonian consisting of O(1) interactions, such that

∥H ′
i∥ ≤ J ′ , ∥(I⊗Pi)H ′

i(I⊗P⊥
i )∥ ≤ J ′

O . (43)

Firstly, we state the main result: that gadgets as in Definition 15 may be systematically combined to
produce new gadgets.

Proposition 23 (Parallel (η, ϵ)-gadget combination). Let H =
∑

iHi be as in Setup 22, and suppose
that each (H ′

i,Ai) defines a (η, ϵ)-gadget for Hi.
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Define
H ′ =

∑
i

H ′
i ∈ Herm

(
H⊗ (⊗iAi)

)
. (44)

Then (H ′,⊗iAi) is a (η′, ϵ′)-gadget for H, where

ϵ′ = O(nϵ+ nηJ + nη3J ′
O + nη4J ′) , η′ = O(nη) . (45)

For completeness, we also prove a similar result that (∆, η, ϵ)-gadgets can be combined to create a new
(∆′, η′, ϵ′)-gadget. It follows from Proposition 23 that the combination of many (∆, η, ϵ)-gadgets defines
a (η′, ϵ′)-gadget, however it still remains to show that the projector P ′ in the sense of Definition 15 may
be taken as a low-energy projector P≤∆′(H′).

Proposition 24 (Parallel (∆, η, ϵ)-gadget combination). Let H =
∑

iHi be as in Setup 22, and suppose
that each (H ′

i,Ai) defines a (∆, η, ϵ)-gadget for Hi, where

∆ ≥ ∥H∥+ J +N(ϵ+ 2Jη)
1
4 − 2η

= O(nJ) , (46)

and assume that the scaling of η with n is bounded as

η = o(n−
1
2 ) , (47)

and moreover that, for large J ′,

nϵ+ nηJ + nη3J ′
O + nη4J ′ = o(J ′) , J ′ = O(∆) . (48)

Define
H ′ =

∑
i

H ′
i ∈ Herm(H⊗ (⊗iAi)) . (49)

Then (H ′,⊗iAi) is a (∆′, η′, ϵ′)-gadget for H, where

∆′ =
1

2
∆ , ϵ′ = O(nϵ+ nηJ + nη3J ′

O + n3η4J ′) , η′ = O(nη) . (50)

For an example of how these conditions can be satisfied, consider the case of combining many of the
3-to-2 gadgets described above. Setting J = 1 for convenience, we have J ′ = Θ(∆), J ′

O = Θ(∆2/3),
and ϵ, η = O(∆−1/3). The errors ϵ′ and η′ both grow as O(n∆−1/3), so a good gadget will require
∆ = Ω(n3). A direct computation verifies that this condition also ensures that (46-48) are satisfied.
Hence reduction from a 3-local to 2-local Hamiltonian in this way requires interaction strengths to scale
as n3.

To combine (∆, η, ϵ) gadgets using Proposition 24 requires the unappealing conditions of (46)-(47),
which explicitly require the gadget energies to scale with n. In fact, as noted by Bravyi et al.31, the
regime of bounded-strength interactions does still allow approximation of the ground state energy of H
— the caveat being that the errors are extensive. Below is a generalisation of their main result.

Theorem 25 (Ground state energy estimation with (∆, η, ϵ)-gadgets, generalising Bravyi et al., Theorem
131). Let H =

∑
iHi be as in Setup 22,and suppose that each (H ′

i,Ai) defines a (∆, η, ϵ)-gadget for Hi.
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Define
H ′ =

∑
i

H ′
i ∈ Herm(H⊗ (⊗iAi)) . (51)

Then the ground state energies of H and H ′ satisfy

|λ0(H)− λ0(H
′)| = O(nϵ+ nηJ + nη3J ′

O + nη4J ′) . (52)

Gadget energy scaling

Here we present the main result of the section: general locality reduction gadgets cannot exist with-
out unfavourably scaling energies. This result holds in the most general setting of (η, ϵ)-gadgets
(Definition 15), and hence follows even from the relaxed (ζ, ϵ)-gadget property of Definition 14.

Theorem 26 (Gadget energy scaling). Let H = (C2)⊗k be the space of k = O(1) qubits, and let H be
the k-fold tensor product of Pauli Z operators with strength J > 0,

H = J
k⊗
i=1

Zi . (53)

Suppose (H ′,A) is a (η, ϵ)-gadget for H for H ′ a k′-local Hamiltonian, where k′ < k.

Then, provided ϵ < J , the gadget must have energy scale ∥H ′∥ ≥ J−ϵ
η = Ω(η−1).

The method of proof (found in Appendix E) is simple, and very likely does not provide an optimal lower
bound for ∥H ′∥, due to the lack of any dependence on k. We expect that such dependence should be
present; any approach which iteratively lowers the locality of an interaction from k-local to 2-local will
accumulate scalings from each round of gadgetisation, but this does not rule out a more direct approach.
Existing methods to reduce locality, such as the subdivision and 3-to-2 gadgets of Oliviera et al.17 and
higher-order gadgets60,34, give scalings that suggest that any k-to-2-local gadget construction should
require energies which scale exponentially in k. The question of whether such exponential scaling is the
best possible was first raised by Bravyi et al.31, and is still unresolved. Using the formalism introduced
here, this problem can be precisely stated, and optimisation of Theorem 26 may provide a negative
result. Furthermore, we expect that it may be possible to answer similar questions about gadget energy
scaling in other cases, for example in simplifying the structure of an interaction graph or reducing to
smaller families of interactions.

The significance of Theorem 26 is that it essentially rules out a size-independent (Definition 1) simulation
of a k-local Hamiltonian H by another k′-local Hamiltonian H ′ for k′ < k, for the following reason. Any
modular encodings require the use of term-by-term gadgets, which must each satisfy the (ζ, ϵ)-gadget
property (Definition 14) with ζ, η = O(n−1) to guarantee that they can be combined (since the rest
of the Hamiltonian will have ∥Helse∥ = O(n)). By Theorem 17, this requires the use of (η, ϵ)-gadgets
(Definition 15) with η = O(n−1/2), and by Theorem 26 this will require interactions which scale at least
as Ω(n1/2).

A couple of notes on gadget energy scalings in existing work: Bausch61 gives a method to reduce the
exponential or doubly-exponential scaling in perturbative Hamiltonians to polynomial scaling, and Cao
et al.33 present gadgets whose interaction strengths do not grow with accuracy. However, both cases
violate size-independence (Definition 1) in other ways such as polynomial scaling in the number of
simulator qubits or instead shrinking the interaction strengths.
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Gadgets from the quantum Zeno effect

In this section, we demonstrate an alternative approach for reducing the locality of an interaction in a
Hamiltonian — a task for which Theorem 26 establishes the need for energies which scale with the size
of the system, when conventional gadgets are used. The construction presented here, however, uses the
freedom afforded by the general simulation channel Tt in Definition 5 to take advantage of an additional
resource: dissipation.

We will see that, despite some impractical features for experimental implementation, this approach
offers a theoretical improvement in scalings over the conventional gadget techniques discussed earlier
in the section. Additionally, this construction captures a key feature of our framework for analogue
simulators given in Definition 5 in contrast with existing work: we define simulators in terms of their
dynamic behaviour, rather than in terms of the properties of static Hamiltonians.

For the process we describe here, we repeatedly refer to measurement for conceptual simplicity when
talking about probabilities, but this terminology is somewhat misleading; we do not record or use the
outcome.

Let H ∈ Herm(H) be a single interaction in a many-body system, which we intend to simulate. As
before, we will introduce an ancillary qubit A ∼= C2, and evolve under a Hamiltonian H ′ ∈ Herm(H⊗A),
but now we supplement the natural time evolution with regular projective measurements on the A
system at time intervals of δt. By the quantum Zeno effect62, this forces the A system to stay in the
|0⟩ state with high probability, meanwhile simulating the desired interaction on the H system.

The following result, Proposition 27, provides a formal construction for the measurement-based gadgets
described above — see Appendix B for the proof. Qualitatively, this result tells us that if we evolve
|ψ⟩ ⊗ |0⟩ for time δt under the simulator Hamiltonian H ′, and then measure the ancillary qubit, we
will obtain a ‘1’ result with probability O((δt)3) (corresponding to an amplitude of O((δt)3/2). In the
more likely case that we obtain ‘0’, the post-measurement state (on the H space) is e−iδtH |ψ⟩, for some
new Hamiltonian H, up to error O((δt)2). By repeating this process t/δt times, we will hence obtain
a state e−itH |ψ⟩ + O(t(δt)) on the H space if ‘0’ is measured in every round of measurement. The
probability of a measurement error in this process scales as t(δt)2, hence can be controlled provided
that δt = O(t−1/2), which will always be satisfied if we choose δt = O(t−1) in order to control the error
on the post-measurement state.

Proposition 27. For a Hilbert space H and an ancillary qubit A = C2, let H ′ ∈ Herm(H⊗A) be a
Hamiltonian given by

H ′ = HI ⊗ I+HX ⊗X +H|1⟩⟨1| ⊗ |1⟩⟨1| , (54)

for some HI, HX , H|1⟩⟨1| ∈ Herm(H) depending on a small parameter δt such that ∥HI∥ = O(1),
∥HX∥ = O((δt)−1/2), and ∥H|1⟩⟨1|∥ = O((δt)−1) with H2

|1⟩⟨1| = ω2 I, ω = 2π
δt .

Then, for any |ψ⟩ ∈ H,

e−iδtH
′
(|ψ⟩ ⊗ |0⟩) =

(
e−iδtH |ψ⟩+O((δt)2)

)
⊗ |0⟩+O((δt)3/2)⊗ |1⟩ , (55)

where
H = HI − ω−2HXH|1⟩⟨1|HX . (56)

This provides a new 3-to-2-local gadget for Pauli strings. For example, we can set HI = −Z1,
HX =

√
ω
2 (Z2 + Z3), H|1⟩⟨1| = −ωZ1; this yields a 2-local Hamiltonian H ′ simulating the 3-local
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interaction H = Z1 ⊗ Z2 ⊗ Z3. More generally, given three commuting Pauli strings Aa, Bb, Cc, we can
set HI = −Aa, HX =

√
ω
2 (Bb + Cc), H|1⟩⟨1| = −ωAa to simulate the interaction H = Aa ⊗ Bb ⊗ Cc.

This procedure may be used to simulate a k-local Pauli string using a (⌈k/3⌉+ 1)-local Hamiltonian.

Although Proposition 27 shows that evolution and repeated measurements under H ′ reproduce the
dynamics of H, it is also important to guarantee that it can be combined with other interactions.
Proposition 28 provides the necessary result for this, by verifying that the conclusions of Proposition 27
also hold when an additional term Helse ∈ Herm(H) is added to both the target and simulator
Hamiltonian.

Proposition 28. Let Helse =
∑

i hi be a k-local Hamiltonian on H = ⊗iHi such that ∥hi∥ = O(1), and
whose interaction graph has a degree bounded by an O(1) constant.

Introduce an ancillary qubit A = C2, and let H ′ ∈ Herm(H⊗A) be a Hamiltonian given by

H ′ = HI ⊗ I+HX ⊗X +H|1⟩⟨1| ⊗ |1⟩⟨1| , (57)

for some HI, HX , H|1⟩⟨1| ∈ Herm(H) depending on a small parameter δt such that ∥HI∥ = O(1),
∥HX∥ = O((δt)−1/2), and ∥H|1⟩⟨1|∥ = O((δt)−1) with H2

|1⟩⟨1| = ω2 I, ω = 2π
δt . Assume that HI, HX , and

H|1⟩⟨1| act on O(1) sites in H.

Then, for any |ψ⟩ ∈ H,

e−iδt(H
′+Helse⊗I)(|ψ⟩ ⊗ |0⟩) =

(
e−iδt(H+Helse)|ψ⟩+O((δt)2)

)
⊗ |0⟩+O((δt)3/2)⊗ |1⟩ , (58)

where
H = HI − ω−2HXH|1⟩⟨1|HX . (59)

The significance of Proposition 28 is that the errors do not depend on the size of the system through
∥Helse∥, due to bounds we place on the Trotter error in the expansion e−iδt(H+Helse) ≈ e−iδtHe−iδtHelse .

Discussion

Given the result of Proposition 28, we can now describe how the measurement gadget construction fits
into our framework of analogue quantum simulation described in Definition 5.

