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Modeling of a micropolar thin film flow with rapidly varying
thickness and non-standard boundary conditions

Maŕıa ANGUIANO∗ and Francisco Javier SUÁREZ-GRAU†

Abstract

In this paper, we study the asymptotic behavior of the micropolar fluid flow through a thin domain
assuming zero Dirichlet boundary condition on the top boundary, which is rapidly oscillating, and non-
standard boundary conditions on the flat bottom. Assuming “Reynolds roughness regime”, in which the
thickness of the domain is very small compared to the wavelenth of the roughness (i.e. a very slight roughness),
we rigorously derive a generalized Reynolds equation for pressure clearly showing the roughness-induced
effects. Moreover, we give expressions for the average velocity and microrotation.

AMS classification numbers: 35B27, 35Q35, 76A05, 76M50, 76A20.

Keywords: micropolar fluid; thin-film flow; rapidly oscillating boundary; nonzero boundary conditions; homo-
genization.

1 Introduction

Eringen [23] in 60’s proposed the model of micropolar fluid which has been extensively studied both in the
engineering and mathematical literature, due to its practical importance. This model takes into consideration
the microstructure of the fluid particles and captures the effects of its rotation, so the micropolar fluid model
describes the motion of a lot of real fluids in a better way than the classical (Newtonian) model. Some examples
are liquid crystals, animal blood, muddy fluids, certain polymeric fluids or even water in models with small
scales. The rotation of the fluid particles is mathematically described by introducing the microrotation field,
together with the standard velocity and pressure fields. Accordingly, a new governing equation coming from the
conservation of angular momentum. Thus, the stationary and linearized micropolar equations in dimensionless
form is given by (see Lukaszewicz [25])

−∆u +∇p = 2N2rot(w),

div(u) = 0,

−RM∆w + 4N2w = 2N2rot(w),

(1.1)

where u denotes the velocity vector field, p the pressure and w the microrotation field. Dimensionless (non-
Newtonian) parameter N2 characterizes the coupling between the equations for the velocity and microrotation,
and the second dimensionless parameter denoted by RM is, in fact, related to the characteristic length of the
microrotation effects.
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An important problem in lubrication theory is to derive lower-dimensional models to describe the flow of
fluid in a narrow space between two surfaces in relative motion. To describe the classical setting, we can define
a thin domain by

Ω̂ε = ω × (0, εh(x′)), x′ = (x1, x2) ∈ ω ⊂ R2, 0 < ε� 1, (1.2)

where εh represents the thickness of the domain, with h a smooth function and the small parameter ε is devoted
to tend to zero. Thus, prescribing velocity on the bottom Γ̂0 = ω × {0} and zero on the top Γ̂ε1 = ω × {εh(x′)}
(we don’t care about the lateral boundary conditions here), i.e.

u = s = (s′, 0) = (s1, s2, 0) on Γ̂0, u = 0 on Γ̂ε1, (1.3)

then Bayada & Lukaszewicz [9] gave a mathematical proof of the transition from the micropolar equations (1.1)
to a 2D Reynolds-like equation by using homogenization techiniques when ε→ 0. This equation is given by

divx′

(
− h3(x′)

1−N2
Φ(h(x′), N)∇x′p(x′) +

h(x′)

2
s′
)

= 0 in ω, (1.4)

where Φ(h(x′), N) = 1
12 + 1

4h2(x′)(1−N2) −
1

4h(x′)

√
N2

1−N2 coth
(
Nh(x′)

√
1−N2

)
.

Throughout the mathematical literature, micropolar fluid models have been extensively studied in recent
years by deriving different asymptotic Reynolds-like models taking into account that a surface presents micro-
roughness, depending on the ratio between the size of the roughness and the thickness of the domain and on the
boundary conditions considered, see for instance Anguiano & Suárez-Grau [2], Bayada et al. [7, 8], Boukrouche
[14], Boukrouche & Paoli [15], Boukrouche et al. [16, 17], Dupuy et al. [21, 22], Marusic-Paloka [26, 27, 28],
Pažanin [31], Pažanin & Radulović [33], Pažanin & Suárez-Grau [34], Suárez-Grau [38] and references therein.

One important problem in the lubrication framework concerns to the case of a thin domain with rapidly
oscillating boundary given by

Ωε = ω × (0, hε(x
′)) with hε(x

′) = εh(x′/ε`) ∀x′ ∈ ω ⊂ R2, (1.5)

where hε represents the thickness of the domain, which is rapidly oscillating. The thickness is given by the
small parameter 0 < ε � 1, and the top boundary is rough with small roughness of wavelength described by
0 < ε` � 1, with ` ∈ (0,+∞). Thus, depending on the limit of λ = limε→0 ε

1−`, there exist three characteristic
regimes:

– Reynolds roughness (λ = 0), where the thickness of the domain is smaller than the wavelenth of the
roughness, i.e. a very slight roughness.

– Stokes roughness (λ = 1), where the thickness of the domain and the wavelenth of the roughness are
proportional.

– High-frequency roughness (λ = +∞), where the thickness of the domain is greater than the wavelenth of
the roughness, i.e. a very strong roughness.

These characteristic regimes have been studied in Bayada and Chambat [5, 6] Benhaboucha et. al. [11], Fabri-
cius et al. [24] and Mikelić [29] for Newtonian fluids, in Pazanin & Suárez-Grau [35] and Suárez-Grau [37] for
micropolar fluids, and in Anguiano & Suárez-Grau [1] and Nakasato & Pažanin [30] for generalized Newtonian
with power law viscosity law.

Note that previous results consider Dirichlet boundary condition for microrotation. However, Bayada et al.
[3, 4] introduced a new boundary condition more general (and physically justified) at the fluid-solid interface.
This boundary condition, called non-standard or non-zero boundary condition in the literature, links the value of
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the micorotation with the rotation of the velocity by way of a coefficient α that characterizes the microrotation
on the solid surfaces as follows

w × n =
α

2
rot(u)× n, w · n = 0, (1.6)

where n is the normal unit vector to the boundary. In addition, this condition allows a slippage in the tangential
direction and retains a non-penetration condition in the normal direction on the boundary as follows

β(u− s)× n =
RM
2N2

rot(w)× n, u · n = 0, (1.7)

where β allows the control of the slippage at the wall when the value u − s is not zero. Recently, this type of
boundary conditions is attracting a lot of attention, as can be seen in various studies, see for instance Beneš et
al. [10], Bonnivard et al. [12, 13], Pažanin [32] and Suárez-Grau [39].

Coming back to the classic setting in lubrication, starting from the micropolar equations (1.1) in the thin

domain Ω̂ε with non-standard boundary conditions on the bottom Γ̂0 and zero boundary conditions on the top
Γ̂ε1, after the homogenization process, a generalized Reynolds equation was derived in Bayada et al. [3, 4] of the
form

−divx′
(

Θ1(x′)∇x′p(x′) + Θ2(x′)s′
)

= 0 in ω, (1.8)

for certain explicit functions Θ1 and Θ2. Moreover, explicit expressions for the limit velocity and microrotation
were given.

The purpose of this paper is to generalize the results in Bayada et al. [3, 4] to the case of rapidly oscillating
domain Ωε given by (1.5) and derive a generalized lower-dimensional model influenced by the non-standard
boundary conditions and the roughness of the top boundary Γε1 = ω × {εh(x′/ε`)}. We resctrict ourselves
to the case of “Reynolds roughness”, i.e. the case of a rapidly oscillating boundary described by (1.5) with
limε→0 ε

1−` = 0, which will allows us to derive an explicit equation. Accordingly, we consider the micropolar
equations (1.1) assuming non-standard boundary conditions (1.6)–(1.7) on the bottom Γ0 and zero boundary
conditions on the top boundary Γ1. As far as the authors know, the flow of a micropolar fluids with non-
standard boundary conditions has not been yet considered in the above described setting. By applying reduction
of dimension techniques together with an adaptation of the unfolding method to capture the micro-geometry of
the roughness (see Section 5), we rigorously derive a generalized micropolar Reynolds equation given by

−divx′ (K∇x′p(x′) + Ls′) = 0 in ω,

with flow factors K ∈ R2×2 and L ∈ R respectively given by

Kij =

∫
Z′

Θ1(z′)
(
∂ziq

j(z′) + δij
)
dz′, i, j = 1, 2, L =

∫
Z′

Θ2(z′) dz′,

where the function qi, i = 1, 2 satisfies the following local periodic problem

−divz′ (Θ1(z′)(∇z′qi(z′) + ei) + Θ2(z′)s′ · ei) = 0 in Z ′, i, j = 1, 2,

with Z ′ is the periodic cell in R2 and functions Θ1 and Θ2 are the same functions as in (1.8). In addition, we give
the expressions for the average of the velocity and microrotation (see Theorem 6.4). Since the obtained findings
are amenable for the numerical simulations, we believe that it could prove useful in the engineering practice as
well.

The paper is structured as follows. In Section 2, we introduce the position of the problem and the existence
and uniqueness results. To pass to the limit, it is necessary a rescaling of the problem, which is introduced in
Section 3. In Section 4, we get the a priori estimates for velocity, microrotation and pressure, extended to a
ε-independent domain. To capture the micro-geometry of the roughness, we introduce in Section 5 the adaptation
of the unfolding method, give some properties and derive the limit problem. Finally, we deduce the generalize
Reynolds equation in Section 6. We finish the paper with a list of references.
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2 Position of the problem

In this section, we first define the rough thin domain, the necessary sets to study the asymptotic behavior of
the solutions and some notation. Next, we introduce the micropolar equations and the boundary conditions in
the thin domain. Finally, we give the variational formulation and the condition for existence and uniqueness of
solution of the problem according to this setting.

2.1 Definition of the domain and some notation.

We consider ω a smooth and connected subset of R2. We define the thin domain with a rapidly varying thickness
by

Ωε = {x = (x′, x3) ∈ R2 × R : x′ ∈ ω, 0 < x3 < hε(x
′)}, (2.9)

where the function hε(x
′) = εh

(
x′/ε`

)
represents the real distance between the two surfaces, see Figure 1. The

small parameter 0 < ε� 1 is related to the film thickness and the small parameter 0 < ε` � 1 is the wavelength
of the roughness, see Figure 2. As said in the introduction, we restrict ourselves to the “Reynolds roughness
regime”, so we consider that ε` is of order greater or equal than ε, i.e. 0 < ` < 1, which implies

lim
ε→0

ε1−` = 0. (2.10)

Figure 1: Domain Ωε, bottom flat boundary Γ0 and top oscillating boundary Γε1

Function h is a positive and smooth function defined for z′ in R2, Z ′-periodic with Z ′ = (−1/2, 1/2)2 the cell of
periodicity in R2, and there exist hmin and hmax such that

0 < hmin = min
z′∈Z′

h(z′), hmax = max
z′∈Z′

h(z′) .

We define the boundaries of Ωε as follows

Γ0 = ω × {0}, Γε1 =
{

(x′, x3) ∈ R2 × R : x′ ∈ ω, x3 = hε(x
′)
}
, Γεlat = ∂Ωε \ (Γ0 ∪ Γε1).

To define the microstructure of the periodicity of the boundary, we assume that the domain ω is divided
by a mesh of size ε`: for k′ ∈ Z2, each cell Z ′k′,ε` = ε`k′ + ε`Z ′. We define Tε = {k′ ∈ Z : Z ′k′,ε` ∩ ω 6= ∅}.
In this setting, there exists an exact finite number of periodic sets Z ′k′,ε` such that k′ ∈ Tε. Also, we define

Zk′,ε` = Z ′k′,ε` × (0, h(z′)) and Z = Z ′ × (0, h(z′)), which is the reference cell in R3, see Figure 2. We define the

boundaries Γ̂0 = Z ′ × {0}, Γ̂1 = Z ′ × {h(z′)}.
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Maŕıa Anguiano and Francisco J. Suárez-Grau

Figure 2: Domain Ωε in 2D and the reference cell Z in 2D

Applying a dilatation in the vertical variable, i.e. z3 = x3/ε, we define the following rescaled sets

Ω̃ε = {(x′, z3) ∈ R2 × R : x′ ∈ ω, 0 < z3 < h(x′/ε`)},

Γ̃ε1 = {(x′, z3) ∈ R2 × R : x′ ∈ ω, z3 = h(x′/ε`)} Γ̃εlat = ∂Ω̃ε \ (Γ̃0 ∪ Γ̃ε1).
(2.11)

The quantity hmax allows us to define:

– The extended sets Qε = ω × (0, εhmax), Ω = ω × (0, hmax) and Γ1 = ω × {hmax}.

