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Modeling of a micropolar thin film flow with rapidly varying
thickness and non-standard boundary conditions

Marfa ANGUIANO* and Francisco Javier SUAREZ-GRAU'

Abstract

In this paper, we study the asymptotic behavior of the micropolar fluid flow through a thin domain
assuming zero Dirichlet boundary condition on the top boundary, which is rapidly oscillating, and non-
standard boundary conditions on the flat bottom. Assuming “Reynolds roughness regime”, in which the
thickness of the domain is very small compared to the wavelenth of the roughness (i.e. a very slight roughness),
we rigorously derive a generalized Reynolds equation for pressure clearly showing the roughness-induced
effects. Moreover, we give expressions for the average velocity and microrotation.

AMS classification numbers: 35B27, 35Q35, 76A05, 76M50, 76A20.

Keywords: micropolar fluid; thin-film flow; rapidly oscillating boundary; nonzero boundary conditions; homo-
genization.

1 Introduction

Eringen [23] in 60’s proposed the model of micropolar fluid which has been extensively studied both in the
engineering and mathematical literature, due to its practical importance. This model takes into consideration
the microstructure of the fluid particles and captures the effects of its rotation, so the micropolar fluid model
describes the motion of a lot of real fluids in a better way than the classical (Newtonian) model. Some examples
are liquid crystals, animal blood, muddy fluids, certain polymeric fluids or even water in models with small
scales. The rotation of the fluid particles is mathematically described by introducing the microrotation field,
together with the standard velocity and pressure fields. Accordingly, a new governing equation coming from the
conservation of angular momentum. Thus, the stationary and linearized micropolar equations in dimensionless
form is given by (see Lukaszewicz [25])

—Au + Vp = 2N?rot(w),
div(u) = 0, (1.1)

—RyAw + 4N?w = 2N?rot(w),
where u denotes the velocity vector field, p the pressure and w the microrotation field. Dimensionless (non-
Newtonian) parameter N? characterizes the coupling between the equations for the velocity and microrotation,

and the second dimensionless parameter denoted by Ry, is, in fact, related to the characteristic length of the
microrotation effects.
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An important problem in lubrication theory is to derive lower-dimensional models to describe the flow of
fluid in a narrow space between two surfaces in relative motion. To describe the classical setting, we can define
a thin domain by R

Qf =w x (0,eh(x)), 2/ =(r1,29) EwCR? 0O<ex, (1.2)

where €h represents the thickness of the domain, with A a smooth function and the small parameter € is devoted
to tend to zero. Thus, prescribing velocity on the bottom 'y = w x {0} and zero on the top I'§ = w x {eh(z')}
(we don’t care about the lateral boundary conditions here), i.e.

u=s=(s,0) = (s1,52,0) on Iy, u=0 onl¥¢, (1.3)

then Bayada & Lukaszewicz [9] gave a mathematical proof of the transition from the micropolar equations (1.1)
to a 2D Reynolds-like equation by using homogenization techiniques when € — 0. This equation is given by

3 x! g
divy < 1h_(N)2 D(h(z"), N)Vup(a') + h(2 )S') =0 in w, (1.4)

where ®(h(a'). N) = 4 + gy — wite \ T coth (Nh()VT = V7).

Throughout the mathematical literature, micropolar fluid models have been extensively studied in recent
years by deriving different asymptotic Reynolds-like models taking into account that a surface presents micro-
roughness, depending on the ratio between the size of the roughness and the thickness of the domain and on the
boundary conditions considered, see for instance Anguiano & Sudrez-Grau [2], Bayada et al. [7, 8], Boukrouche
[14], Boukrouche & Paoli [15], Boukrouche et al. [16, 17], Dupuy et al. [21, 22], Marusic-Paloka [26, 27, 28],
Pazanin [31], Pazanin & Radulovi¢ [33], Pazanin & Sudrez-Grau [34], Sudrez-Grau [38] and references therein.

One important problem in the lubrication framework concerns to the case of a thin domain with rapidly
oscillating boundary given by

Qf =w x (0,he(x)) with he(z') = eh(z' /") Va' €ew CR?, (1.5)

where h. represents the thickness of the domain, which is rapidly oscillating. The thickness is given by the
small parameter 0 < € < 1, and the top boundary is rough with small roughness of wavelength described by
0 < e’ < 1, with £ € (0, +00). Thus, depending on the limit of A = lim,_,o €' ¢, there exist three characteristic
regimes:

— Reynolds roughness (A = 0), where the thickness of the domain is smaller than the wavelenth of the
roughness, i.e. a very slight roughness.

— Stokes roughness (A = 1), where the thickness of the domain and the wavelenth of the roughness are
proportional.

— High-frequency roughness (A = +00), where the thickness of the domain is greater than the wavelenth of
the roughness, i.e. a very strong roughness.

These characteristic regimes have been studied in Bayada and Chambat [5, 6] Benhaboucha et. al. [11], Fabri-
cius et al. [24] and Mikelié [29] for Newtonian fluids, in Pazanin & Sudrez-Grau [35] and Sudrez-Grau [37] for
micropolar fluids, and in Anguiano & Sudrez-Grau [1] and Nakasato & Pazanin [30] for generalized Newtonian
with power law viscosity law.

Note that previous results consider Dirichlet boundary condition for microrotation. However, Bayada et al.
[3, 4] introduced a new boundary condition more general (and physically justified) at the fluid-solid interface.
This boundary condition, called non-standard or non-zero boundary condition in the literature, links the value of
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the micorotation with the rotation of the velocity by way of a coefficient o that characterizes the microrotation
on the solid surfaces as follows o
WX n= grot(u) xn, w-n=0, (1.6)

where n is the normal unit vector to the boundary. In addition, this condition allows a slippage in the tangential
direction and retains a non-penetration condition in the normal direction on the boundary as follows

Ry
2N2

flu—s) xn= rot(w) xn, u-n=0, (1.7)
where [ allows the control of the slippage at the wall when the value u — s is not zero. Recently, this type of
boundary conditions is attracting a lot of attention, as can be seen in various studies, see for instance Benes et
al. [10], Bonnivard et al. [12, 13], Pazanin [32] and Sudrez-Grau [39].

Coming back to the classic setting in lubrication, starting from the micropolar equations (1.1) in the thin
domain Q¢ with non-standard boundary conditions on the bottom I'g and zero boundary conditions on the top
IS, after the homogenization process, a generalized Reynolds equation was derived in Bayada et al. [3, 4] of the
form

—divg (@1(x')vw/p(x/) + @2(36’)5’) -0 inw, (1.8)

for certain explicit functions ©; and ©5. Moreover, explicit expressions for the limit velocity and microrotation
were given.

The purpose of this paper is to generalize the results in Bayada et al. [3, 4] to the case of rapidly oscillating
domain Q€ given by (1.5) and derive a generalized lower-dimensional model influenced by the non-standard
boundary conditions and the roughness of the top boundary I'{ = w x {eh(2'/e?)}. We resctrict ourselves
to the case of “Reynolds roughness”, i.e. the case of a rapidly oscillating boundary described by (1.5) with
lim._,o €' ~¢ = 0, which will allows us to derive an explicit equation. Accordingly, we consider the micropolar
equations (1.1) assuming non-standard boundary conditions (1.6)—(1.7) on the bottom I'y and zero boundary
conditions on the top boundary I'y. As far as the authors know, the flow of a micropolar fluids with non-
standard boundary conditions has not been yet considered in the above described setting. By applying reduction
of dimension techniques together with an adaptation of the unfolding method to capture the micro-geometry of
the roughness (see Section 5), we rigorously derive a generalized micropolar Reynolds equation given by

—divy (KVep(z')+ Ls') =0 in w,
with flow factors K € R?*2? and L € R respectively given by
Kij = / @1(2’/) (8ziqj(z’) + 5ij) dZ/, ’L,] = 1, 27 L = / @2(2/) dZ/,
where the function g¢;, i = 1, 2 satisfies the following local periodic problem

—div, (01(2)(Vaqi(2') + €;) + O2(2")s - €;) =0 inZ', 4,j=1,2,

with Z’ is the periodic cell in R? and functions ©; and O, are the same functions as in (1.8). In addition, we give
the expressions for the average of the velocity and microrotation (see Theorem 6.4). Since the obtained findings
are amenable for the numerical simulations, we believe that it could prove useful in the engineering practice as
well.

The paper is structured as follows. In Section 2, we introduce the position of the problem and the existence
and uniqueness results. To pass to the limit, it is necessary a rescaling of the problem, which is introduced in
Section 3. In Section 4, we get the a priori estimates for velocity, microrotation and pressure, extended to a
e-independent domain. To capture the micro-geometry of the roughness, we introduce in Section 5 the adaptation
of the unfolding method, give some properties and derive the limit problem. Finally, we deduce the generalize
Reynolds equation in Section 6. We finish the paper with a list of references.
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2 Position of the problem

In this section, we first define the rough thin domain, the necessary sets to study the asymptotic behavior of
the solutions and some notation. Next, we introduce the micropolar equations and the boundary conditions in
the thin domain. Finally, we give the variational formulation and the condition for existence and uniqueness of
solution of the problem according to this setting.