Given a Hamiltonian H = Z1 ⊗ Z2 ⊗ Z3 + Helse on n qubits H = (C2)⊗n, with Helse ∈ Herm(H)
satisfying the requirements of Proposition 28, we fix some δt > 0 and define the simulator space
H′ = H⊗A, where A = C2. Let H ′ ∈ Herm(H′) be given by

H ′ = −Z1 ⊗ I+

√
ω

2
(Z2 + Z3)⊗X − ωZ1 ⊗ |1⟩⟨1| , (60)

where ω = 2π
δt . Define the state and observable encodings Estate and Eobs by

Estate(ρ) = ρ⊗ |0⟩⟨0| , Eobs(O) = O ⊗ I , (61)

and define channels Eδt,M : D(H′) → D(H′) by

Eδt(ρ
′) = e−iδt(H

′+Helse⊗I)ρ′eiδt(H
′+Helse⊗I) , (62)

M(ρ′) = trA[ρ
′(I⊗|0⟩⟨0|)]⊗ |0⟩⟨0|+ trA[ρ

′(I⊗|1⟩⟨1|]⊗ |1⟩⟨1| , (63)
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so that Eδt corresponds to evolution under the Hamiltonian H ′ +Helse for time δt, and M corresponds
to a measurement of the A system. Then, for all t, define the time evolution channel

Tt = (M ◦ Eδt) ◦ (M ◦ Eδt) ◦ · · · ◦ (M ◦ Eδt) , (64)

containing ⌊t/δt⌋ copies of (M ◦Eδt). This evolution is described by Fig. 4. The content of Proposition 28
tells us that

(Tt ◦ Estate)(ρ) =
(
e−itHρeitH +O(tδt)

)
⊗ |0⟩⟨0|+O(t(δt)2)⊗ |1⟩⟨1| , (65)

and hence for any observable O ∈ Herm(H) with ∥O∥ = 1,

tr[Eobs(O)(Tt ◦ Estate)(ρ)] = tr[Oe−itHρeitH ] +O(tδt) . (66)

The channels Tt therefore simulate H (in the sense of Definition 5) with respect to any states Ωstate

and normalised observables Ωobs, up to accuracy ϵ > 0 and maximum time tmax, provided that one
chooses δt = O(ϵt−1

max). Therefore we require interaction strengths and measurement frequency which
scale as J = O(ϵ−1tmax) — note that this does not depend on n, the size of the system.

We can compare these scalings with those obtained if we were to use conventional gadgets. Suppose
we have a (η, ϵ)-gadget in the sense of Definition 15, with η = O(n−1ϵ) to ensure an absolute error
of O(ϵ) when combined with a Hamiltonian of order n, comparable with the above construction. By
Theorem 26, this must involve energy scalings of J = Ω(ϵ−1n) (and even without Theorem 26, a
low-energy (∆, η, ϵ)-gadget as in Definition 18 would require energies scaling as Ω(n) to ensure that
unwanted states are sufficiently penalised). In fact, this is likely not the optimal bound; the best known
3-to-2 gadget construction requires energy scales of O(ϵ−3 + η−3), which in this case would require
interaction strengths scaling as J = O((ϵ−1n)3). Even if the system size is restricted via Lieb-Robinson
bounds to set n = O(logd(1/ϵ)+ tdmax) (where d is the dimension of the system), the measurement-based
gadget still provides an improvement.

Despite this advantage, the measurement gadget construction involves repeated instantaneous deco-
herence of the ancillary qubit at precise time intervals without disturbing the rest of the system, and
may still require large (albeit non-scaling) interaction strengths. Moreover, if Ngad such gadgets were
used in parallel, we expect (though do not calculate here) that an additional overhead of at least
δt = O

(
(tmaxNgad)

−1/2
)

would be necessary to control the probability of measuring a 1 at any of the
ancillary sites. Nonetheless, the construction provides a marked improvement in scalings over existing
gadgets for a single 3-local term in a Hamiltonian, and gives some positive clues as to the ways in which
simulators might take advantage of more general possibilities for channels allowed by Definition 5. We
leave the detailed study of such gadgets, and their robustness to error for future work. We anticipate
that, for a suitable adaptation of Definition 15 for the dissipative case, there may be similar no-go
results preventing locality reduction by gadgets independently of the size of the system.

Acknowledgements

We acknowledge financial support from the Novo Nordisk Foundation (Grant No. NNF20OC0059939
‘Quantum for Life’), the European Research Council (ERC Grant Agreement No. 818761) and VILLUM
FONDEN via the QMATH Centre of Excellence (Grant No. 10059). A.H.W. thanks the VILLUM
FONDEN for its support with a Villum Young Investigator Grant (Grant No. 25452). I.D. was
supported in part by the AFOSR under grant FA9550-21-1-0392 and a National Science Foundation
(NSF) Graduate Research Fellowship under Grant No. DGE 1656518. I.D. thanks everyone at QMATH

28



for their hospitality during his research visit to KU and especially Prof. Adam Bouland for encouraging
and supporting the visit. I.D. gratefully acknowledges Harriet Apel for generously offering insights and
guidance during fruitful discussions at the early stages of this work.

References

[1] Richard P. Feynman. Simulating physics with computers. International Journal of Theoretical Physics, 21(6-7):467–
488, 1982.

[2] Dave Wecker, Matthew B. Hastings, Nathan Wiebe, Bryan K. Clark, Chetan Nayak, and Matthias Troyer. Solving
strongly correlated electron models on a quantum computer. Physical Review A, 92(6):062318, 2015.

[3] Alberto Baiardi, Matthias Christandl, and Markus Reiher. Quantum computing for molecular biology. ChemBioChem,
24(13):e202300120, 2023.

[4] Seth Lloyd. Universal quantum simulators. Science, 273(5278):1073–1078, 1996.

[5] Iulia M. Georgescu, Sahel Ashhab, and Franco Nori. Quantum simulation. Reviews of Modern Physics, 86(1):153,
2014.

[6] Dominic W. Berry, Andrew M. Childs, and Robin Kothari. Hamiltonian simulation with nearly optimal dependence
on all parameters. In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pages 792–809.
IEEE, 2015.

[7] Guang Hao Low and Isaac L. Chuang. Hamiltonian simulation by qubitization. Quantum, 3:163, 2019.

[8] Andrew M. Childs, Dmitri Maslov, Yunseong Nam, Neil J. Ross, and Yuan Su. Toward the first quantum simulation
with quantum speedup. Proceedings of the National Academy of Sciences, 115(38):9456–9461, 2018.

[9] John Preskill. Quantum computing in the NISQ era and beyond. Quantum, 2:79, 2018.

[10] J. Ignacio Cirac and Peter Zoller. Goals and opportunities in quantum simulation. Nature Physics, 8(4):264–266,
2012.

[11] Toby S. Cubitt, Ashley Montanaro, and Stephen Piddock. Universal quantum Hamiltonians. Proceedings of the
National Academy of Sciences, 115(38):9497–9502, 2018.

[12] Stephen Piddock and Johannes Bausch. Universal translationally-invariant Hamiltonians. arXiv preprint
arXiv:2001.08050, 2020.

[13] Stephen Piddock and Ashley Montanaro. Universal qudit Hamiltonians. Communications in Mathematical Physics,
382:721–771, 2021.

[14] Tamara Kohler, Stephen Piddock, Johannes Bausch, and Toby Cubitt. Translationally invariant universal quantum
Hamiltonians in 1D. In Annales Henri Poincaré, pages 1–32. Springer, 2020.

[15] Tamara Kohler, Stephen Piddock, Johannes Bausch, and Toby Cubitt. General conditions for universality of quantum
Hamiltonians. PRX Quantum, 3(1):010308, 2022.

[16] Leo Zhou and Dorit Aharonov. Strongly universal Hamiltonian simulators. arXiv preprint arXiv:2102.02991, 2021.

[17] Roberto Oliveira and Barbara M. Terhal. The complexity of quantum spin systems on a two-dimensional square
lattice. Quantum Information and Computation, 8(10):900–924, 2008.

[18] Sergey Bravyi and Matthew Hastings. On complexity of the quantum Ising model. Communications in Mathematical
Physics, 349(1):1–45, 2017.

[19] Dorit Aharonov and Leo Zhou. Hamiltonian sparsification and gap-simulations. arXiv preprint arXiv:1804.11084,
2018.

29



[20] Dolev Bluvstein, Harry Levine, Giulia Semeghini, Tout T. Wang, Sepehr Ebadi, Marcin Kalinowski, Alexander
Keesling, Nishad Maskara, Hannes Pichler, Markus Greiner, Vladan Vuletić, and Mikhail D. Lukin. A quantum
processor based on coherent transport of entangled atom arrays. Nature, 604(7906):451–456, 2022.

[21] Wolfgang Dür, Guifre Vidal, and J. Ignacio Cirac. Three qubits can be entangled in two inequivalent ways. Physical
Review A, 62(6):062314, 2000.

[22] Michael Walter, Brent Doran, David Gross, and Matthias Christandl. Entanglement polytopes: multiparticle
entanglement from single-particle information. Science, 340(6137):1205–1208, 2013.

[23] Matthias Christandl, Vladimir Lysikov, Vincent Steffan, Albert H. Werner, and Freek Witteveen. The resource
theory of tensor networks. arXiv preprint arXiv:2307.07394, 2023.

[24] Elliott H. Lieb and Derek W. Robinson. The finite group velocity of quantum spin systems. Communications in
Mathematical Physics, 28:251–257, 1972.

[25] Isaac H. Kim and Brian Swingle. Robust entanglement renormalization on a noisy quantum computer. arXiv preprint
arXiv:1711.07500, 2017.

[26] Johannes Borregaard, Matthias Christandl, and Daniel Stilck França. Noise-robust exploration of many-body
quantum states on near-term quantum devices. npj Quantum Information, 7(1):45, 2021.

[27] Rahul Trivedi, Adrian Franco Rubio, and J. Ignacio Cirac. Quantum advantage and stability to errors in analogue
quantum simulators. arXiv preprint arXiv:2212.04924, 2022.

[28] Vittorio Gorini, Andrzej Kossakowski, and Ennackal Chandy George Sudarshan. Completely positive dynamical
semigroups of n-level systems. Journal of Mathematical Physics, 17(5):821–825, 1976.

[29] Goran Lindblad. On the generators of quantum dynamical semigroups. Communications in Mathematical Physics,
48:119–130, 1976.

[30] Julia Kempe and Oded Regev. 3-local Hamitonian is QMA-complete. Quantum Information and Computation,
3(3):258–264, 2003.

[31] Sergey Bravyi, David P. DiVincenzo, Daniel Loss, and Barbara M. Terhal. Quantum simulation of many-body
Hamiltonians using perturbation theory with bounded-strength interactions. Physical Review Letters, 101(7):070503,
2008.

[32] Yudong Cao, Ryan Babbush, Jacob Biamonte, and Sabre Kais. Hamiltonian gadgets with reduced resource
requirements. Physical Review A, 91(1):012315, 2015.

[33] Yudong Cao and Daniel Nagaj. Perturbative gadgets without strong interactions. Quantum Information and
Computation, 15(13-14):1197–1222, 2015.

[34] Simon Cichy, Paul K. Faehrmann, Sumeet Khatri, and Jens Eisert. A perturbative gadget for delaying the onset of
barren plateaus in variational quantum algorithms. arXiv preprint arXiv:2210.03099, 2022.

[35] Philippe Lewalle, Leigh S. Martin, Emmanuel Flurin, Song Zhang, Eliya Blumenthal, Shay Hacohen-Gourgy, Daniel
Burgarth, and K. Birgitta Whaley. A multi-qubit quantum gate using the Zeno effect. Quantum, 7:1100, 2023.

[36] Carter Ball and Thomas D. Cohen. Zeno effect suppression of gauge drift in quantum simulations. arXiv preprint
arXiv:2405.09462, 2024.

[37] Eliya Blumenthal, Chen Mor, Asaf A. Diringer, Leigh S. Martin, Philippe Lewalle, Daniel Burgarth, K. Birgitta
Whaley, and Shay Hacohen-Gourgy. Demonstration of universal control between non-interacting qubits using the
Quantum Zeno effect. npj Quantum Information, 8(1):88, 2022.

[38] David P. DiVincenzo. The physical implementation of quantum computation. Fortschritte der Physik: Progress of
Physics, 48(9-11):771–783, 2000.

[39] A. Yu Kitaev. Quantum computations: algorithms and error correction. Russian Mathematical Surveys, 52(6):1191,
1997.

[40] Henrik Wilming and Albert H. Werner. Lieb-Robinson bounds imply locality of interactions. Physical Review B,
105(12):125101, 2022.

30



[41] Alexei Yu Kitaev, Alexander Shen, and Mikhail N. Vyalyi. Classical and quantum computation. American
Mathematical Society, 2002.

[42] Julia Kempe, Alexei Kitaev, and Oded Regev. The complexity of the local Hamiltonian problem. SIAM Journal on
Computing, 35(5):1070–1097, 2006.

[43] Sean Hallgren, Daniel Nagaj, and Sandeep Narayanaswami. The local Hamiltonian problem on a line with eight
states is QMA-complete. Quantum Information and Computation, 13(9-10):721–750, 2013.

[44] Toby Cubitt and Ashley Montanaro. Complexity classification of local Hamiltonian problems. SIAM Journal on
Computing, 45(2):268–316, 2016.

[45] Daniel Gottesman and Sandy Irani. The quantum and classical complexity of translationally invariant tiling and
Hamiltonian problems. In 2009 50th Annual IEEE Symposium on Foundations of Computer Science, pages 95–104.
IEEE, 2009.