– The extended cube Q̃k′,ε = Z ′k′,ε × (0, hmax) for k′ ∈ Z2.

– The extended and restricted basic cell Π = Z ′ × (0, hmax).

We denote by C a generic constant which can change from line to line. Moreover, Oε denotes a generic quantity,
which can change from line to line, devoted to tend to zero when ε→ 0.

We use the following notation for the partial differential operators

∆ϕ = ∆x′ϕ+ ∂2
x3
ϕ, div(ϕ) = divx′(ϕ

′) + ∂x3ϕ3,

rot(ϕ) = (∂x2ϕ3 − ∂x3ϕ2,−∂x1ϕ3 + ∂x3ϕ1, ∂x1ϕ2 − ∂x2ϕ1)t,

where ϕ = (ϕ′, ϕ3) with ϕ′ = (ϕ1, ϕ2), is a vector function defined in Ωε.

Finally, we introduce some functional spaces. L2
0 is the space of functions of L2 with zero mean value. Let

C∞# (Z) be the space of infinitely differentiable functions in R3 that are Z ′-periodic. By L2
#(Z) (resp. H1

#(Z)),

we denote its completion in the norm L2(Z) (resp. H1(Z)) and by L2
0,#(Z) the space of functions in L2

#(Z) with
zero mean value.

2.2 Micropolar equations with non-standard boundary conditions

In this paper, we consider the 3D stationary linearized micropolar equations in dimensionless form by setting

uε = (u′ε(x), u3,ε(x)), wε = (w′ε(x), w3,ε(x)), pε = pε(x),

at a point x ∈ Ωε, which is given by
−∆uε +∇pε = 2N2rot(wε) in Ωε,

div(uε) = 0 in Ωε,

−RM∆wε + 4N2wε = 2N2rot(uε) in Ωε.

(2.12)
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We complete the above system with the following boundary conditions on the top

uε = 0, wε = 0 on Γε1, (2.13)

the following boundary condition on the lateral boundary

uε = gε, wε = 0 on Γεlat, with

∫
Γεlat

gε · n dσ = 0, (2.14)

and the non-standard boundary conditions on the bottom

wε × n =
α

2
rot(uε)× n on Γ0,

RM rot(wε)× n = 2N2β(uε − s)× n on Γ0,

uε · n = 0, wε · n = 0 on Γ0.

(2.15)

Here, s = (s′, 0) with s′ = (s1, s2), stands for the characteristic velocity of the moving surface. Dimensionless
(non-Newtonian) parameter N2 characterizes the coupling between the equations for the velocity and microro-
tation and it is of order O(1). The second dimensionless parameter, denoted by RM is, in fact, related to the
characteristic length of the microrotation effects and will be compared with small parameter ε (see condition
2.20). Parameter α characterizes the microrotation on the solid surfaces (see [3] for more details). The coefficient
β allows the control of the slippage at the wall when the value uε − s is not zero. Finally, the n is the outside
normal vector to the boundary (observe that in the case of Γ0 it holds n = −e3).

In order to study the asymptotic behavior of the solution of system (2.12)–(2.15), we also need to assume
a certain regularity on the boundary data gε, and uniform estimates of relevant norms. A very general way
of stating those properties is the following: there exists a sequence of lift functions Jε ∈ H1(Ωε)

2 satisfying
div(Jε) = 0 in Ωε, the boundary conditions

Jε = 0 on Γε1, Jε = gε on Γεlat, Jε · n = 0 on Γ0, (2.16)

and the estimates for every ε > 0

‖Jε‖L2(Ωε)3 ≤ Cε
1
2 , ‖DJε‖L2(Ωε)3×3 ≤ Cε− 1

2 , ‖Jε‖L2(Γ0)3 ≤ C, (2.17)

where C > 0 is a universal constant independent of ε.

Remark 2.1. One typical construction of a boundary data gε and the associate lift function Jε is the following,
see [3]. Consider a regular vector field J̃ ∈ H1(Ω̃ε)3, satisfying

div(J̃) = 0 in Ω̃ε, J̃ = 0 on Γ̃ε1, J̃ · n = 0 on Γ0.

Extending J̃ by zero outside of Ω̃ε, we can define Jε ∈ H1(Ωε)3 by

Jε(x) = (J̃′(x′, x3/ε)), εJ̃3(x′, x3/ε)) ∀x ∈ Ω̃ε.

Note that only normal component of the velocity is known on Γ0 and is zero, while the tangential velocity is not
given. Nevertheless, we can choose an artificial value g = (g′, 0), with g′ = (g1, g2), of the velocity on Γ0. We

choose it in a way that function ξ ∈ H 1
2 (∂Ωε)3 defined by

ξ =


0 on Γε1,

gε on Γεlat,

(g′, 0) on Γ0,

satisfying
∫
∂Ωε

ξ · n dσ = 0.
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Then, by the change of variables (x′, x3) = (x′, εz3), it holds∫
Ωε
|DJε|2 dx = ε

∫
Ω̃ε

(
|Dx′ J̃

′|2 +
1

ε2
|∂z3 J̃′|2 + ε2|∇x′ J̃3|2 + |∂z3 J̃3|2

)
dx′dz3,∫

Ωε
|Jε|2 dx = ε

∫
Ω̃ε

(|J̃′|2 + ε2|J̃3|2) dx′dz3,

so that Jε satisfies all the required properties (2.16) and (2.17).

Next, we are able to give the problem with homogeneous boundary conditions on the lateral and top bound-
aries. Introducing

vε = uε − Jε,

system (2.12)–(2.15) can be rewritten as follows
−∆(vε + Jε) +∇pε = 2N2rot(wε) in Ωε,

div(vε) = 0 in Ωε,

−RM∆wε + 4N2wε = 2N2 (rot(vε) + rot(Jε)) in Ωε,

(2.18)

with the following boundary conditions

vε = 0, wε = 0 on Γε1 ∪ Γεlat,

wε × n =
α

2
(rot(vε) + rot(Jε))× n on Γ0,

RM rot(wε)× n = 2N2β(vε + g − s)× n on Γ0,

vε · n = 0, wε · n = 0 on Γ0.

(2.19)

In the next subsection, we recall the existence and uniqueness result of weak solution of problem (2.18)–(2.19).

2.3 Mathematical study

In this paper, the goal is to derive an effective model describing by using rigorous asymptotic analysis with
respect to the small parameter ε. In particular, we will focus on detecting the effects of the roughness together
with the effects of non-standard boundary conditions. We remark that different asymptotic behaviors of the flow
can be deduced depending on the order of magnitude of the dimensionless parameter. Indeed, if we compare the
characteristic number RM with small parameter ε, three different asymptotic situations can be formally identifed
(see e.g. [7, 9]). We consider the most interesting one, which leads to a strong coupling at main order, namely
the regime

RM = ε2Rc, Rc > 0. (2.20)

Let us start by defining the notion of weak solution to system (2.18)–(2.19). Due to the boundary conditions,
we introduce the following functional spaces

V ε = {ϕ ∈ H1(Ωε)3 : ϕ = 0 in Γε1 ∪ Γεlat, ϕ · n = 0 on Γ0}, V ε0 = {ϕ ∈ V ε : div(ϕ) = 0},

equipped with the norm of ‖Dϕ‖L2(Ωε)3×3 , and the space

L2
0(Ωε) =

{
q ∈ L2(Ωε) :

∫
Ωε

q dx = 0

}
,

7
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equipped with the norm of L2(Ωε). Observe that it holds the following identities, which will be important in the
following:

−∆ϕ = rot(rot(ϕ))−∇div(ϕ) ∀ϕ ∈ D(Ωε)3, (2.21)∫
Ωε

rot(ψ) · ϕdx =

∫
Ωε

rot(ϕ) · ψ dx−
∫

Γ0

(ψ × n) · ϕdσ(x′) ∀(ϕ,ψ) ∈ H1(Ωε)3 ×H1(Ωε)3. (2.22)

Proposition 2.2 (Theorem 2.1 in [3]). Sufficiently regular solutions of (2.18)–(2.19) satisfy the weak formula-
tion:

Find (vε, wε, pε) ∈ V ε0 × V ε × L2
0(Ωε) such that∫

Ωε

rot(vε) · rot(ϕ) dx−
∫

Ω

pε div(ϕ) dx− 2N2

∫
Ωε

rot(ϕ) ·wε dx (2.23)

+2

(
N2 − 1

α

)∫
Γ0

(wε × n) · ϕdσ(x′) = −
∫

Ωε

rot(Jε) · rot(ϕ) dx ∀ϕ ∈ V ε,

ε2Rc

∫
Ωε

rot(wε) · rot(ψ) dx+ ε2Rc

∫
Ωε

div(wε) · div(ψ) dx+ 4N2

∫
Ωε

wε · ψ dx

−2N2

∫
Ωε

vε · rot(ψ) dx− 2N2(β − 1)

∫
Γ0

(vε × n) · ψ dσ(x′) = 2N2

∫
Ωε

Jε · rot(ψ) dx (2.24)

+2N2β

∫
Γ0

(g − s)× n · ψ dσ(x′)− 2N2

∫
Γ0

(g × n) · ψ dσ(x′) ∀ψ ∈ V ε.

Proof. The derivation of the variational formulations (2.23) and (2.24) is given in [3, Theorem 2.1]. Here, we
reproduce some steps:

– Multiplying (2.18)1 by ϕ ∈ V ε, using (2.21) and (2.22), we deduce∫
Ωε

rot(vε) · rot(ϕ) dx−
∫

Ω

pε div(ϕ) dx− 2N2

∫
Ωε

rot(ϕ) ·wε dx (2.25)

−
∫

Γ0

(rot(vε)× n) · ϕdσ(x′)−
∫

Γ0

(rot(Jε)× n) · ϕdσ(x′)

= −2N2

∫
Ωε

(wε × n) · ϕdσ(x′)−
∫

Ωε
rot(Jε) · rot(ϕ) dx.

Taking into account the boundary condition (2.19)2, we obtain (2.23).

– Multiplying (2.18)3 by ψ ∈ V ε, using (2.21) and (2.22), we get

ε2Rc

∫
Ωε

rot(wε) · rot(ψ) dx+ ε2Rc

∫
Ωε

div(wε) · div(ψ) dx+ 4N2

∫
Ωε

wε · ψ dx

−ε2Rc
∫

Γ0

((rot(wε)× n) · ψ dσ(x′)− 2N2

∫
Ωε

vε · rot(ψ) dx+ 2N2

∫
Γ0

(vε × n) · ψ dσ(x′) (2.26)

= 2N2

∫
Ωε

Jε · rot(ψ) dx− 2N2

∫
Γ0

(g × n) · ψ dσ(x′).

Taking into account the boundary condition (2.19)3, we obtain (2.24).
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To finish this section, we give the existence and uniqueness result, whos proof can be found in [3, Theorem
2.2] taking into account the rescaling of RM = ε2Rc and that the maximum of the function hε is ε2hmax.

Theorem 2.3. Under the previous assumptions and assuming that α and β satisfy condition

γ2 =

∣∣∣∣ 1α −N2 −N2β

∣∣∣∣2 < Rc
h2

max

(1−N2), (2.27)

then, for every ε > 0, there exists a unique weak solution (vε,wε, pε) ∈ V ε0 × V ε × L2
0(Ωε) of (2.23)–(2.24).

3 Rescaling

To study the asymptotic behavior of the solutions uε, wε and pε when ε tends to zero, we need to have the
solutions in a domain with fixed height. To do this, we use the dilatation in the variable x3 given by

z3 =
x3

ε
, (3.28)

in order to have the functions defined in Ω̃ε and boundaries Γ̃ε1 and Γ̃εlat given in (2.11).