2.1 Definition of the domain and some notation.

We consider w a smooth and connected subset of R?. We define the thin domain with a rapidly varying thickness
by
Q ={z=(2/,13) ER* xR : 2/ €w, 0 <3 < h(z))}, (2.9)

where the function h.(z') = eh (2//€’) represents the real distance between the two surfaces, see Figure 1. The
small parameter 0 < € < 1 is related to the film thickness and the small parameter 0 < e’ < 1 is the wavelength
of the roughness, see Figure 2. As said in the introduction, we restrict ourselves to the “Reynolds roughness
regime”, so we consider that €’ is of order greater or equal than €, i.e. 0 < £ < 1, which implies

lim =4 = 0. (2.10)

e—0

eh(z' /€%

Figure 1: Domain ¢, bottom flat boundary I'g and top oscillating boundary I'

Function A is a positive and smooth function defined for 2’ in R?, Z'-periodic with Z’ = (—1/2,1/2)? the cell of
periodicity in R?, and there exist hyi, and hmay such that

0 < hmin = }%i% h(z"),  hmax = max h(z").

We define the boundaries of ¢ as follows

To=wx {0}, T{={(2/,23) ER*xR: 2’ €w, 23 =he(z')}, Tf, =00\ (DoUTY).

To define the microstructure of the periodicity of the boundary, we assume that the domain w is divided
by a mesh of size €’: for k’ € Z2, each cell Z,’C,’El = 'k +¢Z'. We define T, = {k' € Z : lec',el Nw # 0}
In this setting, there exists an exact finite number of periodic sets Zl/a,e@ such that ¥’ € T.. Also, we define
et = Zy, o % (0,0(2")) and Z = Z" x (0, h(2")), which is the reference cell in R?, see Figure 2. We define the

boundaries Ty = Z’ x {0}, I =27 x {h(z")}.
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| €

N

Figure 2: Domain €€ in 2D and the reference cell Z in 2D

Applying a dilatation in the vertical variable, i.e. z3 = x3/¢, we define the following rescaled sets
Q= {(«/,23) e RZXR : ' €w, 0< 23 <h(z'/e")}, 2.11)
IS ={(2/,23) €R2x R : &' €w, 23 =h(a'/e")} fflt =00\ (Do UTS). .

The quantity hpyax allows us to define:
— The extended sets Q. = w X (0, €hmax), L =w X (0, hmax) and I't = w X {hmax }-
— The extended cube @}45 = Zjso % (0, hanay) for k' € Z2.

— The extended and restricted basic cell IT = Z’ x (0, hpax)-

We denote by C a generic constant which can change from line to line. Moreover, O, denotes a generic quantity,
which can change from line to line, devoted to tend to zero when ¢ — 0.

We use the following notation for the partial differential operators
Ap=Dpp+020, div(p) = dive () + Ouy s,

rOt(QO) = (82?2903 - 8-’639027 78331 % 82?3901’ 8361 2 — 82?2901)tv

where ¢ = (¢', p3) with ¢’ = (91, p2), is a vector function defined in Q°.

Finally, we introduce some functional spaces. L3 is the space of functions of L? with zero mean value. Let
C%(Z) be the space of infinitely differentiable functions in R? that are Z'-periodic. By L% (Z) (resp. Hy(Z)),
we denote its completion in the norm L?(Z) (resp. H'(Z)) and by L§ ,(Z) the space of functions in L% (Z) with
zero mean value.

2.2 Micropolar equations with non-standard boundary conditions

In this paper, we consider the 3D stationary linearized micropolar equations in dimensionless form by setting

ue = (uc(2), uz,e(7)), We = (W(2),w3,e(2)), pe =pe(x),
at a point z € (), which is given by

—Au, + Vp. = 2N?rot(w,) in QF,
div(u®) =0 in Q°, (2.12)

—RyAw, +4N?*w, = 2N%rot(u,) in Q.
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We complete the above system with the following boundary conditions on the top
u =0, we=0 onlf, (2.13)
the following boundary condition on the lateral boundary

u =g, w.=0 only,, with / ge-ndo =0, (2.14)

lat

and the non-standard boundary conditions on the bottom

el
W, XN = arot(ue) xn on Iy,

Ryrot(we) x n=2N?p(u, —s) xn on Iy, (2.15)

u-n=0, w.-n=0 only.
Here, s = (s/,0) with s’ = (s1, s2), stands for the characteristic velocity of the moving surface. Dimensionless
(non-Newtonian) parameter N2 characterizes the coupling between the equations for the velocity and microro-
tation and it is of order O(1). The second dimensionless parameter, denoted by Ry, is, in fact, related to the
characteristic length of the microrotation effects and will be compared with small parameter e (see condition
2.20). Parameter « characterizes the microrotation on the solid surfaces (see [3] for more details). The coefficient

[ allows the control of the slippage at the wall when the value u, — s is not zero. Finally, the n is the outside
normal vector to the boundary (observe that in the case of I'g it holds n = —e3).

In order to study the asymptotic behavior of the solution of system (2.12)—(2.15), we also need to assume
a certain regularity on the boundary data g., and uniform estimates of relevant norms. A very general way
of stating those properties is the following: there exists a sequence of lift functions J. € H'()? satisfying
div(J.) =0 in Q,, the boundary conditions

Jo=0onTly, Je=gconlf,, Jc-n=0onTly, (2.16)
and the estimates for every ¢ > 0
Mellzee < Cex, [DIclgaaes < Ce 2, |Tellzqrge < C. (2.17)
where C' > 0 is a universal constant independent of e.

Remark 2.1. One typical construction of a boundary data g. and the associate lift function J is the following,
see [3]. Consider a regular vector field J € H(Q°)3, satisfying

divid)=0 in Q, J=0 on I'Y, J-n=0 on I\.
Extending J by zero outside of &726, we can define J. € H'(Q°)3 by
J(z) = ('(@,3/0)), s’ 23/e)) V€ Q.

Note that only normal component of the velocity is known on Uy and is zero, while the tangential velocity is not
given. Nevertheless, we can choose an artificial value g = (g',0), with g’ = (g1, 92), of the velocity on T'y. We
choose it in a way that function & € H= (99°) defined by

0 on I'§,
5 = e on Fleata
(gla O) on FOa

satisfying [4q. & - ndo = 0.
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Then, by the change of variables (x',x3) = (2’ €z3), it holds
/QE DI |? dz = e/ﬁe (|Dw/3’|2 + Giz\azgj/ﬁ + |V Js)? + |azgfg|2> da'dzs,
/S 32 di = e/( (3 + |2 da’dzs,
so that J. satisfies all the required properties (2.16) and (2.17).

Next, we are able to give the problem with homogeneous boundary conditions on the lateral and top bound-
aries. Introducing
Ve = Ue — Jea

system (2.12)—(2.15) can be rewritten as follows
~A(ve+J.) + Vp. = 2N?%rot(w,) in QF,
div(ve) =0 in QF, (2.18)
~RyAw, + 4N?*w, = 2N? (vot(v.) +rot(J.)) in QF,
with the following boundary conditions
ve=0, we=0 onIjUIY,,
W, Xn= @ (rot(ve) +rot(Je)) xn on Iy,
2 (2.19)
Ryrot(we) x n = 2N?f(v. +g—s) xn on Iy,

veen=0, w.,-n=0 only.

In the next subsection, we recall the existence and uniqueness result of weak solution of problem (2.18)—(2.19).

2.3 Mathematical study

In this paper, the goal is to derive an effective model describing by using rigorous asymptotic analysis with
respect to the small parameter €. In particular, we will focus on detecting the effects of the roughness together
with the effects of non-standard boundary conditions. We remark that different asymptotic behaviors of the flow
can be deduced depending on the order of magnitude of the dimensionless parameter. Indeed, if we compare the
characteristic number Ry, with small parameter ¢, three different asymptotic situations can be formally identifed
(see e.g. [7, 9]). We consider the most interesting one, which leads to a strong coupling at main order, namely

the regime
Ry =€>R., R.>0. (2.20)

Let us start by defining the notion of weak solution to system (2.18)—(2.19). Due to the boundary conditions,
we introduce the following functional spaces

VE:{goeHl(Qe)B:gp:O inT{UT ., ¢ n=0 only}, Vy={peVe:div(p) =0},

equipped with the norm of || D¢l|2(qeysxs, and the space

rh@) = {ae 229 - /ngdx:o},
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equipped with the norm of L?(Q€). Observe that it holds the following identities, which will be important in the

following:

—Ap = rot(rot(p)) — Vdiv(e) Ve € D(Q)3,

(2.21)

/E rot(¢) - pdx = / rot(p) - ¥ dx —/F (Y xn)-pdo(x’) Y(p,b) € HY(Q)? x HY(QF)3. (2.22)

Proposition 2.2 (Theorem 2.1 in [3]). Sufficiently regular solutions of (2.18)-(2.19) satisfy the weak formula-

tion:

Find (Ve,we,pe) € Vi x V€ x L3(Q€) such that

/QE rot(ve) - rot(p) dz — /Qp6 div(yp) dz — 2N? /QE rot(p) - we da
+2 (N2 - 1) /FU(We xn)-pdo(z') = —/ rot(J.) - rot(p) da Vo € V€,

« Q.
R, /
Q.