[46] Harriet Apel and Toby Cubitt. A mathematical framework for quantum Hamiltonian simulation and duality. arXiv
preprint arXiv:2208.11941, 2022.

[47] Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R.
McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, et al. Variational quantum algorithms. Nature Reviews Physics,
3(9):625–644, 2021.

[48] Jarrod R. McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-Guzik. The theory of variational hybrid
quantum-classical algorithms. New Journal of Physics, 18(2):023023, 2016.

[49] Frank Verstraete, Michael M. Wolf, and J. Ignacio Cirac. Quantum computation and quantum-state engineering
driven by dissipation. Nature Physics, 5(9):633–636, 2009.

[50] Andrew M. Childs, David Gosset, and Zak Webb. Universal computation by multiparticle quantum walk. Science,
339(6121):791–794, 2013.

[51] Thomas C. Bohdanowicz and Fernando G.S.L. Brandão. Universal Hamiltonians for exponentially long simulation.
arXiv preprint arXiv:1710.02625, 2017.

[52] Terry Farrelly. A review of quantum cellular automata. Quantum, 4:368, 2020.

[53] Wolfgang Lechner, Philipp Hauke, and Peter Zoller. A quantum annealing architecture with all-to-all connectivity
from local interactions. Science advances, 1(9):e1500838, 2015.

[54] Minh-Thi Nguyen, Jin-Guo Liu, Jonathan Wurtz, Mikhail D Lukin, Sheng-Tao Wang, and Hannes Pichler. Quantum
optimization with arbitrary connectivity using Rydberg atom arrays. PRX Quantum, 4(1):010316, 2023.

[55] John Watrous. The Theory of Quantum Information. Cambridge University Press, 2018.

[56] Jacob D. Biamonte and Peter J. Love. Realizable Hamiltonians for universal adiabatic quantum computers. Physical
Review A, 78(1):012352, 2008.

[57] Norbert Schuch and Frank Verstraete. Computational complexity of interacting electrons and fundamental limitations
of density functional theory. Nature physics, 5(10):732–735, 2009.

[58] Stephen Piddock and Ashley Montanaro. The complexity of antiferromagnetic interactions and 2D lattices. Quantum
Information and Computation, 17(7-8):636–672, 2017.

[59] Sergey Bravyi, David P. DiVincenzo, and Daniel Loss. Schrieffer–Wolff transformation for quantum many-body
systems. Annals of Physics, 326(10):2793–2826, 2011.

[60] Stephen P. Jordan and Edward Farhi. Perturbative gadgets at arbitrary orders. Physical Review A, 77(6):062329,
2008.

[61] Johannes Bausch. Perturbation gadgets: Arbitrary energy scales from a single strong interaction. Annales Henri
Poincaré, 21(1):81–114, 2020.

[62] Baidyanath Misra and E. C. George Sudarshan. The Zeno’s paradox in quantum theory. Journal of Mathematical
Physics, 18(4):756–763, 1977.

31



[63] Rajendra Bhatia. Matrix analysis, volume 169. Springer Science and Business Media, 2013.

[64] Chandler Davis and William M. Kahan. Some new bounds on perturbation of subspaces. Bulletin of the American
Mathematical Society, 75(4):863–868, 1969.

[65] Chandler Davis and William Morton Kahan. The rotation of eigenvectors by a perturbation. III. SIAM Journal on
Numerical Analysis, 7(1):1–46, 1970.

[66] Andrew M. Childs, Yuan Su, Minh C. Tran, Nathan Wiebe, and Shuchen Zhu. Theory of Trotter error with
commutator scaling. Physical Review X, 11(1):011020, 2021.

A Local encodings

In this section we prove the simple results concerning local encodings.

Proof of Proposition 7. We prove this for a single Kraus operator X ′
k acting on O(1) sites in H′, and

the result follows by linearity. Note that

X ′
kEstate(ρ)(X ′

k)
† = X ′

k trE [U(ρ⊗ |0⟩⟨0|F )U †](X ′
k)

†

= trE [UXk(ρ⊗ |0⟩⟨0|F )X†
kU

†] , (67)

where Xk = U †(X ′
k ⊗ IE)U , which acts on O(1) sites in H⊗ F by the causality assumptions on U .

■

Proof of Proposition 9. To see this, we use the definition of local state encodings and write

E∗
obs(ρ

′) = trG[W (ρ′ ⊗ |0⟩⟨0|E)W †] , (68)

where W ∈ U(H′ ⊗E,H⊗G) is a constant-depth quantum circuit. Then the measurement expectation
value is

tr[Eobs(O)ρ′] = tr[OE∗
obs(ρ

′)]

= tr[(O ⊗ IG)W (ρ′ ⊗ |0⟩⟨0|E)W †]

= tr[(IH′ ⊗⟨0|E)W †(O ⊗ IG)W (IH′ ⊗|0⟩E)ρ′] . (69)

Assuming O is local, then W †(O ⊗ IG)W acts only on a constant-sized subsystem of H′. In particular,
we can write H′ = A⊗Ac where A consists of O(1) sites, and then

W †(O ⊗ IG)W = O′ ⊗ IAc , (70)

for some O′ acting on A⊗ E. Then

tr[Eobs(O)ρ′] = tr[(IA⊗⟨0|E)O′(IA⊗|0⟩E)ρ′A] , (71)

which can be estimated via a POVM on A. ■
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B Qutrit-to-qubit energy scaling

The idea for the proof of Proposition 10 is simple: by encoding a qutrit into a set of qubits, we must end
up with an “unused” state in the qubit system, since the encoding cannot be surjective by dimension
counting. Since the (∆, η, ϵ) simulation requires all simulated states to lie in the low-energy subspace of
the simulator, this implies that the unused qubit states must lie in the high-energy (above ∆) subspace.

In the proof below, we start with the encoded ground state ρ0, and construct a state ρ1 which differs
only from ρ0 only in one set of qubits in which it is in such an “unused” state. The similarity of the
states and their differences in energies lead to the requirement for strong interactions.

In this proof, and subsequent sections, we make frequent use of the following standard result from
matrix analysis63.

Lemma 29 (Weyl’s Perturbation Theorem). Let A,B ∈ Herm(H) be Hermitian matrices, with spectra
λ0 ≤ λ1 ≤ . . . and µ0 ≤ µ1 ≤ . . . respectively. Then

max
j

|λj − µj | ≤ ∥A−B∥ . (72)

Proof of Proposition 10. Write H = ⊗n
i=1Hi, where Hi = C3 is a single qutrit site. By the definition

of local simulation given by Cubitt et al.11, we have two encodings Eobs and Ẽobs of the form (using
that H is real to set Q = 0 without loss of generality)

Eobs(M) = V (M ⊗ P )V † , Ẽobs(M) = Ṽ (M ⊗ P )Ṽ † , (73)

where P is a projector on the ancillary space A, and V, Ṽ are both isometries H ⊗ A → H′. These
encodings satisfy the properties:

• Eobs is a local encoding, in the sense that A = ⊗n
i=1Ai and V = ⊗n

i=1Vi where Vi : Hi ⊗Ai → H′
i.

Here we write H′
i
∼= (C2)⊗mi for the set of mi qubits into which qutrit i is encoded. Note∑

imi = m.

• Ẽobs satisfies
Ẽobs(I) = Ṽ (I⊗P )Ṽ † = P≤∆(H′

n)
, (74)

where P≤∆(H′
n)

is the low-energy (below ∆) projector for H ′
n, and

∥P≤∆(H′
n)
H ′
nP≤∆(H′

n)
− Ẽobs(Hn)∥ ≤ ϵ . (75)

• Eobs and Ẽobs are close, in the sense that

∥V − Ṽ ∥ ≤ η . (76)

Now we define a state τ ∈ span(P ) and define a state encoding (in the sense of Cubitt et al.11)

Ẽstate(ρ) = Ṽ (ρ⊗ τ)Ṽ † . (77)

Let ρ0 = Ẽstate(|↓⟩⟨↓|⊗n) be the encoded ground state of Hn, which by definition satisfies

P≤∆(H′
n)
ρ0 = ρ0 , Ẽobs(Hn)ρ0 = 0 . (78)
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Hence we can bound the energy of ρ0 under H ′
n by

tr[H ′
nρ0] = tr[P≤∆(H′

n)
H ′
nP≤∆(H′

n)
ρ0]

= tr[(P≤∆(H′
n)
H ′
nP≤∆(H′

n)
− Ẽobs(Hn))ρ0]

≤ ∥P≤∆(H′
n)
H ′
nP≤∆(H′

n)
− Ẽobs(Hn)∥

≤ ϵ . (79)

Now without loss of generality we assume that m1 = minimi. Notice that V1 : H1 ⊗A1 → H′
1 cannot

be surjective, since
dim(H1 ⊗A1) = 3 dimA1 ̸= 2m1 . (80)

We can therefore choose some pure state ψ = |ψ⟩⟨ψ| in H′
1 which is orthogonal to the image of V1, and

define
ρ1 = ψ ⊗ tr1[ρ0] ∈ Lin(H′) , (81)

Where tr1 denotes the partial trace over the H′
1 system. This satisfies V †ρ1 = ρ1V = 0, so we have

tr[P≤∆(H′
n)
ρ1] = tr[(I⊗P )Ṽ †ρ1Ṽ ]

≤ tr[Ṽ †ρ1Ṽ ]

= tr[(Ṽ − V )†ρ1(Ṽ − V )]

≤ ∥(Ṽ − V )(Ṽ − V )†∥
≤ η2 , (82)

from which we deduce that

tr[H ′
nρ1] ≥ ∆tr[(I−P≤∆(H′

n)
)ρ1]− ϵ tr[P≤∆(H′

n)
ρ1] ≥ ∆(1− η2)− ϵη2 , (83)

using that the smallest eigenvalue of H ′
n is at least −ϵ, by (75) and Lemma 29. Therefore, using (79),

tr[H ′
n(ρ1 − ρ0)] ≥ ∆(1− η2)− ϵ(1 + η2) . (84)

On the other hand, by expanding H ′
n we can write

tr[H ′
n(ρ1 − ρ0)] =

K∑
j=1

tr[h′j(ρ1 − ρ0)] . (85)

Notice that if h′j acts trivially on H′
1, that is h′j = I1⊗h̃j , then

tr[h′j(ρ1 − ρ0)] = tr[(I1⊗h̃j)(ψ ⊗ tr1 ρ0 − ρ0)]

= tr1[ψ] tr2,3,...[h̃j tr1[ρ0]]− tr[(I⊗h̃j)ρ0]
= 0 . (86)

Hence the only non-zero contributions to (85) come from j in the set

I1 = {1 ≤ j ≤ K | h′j acts non-trivially on H′
1} . (87)
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So (85) can be bounded by

tr[H ′
n(ρ1 − ρ0)] =

∑
j∈I1

tr[h′j(ρ1 − ρ0)] ≤ 2|I1|max
j∈I1

∥h′j∥ , (88)

using the Hölder inequality for Schatten p-norms.

Now notice that, since the largest eigenvalue of Hn is n, and the encoding Ẽobs preserves spectra, we
have

∥Ẽobs(Hn)∥ = ∥Hn∥ = n , (89)

so by (75) and Lemma 29
∥P≤∆(H′

n)
H ′
nP≤∆(H′

n)
∥ ≥ n− ϵ . (90)

Hence, by the definition of P≤∆(H′
n)

, we must have ∆ > n− ϵ. Combining this fact with (84) and (88),
we deduce that

max
j∈I1

∥h′j∥ >
1

2|I1|
(
(n− ϵ)(1− η2)− ϵ(1 + η2)

)
. (91)

Finally, note that m1 ≤ m/n = O(nα) and |I1| ≤ dm1, so for large n we have the desired scaling

max
j∈I1

∥h′j∥ ≥ Ω
(
n1−α(1− η2)

)
. (92)

■

Proof of Lemma 11. A ball of radius R contains O(RD) points in ZD, so at most O(RD/nα) = O(n1−α)
of the Xi can be fully contained within.

If an Xi is partially contained within the ball, then it must intersect with its boundary. There are only
O(RD−1) points on the boundary, so this can be the case for O(RD−1) = O(n1−1/D) of the Xi.

Hence the total number of Xi that can be fully or partially contained within a ball of radius R is upper
bounded by

|BR(y)| = O(n1−α + n1−1/D) = O(n1−min{α,1/D}) . (93)

■

C Gadget characterisation

In this section, we give the proofs of Theorems 16 and 17, showing the equivalence of our notions of
gadgets. The former is quite simple, but the latter requires several preparatory lemmas. In particular,
we will make heavy use of the direct rotation — for a detailed introduction see the review of Bravyi et
al.59. We summarise the basic definitions and properties here without proof.

