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Markov generators as non-hermitian supersymmetric quantum Hamiltonians:
spectral properties via bi-orthogonal basis and Singular Value Decompositions

Cécile Monthus
Université Paris-Saclay, CNRS, CEA, Institut de Physique Théorique, 91191 Gif-sur-Yvette, France

Continuity equations associated to continuous-time Markov processes can be considered as Eu-
clidean Schrödinger equations, where the non-hermitian quantum Hamiltonian H = divJ is nat-
urally factorized into the product of the divergence operator div and the current operator J.
For non-equilibrium Markov jump processes in a space of N configurations with M links and
C = M − (N − 1) ≥ 1 independent cycles, this factorization of the N × N Hamiltonian H = I†J
involves the incidence matrix I and the current matrix J of size M ×N , so that the supersymmetric
partner Ĥ = JI† governing the dynamics of the currents living on the M links is of size M × M .
To better understand the relations between the spectral decompositions of these two Hamiltonians
H = I†J and Ĥ = JI† with respect to their bi-orthogonal basis of right and left eigenvectors that
characterize the relaxation dynamics towards the steady state and the steady currents, it is useful
to analyze the properties of the Singular Value Decompositions of the two rectangular matrices I
and J of size M × N and the interpretations in terms of discrete Helmholtz decompositions. This
general framework concerning Markov jump processes can be adapted to non-equilibrium diffusion
processes governed by Fokker-Planck equations in dimension d, where the number N of configu-
rations, the number M of links and the number C = M − (N − 1) of independent cycles become
infinite, while the two matrices I and J become first-order differential operators acting on scalar
functions to produce vector fields.

I. INTRODUCTION

While Markov processes satisfying detailed-balance are well understood, in particular via the similarity transfor-
mation of the opposite Markov generator into a supersymmetric quantum Hamiltonian of the form H = Q†Q with a
real energy spectrum (see the textbooks [1–3] and the applications to various models [4–16]), non-equilibrium Markov
processes involving steady currents remain challenging and require the introduction of many new ideas (see the reviews
with different scopes [17–25], the PhD Theses [26–31], the Habilitation Thesis [32], and the recent lecture notes [33]).

Among the various perspectives that have emerged to analyze non-equilibrium Markov jump processes, the appropri-
ate graph theory based on the N configurations, on the M links existing between them, and on the C = M − (N − 1)
independent cycles has proven to be very useful (see [33–38] and references therein) since the pioneering work of
Schnakenberg [39]. In the present paper, we will keep the idea that the rectangular incidence matrix I of size M ×N
between links and sites plays an essential role, with its adjoint I† = div that represents the discrete divergence. But
we will consider on the same footing the rectangular current matrix J of size M × N , that can be considered as a
deformation of the incidence matrix I via the transition rates. These two matrices appear naturally in the rewriting
of the opposite Markov generator as the non-hermitian supersymmetric Hamiltonian H = I†J of size N × N that
governs the dynamics of the probability density living on the N sites, while the supersymmetric partner Ĥ = JI† of
size M ×M governs the dynamics of the currents living on the M links.

The main goal of the present paper is to analyze the consequences of these supersymmetric factorizations for
the spectral properties of the non-hermitian Hamiltonians H = I†J and Ĥ = JI† : we will first focus on their
spectral decompositions with respect to their bi-orthogonal basis of right and left eigenvectors that characterize the
relaxation dynamics towards the steady state and the steady currents, and we will then describe how many important
properties can be understood via the Singular Value Decompositions of the two rectangular matrices I and J and the
interpretations in terms of discrete Helmholtz decompositions. Note that independently of the present motivations
coming from Markov processes, the field of non-hermitian physics has become relevant in many areas (see the review
[40] and references therein), while the interest into hermitian supersymmetric quantum hamiltonians of the form
H = Q†Q (see the review [41] and references therein) has expanded towards various non-hermitian cases [42–45].

The paper is organized as follows :
• Most sections of the main text are devoted to the general analysis of non-equilibrium Markov jump processes in

a space of N configurations :
In section II, we recall that the Markov generator can be considered as the opposite of a non-hermitian quantum

Hamiltonian H of size N × N , and that the spectral decomposition in the bi-orthogonal basis of its right and left
eigenvectors is useful to analyze the convergence of configurations probabilities and configurations observables towards
their steady values.

In section III, we describe the properties of the currents that are defined on the M links existing between the
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N configurations : we analyze the consequences of the supersymmetric factorization of the N × N non-hermitian
Hamiltonian H = I†J in terms of the incidence matrix I and the current matrix J that are both of size M × N , so
that the supersymmetric partner Ĥ = JI† governing the dynamics of the currents is a priori of size M ×M , although
the physical currents live on a smaller subspace of size N .

In order to clarify this last point, we discuss the properties of the Singular Value Decompositions of the two
rectangular matrices I and J in sections IV and V respectively.
This general perspective is illustrated by a simple translation-invariant example in Appendix A.
• In the last section section VI of the main text, we describe how the previous framework concerning Markov jump

processes can be adapted to non-equilibrium diffusion processes governed by Fokker-Planck generators in dimension
d = 3, even if there are some important technical differences : the number N of configurations, the number M of
links and the number C = M − (N − 1) of independent cycles become infinite, while the two matrices I and J of size
M ×N become first-order differential operators acting on scalar functions to produce vector fields.
Our conclusions are summarized in section VII.

II. NON-EQUILIBRIUM MARKOV JUMP PROCESSES IN A SPACE OF N CONFIGURATIONS

In this section, we introduce the general notations for Markov jump processes in a space of N configurations. We
recall that the Markov generator can be considered as the opposite of a non-hermitian quantum Hamiltonian H of
size N ×N , and that its spectral decomposition in the bi-orthogonal basis of right and left eigenvectors is useful to
analyze the convergence of configurations probabilities and configurations observables towards their steady values.