—2N2/ vﬁ-rot(w)dm—2N2(6—1)/
Q r

€ o]

rot(w,) - rot(3)) dx + €2Rc/

div(w,) - div(¢) dz + 4N> / we - dx
Qe Q.

(Ve xn) - tpdo(z) = 2N2/ J. - rot(v) dx

Qe

+2N?3 (g—s)xn~¢da(m’)—2N2/ (g xm)-do(x) Vip € Ve
o o

Proof. The derivation of the variational formulations (2.23) and (2.24) is given in [3, Theorem 2.1].

reproduce some steps:

— Multiplying (2.18); by ¢ € V¢, using (2.21) and (2.22), we deduce

/ rot(ve) - rot(p) do — / pe div(yp) do — 2N2/ rot(y) - we dx
Q. Q Q.

To

—/F (rot(ve) x n) - pdo(x) —/ (rot(J.) x n) - pdo(z’)

_ o2 / (we xm) - pdo(a) - / rot(J.) - rot ) da.

€

Taking into account the boundary condition (2.19)5, we obtain (2.23).

— Multiplying (2.18)3 by ¥ € V¢, using (2.21) and (2.22), we get

R, / rot(w,) - rot(1)) do + 2R, / div(w,) - div(¢) do + 4N? / W - dx
Q Qe QE

€

(2.23)

(2.24)

Here, we

(2.25)

762Rc\/r ((rot(we) x n) - do(x’) — 2N2/Q v - rot(v) dr + 2N2/ (Ve x n) - do(z’) (2.26)

T'o

_ 2N2/ 3. - rot (1) d — 2N2/ (& x n) - ¥ do(a’).
Q I

€ 0

Taking into account the boundary condition (2.19)3, we obtain (2.24).
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O

To finish this section, we give the existence and uniqueness result, whos proof can be found in [3, Theorem
2.2] taking into account the rescaling of Ry = €2R, and that the maximum of the function A, is €2hmpax-

Theorem 2.3. Under the previous assumptions and assuming that o and B satisfy condition

1 2

’)/2'N2N25
(67

R,
<73 (1—N?), (2.27)

max

then, for every € > 0, there exists a unique weak solution (v, we,pe) € Vi x V€ x L2(Q°) of (2.28)-(2.24).

3 Rescaling

To study the asymptotic behavior of the solutions u., w. and p. when € tends to zero, we need to have the
solutions in a domain with fixed height. To do this, we use the dilatation in the variable x3 given by

23 = % , (3.28)

in order to have the functions defined in €2, and boundaries fi and ffat given in (2.11).

Using the change of variables (3.28) in (2.18)—(2.19), we obtain the rescaled system

~AFVe+J) 4 Vepe = 2N%rot (W) in Q.,

div(v¥) =0 in €, (3.29)

— R, AW, +AN*%, = 2N? (rote(ﬁe) + rote(je)) in Q,
with the rescaled boundary conditions
V.=0, W.=0 onI§UTLY,,
a ~
W Xn= — (rot6 ve) +rot(J, ) xn on g,
* (rotu(¥e) + rot(3.) 0
n=2N?B(V.+g—s)xn onTy,

veen=0, w.,-n=0 onl)y,

where the unknown functions in the above system are given by U.(z', z3) = u(a’,€23), pe(2’, 23) = pe(2’, €23),

We(2', 23) = we(a,ez3) and Jo(2/,23) = (I (2, 23), eJ3(2’, z3)) for ae. (2/,23) € Q°. Here, for a vectorial

function ¢ = (¢, $3) defined in ., the rescaled operators are given by

~ 1 - .~ . -~ 1, -
Acp=App+ :283390’ dive(@) = diva (§') + 28239037

1 t (3.31)
rote() = (1ot (7a) + Lrots, (7)., Rt (7))
where, denoting by
(@) = (=92, 51)", (3.32)
we define
10ty (P3) = (02, P3, =02, §3)', 10t (P') = Oz, (@/)J—v Roty (@) = 04, &2 — 02, &1 (3.33)
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Moreover, from estimates (2.16), we also have
HJ5”L2($~25)3 < 07 ||DEJ€HL2(§~2€)3><3 < Cf_la ||Je||L2(FO)3 < C. (3.34)

In addition, the rescaled variational formulation in Q. is the following:

Find (Ve,We, pe) € Vi x VE x L2(€,) such that
e/~ rot(Ve) - rote () dz'dzg — e/

Dedive (@) da'dzz — 2N2€/ rot (p) - W da'dzz

+2 <N2 - 1) /F (e m) - Bdo(a’) =~ /~ rot, (3.) - rot. () da'dzs,

(6% Q.

€3Rc/~ rot.(w.) ~rot6(zZ) dx'dzs + 63RC/
a

dive (W) - dive(v) da'dzs + AN e /~ W - da'dzs (3.35)
Q€ Qe

€

72N26ﬁ Ve - ot () da'dzs — 2N?(8 — 1)/ (Ve x n) - do(z’)
Qe To

(g—s) xn-deam—QN?/ (g x n) - § do(a’),

= 2N2€/~ J. ~rot5(1Z) da'dzs + 2N?3
Q To

c Lo
for every (3,1) € V¢ x V¢ and § € L2(€2) obtained from (¢, %, q) by using the change of variables (3.28), where
Ve={geH (Q)?: =0 mI5UTs,, &-n=0 only}, Vi={peVe: div.(p) =0}

In the next section, we establish the a priori estimates for the rescaled unknown in an e-independent domain.

4 A priori estimates and convergences

This section is devoted to derive the a priori estimates of the unknowns and is divided in three parts. First,
we deduce the a priori estimates for velocity and microrotation in an e-independent domain, i.e. the domain (2
defined in Section 2. Next, we extend the pressure to () and derive its corresponding a priori estimates. Finally,
from previos a priori estimates, we deduce some convergence results.

4.1 Estimates for velocity and microroration

To derive the desired estimates, let us recall and proof some well-known technical results (see for instance [1]).

Lemma 4.1 (Poincaré’s inequality). For all ¢ € V¢, there holds the following inequality
||g0||L2(Qe)3 < CGHDSD||L2(QF)3X3. (4.36)

Moreover, from the change of variables (3.28), there holds for all ¢ € Ve the following rescaled estimate

||(;5||L2 Qe€)3 S CEHDeSZ”Lz Qe)3x3+ (437)
(92) Q)
Lemma 4.2. For all ¢ € V¢, it holds
D@72 (eyaxs = [Irot(@)l72(qeys + [div(@)[[72(qeys  [T0t(@)Z20es < D@7 2(00)0xas (4.38)
and, if moreover, div(yp) = 0 in Q°, then
[rot(@)ll72(0.)2 = 1D@lZ2(q, yaxs- (4.39)

10
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Moreover, from the change of variables (3.28), we have for all § € Ve that
HDE(EH%g(ﬁe)st = ||r0t€(<,5)||2LQ(§€)3 + ||div€<¢)”i2(§e)7 HrOtE((z)Hiz(ﬁs)s < ||D5§5||i2(§£)3x3’ (4'40)
and if moreover, div (@) = 0 in QF, then

”I‘Otegniz(ﬁf)s = ”De@”iz(ﬁf)sxr (4.41)

Proof. For all p € V¢, it holds (see for instance [18] formula (IV.23))

[ i@ + oty de = [ 1DpPdat [ (o Vn) - pdata)

0

Since I'y is flat, then the term fFD((ga-V)n) -pdo(z') vanishes, ans so we get (4.38). Then, (4.39) is a consequence
of the free divergence condition.

Finally, the change of variables (3.28) applied to (4.38) and (4.39) implies (4.40) and (4.41), respectively, for
any @ obtained from ¢ by the change of variables (3.28).

O
Lemma 4.3 (Trace estimates). For all ¢ € \76, the following inequalities hold
1 - - 1 ~
||SO/HL2(F0)2 < ehr%aXHDe‘P”Lz(ﬁe)sxav @ x n||L2(F0)2 < Ehr?laX||D690||L2(§e)sxs' (4.42)
Proof. Thank to @(z’, h(z'/€e’)) = 0 in w, we have that
h(z' /€b) 2
|22do = / |2(',0)|? da’! :/ / 0.,0(2', z3) dzg| da’ < hmax/ 0., 3|* dx’ d s,
To w w |40 Qe
that is,
1 ~
H‘»OIHL?(FO)2 < hI%aXH823<P/||L2(§e)27
which implies (4.42);. Since
16 x nl[r2(rg)z = [(=@2, 81, 0) [ 2(rg)2,
from (4.42)1, we deduce (4.42),.
O

Lemma 4.4 (A priori estimates). Under hypothesis (2.27), the following estimates hold for the solution (V., W)
of problem (3.35):

HGSHL2(§6)3 S Ca ||Deve||L2(§e)3x3 S Ce_l, (443)
||{’VV€HL2(§~2€)3 < Ce_la HDe{’vveHLz(ﬁe)sxs < C€_2~ (4.44)

As consequence, it also holds
||ﬁ€HL2(§~2€)3 <C, HDeﬁ6||L2(§e)3><3 <Ce (4.45)

Proof. The proof of (4.43) and (4.44) is similar to the one given in [3, Lemma 3.1], but here we are in the 3D
case, so we will give some remarks of the development. We remark that, once proved estimates (4.43), the proof
of (4.45) is straightforward from

U, :ve"_']ey

11
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and estimates of J. given by (3.34). We will prove (4.43) and (4.44) in 4 steps.