C.1 The direct rotation

Consider two states |ψ⟩, |ϕ⟩ lying in some Hilbert space H ∼= CN . There are many unitary matrices
U ∈ U(H) which rotate between these states (that is, U |ψ⟩ = |ϕ⟩), but a particularly natural choice
is the unitary Uψ→ϕ which rotates only within the subspace spanned by |ψ⟩ and |ϕ⟩. Defining the
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reflections Rψ = I−2|ψ⟩⟨ψ| and Rϕ = I−2|ϕ⟩⟨ϕ|, we can write

Uψ→ϕ =
√
RϕRψ , (94)

assuming it is well-defined. This is the direct rotation from |ψ⟩ to |ϕ⟩.

This construction can be generalised to rotations between subspaces:

Definition 30 (Direct rotation). Let P and Q be linear subspaces of equal dimension corresponding to
orthogonal projectors P and Q respectively. Define

RP = I−2P , RQ = I−2Q , (95)

then direct rotation between P and Q is

UP→Q =
√
RQRP , (96)

where the square root is taken with a branch cut along the negative axis and such that
√
1 = 1. This is

well-defined whenever ∥P −Q∥ < 1.

Then UP→Q satisfies
UP→QPU

†
P→Q = Q . (97)

Moreover, as described by Bravyi et al.59, the direct rotation may be written in terms of its generator:
an anti-Hermitian operator S = −S† which can be chosen so that UP→Q = eS , with ∥S∥ < π/2 and
which is off-diagonal with respect to both P and Q:

PSP = (I−P )S(I−P ) = QSQ = (I−Q)S(I−Q) = 0 . (98)

Notice that, writing S = i diag(θ1, θ2, . . . , θn) for θj ∈ (−π/2, π/2), we have

∥UP→Q − I ∥ = max
j

|2 sin(θj/2)| , ∥S∥ = max
j

|θj | , (99)

and hence
∥S∥ ≤ π

2
√
2
∥UP→Q − I ∥ . (100)

C.2 The gadget property from gadgets

Proof of Theorem 16. This follows directly from the definition, since for any Helse ∈ Herm(H), we
have

∥P ′(H ′ +Helse ⊗ I)P ′ − U
(
(H +Helse)⊗ P

)
U †∥

≤ ∥P ′H ′P ′ − U(H ⊗ P )U †∥+ ∥P ′(Helse ⊗ I)P ′ − U(Helse ⊗ P )U †∥ . (101)

The first term is bounded by ϵ by definition, and the second term can be bounded using

∥P ′(Helse ⊗ I)P ′ − U(Helse ⊗ P )U †∥
= ∥(I⊗P )U †(Helse ⊗ I)U(I⊗P )−Helse ⊗ P∥
≤ 2η∥Helse∥ . (102)

Hence the gadget property is satisfied, putting P̃ = P and ŨHelse := U for all Helse. ■
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C.3 Gadgets from the gadget property

The proof of Theorem 17 requires Lemma 31, a basic linear algebra fact which we prove here for
convenience. Two projectors P and Q commute if and only if they are simultaneously diagonalisable, in
which case PQP is also a projector. This lemma says that this is also true in the approximate setting:
[P,Q] is small if and only if PQP is close to some projector P̃ .

Lemma 31. Let P,Q ∈ Proj(H) be projectors, and define

f(P,Q) := min
P̃∈Proj(H)

∥PQP − P̃∥ . (103)

Then
∥[P,Q]∥ =

√
f(P,Q)− f(P,Q)2 . (104)

Proof of Lemma 31. Write P and Q in the block-diagonal basis of P , so that

P =

(
I 0
0 0

)
, Q =

(
A B
B† C

)
, (105)

for some matrices A,B,C. The requirement Q ∈ Proj(H) implies that BB† = A(I−A). We have

PQP =

(
A 0
0 0

)
. (106)

Let {λj}j be the eigenvalues of A; notice that these satisfy 0 ≤ λj ≤ 1, since 0 ≤ PQP ≤ Q. Then
f(P,Q) is given by

f(P,Q) = max
j

(
min{|λj |, |1− λj |}

)
. (107)

To see why (107) holds, note that the upper bound on f follows by constructing P̃ to have the same
eigenvectors as PQP , but with each eigenvalue replaced by either 0 or 1 depending on which is closer.
The lower bound follows from Lemma 29.

Now we can compute

− [P,Q]2 =

(
BB† 0
0 B†B

)
, (108)

hence
∥[P,Q]∥2 = ∥ − [P,Q]2∥ = ∥BB†∥ = ∥A(I−A)∥ = max

j
|λj ||1− λj | . (109)

Note that the maximising j in (107) and (109) must be the same (the functions min{|λ|, |1− λ|} and
|λ||1− λ| are both maximised by the λj closest to 1/2), hence we can deduce

∥[P,Q]∥2 = f(P,Q)
(
1− f(P,Q)

)
, (110)

which gives the result. ■

In order to obtain the correct unitary U in the gadget definition, the proof of Theorem 17 requires
constructing rotations between eigenspaces of different operators. The Davis-Kahan sin θ theorem below
provides a bound on the size of these rotations. This is also used in the proof of Proposition 24.
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Lemma 32 (Davis-Kahan sin θ theorem64). Let A,B ∈ Herm(H), and take PA, PB ∈ Proj(H) projec-
tors of equal rank which block-diagonalise A and B respectively, so that

A = PAAPA + P⊥
AAP

⊥
A , B = PBBPB + P⊥

BBP
⊥
B . (111)

Assume α, β ∈ R and λgap are such that

spec
(
A|PAH

)
⊂ [α, β] , spec

(
B|P⊥

B H
)
⊂ R \ (α− λgap, β + λgap) . (112)

Then the direct rotation U ∈ U(H) from PA to PB satisfies

∥U − I ∥ ≤
√
2

λgap
∥(B −A)PA∥ . (113)

Proof of Lemma 32. The statement of Davis et al.64 is phrased in terms of a matrix Θ0 =
diag(θ1, θ2, . . . , θn), where the eigenvalues (possibly excluding some 1’s) of U are given by eiθj and
π/2 ≥ θ1 ≥ θ2 ≥ · · · ≥ θn. Specifically, the authors give the following result:

λgap∥ sinΘ0∥ ≤ ∥(B −A)PA∥ . (114)

To recover our restatement of the theorem, we use the identity |1− eiθ| = |2 sin(θ/2)| to deduce that

∥U − I ∥ = |2 sin(θ1/2)| ≤
√
2| sin θ1| =

√
2∥ sinΘ0∥ . (115)

■

The following lemmas from Bravyi et al.31 are used extensively in the rest of the gadget proofs. They
provide bounds on a series expansion of eSHe−S , for S small and anti-Hermitian, in particular showing
that

eSHe−S = H + [S,H] +
1

2!
[S, [S,H]] +

1

3!
[S, [S, [S,H]]] + . . . . (116)

Lemma 33 (Bravyi et al., Lemma 131). Let S be an anti-Hermitian operator. Define a superoperator
adS such that adS(X) = [S,X], and let adkS be the k-fold composition of adS, with ad0S(X) = X. For
any operator H define r0(H) = ∥eSHe−S∥ = ∥H∥, r1(H) = ∥eSHe−S −H∥, and

rk(H) = ∥eSHe−S −
k−1∑
p=0

1

p!
adpS(H)∥ , k ≥ 2 . (117)

Then for all k ≥ 0 one has

rk(H) ≤ 1

k!
∥ adkS(H)∥ . (118)

Lemma 34 (Bravyi et al., Lemma 231). Let S =
∑

i Si and H =
∑

j Hj be any O(1)-local operators
acting on n qubits with interaction strengths JS and JH respectively (i.e. ∥Si∥ ≤ JS and ∥Hj∥ ≤ JH
for all i and j). Let each qubit be acted on non-trivially by O(1) terms in both S and H. Then, for any
k = O(1),

∥ adkS(H)∥ = O(nJkSJH) . (119)

These lemmas provide us with the necessary tools to prove Theorem 17.
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Proof of Theorem 17. The idea of the proof is as follows.

By the gadget property, we have

∥P ′(H ′ +Helse ⊗ I)P ′ − ŨHelse

(
(H +Helse)⊗ P̃

)
Ũ †
Helse

∥ ≤ ϵ+ ζ∥Helse∥ , (120)

for any Helse ∈ Herm(H).

1. First we consider (120) the case where Helse dominates the expression, and argue that that P ′ is
“almost” a projector I⊗P on A.

2. Next, by setting Helse = 0 in (120), we observe that P ′H ′P ′ has approximately the same spectrum
as H ⊗ P .

3. By setting Helse = −H in (120), we argue that P ′H ′P ′ ≈ H ⊗ P .

4. Using steps 2 and 3, and Lemma 32, we construct a rotation U such that ∥P ′H ′P ′−U(H⊗P )U †∥ ≤
ϵ, by inductively rotating each eigenspace.

Here we start step 1. Assume that ∥Helse∥ = 1, and let λ > 0. Then putting Helse 7→ λHelse in (120)
yields

∥P ′(Helse ⊗ I)P ′ − ŨλHelse(Helse ⊗ P̃ )Ũ †
λHelse

∥ ≤ ζ +O(λ−1) , (121)

for large λ, which in particular, by Lemma 29, implies that P ′(Helse ⊗ I)P ′ has the same spectrum
as Helse ⊗ P̃ , up to error ζ. (That is, the kth smallest eigenvalue, counted with multiplicity, of
P ′(Helse ⊗ I)P ′, differs from that of Helse ⊗ P̃ by an absolute error of at most ζ.)

In particular, if Helse = Q ∈ Proj(H) is a projection, then so is P ′(Q⊗ I)P ′ (up to spectral error ζ).
Hence by Lemma 31, we have

∥[P ′, Q⊗ I]∥ ≤
√
ζ . (122)

Without loss of generality we may assume that dimH = K = O(1), by disregarding all the systems on
which H, H ′, and P ′ do not act, using the assumptions of the theorem. So by writing Helse as a linear
combination of at most K projections, we have

∥[P ′, Helse ⊗ I]∥ ≤ πK
√
ζ , (123)

for all Helse ∈ Herm(H) with ∥Helse∥ ≤ π.

Therefore, for any V ∈ U(H), we can write V = eiHelse for some Helse as above, and then by Lemma 33,

∥(V ⊗ I)P ′(V † ⊗ I)− P ′∥ ≤ πK
√
ζ . (124)

Integrating over all V ∈ U(H) using the Haar measure (normalised with
∫
dV = 1) yields∥∥∥∥∫ dV (V ⊗ I)P ′(V † ⊗ I)− P ′

∥∥∥∥ ≤ πK
√
ζ , (125)

but ∫
dV (V ⊗ I)P ′(V † ⊗ I) = K−1 IH⊗ trH[P

′] , (126)

hence
∥P ′ − IH⊗K−1 trH[P

′]∥ ≤ πK
√
ζ . (127)
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In particular, by Lemma 29 this implies that K−1 trH[P
′] has spectrum in [−πK

√
ζ, πK

√
ζ] ∪ [1 −

πK
√
ζ, 1 + πK

√
ζ] (where for sufficiently small ζ there will be a gap). We can therefore construct a

projector P ∈ Proj(A) by rounding the eigenvalues of K−1 trH[P ′] to the nearest integer, which satisfies

∥P ′ − I⊗P∥ ≤ 2πK
√
ζ . (128)

Now we can apply Lemma 32, using A = PA = P ′, B = PB = I⊗P , and λgap = 1. Then for ζ small
enough, the direct rotation W from I⊗P to P ′ satisfies

P ′ =W (I⊗P )W † , ∥W − I ∥ ≤ 2
√
2πK

√
ζ , (129)

which completes step 1. Without loss of generality we can now adjust the ŨHelse so that P̃ = P , since
(121) holds for all Helse and therefore rankP ′ = rank I⊗P = rank I⊗P̃ for small enough ζ. Hence for
all Helse ∈ Herm(H) we have

∥P ′(H ′ +Helse ⊗ I)P ′ − ŨHelse

(
(H +Helse)⊗ P

)
Ũ †
Helse

∥ ≤ ϵ+ ζ∥Helse∥ . (130)

With the above expression, we can begin steps 2 and 3. Putting Helse = 0, this becomes

∥P ′H ′P ′ − Ũ(0)(H ⊗ P )Ũ †(0)∥ ≤ ϵ , (131)

and putting Helse = −H we have

∥P ′H ′P ′ − P ′(H ⊗ I)P ′∥ ≤ ϵ+ ζ∥H∥ . (132)

Moreover, by (129) we can bound

∥P ′(H ⊗ I)P ′ −H ⊗ P∥ = ∥W (I⊗P )W †(H ⊗ I)W (I⊗P )W † −H ⊗ P∥
= ∥(W − I)(I⊗P )W †(H ⊗ I)W (I⊗P )W †

+ (I⊗P )(W † − I)(H ⊗ I)W (I⊗P )W †

+ (H ⊗ P )(W − I)(I⊗P )W †

+ (H ⊗ P )(W † − I)∥
≤ 4∥H∥ · ∥W − I ∥

≤ 8
√
2πK

√
ζ∥H∥ . (133)

Combining (132) and (133), we complete step 3:

∥P ′H ′P ′ −H ⊗ P∥ ≤ ϵ+ (ζ + 8
√
2πK

√
ζ)∥H∥ := δ . (134)

Now we begin step 4. Let H(0) = H ⊗ P . Write the eigenvalues of this operator as {λk}M+1
k=1 , where

λ1 = 0 and 0 < λ2 < · · · < λM+1 are the M distinct eigenvalues of H. If H has any non-positive
eigenvalues, then we shift both H and H ′ by a O(1) factor of the identity for the duration of the proof;
notice that the gadget property then still holds up to a redefined ϵ which does not affect the conclusions
of this theorem. To see this, note that for µ ∈ R,

∥P ′(H ′ + µ I+Helse ⊗ I)P ′ − ŨHelse

(
(H + µ I+Helse)⊗ P̃

)
Ũ †
Helse

∥ ≤ ϵ+ ζ∥µ I+Helse∥
≤ (ϵ+ µζ) + ζ∥Helse∥ , (135)

using (120) and absorbing µ I into Helse. Hence H ′ 7→ H ′ + µ I and H 7→ H + µ I also satisfy the
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assumptions of the theorem, up to replacing ϵ 7→ ϵ+ µζ. Moreover, if we can show that H ′ + µ I is an
(ϵ, η)-gadget for H + µ I, then applying the gadget definition shows that

∥P ′H ′P ′ − U(H ⊗ P )U †∥ = ∥P ′(H ′ + µ I)P ′ − U
(
(H + µ I)⊗ P

)
U †∥

≤ ϵ , (136)

hence H ′ is an (ϵ, η)-gadget for H.