A. Markov generator w(., .) of size N ×N in the space of the N configurations

For a Markov jump process over N configurations x, the master equation for the probability pt(x) to be at config-
uration x at time t

∂tpt(x) =
∑
x′

w(x, x′)pt(x
′) = w(x, x)pt(x) +

∑
x′ ̸=x

w(x, x′)pt(x
′) (1)

involves the N ×N Markov matrix w(., .), where the off-diagonal element w(x, x′) ≥ 0 represents the transition rate
from x′ towards x, while the diagonal element w(x, x) is negative and determined by the off-diagonal elements

w(x, x) = −
∑
x′ ̸=x

w(x′, x) < 0 (2)

The steady state p∗(x) satisfies

0 = ∂tp∗(x) =
∑
x′

w(x, x′)p∗(x
′) (3)

B. Parametrization of the transition rates w(x, x′)

For each pair of configurations (x ̸= x′) related by strictly positive transition rates w(x′, x)w(x, x′) > 0 , it is useful
to introduce the parametrization

w(x′, x) = D(x′, x)eA(x′,x)

w(x, x′) = D(x′, x)e−A(x′,x) (4)

in terms of the positive symmetric function

D(x′, x) =
√

w(x, x′)w(x′, x) = D(x, x′) > 0 (5)

and of the antisymmetric function

A(x′, x) =
1

2
ln

(
w(x′, x)

w(x, x′)

)
= −A(x, x′) (6)
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C. Opposite of the Markov generator (−w) = H as a non-hermitian quantum Hamiltonian H ̸= H†

It is useful to consider that the master Eq. 1 is an Euclidean Schrödinger equation

−∂t|pt⟩ = H|pt⟩ (7)

where the quantum Hamiltonian H is simply the opposite of the Markov matrix H = −w. With the parametrization
of Eq. 4 for the transition rates, the off-diagonal elements read

H(x′, x) = −w(x′, x) = −D(x′, x)eA(x′,x)

H(x, x′) = −w(x, x′) = −D(x′, x)e−A(x′,x) (8)

The symmetric function D(x′, x) = D(x, x′) of Eq. 5 represents the symmetric part of the hopping amplitude
between the two sites x and x′, while the antisymmetric function A(x, x′) = −A(x′, x) of Eq. 6 plays the role of
an imaginary vector potential that is responsible for the non-hermitian character H ̸= H†. This correspondence
between continuous-time Markov generators and non-hermitian quantum Hamiltonians involving imaginary vector
potentials has been already emphasized for diffusion processes in arbitrary dimension [46] (see also the section VI
below for the special case of dimension d = 3) and for Markov jump processes on hypercubic lattices [47]. Note that
non-hermitian quantum Hamiltonians with imaginary vector potentials have been much studied in various contexts
since the pioneering works of Hatano and Nelson [48–50]. However the specificity of Markov models is that the on-site
potential H(x, x) is not chosen independently of the off-diagonal matrix elements of Eq. 8 but is determined in terms
of the off-diagonal matrix elements by Eq. 2

H(x, x) = −w(x, x) = −
∑
x′ ̸=x

H(x′, x) =
∑
x′ ̸=x

D(x′, x)eA(x′,x) (9)

D. Spectral decomposition of the Hamiltonian H in the bi-orthogonal basis of right and left eigenvectors

The spectral decomposition of the non-hermitian Hamiltonian H ̸= H†

H =

N−1∑
n=0

En|rn⟩⟨ln| (10)

involves itsN eigenvalues En that may be complex, while the corresponding right eigenvectors |rn⟩ and left eigenvectors
⟨ln| satisfy the eigenvalues equations

En|rn⟩ = H|rn⟩
En⟨ln| = ⟨ln|H (11)

and form a bi-orthogonal basis with the orthonormalization and closure relations

δn,n′ = ⟨ln|rn′⟩ =
∑
x

⟨ln|x⟩⟨x|rn′⟩

1N =

N−1∑
n=0

|rn⟩⟨ln| (12)

The vanishing eigenvalue E0 = 0 is associated to the left eigenvector unity l0(x) = 1 as a consequence of Eq. 2,
while the right eigenvector corresponds to the steady state r0(x) = p∗(x) of Eq. 3

E0 = 0

l0(x) = 1

r0(x) = p∗(x) (13)

The other (N − 1) eigenvalues En=1,..,N−1 have strictly positive real parts

Re(En) > 0 for n = 1, 2, .., N − 1 (14)
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and govern the relaxation towards the steady state p∗(x) of the propagator pt(x|x0) when one starts at position x0

at time t = 0

pt(x|x0) ≡ ⟨x|e−tH|x0⟩ =

N−1∑
n=0

e−tEn⟨x|rn⟩⟨ln|x0⟩

= p∗(x) +

N−1∑
n=1

e−tEn⟨x|rn⟩⟨ln|x0⟩ (15)

So the (N − 1) right eigenvectors rn(x) = ⟨x|rn⟩ represent the relaxation modes associated to the excited eigenvalues
En=1,..,N .

The spectral decomposition of the propagator of Eq. 15 is also useful to obtain the relaxation of the average O(x(t))
of any observable O(x) of the configuration x towards its steady state value O∗ =

∑
x O(x)p∗(x).

O(x(t)) ≡
∑
x

O(x)pt(x|x0) =

N−1∑
n=0

e−tEn

(∑
x

O(x)⟨x|rn⟩

)
⟨ln|x0⟩

=

(∑
x

O(x)p∗(x)

)
+

N−1∑
n=1

e−tEn

(∑
x

O(x)⟨x|rn⟩

)
⟨ln|x0⟩ (16)

When the observable O(x) coincides with an excited left eigenvector ⟨lm|x⟩ = l∗m(x), the dynamics of Eq. 16 reduces
to a single term

l∗m(x(t)) ≡
∑
x

⟨lm|x⟩pt(x|x0) =

N−1∑
n=0

e−tEn⟨lm|rn⟩⟨ln|x0⟩

=

N−1∑
n=0

e−tEnδm,n⟨ln|x0⟩ = e−tEm l∗m(x0) (17)

So the excited left eigenvector ⟨lm|x⟩ = l∗m(x) with m ∈ {1, 2, .., N − 1} represents a very simple observable whose
dynamics reduces to the relaxation towards zero with the single exponential governed by the excited eigenvalue Em.

E. Discussion

In this section, we have recalled how the Markov jump dynamics can be analyzed from the point of view of the
dynamics of the probability pt(x) living on the N configurations x. However to better understand the non-equilibrium
properties, it is also important to analyze the dynamics of the currents jt(x

′, x) defined on the M oriented links, as
described in the next section.

III. DYNAMICS OF THE CURRENTS jt(x
′, x) DEFINED ON THE M ORIENTED LINKS

In this section, we focus on the currents jt(x
′, x) that are defined on the M oriented links existing between the N

configurations, in order to better understand their convergence properties towards the steady currents j∗(x
′, x) that

are non-vanishing whenever the Markov jump process is out-of equilibrium.