Step 1. Mized variational formulation. Problem (3.35) can be written in the following mixed variational
form:

Find (Ve, We,pe) € V€ x V€ x L2(Q°), such that
A ((Ve, W), (2,90)) + BE(3, %), Pe) = L(B,9) Y (,9) € VE X VE, (4.46)
B ((¥e,W.),q) =0 Vq e LE(QF), (4.47)

with A€ defined by

A((Ve, o), (3, 1)) = e/~ rot(Ve) - rote(P) da’dzs — 2]\726/~ rot (@) - W da'dzz
Qe

€

+6°R, /~ rote (We) - rote (v) da’dzs + € R, /~ dive(W,) - dive(¢) da’dzs
Qe Qs

(4.48)
+4N?¢ [ W, - ) dx'dzg — 2N?¢ /~ Ve - rot (v) da'dzs
Q. Q.
+2 (N2 - 1) / (We x n) - @do(z') —2N?(3 — 1)/ (Ve x n) - ¢ do(a’),
« F() FO
with B¢ given by
B((G.),5.) = —e [ 5. dive(P) da’ dzs, (4.49)
Qe

and L€ given by

L(3, ) = 2N2e /@ vot, (3.) - 4 da'dzs — ¢ /ﬁ rote(3) - xote(7) d'dzs +2N% | (g=s) xn- D dr(a’). (450

Taking into account that

1 1
2 (N2 — ) / (We xn)-pdo = —2 <N2 - ) / (@ x n) - wedo(z'),
[0 To « Ty
and
—2NZ%¢ /~ Ve-rot () da'dzs = —2NZe /~ - rote(Ve) da'dzs + 2N? / (1 x m) - Ve do(a')
Q. Q. Lo

= —2NZ% /~ ¥ - 1ot (Vo) da'dzs — 2N? | (Ve x n) - do(2),
Q. o

we then give another expression for A€ by

A((Ve, We), (0, 0)) = € /~ rot(Ve) - rot(p) dz'dzs — 2N”e [ rote(p) - We dz'dzy
Qe Q.
+€R, /~ rote(We) - rote (¢) da'dzs + € R, /~ dive(we) - dive (1) da'dzs
e & (4.51)
+4N?¢ /~ W, - ) da'dzg — 2N?¢ [ Y - 10t (V) da’dzs
Qe Q.

-2 <N2 - 1> /Fo(gz xn) wedo(z') —2N?8 | (Ve x n)-¢do(a).

(6% To

12
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Step 2. Estimate A((Ve, W), (Ve,W¢)) from below. From identities (4.40) applied to v, and (4.41) applied to
W, applying Cauchy-Schwarz’s inequality and using estimates (4.42), we deduce

A((Ve, We), (Ve, We)) = €/~ [rot (V)| da’dzs — 4N2€/~ rot(Ve) - We da'dz3
Q. Q.
—I—E?’Rc/~ [rote (W, )|? da’dzs + E?’Rc/~ |div,(W,)|? da'dz3
Q. Q.
—|—4N26/~ |We|? da'dzs + 27/ (Ve xn) - wedo
Q.

To
R D

v

e[| Develf? +ANZel|we?

L2(S3e)3x3 L2(Se)3x3 L2(§1€)3
_4N26||DEVCHL2(§6)3X3 Hwe‘|L2(ﬁe)3 - 2|7|€2hmax”D5V5”Lz(ﬁe)sxa HDE"XICHL2(QE)3X3'
From condition (2.27), there exists ¢; > 0 such that

Yhmax - 1— N2

< . 4.52
Re = Yl #52)
Applying Young’s inequality
~ ~ € -
||DEVE||L2(§€)3><3||D6W€HL2(Q )3x3 =95 HD Ve”Lz(Q )3x3 + EHDeWe”L‘Z(ﬁE)sw' (4.53)
By continuity, there exists a real number ¢y satisfying 0 < ¢o < ¢1, and such that
_ N
< —= 4.54
Cl fyhmax ( )
and applying again Young’s inequality, we also have
1 ~
||D VGHL2(Q )3><3HW€||L2(Q )3 < o= 4o ”D VE||L2 Q)33 +C?||W6Hiz(ﬁe)3' (455)
Then, we deduce
-~~~ N2 ~ 12
A((Ve, We), (Ve, We)) = € (1 e |7|hmaxcl> ||D6Ve||L2(§e)3x3
Y] emax - 4.56
+6 (Bo= DR ) DG o + AN = )l (5O
2 €A”l) v€||L2 (Qe)3x3 + €SB||D6€/6H2L2(§~25)3><37
with )
N hmax
A= (1 - |7hmaxcl> B = <Rc — h') .
Co C1
Using conditions (4.52) and (4.54), A and B are positive.
Step 3. Estimate L¢(Ve, W.). From Cauchy-Schwarz’s inequality and (4.38), we get
1L6(Ve, We)| = ‘QN%/~ rote(J.) - We da'dzs —e[ rote(J.) - rote(Ve) da'dzs + 2N?8 | (g—s) xn-w.do
e Q. To
< 2N2€2||r0teJeHL2(ﬁe)3x3 HDGGIGHLQ(’QE)SXB + €||D5Je||L2(ﬁe)3><3 HDeveHLZ(ﬁe)?)xS
1 ~
+2N255hr2na)(||g - SHL2(F0)2 ||DeWeI|L2(§e)3><3
= €||DeJe||L2(§e)3><3 ||DEVE||L2(§€)3X3 + 2N2€CeHDe‘TVe”L2(§e)3><3a
(4.57)

13
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~ 1
where C, = GHI'OteJEHLQ(ﬁe):SxB + Bhiax||g — sl £2(ry)2. Observe that from properties (3.34) satisfied by J., there
exists a a constant C' > 0 such that C. < C for any € > 0.

Step 4. Derivation of the a priori estimates. To obtain estimates (4.43) and (4.44), we use inequalities (4.56)
and (4.57) to get

CAIDTN2 e pons + EBIDFN g 06 .
< 6||DEJ€HL2(§€)3X3||D€VE||L2(§€)3><3 + 2N2605||DE€V6||L2(55)3X3, .
which is equivalent to the following inequality
AIDe|3 2 geyana — €l Dedell pa@ieysns I DeVel pagieyons .
+E B DeWel| 74 Gepana — 2N O DeWell 12 (epsxs < 0. '

Summing in both sides ;5 || D, J. ||? and JEV—BzC’f, we observe that last inequality can be written equivalently

as

L2(£¢)3%3

b 2 N2 2
11 ~ 2 3 3 51 ~
<€2 Az ||D§ve||L2(§€)3X3 - 7214% ||D5J6L2(§e)3x3> + (6232 ||D6W5HL2(§e)3x3 - 7€%Bl Ce)

(4.60)
DI g+ 2
which is written as follows
cA <|D€V€||L2(§€)3X3 — 2{4|D636||L2(55)3X3>2 + B (Devvenmﬁg)gxg — ];[;Oe)?
¢ (4.61)

N4
+ —C2

SHIDAR, o + 5 O

Since C¢ is uniformly bounded, using assumptions (3.34), we deduce than the right hand side of the previous
inequality is bounded by C/e for a certain constant C' > 0. This implies (4.43)5 and (4.44)5. Finally, from the
Poincaré inequality (4.37), we get estimates (4.43); and (4.44);, respectively. This finishes the proof.

O

The extension of (u¢, w¢) to the whole domain. The sequence of solutions (u¢, w¢) is defined in a varying
set SNIE, but not defined in the fixed domain €2 independent of €. Thus, to pass to the limit if ¢ tends to zero, we
need convergences in fixed Sobolev spaces (defined in ), so we need to extend (u¢, w¢) to the whole domain €.
From the boundary conditions satisfied by u¢ and w¢ on the top boundary fi, we can extend them by zero in
Q\ Q¢ and we denote the extensions by the same symbol.

Lemma 4.5 (Estimates of extended unknowns). The extended functions (u¢, w€) satisfy the following estimates

|ﬁe||L2(Q)3 <, ||D51Ai€HL2(Q)3><3 < 0671, (462)
Wellzziys < Ce ™t || DeWel|p2(ayaxns < Ce™2. 4.63
() ()

Proof. Estimates for the extension of u. and w, are obtained straightforward from (4.43) and (4.44), respectively.
O
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4.2 Estimates for pressure

Extending the pressure is a much more difficult task. A continuation of the pressure for a flow in a porous media
was introduced in [40]. This construction applies to periodic holes in a domain €, when each hole is strictly
contained into the periodic cell. In this context, we can not use directly this result because the “holes” are along
the oscillating boundary I'{ of 2. and moreover, the scale of the vertical direction is smaller than the scales of
the horizontal directions. This fact will induce several limitations in the results obtained by using the method,
especially in view of the convergence for the pressure. In this sense, for the case of Newtonian fluids, an operator
R¢ generalizing the results of [40] to this context (extending the pressure from . to Q) was introduced in [6, 29],
and later extended to the case of non-Newtonian (power law) fluids in [1] by defining an extension operator Ry,
for every flow index p > 1.