We define
λgap = min

j ̸=k
|λj − λk| , (137)

which is O(1) since H acts on O(1) sites, and does not scale with η or ϵ. Let Pk be the eigenspace of
H(0) corresponding to λk.

We also diagonalise P ′H ′P ′ — see Fig. 10. By (131) and Weyl’s inequality we can write the eigenvalues
as {µ(ik)k } such that

|µ(ik)k − λk| ≤ ϵ , for all ik, and for all k. (138)

Let P ′
k be the eigenspace of P ′H ′P ′ corresponding to the eigenvalues {µ(ik)k }ik , which by (131) satisfies

dimP ′
k = dimPk for ϵ sufficiently small. Note that for j ̸= k we have

|µ(ij)j − λk| ≥ λgap − ϵ . (139)

We aim to construct a unitary operator which rotates all of the Pi onto the P ′
i eigenspaces. We do this

by induction, defining W (k) to be a unitary operator which performs these rotations for i = 1, . . . , k.
Moreover the define H(k) =W (k)H(0)(W (k))† to be the version of H ⊗P whose first k eigenspaces have
been rotated in this way. We will use bounds on the direct rotation provided by Lemma 32; we will see
that the direct rotations are well-defined for sufficiently small ζ and ϵ.

The inductive construction we use will bound the rotations by ∥W (k) − I ∥ ≤ ωk, where

ωk =
δ

2∥H∥

([
1 +

2
√
2∥H∥

λgap − ϵ

]k
− 1

)
. (140)

Energy
P ′H ′P ′H ⊗ P

P1

P2

P3

P ′
1

P ′
2

P ′
3

λgap
ϵ

Figure 10: The degenerate eigenvalues of H ⊗P are approximated by eigenvalues of P ′H ′P ′ up to error
ϵ, corresponding to eigenspaces P ′

i. We construct a unitary operator which rotates the eigenspaces Pi
onto the P ′

i
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We now inductively define the H(k) ∈ Herm(H⊗A) and W (k) ∈ U(H⊗A) as described above. For the
base case, we see that clearly H(0) satisfies the conditions with the trivial W (0) = I.

For the inductive step, suppose we are given H(k−1) and W (k−1). Notice that

∥P ′H ′P ′ −H(k−1)∥ ≤ δ + 2ωk−1∥H∥ , (141)

using (134) and the bound ∥W (k−1) − I ∥ ≤ ωk−1. Hence, applying Lemma 32 to (P ′H ′P ′)|⊕j≥kP ′
j
, and

H(k−1)|⊕j≥kP ′
j

(using the fact that H(k−1) is constructed to leave ⊕j≤k−1P ′
j , and hence also ⊕j≥kP ′

j ,
invariant), we may construct the direct rotation V (k) on ⊕j≥kP ′

j which maps from W (k−1)Pk(W (k−1))†

to P ′
k, and which satisfies

∥V (k) − I ∥ ≤
√
2

λgap − ϵ
∥(P ′H ′P ′)|⊕j≥kP ′

j
− (H(k−1))|⊕j≥kP ′

j
∥

≤
√
2

λgap − ϵ
(δ + 2ωk−1∥H∥) . (142)

For the above step, it is necessary to verify that the direct rotation is well-defined. If it were not, then
there would be a nonzero vector |ψ⟩ ∈ W (k−1)P(W (k−1))† ∩ (P ′

k)
⊥. Then, by the definition of these

subspaces,
⟨ψ|P ′H ′P ′|ψ⟩ ≥ λk+1 − ϵ ≥ λk + (λgap − ϵ) , ⟨ψ|H(k−1)|ψ⟩ = λk , (143)

which would imply that
∥P ′H ′P ′ −H(k−1)∥ ≥ λgap − ϵ . (144)

By (141), this is prohibited for sufficiently small ζ and ϵ — so we can safely assume that the direct
rotation is well-defined.

Now we can let
W (k) = (I⊕j<kP ′

j
⊕V (k))W (k−1) , (145)

and
H(k) =W (k)H(0)(W (k))† , (146)

which satisfies

∥W (k) − I ∥ ≤ ωk−1 +

√
2

λgap − ϵ
(δ + 2ωk−1∥H∥) = ωk . (147)

After M + 1 inductive steps, we have constructed the operator

H(M+1) =W (M+1)(H ⊗ P )(W (M+1))† , (148)

whose λk-eigenspace is P ′
k for all k. Hence

∥P ′H ′P ′ −W (M+1)(H ⊗ P )(W (M+1))†∥ ≤ ϵ . (149)

Moreover, since H has no zero eigenvalues (since otherwise we shifted by a factor of the identity), we are
guaranteed that the null space of H ⊗ P is exactly that of (I⊗P ), and rank(H ⊗ P ) = rank(I⊗P ). By
(129) and (131) we know that rank(P ′) = rank(I⊗P ) and rank(P ′H ′P ′) = rank(H ⊗P ) for sufficiently
small ζ and ϵ. So

rank(P ′) = rank(I⊗P ) = rank(H ⊗ P ) = rank(P ′H ′P ′) , (150)
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and the null space of P ′H ′P ′ is exactly that of P ′. Hence by construction of W (M+1),

P ′ =W (M+1)(I⊗P )(W (M+1))† . (151)

We have therefore shown that (H ′,A) is a gadget as in our definition, using U = W (M+1), with
accuracy ϵ (possibly with an additional O(ζ) if shifting of H ′ was necessary earlier in the proof) and
η = O(ϵ) +O(

√
ζ) given explicitly by

η = ωM+1 =
1

2∥H∥

[(
2
√
2

λgap − ϵ
∥H∥+ 1

)M
− 1

][
ϵ+ (ζ + 8

√
2πK

√
ζ)∥H∥

]
. (152)

■

D Gadget combination

In this section we prove the various gadget combination results. Below is a restatement of the general
setup for the section.

D.1 Combination of general gadgets

Here we introduce some preparatory lemmas before proving Proposition 23.

The first lemma allows us to immediately reduce gadgets to the case that the unitary U is a direct
rotation, defined in Definition 30. This allows us to write U = eS for S the generator of the direct
rotation — the off-diagonal properties of S will simplify calculations considerably.

Lemma 35. Suppose (H ′,A) is a (η, ϵ)-gadget for H, where η <
√
2. Let ϵ̃ = ϵ+ 4η∥H∥.

Then (H ′,A) is also a (η, ϵ̃)-gadget for H, where the unitary U in the definition can be assumed to be
the direct rotation W 59 between the subspaces defined by (I⊗P ) and P ′.

Proof of Lemma 35. By the gadget definition we have U such that

P ′ = U(I⊗P )U † , ∥U − I ∥ ≤ η . (153)

As shown by Davis et al.65, the direct rotation W between (I⊗P ) and P ′ minimises ∥W − I ∥ subject
to the first equality above, hence we have

P ′ =W (I⊗P )W † , ∥W − I ∥ ≤ η . (154)

So

∥P ′H ′P ′ −W (H ⊗ P )W †∥ ≤ ϵ+ ∥U(H ⊗ P )U † −W (H ⊗ P )W †∥
≤ ϵ+ ∥U(H ⊗ P )U † −H ⊗ P∥
+ ∥W (H ⊗ P )W † −H ⊗ P∥

≤ ϵ+ 4η∥H∥ . (155)

■
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A gadget H ′ for H has ∥P ′H ′P ′∥ ≤ ∥H∥+ ϵ by definition, however outside the span of P ′ there are no
bounds on H ′. For η small, P ′ will be close to the projector I⊗P . The following lemma provides a
bound for H ′ when instead restricted to the span of I⊗P .

Lemma 36. Suppose (H ′,A) is a (η, ϵ)-gadget for H, with U , P ′, and P as in the definition, and
where U is the direct rotation between (I⊗P ) and P ′. Assume ∥H ′∥ ≤ J ′, and

∥(I⊗P )H ′(I⊗P⊥)∥ ≤ J ′
O . (156)

Then
∥(I⊗P )H ′(I⊗P )∥ ≤ ∥H∥+O(ϵ+ ηJ ′

O + η2J ′) . (157)

Proof of Lemma 36. Let S be the generator of the direct rotation U , so that ∥S∥ = O(η) (see (100))
satisfies

P ′ = eS(I⊗P )e−S . (158)

Hence
∥(I⊗P )H ′(I⊗P )∥ ≤ ∥(I⊗P )(e−SH ′eS −H ′)(I⊗P )∥+ ∥P ′H ′P ′∥ . (159)

By the gadget definition, we have ∥P ′H ′P ′∥ ≤ ∥H∥+ ϵ, and using Lemma 33 we can bound the first
term as

∥(I⊗P )(e−SH ′eS −H ′)(I⊗P )∥ ≤ ∥(I⊗P )[S,H ′](I⊗P )∥+O(η2J ′) . (160)

Furthermore, since S is off-diagonal with respect to (I⊗P ) we have

∥(I⊗P )[S,H ′](I⊗P )∥ ≤ O(ηJ ′
O) , (161)

completing the proof. ■

We now have the necessary tools to prove the gadget combination result Proposition 23. We are
provided with the gadgets (H ′

i,Ai) for each of the Hi (corresponding to Ui, Pi, P ′
i as in the gadget

definition), which immediately suggest using P = ⊗iPi for the gadget H ′ =
∑

iH
′
i for H =

∑
iHi. It

is not immediately clear what unitary U , and hence projector P ′, should be used here, since the Ui do
not necessarily commute so cannot be naïvely composed. The direct rotation provides a natural choice,
however; writing Ui = eSi for all i, we can choose U = e

∑
i Si . The content of the proof is just a long

computation to verify that this choice indeed satisfies the gadget definition.

The following proof is a generalisation of a result of Bravyi et al.31, for which which similar techniques
are used.

Proof of Proposition 23. We begin by reducing to the case of the direct rotation. By Lemma 35, we
may replace ϵ with

ϵ̃ = ϵ+ 4ηJ = O(ϵ+ ηJ) , (162)

and hence assume that each gadget (H ′
i,Ai) uses the direct rotation Ui = eSi . Specifically, there exists

Pi ∈ Proj(Ai) such that
∥(I⊗Pi)e−SiH ′

ie
Si(I⊗Pi)−Hi ⊗ Pi∥ ≤ ϵ̃ , (163)

where Si is the generator of the direct rotation between the projectors I⊗Pi and P ′
i := eSi(I⊗Pi)e−Si .

We have ∥Si∥ ≤ O(η) and Si is an anti-Hermitian operator which is block off-diagonal with respect to
the projectors I⊗Pi and P ′

i
59.
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We define the operators
P := ⊗iPi ∈ Proj(⊗iAi) , S =

∑
i

Si . (164)

We now use the triangle inequality along with Lemmas 33-34 to bound

∥(I⊗P )e−SH ′eS(I⊗P )−H ⊗ P∥

≤
∑
i

∥(I⊗P )(H ′
i − [S,H ′

i] +
1

2
[S, [S,H ′

i]]−
1

6
[S, [S, [S,H ′

i]]])(I⊗P )

−Hi ⊗ P∥+O(nη4J ′) . (165)

Now we bound the terms in the norm separately, using that Sj is block-off-diagonal with respect to
(I⊗Pj), and that (I⊗Pj) commutes with H ′

k and Sk if j ̸= k since Pj acts only on the ancillary Aj

system, whilst H ′
k and Sk act on H⊗Ak.