A. Rewriting the master equation as a continuity equation involving the currents defined on the M links

On each link between two configurations (x, x′) with the parametrization of Eq. 4 for the two transition rates, it is
useful to introduce the antisymmetric current

jt(x
′, x) = −jt(x,′ x) ≡ w(x′, x)pt(x)− w(x, x′)pt(x

′)

= D(x′, x)
[
eA(x′,x)pt(x)− e−A(x′,x)pt(x

′)
]

(18)



5

Then the master Eq. 1 can be rewritten as the discrete continuity equation

−∂tpt(x) =
∑
x′ ̸=x

jt(x
′, x) (19)

where the right handside corresponds to the sum over x′ of all the currents jt(x
′, x) flowing out of the configuration

x, i.e. to the discrete divergence at position x of the current.

B. Reminder on the M links between the N configurations and on the C = M − (N − 1) independent cycles

The number M of links that connect the N configurations has for minimal value Mmin = N − 1 when the graph is

a tree-like structure without any loop, and for maximal value Mmax = N(N−1)
2 in fully-connected models when any

configuration is connected to the (N − 1) other configurations (an example is given in Appendix A). In the general
case, the difference between the number M of links and the minimal value Mmin = (N − 1) needed to connect the N
configurations via a spanning tree (see [33–39] and references therein)

C ≡M − (N − 1) (20)

represents the number of independent cycles γ = 1, 2, .., C with the following notations :

a cycle γ is a directed self-avoiding closed path of configurations x[γ](1 ≤ l ≤ l[γ])

involving at least l[γ] ≥ 3 distinct configurations

and the same number l[γ] of oriented links [x[γ](l)→ x[γ](l + 1)] with x[γ](l[γ] + 1) ≡ x[γ](1). (21)

These cycles are essential to characterize the equilibrium or non-equilibrium nature of the steady state as we now
recall.

C. Reminder on the properties of the steady currents j∗(., .)

The steady current j∗(x
′, x) associated to the steady state p∗(.) of Eq. 19

j∗(x
′, x) = −j∗(x, x′) ≡ w(x′, x)p∗(x)− w(x, x′)p∗(x

′)

= D(x, x′)
[
eA(x,x′)p∗(x)− e−A(x,x′)p∗(x

′)
]

(22)

should be divergenceless, i.e. for any configuration x, the sum over x′ of the steady currents j∗(x
′, x) out of x should

vanish

0 =
∑
x′ ̸=x

j∗(x
′, x) (23)

The vanishing or non-vanishing of the all the link steady currents j∗(x
′, x) define the equilibrium or non-equilibrium

character of the dynamics as we now recall.

1. Equilibrium steady state peq∗ (.) with vanishing steady currents jeq∗ (., .) = 0 on all the links

At equilibrium, the steady current j∗(., .) of Eq. 22 vanishes on any link

0 = jeq∗ (x2, x1) = w(x2, x1)p
eq
∗ (x1)− w(x1, x2)p

eq
∗ (x2) = D(x2, x1)

[
eA(x2,x1)peq∗ (x1)− e−A(x1,x2)peq∗ (x2)

]
(24)

This vanishing is possible only if the transition rates w(., .) satisfy

1 =
w(x2, x1)p

eq
∗ (x1)

w(x1, x2)p
eq
∗ (x2)

= e2A(x2,x1)
peq∗ (x1)

peq∗ (x2)
(25)
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or equivalently only if the antisymmetric function A(x2, x1) of Eq. 6 corresponds to the discrete gradient

A(x2, x1) =
1

2
[ln (peq∗ (x2))− ln (peq∗ (x1))] (26)

On a tree-like structure without any cycle C = 0, the requirement of vanishing divergence of Eq. 23 for the steady
currents can be taken into account iteratively starting from the leaves of the tree to obtain that the steady current
should vanish on every link

C = 0 : j∗(x
′, x) = 0 (27)

On a graph with C ≥ 1 independent cycles γ = 1, .., C introduced around Eq. 21, one needs to check whether the
gradient form of Eq. 25 is compatible along each cycle γ : these compatibility conditions can be written either in
terms of the transition rates w(., .) in order to recover the famous Kolmogorov criterion for reversibility

l[γ]∏
l=1

w(x[γ](l + 1), x[γ](l))

w(x[γ](l), x[γ](l + 1))
= 1 (28)

or in terms of the antisymmetric function A(., .) whose total circulation Γ[γ][A(., .)] around each cycle should vanish

Γ[γ][A(., .)] ≡
l[γ]∑
l=1

A(x[γ](l + 1), x[γ](l)) = 0 (29)

2. Non-equilibrium steady state p∗(.) with nonvanishing steady currents j∗(., .) ̸= 0

In all the other cases where the Kolmogorov criterion of Eq. 28 is not satisfied on the C independent cycles
γ = 1, .., C, or equivalently when the antisymmetric function A(., .) displays some non-vanishing circulations around
cycles that prevent its rewriting as a discrete gradient, then the steady state p∗(.) will be out-of-equilibrium with
non-vanishing steady currents

j∗(., .) ̸= 0 (30)

The requirement that the discrete divergence should vanish (Eq. 23) yields that the steady current j∗(x2, x1) on

each oriented link can be written as a as a linear combination of the C cycle-currents j
Cycle[γ]
∗ that flow around the

C independent cycles γ = 1, 2, .., C

j∗(x2, x1) =

C∑
γ=1

j
Cycle[γ]
∗ ϵ[γ](x2, x1) (31)

where the coefficient ϵ[γ](x2, x1) takes into account whether the oriented cycle γ contains this oriented link (x2 ← x1)
with the same orientation or with the opposite orientation

ϵ[γ](x2, x1) ≡
l[γ]∑
l=1

(
δx2,x[γ](l+1)δx1,x[γ](l) − δx2,x[γ](l)δx1,x[γ](l+1)

)

=


+1 if the oriented link (x2 ← x1) appears in the oriented cycle γ with the same orientation

−1 if the oriented link (x2 ← x1) appears in the oriented cycle γ with the opposite orientation

0 otherwise

(32)

In the present paper, we will always assume that the dynamics is out-of-equilibrium with non-vanishing steady
current j∗(., .) ̸= 0 parametrized by Eq. 31 in terms the C cycle-currents associated to the C = M − (N − 1) ≥ 1
independent cycles. Then the steady state p∗(.) should satisfy on each of the M links

w(x2, x1)p∗(x1)− w(x2, x1)p∗(x1) = j∗(x2, x1) =

C∑
γ=1

j
Cycle[γ]
∗ ϵ[γ](x2, x1) (33)