Then, to extend the pressure to the whole domain 2, the mapping R¢ (defined in [1, Lemma 4.6] as RS)
allows us to extend the pressure p. from Q. to Q. by introducing F. in H~1(Q.)? as follows (brackets are for
duality products between H~! and H})

(Fe,0)q. = (Vpe, R(9)). for any ¢ € Hj(Q.)*. (4.64)

We compute the right-hand side of (4.64) by using the first equation of (2.23), and taking into account u. =
ve + J¢, we have

(Fe,p)g, = —/Q rot(uc) - rot(R(p)) da + 2N2/Q rot we - R°(p) dx . (4.65)

Using Lemma 4.4 for fixed €, we see that it is a bounded functional on HE(Q.) (see the proof of Lemma 4.6
below) and in fact F, € H~1(Q.)?. Moreover, divy = 0 implies (F, ¢)o. = 0, and the DeRham theorem gives

the existence of P. in L3(Q.) with F, = VP..
Defining the rescaled extended pressure P, € L3(Q) by

136(90’723) = P.(2',ez3), ae. (2/,23) €9,

we get for any @ € H ()3 where 5(z', z3) = ¢(2, €23) that
(Veﬁ, P = —/ P, div, Gdr'dzg = —e ! P.divpdr = e Y(VP, ©)Q. -
Q Qe

Then, using the identification (4.65) of F, we get

(VeP.,@)g =¢ ( - / rot(u) : rot(R(¢p)) dx + 2N2/ rot(w¢) - R°(¢p) dx) ,
Q. Q.
and applying the change of variables (3.28), we obtain

(VP = — /~ rot. (i, : rote(B%(3)) da’dzs + 2N / rot (%) - B4(3) da’dzs (4.66)

Q. Q

where RE(@) = R(¢p) for any ¢ € H} (Q.)? where @(2/, z3) = o(2/, ez3).

Now, we estimate the right-hand side of (4.66) to obtain the a priori estimate of the pressure f’é.

Lemma 4.6 (Estimates for extended pressure). Under hypothesis (2.27), the following estimates hold for the
the extension P. € LE(QQ) of the pressure P,

Hﬁe||L2(Q) < CG_Z, HVJéHHfl(Q)s < Ce2. (467)
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Proof. From the proof of Lemma 4.7-(i) in [1], we have that Re($) satisfies the following estimates

2
IR (@)l 2@, < C | I@llz(ys + €Y 100, 8l 2 (s + 1028 2290 | -
j=1
~ 1 2 _ 1, - ,
102, B (@)l 255, yx2 < C | Zl1lL2 (@ + > 1028l L2 + F0:0ll2@pe | i=12, (4.68)
j=1
N 2
H@Z.SRE(@)HLQ(@)S < C | [@llr2@e + ¢ Z 102, 2l L2(2)3 + 11025l L2 ()2
j=1
Thus, since 0 < € < € < 1, we deduce
~€ ~ ~ ~E = C =
IR (Ol p2s,ys < Cllellmy @z rote(R(@)) L2, yaxs < — N2l - (4.69)

€

By using Cauchy-Schwarz’s inequality, estimate (4.38), estimates for D.u. in (4.45) and for D.w. in (4.44)
together with (4.69), we obtain

< CeMDRAP)|| oyons < C 218l my e

/~ rote (i) : rote (RS () da’dzs
Qe

(4.70)

/~ rote(We) - RE(@) da'dzs
Qe

< IPeWell o @ yoxs 1R (@) 12,0
< 0672HEE(@)HLZ(Q)SC”‘EHH&(Q)S’

which together with (4.66) gives ||v5ﬁ6||H—l(Q)3 < Ce 2, ie. estimate (4.67)2. By using the Necas inequality
there exists a representative P, € L2(Q) such that

”]SeHLQ(Q) < CHVﬁe”H—l(Q)'3 < CuveﬁEHH—l(Q)Sa

which implies (4.67);.

4.3 Convergences

We give a compactness result concerning the asymptotic behavior of the extended sequences (u., w, P.) satisfying
the a priori estimates given in Lemmas 4.5 and 4.6.

Lemma 4.7. For a subsequence of € still denote by e, we have the following convergence results:

(i) (Velocity) There exists 1 = (W, u3) € H(0, hpax; L?(w)?), with U3 =0 and @' =0 on 'y, such that

¢ — 1 in HY(0, hpax; L2 (w)?), (4.71)

hI!laX
div, (/ u' (2, z3) d23> =0 inw, (4.72)
0

h[llax
(/ u'(2, z3) d23> ‘n=0 ondw.
0
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(ii) (Microrotation) There exist W = (W', w3) € H (0, huax; L?(w)?), with w3 =0 and W' = 0 on 'y, such that

eWe = W in HY(0, hpax; L (w)?). (4.73)

(iii) (Pressure) There exist a function p € L3(w) N H(w) (i.e. p is independent of z3 and has mean value zero
inw), such that

P, — pin L*(). (4.74)

Proof. We start proving (i). We will only give some remarks and, for more details, we refer the reader to Lemmas
5.2-1) and 5.4-1) in [1].

We start with the extension .. Estimates (4.62) imply the existence of @ € H(0, hmax; L?(w)?) such that
convergence (4.71) holds, and the continuity of the trace applications from the space of @ such that ||ul|z2 and
0.0 L2 are bounded to L?(T'y) implies @ = 0 on T'y. It can also be deduced that i3 = 0 on Iy according to
boundary condition u. -n = ug,. =0 on I'y.

Next, from the free divergence condition div(u.) = 0, it can be deduced that s is independent of z5, which
together with the boundary conditions satisfied by us on I'; implies that ug = 0. Finally, from the free divergence
condition and the convergence (4.71) of 1., it is straightforward the corresponding free divergence condition in
a thin domain given in (4.72).

We continue proving (i7). From estimates (4.63), the convergence of (4.73) and that w =0 onT'y and w3 =0
on I'y are obtained straighfordward. It remains to prove that w3 = 0. To do this, we consider as test function
Y(a', z3) = (0,0,13) with ¥3 € D(£), in the variational formulation (3.35) extended to 2, taking into account

U, = Ve + J. and the definition of the rotational given in (3.33), we get
R, /Q oty (Ws,¢) - I'Otx/('l;;g) da'dzs + R, /Q 0.y W3, ('9%&3 dr'dzs + AN?%e /Q W3, e {/;3 dz'dzs
—2N26/Q u, - roty ({/;3) dz'dzs = 0.
Passing to the limit by using convergences of u. and w, given respectively in (4.71) and (4.73), we get
R, /Q 8., W3 0,5 da’ dzs + AN /g 2 Wy s da'dzs = 0,

and taking into account that ws = 0 on I'; U T, it is easily deduced that w3 = 0 in Q.

We finish the proof with (ii7). Estimate (5.86) implies, up to a subsequence, the existence of P € L2(2) such
that _

eP.—p in L*(9Q). (4.75)

Also, from ||v€ﬁ6||L2(Q)3 < C€2, by noting that 8z3156/€3 also converges weakly in H~1(£2), we obtain 6z3ﬁ =0

and so P is independent of z3. Since P, has mean value zero in €2, then p also has mean value zero. To prove

strong convergence, we refer to [1, Lemma 7]. Moreover, since P. has mean value zero in Q and p does not
depend on zz, it holds

/ 62?5 dx'dzz — / pdx'dzs = hmax / p(z')dx' =0,
Q Q w

which implies p € L3(w). Finally, the proof of p € H!(w) can be found in [3, Theorem 3.1], so we omit it.
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5 Adaptation of the unfolding method

5.1 Definition and properties

As seen in Lemma 4.7, the change of variables (3.28) does not capture the oscillations of the domain Q°. To
capture them, we use an adaptation of the unfolding method (see [19, 20] for more details) introduced to this
context in [1].

Remark 5.1. For k' € Z2, we define r : R? — Z2 by
k(@) =k <=2 € Zy . (5.76)

Remark that k is well defined up to a set of zero measure in R? (the set Uycz20Zys1). Moreover, for every

€ > 0, we have
x/
K (1,) =k =2 €Zp..
el

Let us recall that this adaptation of the unfolding method divides the domain S~2€ in cubes of lateral length
€’ and vertical length h(z'). Thus, given $ € L?(Q2€)? (assuming & extended by zero outside of w), we define
P € L23(R? x Z)3 by

!
P2, 2)=¢ <eén (f[) + ezz',z;;) ae. (2',2) €wx Z, (5.77)

where the function x is defined by (5.76). Also, given ¢ € L2(€), we define ¢, € L%(R? x II) by
. !/
(2! 2) = <€£I€ (i) + eéz’,z;),) a.e. (7,2) €w x IL (5.78)
€

Remark 5.2. For k' € T, the restriction of p. to Z;, . x Z and de to Zps o x 11 do not depend on ', while as

a function of z it is obtained from (p,1)) by using the change of variables

/

' — ek
Z = ———-—

el

which transform Zy . into Z and @k’,e into 11, respectively.