Using the change of variables (3.28) in (2.18)–(2.19), we obtain the rescaled system

−∆ε(ṽε + J̃ε) +∇εp̃ε = 2N2rotε(w̃ε) in Ω̃ε,

div(ṽε) = 0 in Ω̃ε,

−ε2Rc∆εw̃ε + 4N2w̃ε = 2N2
(

rotε(ũε) + rotε(J̃ε)
)

in Ω̃ε,

(3.29)

with the rescaled boundary conditions

ṽε = 0, w̃ε = 0 on Γ̃ε1 ∪ Γ̃εlat,

w̃ε × n =
α

2

(
rotε(ṽε) + rot(J̃ε)

)
× n on Γ0,

ε2Rc rotε(w̃ε)× n = 2N2β(ṽε + g − s)× n on Γ0,

ṽε · n = 0, w̃ε · n = 0 on Γ0,

(3.30)

where the unknown functions in the above system are given by ũε(x
′, z3) = uε(x′, εz3), p̃ε(x

′, z3) = pε(x
′, εz3),

w̃ε(x
′, z3) = wε(x

′, εz3) and J̃ε(x
′, z3) = (J̃′(x′, z3), εJ3(x′, z3)) for a.e. (x′, z3) ∈ Ω̃ε. Here, for a vectorial

function ϕ̃ = (ϕ̃′, ϕ̃3) defined in Ω̃ε, the rescaled operators are given by

∆εϕ̃ = ∆x′ ϕ̃+
1

ε2
∂2
z3 ϕ̃, divε(ϕ̃) = divx′(ϕ̃

′) +
1

ε
∂z3 ϕ̃3,

rotε(ϕ̃) =

(
rotx′(ϕ̃3) +

1

ε
rotz3(ϕ̃′),Rotx′(ϕ̃

′)

)t
,

(3.31)

where, denoting by
(ϕ̃′)⊥ = (−ϕ̃2, ϕ̃1)t, (3.32)

we define
rotx′(ϕ̃3) = (∂x2 ϕ̃3,−∂x1 ϕ̃3)t, rotz3(ϕ̃′) = ∂z3(ϕ̃′)⊥, Rotx′(ϕ̃

′) = ∂x1 ϕ̃2 − ∂x2 ϕ̃1. (3.33)
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Moreover, from estimates (2.16), we also have

‖J̃ε‖L2(Ω̃ε)3
≤ C, ‖DεJ̃ε‖L2(Ω̃ε)3×3 ≤ Cε−1, ‖J̃ε‖L2(Γ0)3 ≤ C. (3.34)

In addition, the rescaled variational formulation in Ω̃ε is the following:

Find (ṽε, w̃ε, p̃ε) ∈ Ṽ ε0 × Ṽ ε × L2
0(Ω̃ε) such that

ε

∫
Ω̃ε

rotε(ṽε) · rotε(ϕ̃) dx′dz3 − ε
∫

Ω̃ε

p̃ε divε(ϕ̃) dx′dz3 − 2N2ε

∫
Ω̃ε

rotε(ϕ̃) · w̃ε dx
′dz3

+2

(
N2 − 1

α

)∫
Γ0

(w̃ε × n) · ϕ̃ dσ(x′) = −ε
∫

Ω̃ε

rotε(J̃ε) · rotε(ϕ̃) dx′dz3,

ε3Rc

∫
Ω̃ε

rotε(w̃ε) · rotε(ψ̃) dx′dz3 + ε3Rc

∫
Ω̃ε

divε(w̃ε) · divε(ψ̃) dx′dz3 + 4N2ε

∫
Ω̃ε

w̃ε · ψ̃ dx′dz3

−2N2ε

∫
Ω̃ε

ṽε · rotε(ψ̃) dx′dz3 − 2N2(β − 1)

∫
Γ0

(ṽε × n) · ψ̃ dσ(x′)

= 2N2ε

∫
Ω̃ε

J̃ε · rotε(ψ̃) dx′dz3 + 2N2β

∫
Γ0

(g − s)× n · ψ̃ dσ(x′)− 2N2

∫
Γ0

(g × n) · ψ̃ dσ(x′),

(3.35)

for every (ϕ̃, ψ̃) ∈ Ṽ ε× Ṽ ε and q̃ ∈ L2(Ω̃ε) obtained from (ϕ,ψ, q) by using the change of variables (3.28), where

Ṽ ε = {ϕ̃ ∈ H1(Ω̃ε)
2 : ϕ̃ = 0 in Γ̃ε1 ∪ Γ̃εlat, ϕ̃ · n = 0 on Γ0}, Ṽ ε0 = {ϕ̃ ∈ Ṽ ε : divε(ϕ̃) = 0}.

In the next section, we establish the a priori estimates for the rescaled unknown in an ε-independent domain.

4 A priori estimates and convergences

This section is devoted to derive the a priori estimates of the unknowns and is divided in three parts. First,
we deduce the a priori estimates for velocity and microrotation in an ε-independent domain, i.e. the domain Ω
defined in Section 2. Next, we extend the pressure to Ω and derive its corresponding a priori estimates. Finally,
from previos a priori estimates, we deduce some convergence results.

4.1 Estimates for velocity and microroration

To derive the desired estimates, let us recall and proof some well-known technical results (see for instance [1]).

Lemma 4.1 (Poincaré’s inequality). For all ϕ ∈ V ε, there holds the following inequality

‖ϕ‖L2(Ωε)3 ≤ Cε‖Dϕ‖L2(Ωε)3×3 . (4.36)

Moreover, from the change of variables (3.28), there holds for all ϕ̃ ∈ Ṽ ε the following rescaled estimate

‖ϕ̃‖L2(Ω̃ε)3 ≤ Cε‖Dεϕ̃‖L2(Ω̃ε)3×3 . (4.37)

Lemma 4.2. For all ϕ ∈ V ε, it holds

‖Dϕ‖2L2(Ωε)3×3 = ‖rot(ϕ)‖2L2(Ωε)3 + ‖div(ϕ)‖2L2(Ωε), ‖rot(ϕ)‖2L2(Ωε)3 ≤ ‖Dϕ‖
2
L2(Ωε)3×3 , (4.38)

and, if moreover, div(ϕ) = 0 in Ωε, then

‖rot(ϕ)‖2L2(Ωε)3
= ‖Dϕ‖2L2(Ωε)3×3 . (4.39)

10
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Moreover, from the change of variables (3.28), we have for all ϕ̃ ∈ Ṽ ε that

‖Dεϕ̃‖2L2(Ω̃ε)3×3 = ‖rotε(ϕ̃)‖2
L2(Ω̃ε)3

+ ‖divε(ϕ̃)‖2
L2(Ω̃ε)

, ‖rotε(ϕ̃)‖2
L2(Ω̃ε)3

≤ ‖Dεϕ̃‖2L2(Ω̃ε)3×3 , (4.40)

and if moreover, divε(ϕ̃) = 0 in Ω̃ε, then

‖rotεϕ̃‖2L2(Ω̃ε)3
= ‖Dεϕ̃‖2L2(Ω̃ε)3×3 . (4.41)

Proof. For all ϕ ∈ V ε, it holds (see for instance [18] formula (IV.23))∫
Ωε

(|div(ϕ)|2 + |rot(ϕ)|2) dx =

∫
Ωε
|Dϕ|2 dx+

∫
Γ0

((ϕ · ∇)n) · ϕdσ(x′).

Since Γ0 is flat, then the term
∫

Γ0
((ϕ ·∇)n) ·ϕdσ(x′) vanishes, ans so we get (4.38). Then, (4.39) is a consequence

of the free divergence condition.

Finally, the change of variables (3.28) applied to (4.38) and (4.39) implies (4.40) and (4.41), respectively, for
any ϕ̃ obtained from ϕ by the change of variables (3.28).

Lemma 4.3 (Trace estimates). For all ϕ̃ ∈ Ṽ ε, the following inequalities hold

‖ϕ̃′‖L2(Γ0)2 ≤ εh
1
2
max‖Dεϕ̃‖L2(Ω̃ε)3×3 , ‖ϕ̃× n‖L2(Γ0)2 ≤ εh

1
2
max‖Dεϕ̃‖L2(Ω̃ε)3×3 . (4.42)

Proof. Thank to ϕ̃(x′, h(x′/ε`)) = 0 in ω, we have that

∫
Γ0

|ϕ̃|2dσ =

∫
ω

|ϕ̃(x′, 0)|2 dx′ =

∫
ω

∣∣∣∣∣
∫ h(x′/ε`)

0

∂z3 ϕ̃(x′, z3) dz3

∣∣∣∣∣
2

dx′ ≤ hmax

∫
Ω̃ε
|∂z3 ϕ̃|2 dx′dz3,

that is,

‖ϕ̃′‖L2(Γ0)2 ≤ h
1
2
max‖∂z3 ϕ̃′‖L2(Ω̃ε)2 ,

which implies (4.42)1. Since
‖ϕ̃× n‖L2(Γ0)3 = ‖(−ϕ̃2, ϕ̃1, 0)‖L2(Γ0)3 ,

from (4.42)1, we deduce (4.42)2.

Lemma 4.4 (A priori estimates). Under hypothesis (2.27), the following estimates hold for the solution (ṽε, w̃ε)
of problem (3.35):

‖ṽε‖L2(Ω̃ε)3 ≤ C, ‖Dεṽ
ε‖L2(Ω̃ε)3×3 ≤ Cε−1, (4.43)

‖w̃ε‖L2(Ω̃ε)3 ≤ Cε
−1, ‖Dεw̃

ε‖L2(Ω̃ε)3×3 ≤ Cε−2. (4.44)

As consequence, it also holds

‖ũε‖L2(Ω̃ε)3 ≤ C, ‖Dεũ
ε‖L2(Ω̃ε)3×3 ≤ Cε−1. (4.45)

Proof. The proof of (4.43) and (4.44) is similar to the one given in [3, Lemma 3.1], but here we are in the 3D
case, so we will give some remarks of the development. We remark that, once proved estimates (4.43), the proof
of (4.45) is straightforward from

ũε = ṽε + J̃ε,

11
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and estimates of J̃ε given by (3.34). We will prove (4.43) and (4.44) in 4 steps.

Step 1. Mixed variational formulation. Problem (3.35) can be written in the following mixed variational
form:

Find (ṽε, w̃ε, p̃ε) ∈ Ṽ ε × Ṽ ε × L2
0(Ω̃ε), such that

Aε((ṽε, w̃ε), (ϕ̃, ψ̃)) + Bε((ϕ̃, ψ̃), p̃ε) = L(ϕ̃, ψ̃) ∀ (ϕ̃, ψ̃) ∈ Ṽ ε × Ṽ ε, (4.46)

Bε((ṽε, w̃ε), q̃) = 0 ∀ q̃ ∈ L2
0(Ω̃ε), (4.47)

with Aε defined by

Aε((ṽε, w̃ε), (ϕ̃, ψ̃)) = ε

∫
Ω̃ε

rotε(ṽε) · rotε(ϕ̃) dx′dz3 − 2N2ε

∫
Ω̃ε

rotε(ϕ̃) · w̃ε dx
′dz3

+ε3Rc

∫
Ω̃ε

rotε(w̃ε) · rotε(ψ̃) dx′dz3 + ε3Rc

∫
Ω̃ε

divε(w̃ε) · divε(ψ̃) dx′dz3

+4N2ε

∫
Ω̃ε

w̃ε · ψ̃ dx′dz3 − 2N2ε

∫
Ω̃ε

ṽε · rotε(ψ̃) dx′dz3

+2

(
N2 − 1

α

)∫
Γ0

(w̃ε × n) · ϕ̃ dσ(x′)− 2N2(β − 1)

∫
Γ0

(ṽε × n) · ψ̃ dσ(x′),

(4.48)

with Bε given by

Bε((ϕ̃, ψ̃), p̃ε) = −ε
∫

Ω̃ε
p̃ε divε(ϕ̃) dx′dz3, (4.49)

and Lε given by

Lε(ϕ̃, ψ̃) = 2N2ε

∫
Ω̃ε

rotε(J̃ε) · ψ̃ dx′dz3 − ε
∫

Ω̃ε

rotε(J̃ε) · rotε(ϕ̃) dx′dz3 + 2N2β

∫
Γ0

(g− s)× n · ψ̃ dσ(x′). (4.50)