This corresponds to a system of M linear equations for the M = C + (N − 1) variables that are the C steady

cycle-currents j
Cycle[γ]
∗ and the (N − 1) independent coefficients of the normalized steady state p∗(.).
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D. Factorization of the non-hermitian Hamiltonian H = I†J in terms of two M ×N matrices I and J

The antisymmetric functions

v(x′, x) = −v(x, x′) (34)

when the two configurations x and x′ at the ends of a link are exchanged are the discrete analogs of vectors defined
in continuous space. In order to analyze their properties, it will be useful to introduce the double-ket notation |x2

x1
⟩⟩

for the space of the M oriented links between two configurations x1 < x2 and to write

⟨⟨x2
x1
|v⟩⟩ ≡ v(x2, x1) (35)

1. Current matrix J of size M ×N

The current matrix J of size M ×N with the matrix elements

⟨⟨x2
x1
|J|x⟩ = w(x2, x1)δx,x1 − w(x1, x2)δx,x2 (36)

can be applied to the probability ket |pt⟩

⟨⟨x2
x1
|J|pt⟩ =

N∑
x=1

⟨⟨x2
x1
|J|x⟩⟨x|pt⟩ = w(x2, x1)pt(x1)− w(x1, x2)pt(x2) = jt(x2, x1) ≡ ⟨⟨x2

x1
|jt⟩⟩ (37)

to reproduce the current jt(x2, x1) ≡ ⟨⟨x2
x1
|jt⟩⟩ of Eq. 18 flowing from x1 towards x2, so that one can write at the

matrix level

|jt⟩⟩ = J|pt⟩ (38)

The adjoint matrix J† of size N ×M acts on a vector |v⟩⟩ to produce the following scalar function of configuration x

⟨x|J†|v⟩⟩ =
∑
(x2
x1)

⟨x|J†|x2
x1
⟩⟩⟨⟨x2

x1
|v⟩⟩ =

∑
(x2
x1)

(w(x2, x1)δx,x1
− w(x1, x2)δx,x2

) v(x2, x1)

=
∑
x2>x

w(x2, x)v(x2, x)−
∑
x1<x

w(x1, x)v(x, x1) =
∑
x2>x

w(x2, x)v(x2, x) +
∑
x1<x

w(x1, x)v(x1, x)

=
∑
x′ ̸=x

w(x′, x)v(x′, x) (39)

2. Incidence matrix I of size M ×N

When all the non-vanishing transition rates w(x′, x) > 0 are replaced by unity

w(x′, x)→ 1 (40)

then the current matrix J of Eq. 36 reduces to the well-known incidence matrix I that only keeps the information on
the geometry of the existing links between configurations

⟨⟨x2
x1
|I|x⟩ = δx,x1

− δx,x2
(41)

The analog of Eq. 37

⟨⟨x2
x1
|I|f⟩ = f(x1)− f(x2) ≡ −⟨⟨x2

x1
|grad|f⟩ (42)

represents the difference of the function f between the two ends of the oriented link, so the incidence matrix I
represents the opposite of the discrete gradient

I = −grad (43)

The analog of Eq. 39 involving the adjoint matrix I† of size N ×M

⟨x|I†|v⟩⟩ =
∑
x′ ̸=x

v(x′, x) ≡ ⟨x|div|v⟩⟩ (44)

represents the discrete divergence div of the vector |v⟩⟩ at configuration x

I† = div (45)
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3. Supersymmetric factorization of the N ×N non-hermitian Hamiltonian into H = I†J

The two matrices J and I of size M × N introduced above are useful to factorize the N × N non-hermitian
Hamiltonian H into

H = divJ = I†J (46)

This factorization corresponds to the natural splitting of the Euclidean Schödiner Eq. 7 into the following pair of
matrix equations

−∂t|pt⟩ = I†|jt⟩⟩ = div|jt⟩⟩
|jt⟩⟩ = J|pt⟩ (47)

that describes the interplay between the probability |pt⟩ living on the N configurations and the current |jt⟩⟩ living on
the M oriented links.

E. Dynamical properties of the currents defined on the M oriented links

1. Dynamics of the current |jt⟩⟩ = J|pt⟩ governed by the supersymmetric partner Ĥ ≡ JI† of size M ×M

A direct consequence of the splitting of Eq. 47 is that the current |jt⟩⟩ = J|pt⟩ follows the closed dynamics

−∂t|jt⟩⟩ = J

(
− ∂t|pt⟩

)
= JI†|jt⟩⟩ ≡ Ĥ|jt⟩⟩ (48)

governed by the supersymmetric partner

Ĥ ≡ JI† of size M ×M (49)

of the Hamiltonian H = I†J of dimension N ×N .

2. Spectral decomposition of the time-dependent currents |jt⟩⟩

However the size M ×M of the Hamiltonian Ĥ governing the dynamics of Eq. 48 for the currents |jt⟩⟩ is somewhat
misleading. Indeed, the currents |jt⟩⟩ = J|pt⟩ do not live in the full space of dimension M but in a smaller subspace
since they can be computed from the ket |pt⟩ of dimension N given by the spectral decomposition of the propagator
of Eq. 15

|pt⟩ =
N−1∑
n=0

e−tEn |rn⟩⟨ln|x0⟩ = |p∗⟩+
N−1∑
n=1

e−tEn |rn⟩⟨ln|x0⟩ (50)

So the relaxation of the current

|jt⟩⟩ = J|pt⟩ = J|p∗⟩+
N−1∑
n=1

e−tEnJ|rn⟩⟨ln|x0⟩

≡ |j∗⟩⟩+
N−1∑
n=1

e−tEn |jn⟩⟩⟨ln|x0⟩ (51)

towards the steady currents |j∗⟩⟩ associated to the steady state |p∗⟩

|j∗⟩⟩ ≡ J|p∗⟩ (52)

involves exactly the same (N−1) excited eigenvalues En=1,..,N−1 as the Hamiltonian H. The corresponding relaxation
modes |jn⟩⟩ are the currents associated to the excited right eigenvectors |rn⟩ of H

|jn⟩⟩ ≡ J|rn⟩ (53)
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while the eigenvalue Eq. 11 for the right eigenvectors |rn⟩ can be then rewritten as

En|rn⟩ = H|rn⟩ = I†J|rn⟩ = I†|jn⟩⟩ (54)

The pair of Eqs 53 and 54 means that |jn⟩⟩ is a right eigenvector of the partner Ĥ ≡ JI† of Eq. 49 associated to the
eigenvalue En

En|jn⟩⟩ = En (J|rn⟩) = J (En|rn⟩) = JI†|jn⟩⟩ = Ĥ|jn⟩⟩ (55)

including the case n = 0 since the non-vanishing steady current |jn=0⟩⟩ = |j∗⟩⟩ ̸= 0 is annihilated by I† = div