Below, we give some properties of the change of variables (5.77), whose can be found in [1, Lemma 4.9] in
the case p = 2.
Proposition 5.3. We have the following properties concerning the estimates of vectorial functions ¢ and scalar

functions ¥ and their respective unfolding function @. and 1. given by (5.77) and (5.78):

i) For every & € L2(Q)3, we have

1Bellza oz = 13l iy (5.79)
ii) For every § € HY(Q)3, we have
1D2BellL2wx zy5xs = €1 DBl o geyssss 10=BellLzwnzys = 10258 12 geys- (5.80)
iii) For every ¢ € L2(Q), we have
19l 2 xrry = 19 220y - (5.81)
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In a similar way, let us introduce the adaption of the unfolding method on the boundary T’y (see Cioranescu
et al. [20] for more details). For this purpose, given @ € L?(I'y)3, we define $° € L?(R? x Ty)? by

!/
P, 2)=¢ <€£I€ <xe> + eez',z;),) a.e. (7,2) €wx Ty, (5.82)
€

where the function & is defined by (5.76).

Remark 5.4. (i) Observe that from this definition, if we consider ¢ € L*(Ly), a Z'-periodic function, we
define @ (2, z3) = o(a' /€*, 23), it follows P°(2', 2) = 5(2).

(ii) Observe that for $ € HY(Ty), @7 is the trace on Ty of p.. Therefore, @° has similar properties as .. So
it holds the following property:
H@lg”m(wxfo)s = ||PellL2(ro)s- (5.83)

Definition 5.5. We define the unfolded unknowns as follows:
— The unfolded velocity U, is defined by applying (5.77) for ¢ = Q..
— The unfolded microrotation W, is defined by applying (5.77) for ¢ = w,.

— The unfolded pressure P. is defined by applying (5.78) for 7:/; =P.

~

We are now in position to obtain estimates for the unfolded unknowns (., w, P.).

Lemma 5.6. There exists a constant C > 0 independent of €, such that U., We and ﬁe satisfy

||ﬁ6||L2(w><Z)3 <C, HDZ’GEHL?(wa)?‘X? < 055717 ||823ﬁ6||L2(w><Z)3 <C, (5'84)
||‘/i,€“L2(w><Z)3 < 06_1, HDz'WEHLQ(wXZ)?’XZ < 066_27 ||8z3VAVe||L2(u;><Z)3 < C’e_l, (5.85)
[Pl 22 xry < Ce2. (5.86)

Proof. The result is a consequence of the combination of estimates given in Proposition 5.3 with estimates for
U, W, P, given in Lemma 4.4 and 4.6.

O

5.2 Equivalent weak variational formulation

We give the equivalent weak variational formulation of system (3.35), which will be useful in next sections in
order to obtain the limit system taking into account the effects of the rough boundary.

We consider 3 (a/,23) = ep(a’,a' /', 23) and ¥, = h(a',a’/e’, z5) as test function in (3.35), where 3,4 €
D(w; O (Z )3), and taking into account the extension of the pressure, we have

<V€§6a &6>5~)£ = <V6ﬁe . ‘Z€>Qv

19



Marfa Anguiano and Francisco J. Suédrez-Grau

and taking into account u. = v, + 36, we get

e/N rote (W) - rote(Pe) dr'dzg — e/ P. dive(@e) do'dzg — 2N2€/~ rote (@) - We dz'dzs (5.87)
Q. Q Qe

«

+2 <N2 _ 1) /FO(WE 1) - Fdo(z) =0,

€3RC/~ rote(We) - rote({/;s) dz'dzs + GSRC/~ dive(We) - dive (1;6) dx'dzs + 4N26/~ W - 7:/;€ dz'dzs
Q Qe Qe

€

—2NZ¢ /~ U, - rote(¢e) da'dzs — 2N?B [ (T —s) X n - do(z') (5.88)
Q

€ o
= —2N? / (Te X n) - ¥ do(a).
o

Now, from the definition of rot. given in (3.31), and by the change of variables given in Remark 5.2 (see [1] for
more details) applied to (5.87), we obtain

62 N =R 62 - N 62 ~ ~
= / rot s (Us,) - Tt (P3) do'dz + = / rot, (0.) - rot,, (¢') dz'dz + = / Rot,/ (1) - Rot,/ () dz'dz
wXZ wXxZ wXZ

) ~ -
—& / P. div, () da'dz — S Pediv/ (@) da'dz — / POz, pda'dz
wxII € wxII wxdt

X 2
—2N?E / rot. (s) - Wi dr'dz — 2N / rot, (B) - WL da'dz = 2N | Rotu(§) - s do'dz

€ wXZ wxZ ‘ X

1
+2 (N2 - a) e/ _(Wexn) - ¢ da’do () + Oc =0,
wxTo

(5.89)
where O is devoted to tends to zero. To simplify the variational formulation, we observe that from estimates
for (U, we) given in Lemma 5.6 and convergence (2.10), we deduce

€2 R R €2 N R _
ﬁ/ﬁ rot . (Us.) - rot. (P3) do'dz + ﬁ/ﬁ Rot./ (0.) - Rot./(P) da'dz| < Cet =% — 0,
€2 €2
’2N2e / rot,/(p3) - w.dz'dz + 2N27/ Rot/ (@) - W3, dr'dz| < Ce' = — 0.
€ wXZ € wXZ
Then, variational formulation (5.89) reads
/ rot, (W) - rot., (@) da'dz — € / P. divy (§) do'dz
wXZ wx Il
et / P. div. (@) da'dz — € / P.d.,pda'dz (5.90)
wxII wxII

N 1 ~ ~
—2N26/ rot,, (@) - Wl.dx'dz + 2 <N2 - ) 6/ (We X m) - pdr'do(2') + O = 0,
wXZ & wxfo

To finish, proceeding similarly for the variational formulation (5.88), and using the estimates for (U, w.) given
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in Lemma 5.6 and convergence (2.10) as in previous variational formulation, we deduce that (5.88) reads

eR, rot, (W) - rot,, (zZ’) dz'dz + eR,. 0., W3, 323123 da'dz + 4N26/ W - da'dz

wXZ wXZ wXZ

—2N2/ U’ - rot., (¢) da'dz — 2N?8 _(We—s)xn- ¥ da'do(2) (5.91)
wxZ

wxTo

_ _2N2/ (8 xn) - Pdr'do () + O,
UJXFO

where O, is devoted to tends to zero.

5.3 Convergences and limit problem

We give a compactness result concerning the related unfolding functions (ﬁe,v/ffe,ﬁe) satisfying the a priori
estimates given in Lemmas 5.6.

Lemma 5.7. Consider the functions (0, w,p) obtained in Lemma 4.7. Then, for a subsequence of € still denote
by €, we have the following convergence results:

(i) (Velocity) There exists @ = (W', u3) € H'(0,h(2); L (w x Z')?), with U3 = 0 and @' = 0 on Ty, such that
it holds

hlIlaX
/ u'(z/,2)dz = / (2, 23) dzs, (5.92)
z 0

and moreover
u —u in HY(0,h(2'); L?(w x Z)3), (5.93)

div,u =0 inwXx Z, (5.94)

h(z")
div,/ (/ u dz;;) =0 inwx 2, (5.95)
0

div (/ (2, 2) dz) = inw, (5.96)
z

(/ (2, 2) dz) ‘n’' =0 on dw .
z

i) (Microrotation) There exists W € H(0,h(2'); L% (w x Z')3), with @3 = 0 and W' = 0 on L'y, such that it
#
holds

h]’IlaX
/v?r'(z:’,z)dz:/ w' (', 23) dzs, (5.97)
z 0

and moreover

ewe =W in HY0,h(2'); L?(w x Z')3). (5.98)
(iii) (Pressure) The following convergence holds

P. — pin L*(w x II). (5.99)
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Proof. The proof follows the lines of the proof of Lemma 4.7, so we will give some remarks. We start by (4).
Estimates given in (5.84) imply the existence of @ € H*(0, h(2'); L?(w x Z")3) such that convergence (5.93) holds.
As in Lemma 4.7, it holds that i = 0 on w X Iy and @3 = 0 on w x L. It can also be proved the Z’-periodicity
of 4. This can be obtained by proceeding as in [36, Lemma 5.4].

We have to take into account that applying the unfolded change of variables to the divergence condition
dive(@.) = 0 and multiplying by ¢, we get

e v, (W) + 0., 13, = 0. (5.100)

Passing to the limit, since relation (2.10), we get 9,,u3 = 0, which means that u3 is independent of z3. Due to

the boundary conditions 73 = 0 on w x (fl UTy), it holds that Uz = 0.

Now, multiplying (5.100) by ¢/~1g with ¢ independent of z3, after integrating by parts, we get
/ ul - V.qda'dz = 0.
wXZ

Passing to the limit and integrating by parts, we get (5.94). Observe that previous equality also can be written

as follows
h(z")
/ / u.dzz | Voqda'dz =0,
wxZ' 0

which passing to the limit and integrating by parts, gives (5.95).

For the proof of (5.92), we refer to [1, Lemma 5.4]. Next, putting relation (5.92) into the divergence condition
(4.72), we get (5.96).