• (I⊗P )[S,H ′
i](I⊗P ):

Expanding S =
∑

j Sj , notice that (I⊗P )[Sj , H ′
i](I⊗P ) = 0 whenever j ̸= i, since then we can

commute (I⊗Pj) past H ′
i. Hence

(I⊗P )[S,H ′
i](I⊗P ) = (I⊗P )[Si, H ′

i](I⊗P ) . (166)

• (I⊗P )[S, [S,H ′
i]](I⊗P ):

Note that if j ̸= k, then
(I⊗P )[Sj , [Sk, H ′

i]](I⊗P ) = 0 , (167)

since at least one of them must be also different to i. Then, for instance if j ̸= i, we can commute
(I⊗Pj) past H ′

i and Sk. Hence it remains to consider terms of the form

(I⊗P )[Sj , [Sj , H ′
i]](I⊗P ) . (168)

In this case, if j ̸= i, then we have

∥(I⊗P )[Sj , [Sj , H ′
i]](I⊗P )∥ ≤ 4∥Sj∥2∥(I⊗Pi)H ′

i(I⊗Pi)∥
≤ O(η2J + η3J ′

O + η4J ′) , (169)

using Lemma 36, and neglecting the O(η2ϵ) term which is dominated by the other terms in the
regime of small ϵ to which the proposition applies. Hence

(I⊗P )[S, [S,H ′
i]](I⊗P ) = (I⊗P )[Si, [Si, H ′

i]](I⊗P ) +O(η2J + η3J ′
O + η4J ′) . (170)

Here we have used the assumptions of bounded locality and degree in Setup 22. This ensures that
only O(1) of the local terms in S appear in the commutator [S,H ′

i], and similarly for [S, [S,H ′
i]].

• (I⊗P )[S, [S, [S,H ′
i]]](I⊗P ):

Here we consider terms of the form (I⊗P )[Sj , [Sk, [Sl, H ′
i]]](I⊗P ) in various situations. Firstly,

note that if none of j, k, l are equal to i then we can commute (I⊗Pi) into the commutator to
obtain

∥(I⊗P )[Sj , [Sk, [Sl, H ′
i]]](I⊗P )∥ ≤ 8∥Sj∥∥Sk∥∥Sl∥∥(I⊗Pi)H ′

i(I⊗Pi)∥
≤ O(η3J + η4J ′

O + η5J ′) , (171)

45



by Lemma 36, neglecting the O(η3ϵ) term.

If exactly two of the j, k, l are equal to i (k = l = i ̸= j, say), then we can commute (I⊗Pj) past
the other terms to kill the Sj term, and the expression vanishes.

If exactly one of the j, k, l is equal to i, then by commuting (I⊗Pi)Si = Si(I⊗P⊥
i ), we arrive at

∥(I⊗P )[Sj , [Sk, [Sl, H ′
i]]](I⊗P )∥ ≤ O(η3)∥(I⊗P⊥

i )H ′
i(I⊗Pi)∥

= O(η3J ′
O) . (172)

Hence

(I⊗P )[S, [S, [S,H ′
i]]](I⊗P ) = (I⊗P )[Si, [Si, [Si, H ′

i]]](I⊗P )
+O(η3J + η3J ′

O + η5J ′) , (173)

once again using the locality assumptions of Setup 22.

So putting the above bounds together and applying Lemma 33, we obtain

∥(I⊗P )e−SH ′eS(I⊗P )−H ⊗ P∥ ≤
∑
i

∥(I⊗P )e−SiH ′
ie
Si(I⊗P )−Hi ⊗ P∥

+O(nη2J + nη3J ′
O + nη4J ′)

≤ O(nϵ+ nηJ + nη3J ′
O + nη4J ′) , (174)

where the last inequality follows because the H ′
i are gadgets for the Hi.

Noting also that ∥eS − I ∥ = O(nη), this completes the proof that (H ′,A) is a (η′, ϵ′)-gadget for H as
required.

■

D.2 Combination of low-energy gadgets

Having proved Proposition 23, we know that the H ′ from Proposition 24 is an (η′, ϵ′)-gadget for
H. It remains to prove that it is in fact a (∆′, η′, ϵ′)-gadget, which requires replacing the projector
P̃ = eS(I⊗P )e−S in (174) by a low-energy projector P≤∆′(H′). This requires the use of the following
corollary to the Davis-Kahan sin θ theorem (Lemma 32).

Lemma 37. Let A ∈ Herm(H), and let P ∈ Proj(H) be a projector of the same rank as P≤∆(A), where
P≤∆(A) ∈ Proj(H) is the projector onto the eigenvectors of A with eigenvalues less than ∆. Suppose
that ∥PAP∥ ≤ λ.

Then, for any ∆ > λ, the direct rotation U ∈ U(H) from P to P≤∆(A) satisfies

∥U − I ∥ ≤
√
2

∆− λ
∥P⊥AP∥ . (175)

Proof of Lemma 37. Follows from Lemma 32 using A 7→ PAP , B 7→ A. ■
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Proof of Proposition 24. By Proposition 23, we have

τ := ∥(I⊗P )e−SH ′eS(I⊗P )−H ⊗ P∥ ≤ O(nϵ+ nηJ + nη3J ′
O + nη4J ′) , (176)

and by condition (48) this implies that

τ

∆
→ 0 as n→ ∞. (177)

Letting P̃ = eS(I⊗P )e−S and applying the triangle inequality, this gives

∥P̃H ′P̃∥ ≤ ∥H∥+ τ . (178)

We seek to use Lemma 37 to argue that P̃ is “close to” P≤∆′(H′). To do this, we start by bounding
∥P̃H ′P̃⊥∥. We have

∥P̃H ′P̃⊥∥ = ∥(I⊗P )e−SH ′eS(I⊗P⊥)∥

≤
∑
i

∥(I⊗P )e−SH ′
ie
S(I⊗P⊥)∥ , (179)

by the triangle inequality. For each i, we define H̃i = e−SiH ′
ie
Si . Note that this operator is block

diagonal in the basis of the projector (I⊗Pi), in which Si is block off-diagonal. Here we are using the
definition of the direct rotation, and the fact that eSi(I⊗Pi)e−Si is a low-energy projector for H ′

i by
definition. Note also that each H̃i acts on O(1) sites. Now we can write

∥P̃H ′P̃⊥∥ ≤
∑
i

∥(I⊗P )e−SeSiH̃ie
−SieS(I⊗P⊥)∥ . (180)

From here we use Lemma 33 to expand

eSiH̃ie
−Si = H̃i + [Si, H̃i] +Ri , (181)

where Ri acts on O(1) sites, and by Lemma 34 we can bound ∥Ri∥ = O(J ′η2). Hence

e−SeSiH̃ie
−SieS = H̃i + [Si, H̃i] +Ri

− [S, H̃i + [Si, H̃i] +Ri]

+ R̃i , (182)

where the remainder R̃i is similarly obtained by Lemmas 33-34 with ∥R̃i∥ = O(J ′η2). Then, using that
Si, H̃i, and Ri each act on O(1) sites, we can estimate

e−SeSiH̃ie
−SieS = H̃i −

∑
j ̸=i

[Sj , H̃i] +O(J ′η2) . (183)

47



Note that only O(1) of the terms in the sum will be nonzero, and for j ̸= i, Sj will commute with I⊗Pi.
Therefore

∥(I⊗P )[Sj , H̃i](I⊗P⊥)∥ ≤ 2∥Sj∥∥(I⊗Pi)H̃i∥
≤ O(η)∥e−Si(I⊗Pi)eSiH ′

i∥
= O(η)∥P≤∆(H′

i)
H ′
i∥

≤ O(η)(∥Hi∥+ ϵ) = O(ηJ + ηϵ) . (184)

In the last line we have used the fact that H ′ defines a (∆, η, ϵ)-gadget for Hi. Hence we can conclude
that

(I⊗P )e−SeSiH̃ie
−SieS(I⊗P⊥) = O(J ′η2 + ηJ + ηϵ) , (185)

and so, inserting into (179), we have

∥P̃H ′P̃⊥∥ := ω = O(nJ ′η2 + nηJ + nηϵ) . (186)

Notice that, since we are interested in the case where ϵ = o(1) and J = θ(1), the first two terms on the
right-hand side will typically dominate the third one.

Now we show that the restriction ofH ′ to the image of P̃⊥ has high-energy eigenvalues. Let |ψH⟩⊗|ψAi⟩ ∈
H ⊗Ai. We consider the expression (⟨ψH| ⊗ ⟨ψAi |)H ′

i(|ψH⟩ ⊗ |ψAi⟩) in two cases:

• Case 1: |ψAi⟩ ∈ PiAi

Then

(⟨ψH| ⊗ ⟨ψAi |)H ′
i(|ψH⟩ ⊗ |ψAi⟩)

≥ (⟨ψ|H ⊗ ⟨ψAi |)P≤∆(H′
i)
H ′
iP≤∆(H′

i)
(|ψH⟩ ⊗ |ψAi⟩)

≥ (⟨ψ|H ⊗ ⟨ψAi |)eSi(Hi ⊗ Pi)e
−Si(|ψH⟩ ⊗ |ψAi⟩)− ϵ

≥ ⟨ψH|Hi|ψH⟩ − (ϵ+ 2Jη) . (187)

• Case 2: |ψAi⟩ ∈ P⊥
i Ai

Then

(⟨ψH| ⊗ ⟨ψAi |)H ′
i(|ψH⟩ ⊗ |ψAi⟩)

≥ ∆(⟨ψH| ⊗ ⟨ψAi |)P>∆(H′
i)
(|ψH⟩ ⊗ |ψAi⟩)

= ∆
(
(⟨ψH| ⊗ ⟨ψAi |)eSi(I⊗P⊥

i )e−Si(|ψH⟩ ⊗ |ψAi⟩)
)

≥ ∆(1− 2η)

≥ ⟨ψH|Hi|ψH⟩ , (188)

using that ∆(1− 2η) ≥ J for large enough n, as ∆ = Ω(nJ) by assumption.

Now consider any |ψ⟩ ∈ H ⊗ (⊗iAi) of the form

|ψ⟩ = eS |ψH⟩ ⊗ (⊗i|ψAi⟩) , (189)
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where Pj |ψAj ⟩ = 0 for at least one value of j. Note that such states span the image of P̃⊥. Then

⟨ψ|P̃⊥H ′P̃⊥|ψ⟩ =
∑
i

⟨ψ|H ′
i|ψ⟩

≥
∑
i ̸=j

(
⟨ψH|Hi|ψH⟩ − ϵ− 2Jη

)
+∆(1− 2η)

≥ ⟨ψH|H|ψH⟩ − (N − 1)(ϵ+ 2Jη)− J +∆(1− 2η)

≥ ∆(1− 2η)−
(
∥H∥+ J +N(ϵ+ 2Jη)

)
≥ 3

4
∆ , (190)

where we have used the condition (46).

Now let H̃ := P̃H ′P̃ + P̃⊥H ′P̃⊥, so that ∥H ′ − H̃∥ = O(nJ ′η2) by (186). Based on (178) and (190),
we know that

spec H̃ ⊂ [−(∥H∥+ τ), ∥H∥+ τ ] ∪ [
3

4
∆,∞) , (191)

corresponding to low- and high-energy projectors P̃ and P̃⊥ respectively. Note that (46) in particular
implies that ∆ ≥ 4∥H∥, so 1

2∆− ∥H∥ ≥ 1
4∆. Using this, and (177), we see

1
2∆− (∥H∥+ τ)

∆
≥ 1

4
− τ

∆
= Ω(1) (192)

for large n. But by (46), (47), and (48),

ω

∆
= O(nη2J ′/∆) +O(nηJ/∆) +O(nηϵ/∆) = o(1) . (193)

for sufficiently large n, we will have ω < 1
2∆− (∥H∥+ τ), and hence

spec H̃ ⊂ (−∞,
1

2
∆− ω] ∪ [

3

4
∆,∞) , (194)

once again corresponding to subspaces defined by P̃ and P̃⊥. Now, by (186) and Lemma 29, we see
that the full Hamiltonian H ′ has a (≤ 1

2∆)-low energy subspace with the same dimension as the rank
of P̃ , and moreover

specH ′ ⊂ (−∞,
1

2
∆] ∪ [

3

4
∆− ω,∞) . (195)

Now set ∆′ = ∆/2. Notice that ∥P̃ − P≤∆′(H′)∥ < 1, since otherwise there would be a state of energy
less than ∆′ in the image of P̃⊥, which is disallowed by (191). So the direct rotation W ∈ U(H⊗A)
from P̃ to P≤∆′(H′) is well-defined, and by Lemma 37

∥W − I ∥ ≤
√
2

1
2∆− ∥H∥ − τ

ω . (196)