I†|j∗⟩⟩ = 0 = Ĥ|j∗⟩⟩ (56)

Similarly, the eigenvalue Eq. 11 for the excited left eigenvector ⟨ln| of H = I†J can be split into the two matrix
equations

En⟨⟨in| = ⟨ln|I†

⟨ln| = ⟨⟨in|J (57)

involving the bra ⟨⟨in| which is a left eigenvector of the partner Ĥ ≡ JI† of Eq. 49 associated to the eigenvalue En

En⟨⟨in| = ⟨ln|I† = ⟨⟨in|JI† = ⟨⟨in|Ĥ (58)

For n = 0 where the left eigenvector is unity ⟨l(n=0)|x⟩ = 1, the bra ⟨⟨i(n=0)| satisfies

⟨l0| = ⟨⟨i0|J ̸= 0

0 = ⟨l0|I† = ⟨⟨i0|JI† = ⟨⟨i0|Ĥ (59)

The bras ⟨⟨in| and the kets |jn′⟩⟩ satisfy the orthonormalization inherited from the orthonormalization of Eq. 12
concerning the left eigenvectors ⟨ln| and the right eigenvectors |rn′⟩

⟨⟨in|jn′⟩⟩ = ⟨⟨in|J|rn′⟩ = ⟨ln|rn′⟩ = δn′,n (60)

Note that for the (N−1) excited eigenvalues En=1,..,N−1 ̸= 0, the relations involving the incidence matrix I = −grad
of Eq. 43 and its adjoint I† = div of Eq. 45 mean that the right eigenvector rn(.) can be rewritten in terms of the
discrete divergence of the |jn⟩⟩

rn(x) = ⟨x|rn⟩ =
1

En
⟨x|I†|jn⟩⟩ =

⟨x|div|jn⟩⟩
En

(61)

in constrast to the steady state |rn=0⟩ = |p∗⟩ associated to the divergenceless steady current |jn=0⟩⟩ = |j∗⟩⟩

div|j∗⟩⟩ = 0 (62)

while the |in⟩⟩ for n = 1, .., N − 1 can be rewritten as the discrete gradient of the left eigenvector ln(.)

⟨⟨x2
x1
|in⟩⟩ =

1

E∗
n

⟨⟨x2
x1
|I|ln⟩ = −

1

E∗
n

⟨⟨x2
x1
|grad|ln⟩ =

ln(x1)− ln(x2)

E∗
n

(63)

in contrast to |in=0⟩⟩ associated to the unity left eigenvector l0(x) = 1.
Since the initial current |jt=0⟩⟩ associated to the initial condition |x0⟩ is

|jt=0⟩⟩ = J|x0⟩ (64)

one can rewrite the scalar products ⟨ln|x0⟩ appearing in Eq. 51 as

⟨ln|x0⟩ = ⟨⟨in|J|x0⟩ = ⟨⟨in|jt=0⟩⟩ (65)

including the case n = 0 with

1 = l0(x0) = ⟨l0|x0⟩ = ⟨⟨i0|J|x0⟩ = ⟨⟨i0|jt=0⟩⟩ (66)

in order to rewrite the spectral decomposition of Eq. 51 as

|jt⟩⟩ = |j∗⟩⟩+
N−1∑
n=1

e−tEn |jn⟩⟩⟨⟨in|jt=0⟩⟩ =

(
N−1∑
n=0

e−tEn |jn⟩⟩⟨⟨in|

)
|jt=0⟩⟩ (67)
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F. Discussion

In summary, the spectral decomposition of Eq. 67 shows that the current |jt⟩⟩ defined on the M = N − 1 + C
oriented links lives in the subspace of dimension N spanned by the bi-orthogonal basis of the bras ⟨⟨in=0,..,N−1| and
the kets |jn=0,1,..,N−1⟩⟩ that are left and right eigenvectors of the supersymmetric partner Ĥ of Eq. 49 associated to
the N eigenvalues En=0,..,N−1 that represent the full spectrum of the N × N Hamiltonian H = I†J. However since

the supersymmetric partner Ĥ = JI† is a matrix of size M ×M bigger than N ×N , it is useful to clarify the relations
between the spectral properties of the two Hamiltonians H = I†J and Ĥ = JI† via the analysis of the Singular Values
Decompositions of the two rectangular matrices I and J of size M ×N in the two following sections.

IV. SINGULAR VALUE DECOMPOSITION OF THE INCIDENCE MATRIX I OF SIZE M ×N

This section is devoted to the properties of the Singular Value Decomposition of the Incidence matrix I of Eq. 41
of size M ×N with M ≥ N .

A. SVD of the Incidence matrix I involving (N − 1) positive singular values Iα=1,..,N−1 > 0 and I(α=0) = 0

The Singular Value Decomposition of the Incidence matrix I of size M ×N with M ≥ N involves (N − 1) strictly
positive singular values Iα > 0 with α = 1, .., N − 1

I =

N−1∑
α=1

Iα|IRα ⟩⟩⟨ILα |

I† =

N−1∑
α=1

Iα|ILα ⟩⟨⟨IRα | (68)

while the vanishing singular value

I(α=0) = 0 (69)

is associated to the uniform normalized eigenvector

⟨x|IL(α=0)⟩ =
1√
N

(70)

that is annihilated by the matrix I that represents the opposite of the discrete gradient (Eq. 42)

I|IL(α=0)⟩ = −grad|I
L
(α=0)⟩ = 0 (71)

The N left singular kets |ILα=0,1..,N−1⟩ form an orthonormal basis of the space of the N configurations

δα,α′ = ⟨ILα |ILα′⟩ =
∑
x

⟨ILα |x⟩⟨x|ILα′⟩

1N =

N−1∑
α=0

|ILα ⟩⟨ILα | =
N−1∑
α=1

|ILα ⟩⟨ILα |+ |IL(α=0)⟩⟨I
L
(α=0)| (72)

while the (N − 1) right singular kets |IRα=1,..,N−1⟩⟩ that are associated to the (N − 1) strictly positive singular values

Iα=1,..,N−1 > 0 in Eq. 68 should be supplemented by M − (N − 1) = C other kets |IRα=0,−1,−2..,−(C−1)⟩⟩ in order to

obtain an orthonormal basis of the space of the M oriented links

δα,α′ = ⟨⟨IRα |IRα′⟩⟩ =
∑
(x2
x1)