The proofs of (i) is similar to the proof of (i) just taking into account the estimates of w..

Finally, to prove (iii), we remark that the strong convergence of sequence 62]36 to p is a consequence of the
strong convergence of €2 P, to p, see [20, Proposition 2.9].

O

Using convergences given in Lemma 4.7, we give the reduced two-pressured homogenized system satisfied by
(u,w,Dp).

Theorem 5.8 (Limit problem). The triplet of functions (0, w,p) € H' (0, h(2"); L (wxZ")*)x H(0, h(2'); L3 (wx
73 x (LE(w) N HY(w)), with U3 = w3 = 0, given in Lemma 4.7 is the unique solution of the two-pressure ho-
mogenized reduced micropolar problem

—07 0 + V.7 —2N%rot, (W) = —Vup(a') inwxZ,
—R.02,W' + 4N?*W' — 2N?%rot, (W) = 0 inwx Z, (5.101)
Feli(wxZ'),
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with divergence conditions

div, (@) =0  inwxZ, (5.102)

h(z")
div,/ (/ u'(2/, 2) dz;:,) =0 inwx 2, (5.103)
0
) —0  inw, (5.104)

(/ (2, 2) dz) n' =0 on Ow,
z

and boundary conditions

=0 Ww=0 onwxly, (5.105)
~ 2 -
0,0 = —a(w’)l on w x Ty, (5.106)
9.,W = —2NB(W —s)*  onwxTy. (5.107)

Proof. From Lemma 4.7, it remains to prove (5.101) and boundary conditions (5.106) and (5.107). We divide
the proof in three steps.

Step 1. We prove (5.101); with boundary condition (5.106). According to Lemma 4.7, we consider in (5.90)
where $(2/, 2) € D(w; O (Z)?) with $3 =0 in w x Z and div./(¢') = 0 in w x Z. This gives

/ rot., (W) - rot., (p') da'dz — €2 / P. divy/ (§') da'dz
wXxZ wxII

(5.108)

. 1 . e
—2N2€/ rot, (¢') - Wl dz'dz + 2 <N2 - > e/ (We x n) - @Pda'do(2') + O, = 0,
wXZ « wxfo

where O, is devoted to tends to zero when ¢ — 0. Below, let us pass to the limit when € tends to zero in each
term of the previous variational formulation:

e First term. Using convergence (5.93) and the definition of the operator rot,, given in (3.33), we get

/ rot, (0l) - rot,, (p') dz'dz = / rot, (') - rot,, (p') dz’dz + O,
wXZ wXZ

/ 0.0 - 0,,¢' dx'dz + O..
wXZ

e Second term. Using convergence (5.99), we get

€2 P. divy (§) da'dz = / pdivey (@) da'dz + O,.

wxII wxII

e Third term. Using convergence (5.98) and integration by parts, we get

—2N26/ rot,, (¢') - w.dz'dz = —2N2/ rot,, (¢') - W dx'dz + O,
wxZ wXxZ

= —2N? / rot,, (W) - @' da'dz + 2N? / (@) - Wda'do(') + O,
wxZ w

Xfo

_ _on? / oty (#) - da'ds — 2N / (#)L - Fda'do(z') + O..
w X

wxTy
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e Fouth term. By continuity of the trace operator from H'(0, h(z'); L*(w x Z')3) into L2(w x I'y) and using
convergence (5.98), we get the convergence of ew,(z’, 2'0) to w, and so we get
2 1 ~ ~ / / 2 1 ks o~ / /

2(N°— = e (We xn)-pdr'do(z)= 2(N°— = (W xn)-gde'do(z') + O,

(6% wag « wao
1 ~

_ 9 <N2 - ) / &)L & da'do () + O,

« wao

Therefore, by previous convergences, we deduce that the limit variational formulation is given by the following
one

/ 9.0 - 0,,¢ dx dz—i—/ pdive (@) da'dz
wXZ wxI1I (5109)

NN 2 N ~
—2N2/ rot ., (W) - ¢’ da'dz — —/ (W)t @ da'do(2') =0,
wXZ « wxf‘\o

for every @' € D(w; C(Z)?) with div./(¥') = 0 in w x Z. By density, (5.109) holds for every function ¢ in
the H'(0, h(z1); L (w x Z')) with div./(¢') = 0 in w x Z and is equivalent to problem (5.101); with boundary
condition (5.106), and 7 the Lagrange multiplier arising from the free z’-divergence condition.

Step 2. We prove (5.101) with boundary condition (5.107). According to Lemma 4.7, we consider in (5.90)
where 1(z', z) € D(w ;O (Z)?) with ¥3 =0 in w x Z. This gives

eR, / rot., (W.) - rot., (/') da’dz + 4N2€/ W da'dz
xXZ xXZ

—2N2/ . - rot., (¢') da'dz — 2N2,6/ —s) x n -1 da’do(2) (5.110)
wXZ ><F0

— _oN? / (@, x n) - §da'do(z') + O,
wxTo

where O, is devoted to tends to zero when € — 0. Below, let us pass to the limit when € tends to zero in each
term of the previous variational formulation:

e First term. Using convergence (5.98) and the definition of the operator rot,, given in (3.33), we get

€R. rot., (W') - rot., (¢') da’dz = RC/ rot, (W') - rot., (¢') da'dz + O.
xZ

wXZ

R. / 8., W' - 0., da'dz + O.
wXZ
e Second term. Using convergence (5.98), we get
4N2e / W, ¢ da'dz = AN? / W - da'dz + O..
XZ wXxZ
e Third term. Using convergence (5.93) and integration by parts, we get
—2N2/ U - rot., (¢/)da'dz = —2N? / U’ - rot., (¢) da’dz + O,
XZ xXZ

= —2N2/ W rot, (0') da'dz + 2N2/ ~ ()L -0 da'do(2) + O.
XZ w

XF()

— _92N? ¢ - rot,, (W) do'dz — 2N / @) - da'do(2') + O..

wXZ wxfg
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e Fourth term. By continuity of the trace operator from H' (0, h(z ) L2 (wx Z")3) into L2(w x T'y) and from

convergence (5.93), we get the convergence of u.(z’, z/,0) to u(z’, z’,0) and so
—2N26/ (. —s) x n-da’do(z') = —2N2B/ (G—s)xn-¢dd'do(z) + O,
xTo xTo
= 72N2ﬂ/ @ — s da'do(2') + O..
wao
e Five term. Similar to the previous term, from convergence (5.93), we get

_2N2/ (@ xm) P da'do(2) = _2N2/ (@)t daldo(2) + O..
wXxIpy w

XFO

Therefore, by previous convergences, we deduce that the limit variational formulation is given by the following
one
R, / 0., W' - 0,,0 da'dz + AN? / W' da'dz
wXZ

wXZ

(5.111)
—2N? o rot, (0) da'dz — 2N2ﬂ/ —s)t -y dz'do (') =0,
wXZ ><F0
for every 1 € D(w; C(Z)?). By density, (5.111) holds for every function ¢’ in the H'(0,h(21); L3 (w x Z')),
and is equivalent to problem (5.101)y with boundary condition (5.107).
Step 3. Conclusion. Since @ and ¢ are arbitrary, we derive from (5.109) and (5.111) that (W, W', p,7)
satisfies the system (5.101) with boundary conditions (5.105)—(5.107). To ensure that the whole sequence

(U, eW,, €2 P.) converges, it remains to prove the existence and uniqueness of weak solution of the effective
system (5.101). This follows the lines of the proof of Theorem 2.27, so we omit it.

O

6 Reynolds equation

In this section, we give the main result of this paper, i.e. the Reynolds equation for the pressure p and the
expressions for the average velocity and microrotation. We will proceed as follows. First, we give the expressions
of U and W by solving problem (5.101) with boundary conditions (5.105)—(5.107). Next, we integrate in Z the
expression of U and w, which gives the expression for the average velocity and microrotation, which are given
depending on local problems. Finally, putting the expression of the average velocity into the incompressibility
condition (5.104), we deduce the Reynolds equation.