Again using that ∆ ≥ 4∥H∥, so 1
2∆− ∥H∥ ≥ 1

4∆ = Ω(∆). By (48), this will dominate the relatively

49



small τ term, so using (186) and that ∆ = Ω(J ′) we have

∥W − I ∥ = O(ω/J ′) = O(nη2 + nηJ/J ′ + nηϵ/J ′)

= O
(
nη2(1 + J/ηJ ′ + ϵ/J ′η)

)
= O

(
nη2

(
1 + o(1/n) + o(ϵ/nJ)

))
= O(nη2) , (197)

where in the last line we used (48). We can write W in terms of its anti-Hermitian and off-diagonal
generator X, W = eX , where ∥X∥ = O(nη2) by (100). Then

P≤∆′(H′) = U(I⊗P )U † , (198)

where U = eXeS . Note that

∥U − I ∥ ≤ ∥eX(eS − I)∥+ ∥eX − I ∥
≤ ∥S∥+ ∥X∥
= O(nη) +O(nη2) = O(nη) . (199)

It remains to bound find ϵ′ to achieve a bound of the form

∥P≤∆′(H′)H
′P≤∆′(H′) − U(H ⊗ P )U †∥ ≤ ϵ′ . (200)

Using (178) and the triangle inequality we have

∥P≤∆′(H′)H
′P≤∆′(H′) − U(H ⊗ P )U †∥ ≤ ∥P̃ (e−XH ′eX −H ′)P̃∥+ τ , (201)

and the first term can be bounded using Lemma 33 (and bounding the remainder with (118)) by

∥P̃ (e−XH ′eX −H ′)P̃∥ ≤ ∥P̃ [X,H ′]P̃∥+ 1

2
∥[X, [X,H ′]]∥

≤ 2∥X∥ · ∥P̃H ′P̃⊥∥+ 2∥X∥2 · ∥H ′∥
≤ O(n3η4J ′ + n2η3J) . (202)

In the second inequality we have used that X is off-diagonal with respect to P̃ , and in the third
inequality we have used (186) to bound ∥P̃H ′P̃⊥∥. Hence

ϵ′ = O(nϵ+ nηJ + nη3J ′
O + n3η4J ′) . (203)

■

D.3 Ground-state estimation with bounded-strength low-energy gadgets

The following proof of Theorem 25 is a simple corollary of Proposition 23, and generalises the proof of
Bravyi et al., Theorem 131.

Proof of Theorem 25. For the first part of this proof, we seek to put a lower bound on the individual
gadgets H ′

i. We write
H ′
i = P≤∆(H′

i)
H ′
iP≤∆(H′

i)
+ P>∆(H′

i)
H ′
iP>∆(H′

i)
, (204)

and consider the high- and low-energy parts separately.
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For the low-energy part, we can apply the gadget definition to write

∥P≤∆(H′
i)
H ′
iP≤∆(H′

i)
−Hi ⊗ Pi∥ ≤ ϵ+ ∥eSi(Hi ⊗ Pi)e

−Si −Hi ⊗ Pi∥
≤ O(ϵ+ ηJ) , (205)

using Lemma 33, and hence

P≤∆(H′
i)
H ′
iP≤∆(H′

i)
≥ Hi ⊗ Pi +O(ϵ+ ηJ) . (206)

For the high-energy part, we first notice that since the spectrum of P>∆(H′
i)
H ′
iP>∆(H′

i)
lies in (∆,∞),

where ∆ ≥ ∥Hi∥ − ϵ (by the assumption of the (∆, η, ϵ)-gadget definition that P≤∆(H′
i)
H ′
iP≤∆(H′

i)
has

the same spectrum as H ′
i up to error ϵ), and so

P>∆(H′
i)
H ′
iP>∆(H′

i)
≥ P>∆(H′

i)
(Hi ⊗ I)P>∆(H′

i)
+O(ϵ) . (207)

Furthermore, we can approximate the RHS of this expression by

∥P>∆(H′
i)
(Hi ⊗ I)P>∆(H′

i)
−Hi ⊗ P⊥

i ∥

= ∥eSi(I⊗P⊥
i )e−Si(Hi ⊗ I)eSi(I⊗P⊥

i )e−Si −Hi ⊗ P⊥
i ∥

≤ O(ηJ) , (208)

by applying Lemma 33. Hence

P>∆(H′
i)
H ′
iP>∆(H′

i)
≥ Hi ⊗ P⊥

i +O(ϵ+ ηJ) . (209)

Summing (206) and (209) for all i, we obtain

H ′ =
∑
i

H ′
i ≥

∑
i

(Hi ⊗ I+O(ϵ+ ηJ)) = H ⊗ I+O(nϵ+ nηJ) , (210)

and so the ground state energy of H ′ must satisfy

λ0(H
′) ≥ λ0(H) +O(nϵ+ nηJ) . (211)

Now notice that the restriction of H ′ to a subspace can only increase λ0, so

λ0(H
′) = λ0(e

−SH ′eS) ≤ λ0((I⊗P )e−SH ′eS(I⊗P )) . (212)

Here, as in the work of Bravyi et al.31, we abuse notation slightly: in the expression
λ0((I⊗P )e−SH ′eS(I⊗P )), we implicitly take the ground state of the restriction of e−SH ′eS to the
image of (I⊗P ). So by Proposition 23 we have

λ0(H
′) ≤ λ0(H) +O(nϵ+ nηJ + nη3J ′

O + nη4J ′) . (213)

Combining (211)-(213) gives the desired result. ■

E Gadget energy scaling

In this section, we prove Theorem 26. Firstly, we introduce the notion of a k-local function, which can
be thought of as a classical k-local observable on a state space {0, 1}n.
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Definition 38 (k-local function). Let f : {0, 1}n → R be a function. We say that f is k-local if it can
be written as a sum of functions

f(x1, x2, . . . , xn) =
∑
i

fi(x1, x2, . . . , xn) , (214)

where the fi : {0, 1}n → R each depend on at most k of their inputs.

The following simple lemmas show that there exist k-local functions which cannot be approximated
well by k′-local functions for k′ < k.

Lemma 39. Let f be a k-local function on n inputs. Then Rf : {0, 1}n−1 → R, defined by

Rf(x1, . . . , xn−1) = f(x1, . . . , xn−1, 0)− f(x1, . . . , xn−1, 1) (215)

is (k − 1)-local.

Proof of Lemma 39. Decomposing f =
∑

i fi as in Definition 38, note that any fi which does not
depend on xn has Rfi = 0. Moreover, any fi which does depend on xn depends on at most (k − 1)
other inputs, hence Rfi is (k − 1)-local. ■

Lemma 40. Let k > k′ > 0. There exists a k-local function f : {0, 1}k → R with maxx∈{0,1}k |f(x)| ≤ 1

such that for any k′-local function g : {0, 1}k → R,

max
x∈{0,1}k

|f(x)− g(x)| ≥ 1 . (216)

Proof of Lemma 40. For any r ≥ 1, we can define Rrf : {0, 1}k−r → R by

Rrf(x1, . . . , xk−r) =
∑

xk−r+1,...,xk∈{0,1}

(−1)
∑r

j=1 xk−r+jf(x1, . . . , xk) . (217)

Applying Lemma 39 inductively, note that Rrf is (k − r)-local. In particular, Rk′g is constant for any
k′-local g.

Let f : {x1, . . . , xk} be the parity function

f(x1, . . . , xk) = (−1)
∑k

i=1 xi . (218)

Then we can calculate

Rk′f(x1, . . . , xk−k′) =
∑

xk−k′+1,...,xk∈{0,1}

(−1)
∑k′

j=1 xk−k′+j · (−1)
∑k

i=1 xi

= 2k
′
(−1)

∑k−k′
j=1 xj (219)

Hence Rk′f(x1, . . . , xk−k′) takes values ±2k
′ , whereas Rk′g is a constant function. So there must exist

exist y ∈ {0, 1}k−k′ such that
|Rk′f(y)−Rk′g(y)| ≥ 2k

′
. (220)
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Hence, expanding Rk′f(y) and Rk′g(y) into 2k
′ terms using (217), we must have

max
x∈{0,1}k

|f(x)− g(x)| ≥ 1 . (221)

■

Note that Lemma 40 uses the parity function (which appears in the proof of Theorem 26) for illustration,
but a similar argument could apply to most k-local functions; the vector space of k-local functions has
a higher dimension than that of k′-local functions.

The following proof uses the intuition from Lemma 40 to argue that the target k-local term cannot be
reproduced by a k′-local Hamiltonian.

Proof of Theorem 26. By the gadget definition, we have U ∈ U(H⊗A) and P ∈ Proj(A) such that

∥U − I ∥ ≤ η , ∥P ′H ′P ′ − U(H ⊗ P )U †∥ ≤ ϵ , where P ′ = U(I⊗P )U † . (222)

For any given x ∈ {0, 1}k, define |ψx⟩ ∈ H to be the pure state whose ith qubit is in the state |xi⟩.
Moreover let |ϕ⟩ ∈ A be some state satisfying P |ϕ⟩ = |ϕ⟩. Then define functions F, f : {0, 1}k → R by

F (x) = tr[H|ψx⟩⟨ψx|] ,
f(x) = tr[H ′(|ψx⟩⟨ψx| ⊗ |ϕ⟩⟨ϕ|

)
] . (223)

Notice that F and f are k- and k′-local respectively, and by Lemma 40 there exists some y ∈ {0, 1}k
such that

|F (y)− f(y)| ≥ J . (224)

On the other hand, for all x ∈ {0, 1}k we have

|F (x)− f(x)| = | tr[(H ⊗ P )(|ψx⟩⟨ψx| ⊗ |ϕ⟩⟨ϕ|)]− tr[H ′(|ψx⟩⟨ψx| ⊗ |ϕ⟩⟨ϕ|)]|
≤ ∥(I⊗P )H ′(I⊗P )−H ⊗ P∥
= ∥P ′UH ′U †P ′ − U(H ⊗ P )U †∥
≤ ϵ+ ∥P ′(H ′ − UH ′U †)P ′∥
≤ ϵ+ 2η∥H ′∥ . (225)

Hence we must have scaling

∥H ′∥ ≥ J − ϵ

2η
, (226)

as required. ■

F Dissipative gadgets

F.1 Dissipative gadgets in isolation

Here we first prove Proposition 27. This follows from direct calculation, by Taylor expanding the
expression e−iδtH′ and identifying the leading order terms in δt. This approach is complicated by the
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fact that H ′ itself consists of terms that are O((δt)−1) and O((δt)−1/2), but the task is simplified since
we only need to calculate the time evolution of states of the form |ψ⟩ ⊗ |0⟩.

Proof of Proposition 27. First, notice that the requirement H2
|1⟩⟨1| = ω2 I implies that

e−iδtH|1⟩⟨1| = I , H−1
|1⟩⟨1| = ω−2H|1⟩⟨1| . (227)

Now we expand e−iδtH′ :

e−iδtH
′
=

∑
k≥0

(−iδt)k

k!

(
HI ⊗ I+HX ⊗X +H|1⟩⟨1| ⊗ |1⟩⟨1|

)k
. (228)

We can expand out this expression so that each term is a product of a factors of HI ⊗ I, b factors of
HX ⊗X, and c factors of H|1⟩⟨1|, for some a, b, c ∈ N. Such a term is accompanied by (δt)a+b+c, to give
a total order of (δt)a+

1
2
b (using that ∥HX∥ = O((δt)−1/2) and ∥H|1⟩⟨1|∥ = O((δt)−1)). There are eight

cases producing terms of order O((δt)3/2) and lower, which we enumerate in Fig. 11.

Case a b c Order
1 0 0 0 O(1)
2 0 0 N+

3 0 1 N O((δt)1/2)

4 1 0 0 O(δt)
5 1 0 N+

6 0 2 N
7 1 1 N O(t3/2)
8 0 3 N

Figure 11: Enumeration of possible cases for the values of a, b, c giving rise to terms of order O((δt)3/2)
and lower in (228). We denote N+ = {1, 2, . . . } and N = {0, 1, 2, . . . }.

In particular, we are interested in the block-elements (I⊗⟨0|)e−iδtH′
(I⊗|0⟩) and (I⊗⟨1|)e−iδtH′

(I⊗|0⟩),
since the other blocks in e−iδtH′ will annihilate states of the form |ψ⟩ ⊗ |0⟩.