⟨⟨IRα |x2
x1
⟩⟩⟨⟨x2

x1
|IRα′⟩⟩

1M =

N−1∑
α=−(C−1)

|IRα ⟩⟩⟨⟨IRα | =
N−1∑
α=1

|IRα ⟩⟩⟨⟨IRα |+
0∑

α=−(C−1)

|IRα ⟩⟩⟨⟨IRα | (73)
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B. Relation with the spectral decomposition of the discrete Laplacian in the space of the N configurations

Since the incidence matrix I represents the opposite of the discrete gradient (Eq. 43) and since the adjoint matrix I†

represents the discrete divergence (Eq. 45), the supersymmetric matrix I†I of size N ×N corresponds to the opposite
of the discrete Laplacian ∆ in the space of the N configurations

I†I = div(−grad) = −∆ (74)

as can be checked via the evaluation of the matrix elements using Eq. 41

⟨x|I†I|x′⟩ =
∑
(x2
x1)

⟨x′|I|x2
x1
⟩⟩⟨x′|I|x2

x1
⟩⟩ =

∑
(x2
x1)

(
δx,x1

− δx,x2

)(
δx′,x1

− δx′,x2

)
=
∑
(x2
x1)

(
δx,x1δx′,x1 + δx,x2δx′,x2 − δx,x2δx′,x1 − δx,x1δx′,x2

)

=


z(x) if x = x′

−1 if x and x′ are the two ends of a link

0 otherwise

≡ −⟨x|∆|x′⟩ (75)

where z(x) is the number of links connected to the configuration x.
On the other hand, the evaluation of the supersymmetric matrix I†I via the Singular Value Decompositions of Eq.

68 for the incidence matrix I and its adjoint I†

−∆ = I†I =

(
N−1∑
α=1

Iα|ILα ⟩⟨⟨IRα |

)(
N−1∑
α′=1

Iα′ |IRα′⟩⟩⟨ILα′ |

)
=

N−1∑
α=1

I2α|ILα ⟩⟨ILα | (76)

gives its spectral decomposition in terms of the (N−1) strictly positive eigenvalues I2α=1,..,N−1 > 0 with their associated

orthonormalized eigenvectors |ILα=1,..,N−1⟩, while the vanishing eigenvalue I2(α=0) = 0 of Eq. 69 is associated to the

uniform normalized eigenvector |IL(α=0)⟩ of Eq. 70.
In particular, whenever the orthonormalized basis of eigenvectors |ILα ⟩ of the opposite Laplacian (−∆) of Eq. 76

is known, this is the the orthonormalized basis of left singular vectors |ILα ⟩ that appear in the SVD of the incidence
matrix I of Eq. 68, while the corresponding singular values Iα of the incidence matrix I are given by the square-roots
of the eigenvalues I2α. The corresponding (N − 1) right singular vectors |IRα=1,..,N−1⟩ of Eq. 68 can be then obtained

via the application of the incidence matrix I on the left singular vectors |ILα ⟩

I|ILα ⟩ =

(
N−1∑
α′=1

Iα′ |IRα′⟩⟩⟨ILα′ |

)
|ILα ⟩ = Iα|IRα ⟩⟩ (77)

The further application of the adjoint matrix I† to these right singular vectors |IRα=1,..,N−1⟩⟩

I†|IRα ⟩⟩ =

(
N−1∑
α′=1

Iα′ |ILα′⟩⟨⟨IRα′ |

)
|IRα ⟩⟩ = Iα|ILα ⟩ (78)

then reproduce the left singular vectors |ILα ⟩.

C. Relation with the spectral decomposition of the supersymmetric partner II† of size M ×M

The matrix elements of the supersymmetric partner II† of size M ×M read using Eq. 41

⟨x2
x1
|II†|x

′
2

x′
1
⟩ =

∑
x

⟨x2
x1
|I|x⟩⟨x

′
2

x′
1
|I|x⟩ =

∑
x

(
δx,x1

− δx,x2

)(
δx,x′

1
− δx,x′

2

)
= δx1,x′

1
+ δx2,x′

2
− δx1,x′

2
− δx′

1,x2

=


2 if the two oriented links coincide, i.e. x1 = x′

1 and x2 = x′
2

1 if the two oriented links are different but share the same starting-point x1 = x′
1 or the same end-point x2 = x′

2

-1 if the starting-point of one oriented link coincide with the end-point of the other link, i.e. x2 = x′
1 or x′

2 = x1

(79)



12

On the other hand, the evaluation of the supersymmetric matrix II† of size M ×M via the Singular Value Decom-
positions of Eq. 68 for the incidence matrix I and its adjoint I†

II† =

N−1∑
α=1

I2α|IRα ⟩⟩⟨⟨IRα | (80)

gives its spectral decomposition that involves the same (N − 1) strictly positive eigenvalues I2α=1,..,N−1 > 0 as the

opposite-Laplacian of Eq. 76, while the corresponding eigenvectors |IRα=1,..,N−1⟩⟩ are related to the eigenvectors

|ILα=1,..,N−1⟩ of the opposite-Laplacian via Eq. 77.

So here the vanishing eigenvalue I20 = 0 is degenerate and associated to the subspace of dimension M− (N−1) = C
with the orthonormalized basis |IRα=0,−1,..,−(C−1)⟩⟩.

D. Relation with the discrete Helmholtz decomposition for an arbitrary vector |v⟩⟩

An arbitrary vector |v⟩⟩ in the space of dimension M can be decomposed with respect to the orthonormalized basis
|IRα ⟩⟩ of Eq. 73 in terms of its M coefficients

vα ≡ ⟨⟨IRα |v⟩⟩ for α = −(C − 1), ...,−1, 0,+1, .., N − 1 (81)

It is useful to separate these M = (N − 1) +C terms into two orthogonal contributions of dimensions (N − 1) and C
respectively

|v⟩⟩ =

N−1∑
α=−(C−1)

vα|IRα ⟩⟩ ≡ |v[I.>0]⟩⟩+ |v[I0=0]⟩⟩

|v[I.>0]⟩⟩ ≡
N−1∑
α=1

vα|IRα ⟩⟩

|v[I0=0]⟩⟩ ≡
0∑

α=−(C−1)

vα|IRα ⟩⟩ (82)

with the following properties.