Lemma 6.1. Assuming condition (2.27) and a # 1, the solutions of (5.101) with boundary conditions (5.105)-
(5.107) are given by the following expressions

W (2!, 2) = [(% (sinh(kz3) — sinh(kh(2')) + 7a (25 — h(2))) A1 (2')

22— ()2
*% (COSh(kZ?a) — cosh(kh(2'))B1(2") + 23(1}5\72))) } (Vo p(@') + Vo7 (', ) (6.112)

2
[ (% (sin(zg) — simb(EB() + 7028 — () ) Aa()

+% (cosh(kzz) — cosh(kh(z"))) Bg(z’)} s’
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¥(2,2) = [(cosh(kz;g) + %)Al(z’) + sinh(kz3) By (2) + ﬁ] (Vo b(2) + Vor(a, 2'))*
n [(cosh(kz;;) - %‘Y)Az(z’) + sinh(k;:g)BQ(z')] (8%, (6.113)
where
1— N? Yo 1—aN?
=2y = (6.114)
and A;, Bo, i = 1,2, are given by
A(2) = 2(1L(_Z])V2) [h(z')(4N4(1 — cosh(kh(2))) + %1&)
—k sinh(kh())) (% —anh(='7?)]. (6.115)
Ay(7) = —2N?EL(Z')sinh(kh(2)), (6.116)
Bi(?) = Q(ffj)w) [2N2h(z') (2N2 sinh(kh(2')) + 'yakh(z/))
R, 2 "2 / Ve
(T —2N?h() ) (cosh(kh(=")) + 7)} (6.117)
Bo() = —2N2KL(') [%ﬂ + cosh(kh(z’))], (6.118)
and
L) = — [(% n cosh(k;h(z’))) (4N4[1 — cosh(kh(2'))] + %1&) oo
- 6.119

+2N? sinh(kh(2')) (%kh(z’) +2N? sinh(k;h(z/)))}

Proof. The proof is obtaining by solving system (5.101) for (@, w2) with corresponding boundary conditions
(5.105)—(5.107), by observing that problem (5.101) is an ordinary differential equation with respect to z3 (i.e.
considering variables 2/, 2’ as parameters). The proof can be found in [3, Lemma 3.5] for a system (5.101) defined
only for variables (2, z3), but the proof is the same just taking into account that here, two pressures appear.
Following the proof, we observe that variable 2’ only appears in the pressures p(z’) and 7(2/, 2').

We note that (41, ws) and (U2, —wy) satisfy the same equations and boundary conditions by writting so and
29 instead of s1 and z;. So, expression for (us, W) are obtained straightforward, from expression of (4, Ws), see
[4, Appendix 1].

O

Lemma 6.2. Assuming condition (2.27) and a = 1, the solutions of (5.101) with boundary conditions (5.105)—
(5.107) are given by the following expressions

@(w2) = B (cosh(hen) — comun(e) () + S A

(25 = A(=)] (Varbla') + V(! 21)

+ {%(cesh(kzg) — cosh(kh(z"))B5(2") + fli(]z\g (23 — h(z’))} s, (6.120)
~ _ . ' z3 All(zl) ~ ~( 1 L
w(z', z) = {smh(kzg)Bl(z )+ 21— N2 + 200 — NQ)} (Varp(a") + Vom(a!, 2')) (6.121)
A5(2)

+ |:S1nh(k23)Bé(Z/) + m} (S/)L,
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where k is given by (6.114) and A, Bl, i = 1,2, are given by
R

Ay = L) [h(z’)(41v4(1 — cosh(kh(2))) + ?iﬁ) - ksinh(kh(z’))(% - 2N2h2(z'))}, (6.122)

AL(Z)) = 4N?k(1 — N*)L'(2) sinh(kh(2")),

BU) = by [2Vh() + 2,
By(2') = —2N?kL'(¢),

and

L(Z') = - {4]\[4(1 — cosh(kh(z")) + %kQ +4N?kh(2) sinh(kh(z'))} 71.

Proof. The proof is similar to the case o # 1, see [3, Lemma 3.6] and [4, Appendix 2].

Lemma 6.3. The z3-average velocity and microrotation satisfy the following expressions:

(6.123)
(6.124)

(6.125)

(6.126)

. h(z") N
U, (z,2) = / U (2, 2)dzg = —01(2")(Varp(a') + V7 (2)) + O2(2)s, Uaw,3 =0, (6.127)
0

o~

e h(z")
W (z/,2) = / W (2, 2) dzz = ©1(2)(Vup(a') + Vo7 (2 )+ @a(2) (), Wavs
0

Here, functions ©; and ®;, i = 1,2, are given depending on the case:

- If a #1, then
N h3(2")

01(2") = 31— N?)

_ m (cosh(kh;z’» —L he) sinh(kh(2')) ) Wzahz(z/)} M)

(smh (kh(z — h(2)) cosh(kh(z’))>31(2/)7
B IN?2 cosh( kh -1 ~ h(+) sin o CTY o o
Os( { < h(z') sinh(kh( ))> 5 1 )] As(2')
2N2 (smh kh h(Z/) COSh(kh(Z/))> BQ(Z’),

@2(2/) — (M — %)Al(z/) + %32(2/%

where A;, B;, i = 1,2 are defined in Lemma 6.1.
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~Ifa=1, then
)= ; (T?’_(ZJ/\)[Q) 5 (fz_(2]132),4'1(z') (6.133)
_2]kV ’ [Smh(’;h(zl)) - h(z’)cosh(kh(z’))} Bl(),
Oa(2") = MA;(Z') (6.134)
+2]kV i [Smh(zh(zl)) ~h(2) cosh(kh(z’))} BL(),
®1(2) = 4(}1‘2_(2]/\)[2) + 2(1}‘(_2/])\72)/1’1(/) n %Bi(z’), (6.135)
By(2) = Z(fi%AIQ(Z/)+(DS}IU€}L]€(2/))_13§(2I), (6.136)

where A, Bl, i =1,2 are defined in Lemma 6.2.

Proof. Using divergence condition (5.103), we obtain for a.e. 2’ € w that

h(z")
/ (/ u'(2',2) d23> V. 0(z")de'dz" =0, Vo e HY(Z).
+\Jo

From Lemmas 6.1 and 6.2, by averaging (6.112) or (6.120) with respect to z3 between 0 and h(z’), we obtain

N h(z")
Ul (z,2) = / (2, 2) dzg = —01 (") (Ve p(2') + Vo7 (2')) + 8" 02(2),
0

ie. (6.127) with ©,, i = 1,2 given by (6.129), (6.130) if o # 1, and by (6.133), (6.134) if @ = 1. Similarly, we
deduce (6.128) by averaging (6.113) or (6.121) with respect to z3 between 0 and h(z’) as follows

- h(z")
W (z',2) = / W (2, 2)dzs = ©1(2)(Vup(x') + Vo 7(2):E + ()1 0o(2),
0

with ®;, i = 1,2 given by (6.131)~(6.132) if & # 1, and by (6.135)—(6.136) if o = 1.
O

Finally, we give the main result of this paper, i.e. the derivation of a Reynolds equation satisfied by p with
the effects of the roughness of the top boundary and the non-standard boundary condition on the flat boundary
of the original thin domain.

Theorem 6.4. (Main result) Assuming condition (2.27) and considering the functions (0, W) given in Lemmas
6.1 and 6.2, we have that the z-average velocity and microrotation

U (2) = / (2, 2)dz, Wa(a') = / w(o, 2) dz,
zZ zZ

satisfy the following expressions

Un(2) = KOVpa')+ LY, Uws =0,
(6.137)

W (2') = KOVupa) -+ LA E)E, Was =0,

s
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for a.e. ©' € w. Here, K*) € R?*2 qnd LM € R, k = 1,2, are defined by

821(]1(2/) +1 821612(2/)

dz', LW = [ 0,(z)d7,
9.,q" (2') 02,47 (2") + 1 z

K0 = [ e, (
Z/

(6.138)
O a*(¢) +1  —0:,q'(2)
K® :/ By (2) ( : ., i / dz, L® :/ Py (2') d7,
! —0z,q (Z) amq (Z)+1 !
where function ¢' € H}#(Z’), 1= 1,2, satisfies the local problem
01(2) (Vg (Z) +e) - V.0(2)de = | 03(2)s;(e;-V.0(2))de Yo0e€ HY(Z). (6.139)
z z
Moreover, p satisfies the following Reynolds equation
/ KOV p(2) - Van(a') de' = / LW . Von(a')de' Vne H' (w). (6.140)

Proof. From the expressions [A,wa in (6.127) given by
U, (2, ) = =01()(Varpla') + Vo 7(2)) + 05(2)s’

and divergence condition (5.103), i.e. div.,(U’,) =0 in w x Z', we know that V.7 holds the following problem

/ 012" ) (Vup(a') + Vo7(2) - V(2 2') da'dz’ = / Oq(2)s' - V(2,2 ) da'dy’ V9 € H (wx Z').
wxZ'

wxZ'
(6.141)
Now, to find a problem for V,.p we proceed to eliminate the microscopic variable z’. To do this, we define

2
L) = 0.,5(2)g' (7)) inwxZ,

and so, it holds
D.,q" () +1 9:,4°(2') Varp(z')
=’ P\T" ),
0:,0'(2")  0:0°(2") +1
and observe that this choice of 7 and taking 9(z’,2") = n(2')0(z") with n € H'(w) and 6 € Hl( "), then 7

satisfies (6.141) by taking into account local problemb (6.139) for ¢', i = 1,2. Then, integrating Usy (2, 2’) in
7', we deduce expression for UCW f 7 Uay (a',2") dz’ given in (6.137).

Vo b(a) + Vo7 (2) = (

Finally, putting expression of Uy, in the divergence condition (5.104), i.c. divy (Uay) = 0 in w, we deduce
that p satisfies the Reynolds equation (6.140).

The derivation of the expression of Wﬁw given in (6.137)s is straightforward taking into account (6.128) and

that B g?() 9 ()
¢ () +1 —=0,q (2
(Vorb(a) + VoA = | 2 (Varbla'))*
_821(]2(2/) aZ1ql (Z/) +1
Then, integrating W/, (z',2') in Z’, we deduce expression for W, (2 fZ, (2',2")dz" given in (6.137).

O
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