• (I⊗⟨0|)e−iδtH′
(I⊗|0⟩):

Note that each factor of HX ⊗X flips the ancillary qubit A, whereas each factor of H|1⟩⟨1| ⊗ |1⟩⟨1|
annihilates states with the ancillary qubit in state |0⟩. As a result, the only contributions to
(I⊗⟨0|)e−iδtH′

(I⊗|0⟩) from Fig. 11 are those such that b is even. Moreover, c can only be nonzero
if b is at least 2 (so that the factors of H|1⟩⟨1| ⊗ |1⟩⟨1| can be sandwiched between two HX ⊗X
factors). This restricts us to cases 1, 4, and 6, so

(I⊗⟨0|)e−iδtH′
(I⊗|0⟩) = I−iδtHI +

∑
k≥2

(−iδt)k

k!
HXH

k−2
|1⟩⟨1|HX +O((δt)2) . (229)
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Furthermore, the sum can be simplified to

∑
k≥2

(−iδt)k

k!
HXH

k−2
|1⟩⟨1|HX = HXH

−2
|1⟩⟨1|

(∑
k≥2

(−iδt)k

k!
Hk

|1⟩⟨1|

)
HX

= HXH
−2
|1⟩⟨1|

(
e−iδtH|1⟩⟨1| − I+iδtH|1⟩⟨1|

)
HX

= iδtω−2HXH|1⟩⟨1|HX , (230)

using (227). Hence we have shown that

(I⊗⟨0|)e−iδtH′
(I⊗|0⟩) = I−iδt(HI − ω−2HXH|1⟩⟨1|HX) +O((δt)2) . (231)

• (I⊗⟨1|)e−iδtH′
(I⊗|0⟩):

By a similar argument to above, the only contributing terms from Fig. 11 are those such that b is
odd, so we can reduce to the cases 3, 7, and 8. In case 3, also notice that the HX ⊗X term must
appear on the right of all the H|1⟩⟨1| ⊗ |1⟩⟨1| terms. Hence

(I⊗⟨1|)e−iδtH′
(I⊗|0⟩) =

∑
k≥1

(−iδt)k

k!
Hk−1

|1⟩⟨1|HX +O((δt)3/2) . (232)

The sum here can be similarly simplified by (227):

∑
k≥1

(−iδt)k

k!
Hk−1

|1⟩⟨1|HX = H−1
|1⟩⟨1|

(∑
k≥0

(−iδt)k

k!
Hk

|1⟩⟨1| − I

)
HX

= H−1
|1⟩⟨1|

(
e−iδtH|1⟩⟨1| − I

)
HX

= 0 , (233)

so
(I⊗⟨1|)e−iδtH′

(I⊗|0⟩) = O((δt)3/2) , (234)

which, along with (231), completes the proof.

■

F.2 Trotter errors

The idea for the proof of Proposition 28 is to factorise the overall evolution operator

e−iδt(H
′+Helse⊗I) ≈ e−iδtHelse⊗Ie−iδtH

′
. (235)

From here, we simply apply Proposition 27 to the initial state |ψ⟩ ⊗ |0⟩, and then evolve the H system
of the resultant state under Helse. The technical difficulty is in bounding the errors of this Trotter
expansion in a way which does not depend on the size of the system. Qualitatively, one might expect
this behaviour due to the bounded spread of correlations in the system over a short time δt, under which
only a limited set of interactions in Helse can “interfere” with the evolution under H ′. The difficulty of
obtaining such bounds is compounded by the presence of terms in H ′ which scale as O((δt)−1) and
O((δt)−1/2). Our approach uses an explicit form of the Trotter error given by Childs et al.66. We briefly
outline this process here.
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Let A,B ∈ Lin(H). We aim to find an expression for the Trotter error incurred by the expansion
et(A+B) ≈ etAetB.

Observe that the function f(t) = etAetB satisfies the differential equation

f ′(t) = AetAetB + etABetB

= (A+B)f(t) + etA
(
B − e−tABetA

)
etB . (236)

This differential equation, with initial condition f(0) = I, can be solved using following lemma.

Lemma 41 (Variation of parameters formula66). Let K ∈ Lin(H), and let L(t) ∈ Lin(H) be a
continuous operator-valued function of t. Suppose that f(t) satisfies the differential equation

f ′(t) = Kf(t) + L(t) , f(0) = I . (237)

Then there is a unique solution for f which is given by

f(t) = etK +

∫ t

0
d τe(t−τ)KL(τ) . (238)

Hence, using Lemma 41 with K = A+B and L(t) = etA(B − e−tABetA)etB, we find that the Trotter
error is given by

etAetB − et(A+B) =

∫ t

0
d τe(t−τ)(A+B)eτA

(
B − e−τABeτA

)
eτB (239)

The expression (239) is particularly convenient because, when A is a local Hamiltonian and B acts only
on O(1) sites, the bracketed term (B − e−τABeτA) can be bounded independently of n.

Lemma 42. Let H =
∑

i hi be a k-local Hamiltonian on a system H = ⊗n
i=1Hi, with the degree of the

interaction hypergraph bounded by an O(1) constant and ∥hi∥ = O(1). Let A be an observable supported
on a set of O(1) sites. Then

∥eitHAe−itH −A∥ ≤ O(∥A∥t) . (240)

Proof of Lemma 42. For X ∈ Lin(H), define fX(t) = tr[X(eitHAe−itH −A)], so that

∥eitHAe−itH −A∥ = max
X∈D(H)

|fX(t)| . (241)

We can see that fX(0) = 0 and f ′X(t) = i tr[XeitH [H,A]e−itH ]. Moreover, since H is local on an
O(1)-degree hypergraph, and A is supported on an O(1) set, only O(1) terms in H contribute to
the commutator and hence |f ′X(t)| ≤ ∥X∥1∥[H,A]∥ = O(∥X∥1∥A∥). By the mean value theorem, we
therefore deduce that

fX(t) = O(∥X∥1∥A∥t) , (242)

so by (241) we are done. ■

F.3 Dissipative gadgets with other terms

Proof of Proposition 28. Using (239) with t = δt, A = −iHelse ⊗ I, and B = −iH ′, we obtain a Trotter
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error given by

e−iδtHelse⊗Ie−iδtH
′ − e−iδt(Helse⊗I+H′) := E

= −i
∫ δt

0
d τe−i(δt−τ)(Helse⊗I+H′)e−iτHelse⊗I

(
H ′ − eiτHelse⊗IH ′e−iτHelse⊗I

)
e−iτH

′
. (243)

We can write E in block form in the basis of the ancillary space,

E =

(
(I⊗⟨0|)E(I⊗|0⟩) (I⊗⟨0|)E(I⊗|1⟩)
(I⊗⟨1|)E(I⊗|0⟩) (I⊗⟨1|)E(I⊗|1⟩)

)
, (244)

and we will focus on individually bounding these blocks. Notice that, commuting projectors on the
ancillary space past Helse ⊗ I and applying Lemma 42, we have

∥(I⊗⟨0|)(H ′ − eiτHelse⊗IH ′e−iτHelse⊗I)(I⊗|0⟩)∥
= ∥(I⊗⟨0|)H ′(I⊗|0⟩)− eiτHelse(I⊗⟨0|)H ′(I⊗|0⟩)e−iτHelse∥
= ∥HI − eiτHelseHIe

−iτHelse∥ = O(δt) . (245)

With a similar process for the other blocks, we obtain the following bounds:

∥(I⊗⟨0|)(H ′ − eiτHelse⊗IH ′e−iτHelse⊗I)(I⊗|0⟩)∥ = O(δt) , (246a)

∥(I⊗⟨1|)(H ′ − eiτHelse⊗IH ′e−iτHelse⊗I)(I⊗|0⟩)∥ = O(δt1/2) , (246b)

∥(I⊗⟨0|)(H ′ − eiτHelse⊗IH ′e−iτHelse⊗I)(I⊗|1⟩)∥ = O(δt1/2) , (246c)

∥(I⊗⟨1|)(H ′ − eiτHelse⊗IH ′e−iτHelse⊗I)(I⊗|1⟩)∥ = O(1) . (246d)

Since our initial state is of the form |ψ⟩ ⊗ |0⟩, we need only bound the magnitudes of the blocks
(I⊗⟨0|)E(I⊗|0⟩) and (I⊗⟨1|)E(I⊗|0⟩). To this end, we need to describe the action of the operator
e−iτH

′ on the operators (I⊗|0⟩) and (I⊗|1⟩), for 0 ≤ τ ≤ δt. By considering the series expansion as in
(228), and noting that the ancillary qubit can only be flipped by a HX ⊗X term of order O((δt)1/2),
we see that

e−iτH
′
(I⊗|0⟩) = O(1)⊗ |0⟩+O((δt)1/2)⊗ |1⟩ , (247a)

e−iτH
′
(I⊗|1⟩) = O((δt)1/2)⊗ |0⟩+O(1)⊗ |1⟩ . (247b)

Notice that here we abuse big-O notation for matrices; for example, in the above expression O((δt)1/2)
should be interpreted as a matrix with operator norm bounded by O(δt1/2). We can also crudely upper
bound E as follows:

∥E∥ ≤
∫ δt

0
d τ∥H ′ − eiτHelse⊗IH ′e−iτHelse⊗I∥

≤
∫ δt

0
d τO(1) = O(δt) , (248)

using (246d) to give the most pessimistic bound. Therefore in particular

eiτHelse⊗Iei(δt−τ)(Helse⊗I+H′) = eiδtHelse⊗Iei(δt−τ)H
′
+O(δt) , (249)
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so, using (247a),

eiτHelse⊗Iei(δt−τ)(Helse⊗I+H′)(I⊗|0⟩) = e−iδtHelse⊗Iei(δt−τ)H
′
(I⊗|0⟩) +O(δt)

= O(1)⊗ |0⟩+O((δt)1/2)⊗ |1⟩ , (250)

and similarly

eiτHelse⊗Iei(δt−τ)(Helse⊗I+H′)(I⊗|1⟩) = O((δt)1/2)⊗ |0⟩+O(1)⊗ |1⟩ . (251)

We can now obtain the necessary bounds on the blocks of E. Firstly, we have

∥(I⊗⟨0|)E(I⊗|0⟩)∥

≤
∫ δt

0
d τ∥(I⊗⟨0|)e−i(δt−τ)(Helse⊗I+H′)e−iτHelse⊗I(H ′ − eiτHelse⊗IH ′e−iτHelse⊗I)e−iτH

′
(I⊗|0⟩)∥

≤
∫ δt

0
d τ

[
O(1)∥(I⊗⟨0|)(H ′ − eiτHelse⊗IH ′e−iτHelse⊗I)(I⊗|0⟩)∥

+O((δt)1/2)∥(I⊗⟨1|)(H ′ − eiτHelse⊗IH ′e−iτHelse⊗I)(I⊗|0⟩)∥
+O((δt)1/2)∥(I⊗⟨0|)(H ′ − eiτHelse⊗IH ′e−iτHelse⊗I)(I⊗|1⟩)∥

+O(δt)∥(I⊗⟨1|)(H ′ − eiτHelse⊗IH ′e−iτHelse⊗I)(I⊗|1⟩)∥
]

= O((δt)2) , (252)

using (246a-246d). Similarly, we can bound

∥(I⊗⟨1|)E(I⊗|0⟩)∥

≤
∫ δt

0
d τ∥(I⊗⟨1|)e−i(δt−τ)(Helse⊗I+H′)e−iτHelse⊗I(H ′ − eiτHelse⊗IH ′e−iτHelse⊗I)e−iτH

′
(I⊗|0⟩)∥

≤
∫ δt

0
d τ

[
O((δt)1/2)∥(I⊗⟨0|)(H ′ − eiτHelse⊗IH ′e−iτHelse⊗I)(I⊗|0⟩)∥

+O(1)∥(I⊗⟨1|)(H ′ − eiτHelse⊗IH ′e−iτHelse⊗I)(I⊗|0⟩)∥
+O(δt)∥(I⊗⟨0|)(H ′ − eiτHelse⊗IH ′e−iτHelse⊗I)(I⊗|1⟩)∥

+O((δt)1/2)∥(I⊗⟨1|)(H ′ − eiτHelse⊗IH ′e−iτHelse⊗I)(I⊗|1⟩)∥
]

= O((δt)3/2) . (253)

With the bounds (252) and (253) on the blocks of the Trotter error we can now conclude that

e−iδt(H
′+Helse⊗I)(|ψ⟩ ⊗ |0⟩) = e−iδtHelse⊗Ie−iδtH

′
(|ψ⟩ ⊗ |0⟩) + E(|ψ⟩ ⊗ |0⟩)

= e−iδtHelse⊗I(e−iδtH |ψ⟩+O((δt)2))⊗ |0⟩+O((δt)3/2)⊗ |1⟩
+O((δt)2)⊗ |0⟩+O((δt)3/2)⊗ |1⟩

=
(
e−iδtHelsee−iδtH |ψ⟩+O((δt)2)

)
⊗ |0⟩+O((δt)3/2)⊗ |1⟩ , (254)

where in the second inequality we invoke Proposition 27. It remains only to bound the Trotter error in
the product e−iδtHelsee−iδtH , which we can accomplish similarly. Using (239) with t = δt, A = −iHelse,
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B = −iH, we obtain

e−iδtHelsee−iδtH − e−iδt(H+Helse)

= −i
∫ δt

0
d τe−i(δt−τ)(H+Helse)e−iτHelse(H − eiτHelseHe−iτHelse)e−iτH . (255)

So by Lemma 42 we have

e−iδtHelsee−iδtH − e−iδt(H+Helse) ≤ O((δt)2) (256)

Combining (256) with (254) completes the proof. ■
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