1. The component |v[I0=0]⟩⟩ of dimension C associated to the vanishing singular value I0 = 0

The vanishing singular value I0 = 0 is degenerate and associated to the subspace of dimension C = M−(N−1) that
is annihilated by the adjoint operator I† = div of Eq. 45 corresponding to the discrete divergence. As a consequence,
the component |v[I0=0]⟩⟩ of Eq. 82 can be characterized by its vanishing divergence

0 = I†|v[I0=0]⟩⟩ = div|v[I0=0]⟩⟩ (83)

As already discussed around Eq. 31 on the special case of the steady current |j∗⟩⟩ whose divergence vanishes div|j∗⟩⟩ =
0, the divergenceless component |v[I0=0]⟩⟩ can be similarly parametrized by C cycle-components flowing around the
C independent cycles γ = 1, 2, .., C.

2. The component |v[I.>0]⟩⟩ of dimension (N − 1) associated to the strictly positive singular values Iα=1,2,..,N−1 > 0

The component |v[I.>0]⟩⟩ of Eq. 82 associated to the (N − 1) strictly positive singular values Iα=1,2,..,N−1 > 0 can
be rewritten using Eq. 77

|v[I.>0]⟩⟩ =
N−1∑
α=1

vα|IRα ⟩⟩ =
N−1∑
α=1

vα
Iα

I|ILα ⟩ = I

(
N−1∑
α=1

vα
Iα
|ILα ⟩

)
≡ −grad|g[I.>0]⟩ (84)
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as the opposite discrete gradient I ≡ −grad of Eq. 43 applied to the following ket |g[I.>0]⟩ that lives in the space of
the N configurations

|g[I.>0]⟩ ≡
N−1∑
α=1

vα
Iα
|ILα ⟩ (85)

and that belongs to the subspace spanned by the (N−1) left singular vectors |ILα=1,2,..,N−1⟩ orthogonal to the constant

ket |I(α=0)⟩ of Eq. 70. As a consequence, the circulation of |v[I.>0]⟩⟩ = −grad|g[I.>0]⟩ of Eq. 84 around any of the C
independent cycle γ = 1, 2, .., C vanishes

Γ[γ][v[I.>0]] ≡
l[γ]∑
l=1

⟨⟨x
[γ](l+1)

x[γ](l)
|v[I.>0]⟩⟩ = 0 (86)

The application of the discrete divergence I† = div of Eq. 45 to the component |v[I.>0]⟩⟩ = −grad|g[I.>0]⟩ of Eq.
84 corresponds to the application of the opposite Laplacian of Eq. 76 to the ket |g[I.>0]⟩ of Eq. 85

I†|v[I.>0]⟩⟩ = I†I|g[I.>0]⟩ = −∆|g[I.>0]⟩ (87)

with the following decomposition in the orthonormalized basis |ILα ⟩ of the Laplacian associated to the eigenvalues I2α

I†|v[I.>0]⟩⟩ = −∆

(
N−1∑
α=1

vα
Iα
|ILα ⟩

)
=

N−1∑
α=1

vαIα|ILα ⟩ (88)

3. Conclusion on the discrete Helmholtz decomposition associated to the SVD of the incidence matrix I

In conclusion, for an arbitrary vector |v⟩⟩ of the space of M links, the decomposition of Eq. 82 into its gradient
component |v[I.>0]⟩⟩ = −grad|g[I.>0]⟩ of Eq. 84 of dimension (N − 1) and into its divergenceless component |v[I0=0]⟩⟩
of Eq. 83 of dimension C corresponds to the discrete Helmholtz decomposition, with the two important properties:

(1) The application of the discrete divergence I† = div on the vector |v⟩⟩ only involves the divergence of the gradient
component |v[I.>0]⟩⟩ = −grad|g[I.>0]⟩

div|v⟩⟩ = I†|v⟩⟩ = I†|v[I.>0]⟩⟩+ 0 = −∆|g[I.>0]⟩ (89)

and reduces to the application of the opposite Laplacian to the ket |g[I.>0]⟩.
(2)The circulation of the vector |v⟩⟩ along the any of the C independent closed cycles γ = 1, .., C only involves the

circulation of the divergenceless component |v[I0=0]⟩⟩

Γ[γ][v] ≡
l[γ]∑
l=1

⟨⟨x
[γ](l+1)

x[γ](l)
|v⟩⟩ = 0 + Γ[γ][v[I0=0]] (90)

4. Application to the definition of the pseudo-inverse Ipseudo[−1] of the incidence matrix I

The linear system involving the rectangular incidence matrix I

I|g⟩ = |v⟩⟩ (91)

for the unknown ket |g⟩ of dimension N when the vector |v⟩⟩ of dimension M is given can be analyzed by plugging
the SVD of Eq. 68 for the incidence matrix into Eq. 91

N−1∑
α=1

Iα|IRα ⟩⟩⟨ILα |g⟩ = |v⟩⟩ (92)

and via the Helmholtz decomposition of Eq. 82 for the arbitrary vector |v⟩⟩ in the space of dimension M with the
following discussion :
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(i) The component |v[I0=0]⟩⟩ spanned by the kets |IRα=0,−1,..,−(C−1)⟩⟩ that do not appear on the left hand side of Eq.

92 should vanish

|v[I0=0]⟩⟩ ≡
0∑

α=−(C−1)

vα|IRα ⟩⟩ = 0 (93)

i.e. the C coefficients vα=0,−1,..,−(C−1) should vanish

vα ≡ ⟨⟨IRα |v⟩⟩ = 0 for α = 0,−1, ..,−(C − 1) (94)

(ii) The identification of the coefficients of the (N − 1) eigenvectors |IRα=1,2,..,N−1⟩⟩ in Eq. 92 yields that the

coefficients of |g⟩ in the basis of the left singular vectors |ILα ⟩ are given by

⟨ILα |g⟩ =
vα
Iα

for α = 1, 2, .., N − 1 (95)

so that the solution for the ket |g⟩

|g⟩ =
N−1∑
α=1

|ILα ⟩⟨ILα |g⟩ =
N−1∑
α=1

|ILα ⟩
⟨⟨IRα |v⟩⟩

Iα
=

(
N−1∑
α=1

|ILα ⟩⟨⟨IRα |
Iα

)
|v⟩⟩ ≡ Ipseudo[−1]|v⟩⟩ (96)

corresponds to the application to the vector |v⟩⟩ of the pseudo-inverse Ipseudo[−1] of the incidence matrix I with the
SVD of Eq. 68

Ipseudo[−1] ≡
N−1∑
α=1

|ILα ⟩⟨⟨IRα |
Iα

(97)

E. Discussion

In summary, the Singular Value Decomposition of the incidence matrix I of size M ×N is directly related to the
discrete Helmholtz decomposition of an arbitrary vector |v⟩⟩ of dimension M into its gradient part of dimension (N−1)
and its divergenceless part of dimension C, related to the C independent cycles, that were previously introduced to
parametrize the divergenceless steady current j∗(., .) as recalled around Eq. 31. However, in order to understand
the subspace of dimension N where the time-dependent current jt(., .) live, one needs to consider the Singular Value
Decomposition of the current matrix J, as discussed in the next section.