Taking into account that

2

(
N2 − 1

α

)∫
Γ0

(w̃ε × n) · ϕ̃ dσ = −2

(
N2 − 1

α

)∫
Γ0

(ϕ̃× n) · w̃ε dσ(x′),

and

−2N2ε

∫
Ω̃ε

ṽε · rotε(ψ̃) dx′dz3 = −2N2ε

∫
Ω̃ε

ψ̃ · rotε(ṽε) dx
′dz3 + 2N2

∫
Γ0

(ψ̃ × n) · ṽε dσ(x′)

= −2N2ε

∫
Ω̃ε

ψ̃ · rotε(ṽε) dx
′dz3 − 2N2

∫
Γ0

(ṽε × n) · ψ̃ dσ(x′),

we then give another expression for Aε by

Aε((ṽε, w̃ε), (ϕ̃, ψ̃)) = ε

∫
Ω̃ε

rotε(ṽε) · rotε(ϕ̃) dx′dz3 − 2N2ε

∫
Ω̃ε

rotε(ϕ̃) · w̃ε dx
′dz3

+ε3Rc

∫
Ω̃ε

rotε(w̃ε) · rotε(ψ̃) dx′dz3 + ε3Rc

∫
Ω̃ε

divε(w̃ε) · divε(ψ̃) dx′dz3

+4N2ε

∫
Ω̃ε

w̃ε · ψ̃ dx′dz3 − 2N2ε

∫
Ω̃ε

ψ̃ · rotε(ṽε) dx
′dz3

−2

(
N2 − 1

α

)∫
Γ0

(ϕ̃× n) · w̃ε dσ(x′)− 2N2β

∫
Γ0

(ṽε × n) · ψ̃ dσ(x′).

(4.51)
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Step 2. Estimate Aε((ṽε, w̃ε), (ṽε, w̃ε)) from below. From identities (4.40) applied to ṽε and (4.41) applied to
w̃ε, applying Cauchy-Schwarz’s inequality and using estimates (4.42), we deduce

Aε((ṽε, w̃ε), (ṽε, w̃ε)) = ε

∫
Ω̃ε

|rotε(ṽε)|2 dx′dz3 − 4N2ε

∫
Ω̃ε

rotε(ṽε) · w̃ε dx
′dz3

+ε3Rc

∫
Ω̃ε

|rotε(w̃ε)|2 dx′dz3 + ε3Rc

∫
Ω̃ε

|divε(w̃ε)|2 dx′dz3

+4N2ε

∫
Ω̃ε

|w̃ε|2 dx′dz3 + 2γ

∫
Γ0

(ṽε × n) · w̃ε dσ

≥ ε‖Dεṽε‖2L2(Ω̃ε)3×3
+ ε3Rc‖Dεw̃ε‖2L2(Ω̃ε)3×3

+ 4N2ε‖w̃ε‖2L2(Ω̃ε)3

−4N2ε‖Dεṽε‖L2(Ω̃ε)3×3‖w̃ε‖L2(Ω̃ε)3 − 2|γ|ε2hmax‖Dεṽε‖L2(Ω̃ε)3×3‖Dεw̃ε‖L2(Ω̃ε)3×3 .

From condition (2.27), there exists c1 > 0 such that

γhmax

Rc
< c1 <

1−N2

γhmax
. (4.52)

Applying Young’s inequality

‖Dεṽε‖L2(Ω̃ε)3×3‖Dεw̃ε‖L2(Ω̃ε)3×3 ≤
c1
2ε
‖Dεṽε‖2L2(Ω̃ε)3×3 +

ε

2c1
‖Dεw̃ε‖L2(Ω̃ε)3×3 . (4.53)

By continuity, there exists a real number c2 satisfying 0 < c2 < c1, and such that

c1 <
1− N2

c2

γhmax
, (4.54)

and applying again Young’s inequality, we also have

‖Dεṽε‖L2(Ω̃ε)3×3‖w̃ε‖L2(Ω̃ε)3
≤ 1

4c2
‖Dεṽε‖2L2(Ω̃ε)3×3 + c2‖w̃ε‖2L2(Ω̃ε)3

. (4.55)

Then, we deduce

Aε((ṽε, w̃ε), (ṽε, w̃ε)) ≥ ε

(
1− N2

c2
− |γ|hmaxc1

)
‖Dεṽε‖2L2(Ω̃ε)3×3

+ε3
(
Rc −

|γ|hmax

c1

)
‖Dεw̃ε‖2L2(Ω̃ε)3×3 + 4N2(1− c2)ε‖w̃ε‖2L2(Ω̃ε)3

≥ εA‖Dεṽε‖2L2(Ω̃ε)3×3 + ε3B‖Dεw̃ε‖2L2(Ω̃ε)3×3 ,

(4.56)

with

A =

(
1− N2

c2
− |γ|hmaxc1

)
, B =

(
Rc −

|γ|hmax

c1

)
.

Using conditions (4.52) and (4.54), A and B are positive.

Step 3. Estimate Lε(ṽε, w̃ε). From Cauchy-Schwarz’s inequality and (4.38), we get

|Lε(ṽε, w̃ε)| =
∣∣∣∣2N2ε

∫
Ω̃ε

rotε(J̃ε) · w̃ε dx
′dz3 − ε

∫
Ω̃ε

rotε(J̃ε) · rotε(ṽε) dx
′dz3 + 2N2β

∫
Γ0

(g − s)× n · w̃ε dσ

∣∣∣∣
≤ 2N2ε2‖rotεJ̃ε‖L2(Ω̃ε)3×3‖Dεw̃ε‖L2(Ω̃ε)3×3 + ε‖DεJ̃ε‖L2(Ω̃ε)3×3‖Dεṽε‖L2(Ω̃ε)3×3

+2N2βεh
1
2
max‖g − s‖L2(Γ0)2‖Dεw̃ε‖L2(Ω̃ε)3×3

= ε‖DεJ̃ε‖L2(Ω̃ε)3×3‖Dεṽε‖L2(Ω̃ε)3×3 + 2N2εCε‖Dεw̃ε‖L2(Ω̃ε)3×3 ,

(4.57)
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where Cε = ε‖rotεJ̃ε‖L2(Ω̃ε)3×3 + βh
1
2
max‖g− s‖L2(Γ0)2 . Observe that from properties (3.34) satisfied by Jε, there

exists a a constant C > 0 such that Cε ≤ C for any ε > 0.

Step 4. Derivation of the a priori estimates. To obtain estimates (4.43) and (4.44), we use inequalities (4.56)
and (4.57) to get

εA‖Dεṽε‖2L2(Ω̃ε)3×3 + ε3B‖Dεw̃ε‖2L2(Ω̃ε)3×3

≤ ε‖DεJ̃ε‖L2(Ω̃ε)3×3‖Dεṽε‖L2(Ω̃ε)3×3 + 2N2εCε‖Dεw̃ε‖L2(Ω̃ε)3×3 ,
(4.58)

which is equivalent to the following inequality

εA‖Dεṽε‖2L2(Ω̃ε)3×3 − ε‖DεJ̃ε‖L2(Ω̃ε)3×3‖Dεṽε‖L2(Ω̃ε)3×3

+ε3B‖Dεw̃ε‖2L2(Ω̃ε)3×3 − 2N2εCε‖Dεw̃ε‖L2(Ω̃ε)3×3 ≤ 0.
(4.59)

Summing in both sides ε
4A‖DεJ̃ε‖2L2(Ω̃ε)3×3

and N2

εB C
2
ε , we observe that last inequality can be written equivalently

as (
ε

1
2A

1
2 ‖Dεṽε‖L2(Ω̃ε)3×3 −

ε
1
2

2A
1
2

‖DεJ̃ε‖L2(Ω̃ε)3×3

)2

+

(
ε

3
2B

1
2 ‖Dεw̃ε‖L2(Ω̃ε)3×3 −

N2

ε
1
2B

1
2

Cε

)2

≤ ε

4A
‖DεJ̃ε‖2L2(Ω̃ε)3×3 +

N2

εB
C2
ε .

(4.60)

which is written as follows

εA

(
‖Dεṽε‖L2(Ω̃ε)3×3 −

1

2A
‖DεJ̃ε‖L2(Ω̃ε)3×3

)2

+ ε3B

(
‖Dεw̃ε‖L2(Ω̃ε)3×3 −

N2

ε2B
Cε

)2

≤ ε

4A
‖DεJ̃ε‖2L2(Ω̃ε)3×3 +

N4

εB
C2
ε .

(4.61)

Since Cε is uniformly bounded, using assumptions (3.34), we deduce than the right hand side of the previous
inequality is bounded by C/ε for a certain constant C > 0. This implies (4.43)2 and (4.44)2. Finally, from the
Poincaré inequality (4.37), we get estimates (4.43)1 and (4.44)1, respectively. This finishes the proof.

The extension of (ũε, w̃ε) to the whole domain. The sequence of solutions (ũε, w̃ε) is defined in a varying

set Ω̃ε, but not defined in the fixed domain Ω independent of ε. Thus, to pass to the limit if ε tends to zero, we
need convergences in fixed Sobolev spaces (defined in Ω), so we need to extend (ũε, w̃ε) to the whole domain Ω.

From the boundary conditions satisfied by ũε and w̃ε on the top boundary Γ̃ε1, we can extend them by zero in

Ω \ Ω̃ε and we denote the extensions by the same symbol.

Lemma 4.5 (Estimates of extended unknowns). The extended functions (ũε, w̃ε) satisfy the following estimates

‖ũε‖L2(Ω)3 ≤ C, ‖Dεũε‖L2(Ω)3×3 ≤ Cε−1, (4.62)

‖w̃ε‖L2(Ω)3 ≤ Cε−1, ‖Dεw̃ε‖L2(Ω)3×3 ≤ Cε−2. (4.63)

Proof. Estimates for the extension of ũε and w̃ε are obtained straightforward from (4.43) and (4.44), respectively.
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4.2 Estimates for pressure

Extending the pressure is a much more difficult task. A continuation of the pressure for a flow in a porous media
was introduced in [40]. This construction applies to periodic holes in a domain Ωε when each hole is strictly
contained into the periodic cell. In this context, we can not use directly this result because the “holes” are along
the oscillating boundary Γε1 of Ωε and moreover, the scale of the vertical direction is smaller than the scales of
the horizontal directions. This fact will induce several limitations in the results obtained by using the method,
especially in view of the convergence for the pressure. In this sense, for the case of Newtonian fluids, an operator
Rε generalizing the results of [40] to this context (extending the pressure from Ωε to Qε) was introduced in [6, 29],
and later extended to the case of non-Newtonian (power law) fluids in [1] by defining an extension operator Rεp,
for every flow index p > 1.

Then, to extend the pressure to the whole domain Ω, the mapping Rε (defined in [1, Lemma 4.6] as Rε2)
allows us to extend the pressure pε from Ωε to Qε by introducing Fε in H−1(Qε)

3 as follows (brackets are for
duality products between H−1 and H1

0 )

〈Fε, ϕ〉Qε = 〈∇pε, Rε(ϕ)〉Ωε for any ϕ ∈ H1
0 (Qε)

3 . (4.64)

We compute the right-hand side of (4.64) by using the first equation of (2.23), and taking into account uε =
vε + Jε, we have

〈Fε, ϕ〉Qε = −
∫

Ωε

rot(uε) · rot(Rε(ϕ)) dx+ 2N2

∫
Ωε

rotwε ·Rε(ϕ) dx . (4.65)

Using Lemma 4.4 for fixed ε, we see that it is a bounded functional on H1
0 (Qε) (see the proof of Lemma 4.6

below) and in fact Fε ∈ H−1(Qε)
3. Moreover, divϕ = 0 implies 〈Fε, ϕ〉Qε = 0, and the DeRham theorem gives

the existence of Pε in L2
0(Qε) with Fε = ∇Pε.

Defining the rescaled extended pressure P̃ε ∈ L2
0(Ω) by

P̃ε(x
′, z3) = Pε(x

′, εz3), a.e. (x′, z3) ∈ Ω,

we get for any ϕ̃ ∈ H1
0 (Ω)3 where ϕ̃(x′, z3) = ϕ(x′, εz3) that

〈∇εP̃ε, ϕ̃〉Ω = −
∫

Ω

P̃ε divε ϕ̃ dx
′dz3 = −ε−1

∫
Qε

Pε divϕdx = ε−1〈∇Pε, ϕ〉Qε .

Then, using the identification (4.65) of Fε, we get

〈∇εP̃ε, ϕ̃〉Ω = ε−1
(
−
∫

Ωε

rot(uε) : rot(Rε(ϕ)) dx+ 2N2

∫
Ωε

rot(wε) ·Rε(ϕ) dx
)
,

and applying the change of variables (3.28), we obtain

〈∇εP̃ε, ϕ̃〉Ω = −
∫

Ω̃ε

rotε(ũε) : rotε(R̃
ε(ϕ̃)) dx′dz3 + 2N2

∫
Ω̃ε

rotε(w̃ε) · R̃ε(ϕ̃) dx′dz3 , (4.66)

where R̃ε(ϕ̃) = Rε(ϕ) for any ϕ ∈ H1
0 (Qε)

3 where ϕ̃(x′, z3) = ϕ(x′, εz3).

Now, we estimate the right-hand side of (4.66) to obtain the a priori estimate of the pressure P̃ε.

Lemma 4.6 (Estimates for extended pressure). Under hypothesis (2.27), the following estimates hold for the

the extension P̃ε ∈ L2
0(Ω) of the pressure p̃ε

‖P̃ε‖L2(Ω) ≤ Cε−2, ‖∇εP̃ε‖H−1(Ω)3 ≤ Cε−2. (4.67)
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Proof. From the proof of Lemma 4.7-(i) in [1], we have that R̃ε(ϕ̃) satisfies the following estimates

‖R̃ε(ϕ̃)‖L2(Ω̃ε)3
≤ C

‖ϕ̃‖L2(Ω)3 + ε`
2∑
j=1

‖∂xi ϕ̃‖L2(Ω)3 + ‖∂z3 ϕ̃‖L2(Ω)3

 ,

‖∂xiR̃ε(ϕ̃)‖L2(Ω̃ε)3×2 ≤ C

 1

ε`
‖ϕ̃‖L2(Ω)3 +

2∑
j=1

‖∂xi ϕ̃‖L2(Ω)3 +
1

ε`
‖∂z3 ϕ̃‖L2(Ω)3

 , i = 1, 2,

‖∂z3R̃ε(ϕ̃)‖L2(Ω̃ε)3
≤ C

‖ϕ̃‖L2(Ω)3 + ε`
2∑
j=1

‖∂xi ϕ̃‖L2(Ω)3 + ‖∂z3 ϕ̃‖L2(Ω)3

 .

(4.68)

Thus, since 0 < ε < ε` � 1, we deduce

‖R̃ε(ϕ̃)‖L2(Ω̃ε)3
≤ C‖ϕ̃‖H1

0 (Ω)3 , ‖rotε(R̃
ε(ϕ̃))‖L2(Ω̃ε)3×3 ≤

C

ε
‖ϕ̃‖H1

0 (Ω)3 . (4.69)

By using Cauchy-Schwarz’s inequality, estimate (4.38), estimates for Dεũε in (4.45) and for Dεw̃ε in (4.44)
together with (4.69), we obtain∣∣∣∣∫

Ω̃ε

rotε(ũε) : rotε(R̃
ε(ϕ̃)) dx′dz3

∣∣∣∣ ≤ Cε−1‖DεR̃
ε(ϕ̃)‖L2(Ω̃ε)3×3 ≤ Cε−2‖ϕ̃‖H1

0 (Ω)3 ,∣∣∣∣∫
Ω̃ε

rotε(w̃ε) · R̃ε(ϕ̃) dx′dz3

∣∣∣∣ ≤ ‖Dεw̃ε‖L2(Ω̃ε)3×3‖R̃ε(ϕ̃)‖L2(Ω̃ε)3

≤ Cε−2‖R̃ε(ϕ̃)‖L2(Ω̃ε)3
C‖ϕ̃‖H1

0 (Ω)3 ,

(4.70)

which together with (4.66) gives ‖∇εP̃ε‖H−1(Ω)3 ≤ Cε−2, i.e. estimate (4.67)2. By using the Nec̆as inequality

there exists a representative P̃ε ∈ L2
0(Ω) such that

‖P̃ε‖L2(Ω) ≤ C‖∇P̃ε‖H−1(Ω)3 ≤ C‖∇εP̃ε‖H−1(Ω)3 ,

which implies (4.67)1.

4.3 Convergences

We give a compactness result concerning the asymptotic behavior of the extended sequences (ũε, w̃ε, P̃ε) satisfying
the a priori estimates given in Lemmas 4.5 and 4.6.

Lemma 4.7. For a subsequence of ε still denote by ε, we have the following convergence results:

(i) (Velocity) There exists ũ = (ũ′, ũ3) ∈ H1(0, hmax;L2(ω)3), with ũ3 ≡ 0 and ũ′ = 0 on Γ1, such that

ũε ⇀ ũ in H1(0, hmax;L2(ω)3), (4.71)

divx′

(∫ hmax

0

ũ′(x′, z3) dz3

)
= 0 in ω, (4.72)

(∫ hmax

0

ũ′(x′, z3) dz3

)
· n = 0 on ∂ω.
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(ii) (Microrotation) There exist w̃ = (w̃′, w̃3) ∈ H1(0, hmax;L2(ω)3), with w̃3 ≡ 0 and w̃′ = 0 on Γ1, such that

εw̃ε ⇀ w̃ in H1(0, hmax;L2(ω)3). (4.73)

(iii) (Pressure) There exist a function p̃ ∈ L2
0(ω) ∩H1(ω) (i.e. p̃ is independent of z3 and has mean value zero

in ω), such that

ε2P̃ε → p̃ in L2(Ω). (4.74)

Proof. We start proving (i). We will only give some remarks and, for more details, we refer the reader to Lemmas
5.2-i) and 5.4-i) in [1].

We start with the extension ũε. Estimates (4.62) imply the existence of ũ ∈ H1(0, hmax;L2(ω)3) such that
convergence (4.71) holds, and the continuity of the trace applications from the space of ũ such that ‖ũ‖L2 and
‖∂z3 ũ‖L2 are bounded to L2(Γ1) implies ũ = 0 on Γ1. It can also be deduced that ũ3 = 0 on Γ0 according to
boundary condition ũε · n = ũ3,ε = 0 on Γ0.

Next, from the free divergence condition divε(ũε) = 0, it can be deduced that ũ3 is independent of z3, which
together with the boundary conditions satisfied by ũ3 on Γ1 implies that ũ3 ≡ 0. Finally, from the free divergence
condition and the convergence (4.71) of ũε, it is straightforward the corresponding free divergence condition in
a thin domain given in (4.72).

We continue proving (ii). From estimates (4.63), the convergence of (4.73) and that w̃ = 0 on Γ1 and w̃3 = 0
on Γ0 are obtained straighfordward. It remains to prove that w̃3 ≡ 0. To do this, we consider as test function
ψ̃(x′, z3) = (0, 0, ψ̃3) with ψ̃3 ∈ D(Ω), in the variational formulation (3.35) extended to Ω, taking into account

ũε = ṽε + J̃ε and the definition of the rotational given in (3.33), we get

ε3Rc

∫
Ω

rotx′(w̃3,ε) · rotx′(ψ̃3) dx′dz3 + εRc

∫
Ω

∂z3w̃3,ε ∂z3 ψ̃3 dx
′dz3 + 4N2ε

∫
Ω

w̃3,ε ψ̃3 dx
′dz3

−2N2ε

∫
Ω

ũ′ε · rotx′(ψ̃3) dx′dz3 = 0.

Passing to the limit by using convergences of ũε and w̃ε given respectively in (4.71) and (4.73), we get

Rc

∫
Ω

∂z3w̃3 ∂z3 ψ̃3 dx
′dz3 + 4N2

∫
Ω

w̃3 ψ̃3 dx
′dz3 = 0 ,

and taking into account that w̃3 = 0 on Γ1 ∪ Γ0, it is easily deduced that w̃3 ≡ 0 in Ω.

We finish the proof with (iii). Estimate (5.86) implies, up to a subsequence, the existence of P̃ ∈ L2
0(Ω) such

that
ε2P̃ε ⇀ p̃ in L2(Ω). (4.75)

Also, from ‖∇εP̃ε‖L2(Ω)3 ≤ Cε2, by noting that ∂z3 P̃ε/ε
3 also converges weakly in H−1(Ω), we obtain ∂z3 P̃ = 0

and so P̃ is independent of z3. Since P̃ε has mean value zero in Ω, then p̃ also has mean value zero. To prove
strong convergence, we refer to [1, Lemma 7]. Moreover, since P̃ε has mean value zero in Ω and p̃ does not
depend on z3, it holds ∫

Ω

ε2P̃ε dx
′dz3 →

∫
Ω

p̃ dx′dz3 = hmax

∫
ω

p̃(x′) dx′ = 0,

which implies p̃ ∈ L2
0(ω). Finally, the proof of p̃ ∈ H1(ω) can be found in [3, Theorem 3.1], so we omit it.
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5 Adaptation of the unfolding method

5.1 Definition and properties

As seen in Lemma 4.7, the change of variables (3.28) does not capture the oscillations of the domain Ω̃ε. To
capture them, we use an adaptation of the unfolding method (see [19, 20] for more details) introduced to this
context in [1].

Remark 5.1. For k′ ∈ Z2, we define κ : R2 → Z2 by

κ(x′) = k′ ⇐⇒ x′ ∈ Zk′,1 . (5.76)

Remark that κ is well defined up to a set of zero measure in R2 (the set ∪k′∈Z2∂Zk′,1). Moreover, for every
ε > 0, we have

κ

(
x′

ε`

)
= k′ ⇐⇒ x′ ∈ Zk′,ε .

Let us recall that this adaptation of the unfolding method divides the domain Ω̃ε in cubes of lateral length
ε` and vertical length h(z′). Thus, given ϕ̃ ∈ L2(Ω̃ε)3 (assuming ϕ̃ extended by zero outside of ω), we define
ϕ̂ε ∈ L2(R2 × Z)3 by

ϕ̂ε(x
′, z) = ϕ̃

(
ε`κ

(
x′

ε`

)
+ ε`z′, z3

)
a.e. (x′, z) ∈ ω × Z, (5.77)

where the function κ is defined by (5.76). Also, given ψ̃ ∈ L2(Ω), we define ψ̂ε ∈ L2(R2 ×Π) by

ψ̂ε(x
′, z) = ψ̃

(
ε`κ

(
x′

ε`

)
+ ε`z′, z3

)
a.e. (x′, z) ∈ ω ×Π. (5.78)

Remark 5.2. For k′ ∈ Tε, the restriction of ϕ̂ε to Z ′k′,ε × Z and ψ̂ε to Z ′k′,ε × Π do not depend on x′, while as

a function of z it is obtained from (ϕ̃, ψ̃) by using the change of variables

z′ =
x′ − ε`k′

ε`
,

which transform Zk′,ε into Z and Q̃k′,ε into Π, respectively.

Below, we give some properties of the change of variables (5.77), whose can be found in [1, Lemma 4.9] in
the case p = 2.

Proposition 5.3. We have the following properties concerning the estimates of vectorial functions ϕ̃ and scalar
functions ψ and their respective unfolding function ϕ̂ε and ψ̂ε given by (5.77) and (5.78):

i) For every ϕ̃ ∈ L2(Ω̃ε)3, we have
‖ϕ̂ε‖L2(ω×Z)3 = ‖ϕ̃‖L2(Ω̃ε)3 . (5.79)

ii) For every ϕ̃ ∈ H1(Ω̃ε)3, we have

‖Dz′ ϕ̂ε‖L2(ω×Z)3×3 = ε`‖Dx′ ϕ̃‖L2(Ω̃ε)3×3 , ‖∂z3 ϕ̂ε‖L2(ω×Z)3 = ‖∂z3 ϕ̃‖L2(Ω̃ε)3 . (5.80)

iii) For every ψ̃ ∈ L2(Ω), we have

‖ψ̂ε‖L2(ω×Π) = ‖ψ̃‖L2(Ω). (5.81)
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In a similar way, let us introduce the adaption of the unfolding method on the boundary Γ0 (see Cioranescu

et al. [20] for more details). For this purpose, given ϕ̃ ∈ L2(Γ0)3, we define ϕ̂bε ∈ L2(R2 × Γ̂0)3 by

ϕ̂bε(x
′, z) = ϕ̃

(
ε`κ

(
x′

ε`

)
+ ε`z′, z3

)
a.e. (x′, z) ∈ ω × Γ̂0, (5.82)

where the function κ is defined by (5.76).

Remark 5.4. (i) Observe that from this definition, if we consider ϕ̃ ∈ L2(Γ0), a Z ′-periodic function, we
define ϕ̃ε(x

′, z3) = ϕ̃(x′/ε`, z3), it follows ϕ̂bε(x
′, z) = ϕ̃(z).

(ii) Observe that for ϕ̃ ∈ H1(Γ0), ϕ̂bε is the trace on Γ0 of ϕ̂ε. Therefore, ϕ̂bε has similar properties as ϕ̂ε. So
it holds the following property:

‖ϕ̂bε‖L2(ω×Γ̂0)3 = ‖ϕ̃ε‖L2(Γ0)3 . (5.83)

Definition 5.5. We define the unfolded unknowns as follows:

– The unfolded velocity ûε is defined by applying (5.77) for ϕ̃ = ũε.

– The unfolded microrotation ŵε is defined by applying (5.77) for ϕ̃ = w̃ε.

– The unfolded pressure P̂ε is defined by applying (5.78) for ψ̃ = P̃ε.

We are now in position to obtain estimates for the unfolded unknowns (ûε, ŵε, P̂ε).

Lemma 5.6. There exists a constant C > 0 independent of ε, such that ûε, ŵε and P̂ε satisfy

‖ûε‖L2(ω×Z)3 ≤ C, ‖Dz′ ûε‖L2(ω×Z)3×2 ≤ Cε`−1, ‖∂z3 ûε‖L2(ω×Z)3 ≤ C, (5.84)

‖ŵε‖L2(ω×Z)3 ≤ Cε−1, ‖Dz′ŵε‖L2(ω×Z)3×2 ≤ Cε`−2, ‖∂z3ŵε‖L2(ω×Z)3 ≤ Cε−1, (5.85)

‖P̂ε‖L2(ω×Π) ≤ Cε−2. (5.86)

Proof. The result is a consequence of the combination of estimates given in Proposition 5.3 with estimates for
ũε, w̃ε, P̃ε given in Lemma 4.4 and 4.6.

5.2 Equivalent weak variational formulation

We give the equivalent weak variational formulation of system (3.35), which will be useful in next sections in
order to obtain the limit system taking into account the effects of the rough boundary.

We consider ϕ̃ε(x
′, z3) = εϕ̂(x′, x′/ε`, z3) and ψ̃ε = ψ̂(x′, x′/ε`, z3) as test function in (3.35), where ϕ̂, ψ̂ ∈

D(ω;C∞# (Z)3), and taking into account the extension of the pressure, we have

〈∇εp̃ε, ϕ̃ε〉Ω̃ε = 〈∇εP̃ε · ϕ̃ε〉Ω,
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and taking into account ũε = ṽε + J̃ε, we get

ε

∫
Ω̃ε

rotε(ũε) · rotε(ϕ̃ε) dx
′dz3 − ε

∫
Ω

P̃ε divε(ϕ̃ε) dx
′dz3 − 2N2ε

∫
Ω̃ε

rotε(ϕ̃ε) · w̃ε dx
′dz3 (5.87)

+2

(
N2 − 1

α

)∫
Γ0

(w̃ε × n) · ϕ̃ dσ(x′) = 0,

ε3Rc

∫
Ω̃ε

rotε(w̃ε) · rotε(ψ̃ε) dx
′dz3 + ε3Rc

∫
Ω̃ε

divε(w̃ε) · divε(ψ̃ε) dx
′dz3 + 4N2ε

∫
Ω̃ε

w̃ε · ψ̃ε dx′dz3

−2N2ε

∫
Ω̃ε

ũε · rotε(ψ̃ε) dx
′dz3 − 2N2β

∫
Γ0

(ũε − s)× n · ψ̃ε dσ(x′) (5.88)

= −2N2

∫
Γ0

(ũε × n) · ψ̃ε dσ(x′).

Now, from the definition of rotε given in (3.31), and by the change of variables given in Remark 5.2 (see [1] for
more details) applied to (5.87), we obtain

ε2

ε2`

∫
ω×Z

rotz′(û3,ε) · rotz′(ϕ̂3) dx′dz +
ε2

ε2

∫
ω×Z

rotz3(û′ε) · rotz3(ϕ̂′) dx′dz +
ε2

ε2`

∫
ω×Z

Rotz′(û
′
ε) · Rotz′(ϕ̂) dx′dz

−ε2
∫
ω×Π

P̂ε divx′(ϕ̂) dx′dz − ε2

ε`

∫
ω×Π

P̂ε divz′(ϕ̃) dx′dz − ε
∫
ω×Π

P̂ε ∂z3 ϕ̂ dx
′dz

−2N2 ε
2

ε`

∫
ω×Z

rotz′(ϕ̂3) · ŵ′ε dx′dz − 2N2ε

∫
ω×Z

rotz3(ϕ̂′) · ŵ′ε dx′dz − 2N2 ε
2

ε`

∫
ω×Z

Rotz′(ϕ̂
′) · w̃3,ε dx

′dz

+2

(
N2 − 1

α

)
ε

∫
ω×Γ̂0

(ŵε × n) · ϕ̂bε dx′dσ(z′) +Oε = 0,

(5.89)
where Oε is devoted to tends to zero. To simplify the variational formulation, we observe that from estimates
for (ûε, ŵε) given in Lemma 5.6 and convergence (2.10), we deduce∣∣∣∣ ε2ε2`

∫
Ω̃ε

rotz′(û3,ε) · rotz′(ϕ̂3) dx′dz +
ε2

ε2`

∫
Ω̃ε

Rotz′(û
′
ε) · Rotz′(ϕ̂) dx′dz

∣∣∣∣ ≤ Cε1−` → 0,

∣∣∣∣2N2 ε
2

ε`

∫
ω×Z

rotz′(ϕ̂3) · ŵ′ε dx′dz + 2N2 ε
2

ε`

∫
ω×Z

Rotz′(ϕ̂
′) · w̃3,ε dx

′dz

∣∣∣∣ ≤ Cε1−` → 0.

Then, variational formulation (5.89) reads∫
ω×Z

rotz3(û′ε) · rotz3(ϕ̂′) dx′dz − ε2
∫
ω×Π

P̂ε divx′(ϕ̂) dx′dz

−ε2−`
∫
ω×Π

P̂ε divz′(ϕ̂) dx′dz − ε
∫
ω×Π

P̂ε ∂z3 ϕ̂ dx
′dz

−2N2ε

∫
ω×Z

rotz3(ϕ̂′) · ŵ′ε dx′dz + 2

(
N2 − 1

α

)
ε

∫
ω×Γ̂0

(ŵε × n) · ϕ̂ dx′dσ(z′) +Oε = 0,

(5.90)

To finish, proceeding similarly for the variational formulation (5.88), and using the estimates for (ûε, ŵε) given
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in Lemma 5.6 and convergence (2.10) as in previous variational formulation, we deduce that (5.88) reads

εRc

∫
ω×Z

rotz3(ŵ′ε) · rotz3(ψ̂′) dx′dz + εRc

∫
ω×Z

∂z3ŵ3,ε ∂z3 ψ̂3 dx
′dz + 4N2ε

∫
ω×Z

ŵε · ψ̂ dx′dz

−2N2

∫
ω×Z

û′ε · rotz3(ψ̂′) dx′dz − 2N2β

∫
ω×Γ̂0

(ûε − s)× n · ψ̂ dx′dσ(z′)

= −2N2

∫
ω×Γ̂0

(ûε × n) · ψ̂ dx′dσ(z′) +Oε,

(5.91)

where Oε is devoted to tends to zero.

5.3 Convergences and limit problem

We give a compactness result concerning the related unfolding functions (ûε, ŵε, P̂ε) satisfying the a priori
estimates given in Lemmas 5.6.

Lemma 5.7. Consider the functions (ũ, w̃, p̃) obtained in Lemma 4.7. Then, for a subsequence of ε still denote
by ε, we have the following convergence results:

(i) (Velocity) There exists û = (û′, û3) ∈ H1(0, h(z′);L2
#(ω × Z ′)3), with û3 ≡ 0 and û′ = 0 on Γ̂1, such that

it holds ∫
Z

û′(x′, z)dz =

∫ hmax

0

ũ′(x′, z3) dz3 , (5.92)

and moreover

ûε ⇀ û in H1(0, h(z′);L2(ω × Z ′)3), (5.93)

divz′ û
′ = 0 in ω × Z, (5.94)

divz′

(∫ h(z′)

0

û′ dz3

)
= 0 in ω × Z ′, (5.95)

divx′

(∫
Z

û′(x′, z) dz

)
= 0 in ω , (5.96)

(∫
Z

û′(x′, z) dz

)
· n′ = 0 on ∂ω .

(ii) (Microrotation) There exists ŵ ∈ H1(0, h(z′);L2
#(ω × Z ′)3), with ŵ3 ≡ 0 and ŵ′ = 0 on Γ̂1, such that it

holds ∫
Z

ŵ′(x′, z)dz =

∫ hmax

0

w̃′(x′, z3) dz3, (5.97)

and moreover

εŵε ⇀ ŵ in H1(0, h(z′);L2(ω × Z ′)3). (5.98)

(iii) (Pressure) The following convergence holds

ε2P̂ε → p̃ in L2(ω ×Π). (5.99)
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Proof. The proof follows the lines of the proof of Lemma 4.7, so we will give some remarks. We start by (i).
Estimates given in (5.84) imply the existence of û ∈ H1(0, h(z′);L2(ω×Z ′)3) such that convergence (5.93) holds.

As in Lemma 4.7, it holds that û = 0 on ω × Γ̂1 and û3 = 0 on ω × Γ̂0. It can also be proved the Z ′-periodicity
of û. This can be obtained by proceeding as in [36, Lemma 5.4].

We have to take into account that applying the unfolded change of variables to the divergence condition
divε(ũε) = 0 and multiplying by ε, we get

ε1−`divz′(û
′
ε) + ∂z3 û3,ε = 0. (5.100)

Passing to the limit, since relation (2.10), we get ∂z3 û3 = 0, which means that û3 is independent of z3. Due to

the boundary conditions û3 = 0 on ω × (Γ̂1 ∪ Γ̂0), it holds that û3 ≡ 0.

Now, multiplying (5.100) by ε`−1q̃ with q̃ independent of z3, after integrating by parts, we get∫
ω×Z

û′ε · ∇z′ q̃ dx′dz = 0.

Passing to the limit and integrating by parts, we get (5.94). Observe that previous equality also can be written
as follows ∫

ω×Z′

(∫ h(z′)

0

û′ε dz3

)
∇z′ q̃ dx′dz′ = 0,

which passing to the limit and integrating by parts, gives (5.95).

For the proof of (5.92), we refer to [1, Lemma 5.4]. Next, putting relation (5.92) into the divergence condition
(4.72), we get (5.96).

The proofs of (ii) is similar to the proof of (i) just taking into account the estimates of ŵε.

Finally, to prove (iii), we remark that the strong convergence of sequence ε2P̂ε to p̃ is a consequence of the

strong convergence of ε2P̃ε to p̃, see [20, Proposition 2.9].

Using convergences given in Lemma 4.7, we give the reduced two-pressured homogenized system satisfied by
(û, ŵ, p̃).

Theorem 5.8 (Limit problem). The triplet of functions (û, ŵ, p̃) ∈ H1(0, h(z′); L2
#(ω×Z ′)3)×H1(0, h(z′);L2

#(ω×
Z ′)3) × (L2

0(ω) ∩H1(ω)), with û3 = ŵ3 ≡ 0, given in Lemma 4.7 is the unique solution of the two-pressure ho-
mogenized reduced micropolar problem

−∂2
z3 û
′ +∇z′ π̂ − 2N2rotz3(ŵ′) = −∇x′ p̃(x′) in ω × Z,

−Rc∂2
z3ŵ

′ + 4N2ŵ′ − 2N2rotz3(û′) = 0 in ω × Z,

π̂ ∈ L2
#(ω × Z ′),

(5.101)
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with divergence conditions

divz′(û
′) = 0 in ω × Z, (5.102)

divz′

(∫ h(z′)

0

û′(x′, z) dz3

)
= 0 in ω × Z ′, (5.103)

divx′

(∫
Z

û′(x1, z) dz

)
= 0 in ω, (5.104)(∫

Z

û′(x′, z) dz

)
· n′ = 0 on ∂ω ,

and boundary conditions

û′ = 0, ŵ′ = 0 on ω × Γ̂1, (5.105)

∂z3 û
′ = − 2

α
(ŵ′)⊥ on ω × Γ̂0, (5.106)

∂z3ŵ
′ = −2Nβ(û′ − s)⊥ on ω × Γ̂0. (5.107)

Proof. From Lemma 4.7, it remains to prove (5.101) and boundary conditions (5.106) and (5.107). We divide
the proof in three steps.

Step 1. We prove (5.101)1 with boundary condition (5.106). According to Lemma 4.7, we consider in (5.90)
where ϕ̂(x′, z) ∈ D(ω;C∞# (Z)2) with ϕ̂3 ≡ 0 in ω × Z and divz′(ϕ̂

′) = 0 in ω × Z. This gives∫
ω×Z

rotz3(û′ε) · rotz3(ϕ̂′) dx′dz − ε2
∫
ω×Π

P̂ε divx′(ϕ̂
′) dx′dz

−2N2ε

∫
ω×Z

rotz3(ϕ̂′) · ŵ′ε dx′dz + 2

(
N2 − 1

α

)
ε

∫
ω×Γ̂0

(ŵε × n) · ϕ̂bε dx′dσ(z′) +Oε = 0,

(5.108)

where Oε is devoted to tends to zero when ε → 0. Below, let us pass to the limit when ε tends to zero in each
term of the previous variational formulation:

• First term. Using convergence (5.93) and the definition of the operator rotz3 given in (3.33), we get∫
ω×Z

rotz3(û′ε) · rotz3(ϕ̂′) dx′dz =

∫
ω×Z

rotz3(û′) · rotz3(ϕ̂′) dx′dz +Oε

=

∫
ω×Z

∂z3 û
′ · ∂z3 ϕ̂′ dx′dz +Oε.

• Second term. Using convergence (5.99), we get

ε2
∫
ω×Π

P̂ε divx′(ϕ̂
′) dx′dz =

∫
ω×Π

p̃ divx′(ϕ̂
′) dx′dz +Oε.

• Third term. Using convergence (5.98) and integration by parts, we get

−2N2ε

∫
ω×Z

rotz3(ϕ̂′) · ŵ′ε dx′dz = −2N2

∫
ω×Z

rotz3(ϕ̂′) · ŵ′ dx′dz +Oε

= −2N2

∫
ω×Z

rotz3(ŵ′) · ϕ̂′ dx′dz + 2N2

∫
ω×Γ̂0

(ϕ̂′)⊥ · ŵ′dx′dσ(z′) +Oε

= −2N2

∫
ω×Z

rotz3(ŵ′) · ϕ̂′ dx′dz − 2N2

∫
ω×Γ̂0

(ŵ′)⊥ · ϕ̂′dx′dσ(z′) +Oε.
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• Fouth term. By continuity of the trace operator from H1(0, h(z′);L2(ω ×Z ′)3) into L2(ω × Γ̂0) and using
convergence (5.98), we get the convergence of εŵε(x

′, z′0) to ŵ, and so we get

2

(
N2 − 1

α

)
ε

∫
ω×Γ̂0

(ŵε × n) · ϕ̂ dx′dσ(z′) = 2

(
N2 − 1

α

)∫
ω×Γ̂0

(ŵ × n) · ϕ̂ dx′dσ(z′) +Oε

= 2

(
N2 − 1

α

)∫
ω×Γ̂0

(ŵ′)⊥ · ϕ̂′ dx′dσ(z′) +Oε.

Therefore, by previous convergences, we deduce that the limit variational formulation is given by the following
one ∫

ω×Z
∂z3 û

′ · ∂z3 ϕ̂′ dx′dz +

∫
ω×Π

p̃ divx′(ϕ̂
′) dx′dz

−2N2

∫
ω×Z

rotz3(ŵ′) · ϕ̂′ dx′dz − 2

α

∫
ω×Γ̂0

(ŵ′)⊥ · ϕ̂′ dx′dσ(z′) = 0,

(5.109)

for every ϕ̂′ ∈ D(ω;C∞# (Z)2) with divz′(ϕ̂
′) = 0 in ω × Z. By density, (5.109) holds for every function ϕ′ in

the H1(0, h(z1);L2
#(ω × Z ′)) with divz′(ϕ̂

′) = 0 in ω × Z and is equivalent to problem (5.101)1 with boundary
condition (5.106), and π̂ the Lagrange multiplier arising from the free z′-divergence condition.

Step 2. We prove (5.101)2 with boundary condition (5.107). According to Lemma 4.7, we consider in (5.90)

where ψ̂(x′, z) ∈ D(ω;C∞# (Z)2) with ψ̂3 ≡ 0 in ω × Z. This gives

εRc

∫
ω×Z

rotz3(ŵ′ε) · rotz3(ψ̂′) dx′dz + 4N2ε

∫
ω×Z

ŵ′ε · ψ̂′ dx′dz

−2N2

∫
ω×Z

û′ε · rotz3(ψ̂′) dx′dz − 2N2β

∫
ω×Γ̂0

(ûε − s)× n · ψ̂ dx′dσ(z′)

= −2N2

∫
ω×Γ̂0

(ûε × n) · ψ̂ dx′dσ(z′) +Oε,

(5.110)

where Oε is devoted to tends to zero when ε → 0. Below, let us pass to the limit when ε tends to zero in each
term of the previous variational formulation:

• First term. Using convergence (5.98) and the definition of the operator rotz3 given in (3.33), we get

εRc

∫
ω×Z

rotz3(ŵ′ε) · rotz3(ψ̂′) dx′dz = Rc

∫
ω×Z

rotz3(ŵ′) · rotz3(ψ̂′) dx′dz +Oε

= Rc

∫
ω×Z

∂z3ŵ
′ · ∂z3 ψ̂′ dx′dz +Oε.

• Second term. Using convergence (5.98), we get

4N2ε

∫
ω×Z

ŵ′ε · ψ̂′ dx′dz = 4N2

∫
ω×Z

ŵ′ · ψ̂′ dx′dz +Oε.

• Third term. Using convergence (5.93) and integration by parts, we get

−2N2

∫
ω×Z

û′ε · rotz3(ψ̂′) dx′dz = −2N2

∫
ω×Z

û′ · rotz3(ψ̂′) dx′dz +Oε

= −2N2

∫
ω×Z

ψ̂′ · rotz3(û′) dx′dz + 2N2

∫
ω×Γ̂0

(ψ̂′)⊥ · û′ dx′dσ(z′) +Oε

= −2N2

∫
ω×Z

ψ̂′ · rotz3(û′) dx′dz − 2N2

∫
ω×Γ̂0

(û′)⊥ · ψ̂′ dx′dσ(z′) +Oε.
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• Fourth term. By continuity of the trace operator from H1(0, h(z′);L2(ω×Z ′)3) into L2(ω× Γ̂0) and from
convergence (5.93), we get the convergence of ûε(x

′, z′, 0) to û(x′, z′, 0) and so

−2N2β

∫
ω×Γ̂0

(û′ε − s)× n · ψ̂ dx′dσ(z′) = −2N2β

∫
ω×Γ̂0

(û− s)× n · ψ̂ dx′dσ(z′) +Oε

= −2N2β

∫
ω×Γ̂0

(û′ − s′)⊥ · ψ̂′ dx′dσ(z′) +Oε.

• Five term. Similar to the previous term, from convergence (5.93), we get

−2N2

∫
ω×Γ̂0

(ûε × n) · ψ̂ dx′dσ(z′) = −2N2

∫
ω×Γ̂0

(û′)⊥ · ψ̂′ dx′dσ(z′) +Oε.

Therefore, by previous convergences, we deduce that the limit variational formulation is given by the following
one

Rc

∫
ω×Z

∂z3ŵ
′ · ∂z3 ψ̂′ dx′dz + 4N2

∫
ω×Z

ŵ′ · ψ̂′ dx′dz

−2N2

∫
ω×Z

ψ̂′ · rotz3(û′) dx′dz − 2N2β

∫
ω×Γ̂0

(û′ − s)⊥ · ψ̂′ dx′dσ(z′) = 0,

(5.111)

for every ψ̂′ ∈ D(ω;C∞# (Z)2). By density, (5.111) holds for every function ψ′ in the H1(0, h(z1);L2
#(ω × Z ′)),

and is equivalent to problem (5.101)2 with boundary condition (5.107).

Step 3. Conclusion. Since ϕ̂′ and ψ̂ are arbitrary, we derive from (5.109) and (5.111) that (û′, ŵ′, p̃, π̂)
satisfies the system (5.101) with boundary conditions (5.105)–(5.107). To ensure that the whole sequence

(ûε, εŵε, ε
2P̂ε) converges, it remains to prove the existence and uniqueness of weak solution of the effective

system (5.101). This follows the lines of the proof of Theorem 2.27, so we omit it.

6 Reynolds equation

In this section, we give the main result of this paper, i.e. the Reynolds equation for the pressure p̃ and the
expressions for the average velocity and microrotation. We will proceed as follows. First, we give the expressions
of û and ŵ by solving problem (5.101) with boundary conditions (5.105)–(5.107). Next, we integrate in Z the
expression of û and ŵ, which gives the expression for the average velocity and microrotation, which are given
depending on local problems. Finally, putting the expression of the average velocity into the incompressibility
condition (5.104), we deduce the Reynolds equation.

Lemma 6.1. Assuming condition (2.27) and α 6= 1, the solutions of (5.101) with boundary conditions (5.105)–
(5.107) are given by the following expressions

û′(x′, z) =
[(2N2

k
(sinh(kz3)− sinh(kh(z′)) + γα(z3 − h(z′)))A1(z′)

+
2N2

k

(
cosh(kz3)− cosh(kh(z′))B1(z′) +

z2
3 − h(z′)2

2(1−N2)

)]
(∇x′ p̃(x′) +∇z′ π̂(x′, z′)) (6.112)

+
[(2N2

k
(sinh(kz3)− sinh(kh(z′)) + γα(z3 − h(z′))

)
A2(z′)

+
2N2

k
(cosh(kz3)− cosh(kh(z′)))B2(z′)

]
s′,
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ŵ′(x′, z) =
[(

cosh(kz3) +
γα
2

)
A1(z′) + sinh(kz3)B1(z′) +

z3

2(1−N2)

]
(∇x′ p̃(x′) +∇z′ π̂(x′, z′))⊥

+
[(

cosh(kz3)− γα
2

)
A2(z′) + sinh(kz3)B2(z′)

]
(s′)⊥, (6.113)

where

k = 2N

√
1−N2

Rc
,

γα
2

=
1− αN2

α− 1
, (6.114)

and Ai, B2, i = 1, 2, are given by

A1(z′) =
L(z′)

2(1−N2)

[
h(z′)

(
4N4(1− cosh(kh(z′))) +

Rc
β
k2
)

−k sinh(kh(z′))
(Rc
β
− 2N2h(z′)2

)]
, (6.115)

A2(z′) = −2N2kL(z′) sinh(kh(z′)), (6.116)

B1(z′) =
L(z′)

2(1−N2)

[
2N2h(z′)

(
2N2 sinh(kh(z′)) + γαkh(z′)

)
+k(

Rc
β
− 2N2h(z′)2)

(
cosh(kh(z′)) +

γα
2

)]
, (6.117)

B2(z′) = −2N2kL(z′)
[γα

2
+ cosh(kh(z′))

]
, (6.118)

and

L(z′) = −
[(

γα
2 + cosh(kh(z′))

)(
4N4[1− cosh(kh(z′))] + Rc

β k
2
)

+2N2 sinh(kh(z′))
(
γαkh(z′) + 2N2 sinh(kh(z′))

)]−1

.

(6.119)

Proof. The proof is obtaining by solving system (5.101) for (û1, ŵ2) with corresponding boundary conditions
(5.105)–(5.107), by observing that problem (5.101) is an ordinary differential equation with respect to z3 (i.e.
considering variables x′, z′ as parameters). The proof can be found in [3, Lemma 3.5] for a system (5.101) defined
only for variables (x′, z3), but the proof is the same just taking into account that here, two pressures appear.
Following the proof, we observe that variable x′ only appears in the pressures p̃(x′) and π̂(x′, z′).

We note that (û1, ŵ2) and (û2,−ŵ1) satisfy the same equations and boundary conditions by writting s2 and
z2 instead of s1 and z1. So, expression for (û2, ŵ1) are obtained straightforward, from expression of (û1, ŵ2), see
[4, Appendix 1].

Lemma 6.2. Assuming condition (2.27) and α = 1, the solutions of (5.101) with boundary conditions (5.105)–
(5.107) are given by the following expressions

û′(x′, z) =
[2N2

k
(cosh(kz3)− cosh(kh(z′))B′1(z′) +

z2
3 − h(z′)

2(1−N2)
+
A′1(z′)

1−N2
(z3 − h(z′))

]
(∇x′ p̃(x′) +∇z′ π̂(x′, z′))

+
[2N2

k
(cosh(kz3)− cosh(kh(z′))B′2(z′) +

A′2(z′)

1−N2
(z3 − h(z′))

]
s′, (6.120)

ŵ(x′, z) =
[

sinh(kz3)B′1(z′) +
z3

2(1−N2)
+

A′1(z′)

2(1−N2)

]
(∇x′ p̃(x′) +∇z′ π̂(x′, z′))⊥ (6.121)

+
[

sinh(kz3)B′2(z′) +
A′2(z′)

2(1−N2)

]
(s′)⊥,
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where k is given by (6.114) and A′i, B
′
i, i = 1, 2, are given by

A′1(z′) = L′(z′)
[
h(z′)

(
4N4(1− cosh(kh(z′))) +

Rc
β
k2
)
− k sinh(kh(z′))

(Rc
β
− 2N2h2(z′)

)]
, (6.122)

A′2(z′) = 4N2k(1−N2)L′(z′) sinh(kh(z′)), (6.123)

B′1(z′) = k
L(z′)

2(1−N2)

[
2N2h(z′) +

Rc
β

]
, (6.124)

B′2(z′) = −2N2kL′(z′), (6.125)

and

L(z′) = −
[
4N4(1− cosh(kh(z′)) +

Rc
β
k2 + 4N2kh(z′) sinh(kh(z′))

]−1

. (6.126)

Proof. The proof is similar to the case α 6= 1, see [3, Lemma 3.6] and [4, Appendix 2].

Lemma 6.3. The z3-average velocity and microrotation satisfy the following expressions:

Û′av(x′, z′) =

∫ h(z′)

0

û′(x′, z) dz3 = −Θ1(z′)(∇x′ p̃(x′) +∇z′ π̂(z′)) + Θ2(z′)s′, Ûav,3 ≡ 0, (6.127)

Ŵ′
av(x′, z′) =

∫ h(z′)

0

ŵ′(x′, z) dz3 = Φ1(z′)(∇x′ p̃(x′) +∇z′ π̂(z′))⊥ + Φ2(z′)(s′)⊥, Ŵav,3 ≡ 0. (6.128)

Here, functions Θi and Φi, i = 1, 2, are given depending on the case:

– If α 6= 1, then

Θ1(z′) =
h3(z′)

3(1−N2)
(6.129)

−
[

2N2

k

(cosh(kh(z′))− 1

k
− h(z′) sinh(kh(z′))

)
− γα

2
h2(z′)

]
A1(z′)

−2N2

k

( sinh(kh(z′))

k
− h(z′) cosh(kh(z′))

)
B1(z′),

Θ2(z′) =

[
2N2

k

(
cosh(kh(z′))− 1

k
− h(z′) sinh(kh(z′))

)
− γα

2
h2(z′)

]
A2(z′) (6.130)

+
2N2

k

(
sinh(kh(z′))

k
− h(z′) cosh(kh(z′))

)
B2(z′),

Φ1(z′) =
h(z′)2

4(1−N2)
+
( sinh(kh(z′))

k
+
γα
2

)
A1(z′) +

cosh(kh(z′))− 1

k
B1(z′), (6.131)

Φ2(z′) =
( sinh(kh(z′))

k
− γα

2

)
A1(z′) +

cosh(kh(z′))− 1

k
B2(z′), (6.132)

where Ai, Bi, i = 1, 2 are defined in Lemma 6.1.
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– If α = 1, then

Θ1(z′) =
h3(z′)

3(1−N2)
+

h2(z′)

2(1−N2)
A′1(z′) (6.133)

−2N2

k

[
sinh(kh(z′))

k
− h(z′) cosh(kh(z′))

]
B′1(z′),

Θ2(z′) = − h2(z′)

2(1−N2)
A′2(z′) (6.134)

+
2N2

k

[
sinh(kh(z′))

k
− h(z′) cosh(kh(z′))

]
B′2(z′),

Φ1(z′) =
h2(z′)

4(1−N2)
+

h(z′)

2(1−N2)
A′1(z′) +

cosh(kh(z′))− 1

k
B′1(z′), (6.135)

Φ2(z′) =
h(z′)

2(1−N2)
A′2(z′) +

cosh(kh(z′))− 1

k
B′2(z′), (6.136)

where A′i, B
′
i, i = 1, 2 are defined in Lemma 6.2.

Proof. Using divergence condition (5.103), we obtain for a.e. x′ ∈ ω that∫
Z′

(∫ h(z′)

0

û′(x′, z) dz3

)
∇z′θ(z′) dx′dz′ = 0, ∀ θ ∈ H1(Z ′).

From Lemmas 6.1 and 6.2, by averaging (6.112) or (6.120) with respect to z3 between 0 and h(z′), we obtain

Û′av(x′, z′) =

∫ h(z′)

0

û′(x′, z) dz3 = −Θ1(z′)(∇x′ p̃(x′) +∇z′ π̂(z′)) + s′Θ2(z′),

i.e. (6.127) with Θi, i = 1, 2 given by (6.129), (6.130) if α 6= 1, and by (6.133), (6.134) if α = 1. Similarly, we
deduce (6.128) by averaging (6.113) or (6.121) with respect to z3 between 0 and h(z′) as follows

Ŵ′
av(x′, z′) =

∫ h(z′)

0

ŵ′(x′, z) dz3 = Φ1(z′)(∇x′ p̃(x′) +∇z′ π̂(z′))⊥ + (s′)⊥Φ2(z′),

with Φi, i = 1, 2 given by (6.131)–(6.132) if α 6= 1, and by (6.135)–(6.136) if α = 1.

Finally, we give the main result of this paper, i.e. the derivation of a Reynolds equation satisfied by p̃ with
the effects of the roughness of the top boundary and the non-standard boundary condition on the flat boundary
of the original thin domain.

Theorem 6.4. (Main result) Assuming condition (2.27) and considering the functions (û, ŵ) given in Lemmas
6.1 and 6.2, we have that the z-average velocity and microrotation

Ũav(x′) =

∫
Z

û(x′, z) dz, W̃av(x′) =

∫
Z

ŵ(x′, z) dz,

satisfy the following expressions

Ũav(x′) = K(1)∇x′ p̃(x′) + L(1)s′, Ũav,3 ≡ 0,

W̃av(x′) = K(2)∇x′ p̃(x′)⊥ + L(2)(s′)⊥, W̃av,3 ≡ 0,

(6.137)
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for a.e. x′ ∈ ω. Here, K(k) ∈ R2×2 and L(k) ∈ R, k = 1, 2, are defined by

K(1) =

∫
Z′

Θ1(z′)

(
∂z1q

1(z′) + 1 ∂z1q
2(z′)

∂z2q
1(z′) ∂z2q

2(z′) + 1

)
dz′, L(1) =

∫
Z′

Θ2(z′) dz′,

K(2) =

∫
Z′

Φ1(z′)

(
∂z2q

2(z′) + 1 −∂z2q1(z′)

−∂z1q2(z′) ∂z1q
1(z′) + 1

)
dz′, L(2) =

∫
Z′

Φ2(z′) dz′,

(6.138)

where function qi ∈ H1
#(Z ′), i = 1, 2, satisfies the local problem∫

Z′
Θ1(z′)(∇z′qi(z′) + ei) · ∇z′θ(z′) dz′ =

∫
Z′

Θ2(z′)si (ei · ∇z′θ(z′)) dz′ ∀ θ ∈ H1(Z ′). (6.139)

Moreover, p̃ satisfies the following Reynolds equation∫
ω

K(1)∇x′ p̃(x′) · ∇x′η(x′) dx′ =

∫
ω

L(1)s′ · ∇x′η(x′) dx′ ∀ η ∈ H1(ω). (6.140)

Proof. From the expressions Û′av in (6.127) given by

Û′av(x
′, z′) = −Θ1(z′)(∇x′ p̃(x′) +∇z′ π̂(z′)) + Θ2(z′)s′,

and divergence condition (5.103), i.e. divz′(Û
′
av) = 0 in ω×Z ′, we know that ∇z′ π̂ holds the following problem∫

ω×Z′
Θ1(z′)(∇x′ p̃(x′) +∇z′ π̂(z′)) · ∇z′ϑ(x′, z′) dx′dz′ =

∫
ω×Z′

Θ2(z′)s′ · ∇z′ϑ(x′, z′) dx′dz′ ∀ϑ ∈ H1(ω × Z ′).

(6.141)
Now, to find a problem for ∇x′ p̃ we proceed to eliminate the microscopic variable z′. To do this, we define

π̂(x′, z′) =

2∑
i=1

∂xi p̃(x
′)qi(z′) in ω × Z ′,

and so, it holds

∇x′ p̃(x′) +∇z′ π̂(z′) =

(
∂z1q

1(z′) + 1 ∂z1q
2(z′)

∂z2q
1(z′) ∂z2q

2(z′) + 1

)
∇x′ p̃(x′),

and observe that this choice of π̂ and taking ϑ(x′, z′) = η(x′)θ(z′) with η ∈ H1(ω) and θ ∈ H1(Z ′), then π̂

satisfies (6.141) by taking into account local problems (6.139) for qi, i = 1, 2. Then, integrating Ûav(x′, z′) in

Z ′, we deduce expression for Ũav(x′) =
∫
Z′

Ûav(x′, z′) dz′ given in (6.137).

Finally, putting expression of Ũav in the divergence condition (5.104), i.e. divx′(Ũav) = 0 in ω, we deduce
that p̃ satisfies the Reynolds equation (6.140).

The derivation of the expression of W̃′
av given in (6.137)2 is straightforward taking into account (6.128) and

that

(∇x′ p̃(x′) +∇z′ π̂(z′))⊥ =

(
∂z2q

2(z′) + 1 −∂z2q1(z′)

−∂z1q2(z′) ∂z1q
1(z′) + 1

)
(∇x′ p̃(x′))⊥.

Then, integrating Ŵ′
av(x′, z′) in Z ′, we deduce expression for W̃av(x′) =

∫
Z′

Ŵav(x′, z′) dz′ given in (6.137)2.
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References
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