V. SINGULAR VALUE DECOMPOSITION OF THE CURRENT MATRIX J OF SIZE M ×N

This section is devoted to the properties of the Singular Value Decomposition of the current matrix J of Eq. 36 of
size M ×N with M ≥ N . Since the current matrix J of Eq. 36 can be considered as a deformation by the transition
rates w(., .) of the incidence matrix I of Eq. 41, whose SVD was discussed in detail in the previous section IV, many
properties are very similar, so we will mainly stress the important differences.

A. SVD of the current matrix J involving N strictly positive singular values λβ=1,..,N > 0

For a non-equilibrium steady state with non-vanishing steady currents (Eq. 30), the Singular Value Decomposition
of the current matrix J of size M ×N involves N strictly positive singular values λβ=1,..,N > 0

J =

N∑
β=1

λβ |λR
β ⟩⟩⟨λL

β |

J† =

N∑
β=1

λβ |λL
β ⟩⟨⟨λR

β | (98)
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where the N right singular vectors |λR
β=1,..,N ⟩⟩ should be supplemented by M − N = (C − 1) other vectors

|λR
β=0,−1..,−(C−2)⟩⟩ in order to obtain an orthonormal basis of the space of the M oriented links

δβ,β′ = ⟨⟨λR
β |λR

β′⟩⟩ =
∑
(x2
x1)

⟨⟨λR
β |x2

x1
⟩⟩⟨⟨x2

x1
|λR

β′⟩⟩

1M =

N∑
β=−(C−2)

|λR
β ⟩⟩⟨⟨λR

β | =
N∑

β=1

|λR
β ⟩⟩⟨⟨λR

β |+
0∑

β=−(C−2)

|λR
β ⟩⟩⟨⟨λR

β | (99)

while the N left singular vectors |λL
β=1,2..,N ⟩ form an orthonormal basis of the space of the N configurations

δβ,β′ = ⟨λL
β |λL

β′⟩ =
∑
x

⟨λL
β |x⟩⟨x|λL

β′⟩

1N =

N∑
β=1

|λL
β ⟩⟨λL

β | (100)

that can be found from the diagonalization of the N ×N supersymmetric matrix

J†J =

N∑
β=1

λ2
β |λL

β ⟩⟨λL
β | (101)

whose matrix elements read

⟨x|J†J|x′⟩ =
∑
(x2
x1)

⟨x|J|x2
x1
⟩⟩⟨x′|J|x2

x1
⟩⟩ =

∑
(x2
x1)

(
w(x2, x1)δx,x1 − w(x1, x2)δx,x2

)(
w(x2, x1)δx′,x1 − w(x1, x2)δx′,x2

)
=
∑
(x2
x1)

(
w2(x2, x1)δx,x1δx′,x1 + w2(x1, x2)δx,x2δx′,x2 − w(x2, x1)w(x1, x2)δx,x2δx′,x1 − w(x2, x1)w(x1, x2)δx,x1δx′,x2

)

=


∑
x′′ ̸=x

w2(x′′, x) if x = x′

−w(x, x′)w(x′, x) = −D2(x, x′) if x and x′ are the two ends of a link

0 otherwise

(102)

Whenever the spectral decomposition of Eq. 101 is known for the matrix J†J, then the N singular values λβ=1,..,N >
0 and the N left singular vectors |λL

β=1,..,N ⟩ of the matrix J are known, while the corresponding N right singular

vectors |λR
β=1,..,N ⟩⟩ can be obtained via the application of the matrix J to the left singular vectors |λL

β=1,..,N ⟩

J|λL
β ⟩ = λβ |λR

β ⟩⟩ (103)

B. Analog of the Helmholtz decomposition when the incidence matrix I is replaced by the current matrix J

As discussed in detail in subsection IVD, the discrete Helmholtz decomposition is directly related to the SVD of
the incidence matrix I. In the present subsection, it is thus useful to describe the analog of the discrete Helmholtz
decomposition when the incidence matrix I is replaced by the current matrix J using its SVD decomposition of Eq.
98 as follows.

An arbitrary vector |u⟩⟩ in the space of dimension M can be decomposed with respect to the orthonormalized basis
|λR

β ⟩⟩ of Eq. 99 in terms of its M coefficients

uβ ≡ ⟨⟨λR
β |u⟩⟩ for β = −(C − 2), ...,−1, 0,+1, .., N (104)

Let us now analyze the splitting of these M terms into two orthogonal contributions of dimensions N and (C − 1)
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respectively

|u⟩⟩ =

N∑
β=−(C−2)

uβ |λR
β ⟩⟩ ≡ |u[λ.>0]⟩⟩+ |u[λ0=0]⟩⟩

|u[λ.>0]⟩⟩ ≡
N∑

β=1

uβ |λR
β ⟩⟩

|u[λ0=0]⟩⟩ ≡
0∑

β=−(C−2)

uβ |λR
β ⟩⟩ (105)

with the following properties.

1. The component |u[λ0=0]⟩⟩ of dimension (C − 1) associated to the vanishing singular value λ0 = 0

The component |u[λ0=0]⟩⟩ of dimension (C − 1) written in Eq. 105 is associated to the vanishing singular value
λ0 = 0 and is thus annihilated by the adjoint matrix J† whose SVD is given in Eq. 98

0 = J†|u[λ0=0]⟩⟩ (106)

2. The component |u[λ.>0]⟩⟩ of dimension N associated to the strictly positive singular values λR
β=1,..,N > 0

The component |u[λ.>0]⟩⟩ of Eq. 105 associated to the N strictly positive singular values λR
β=1,..,N > 0 can be

rewritten using Eq. 103

|u[λ.>0]⟩⟩ ≡
N∑

β=1

uβ |λR
β ⟩⟩ =

N∑
β=1

uβ

λβ
J|λL

β ⟩ = J

 N∑
β=1

uβ

λβ
|λL

β ⟩

 ≡ J|k[λ.>0]⟩ (107)

as the application of the current matrix J of Eq. 43 to the following ket |k[λ.>0]⟩ that lives in the space of the N
configurations

|k[λ.>0]⟩ ≡
N∑

β=1

uβ

λβ
|λL

β ⟩ (108)

The application of the adjoint matrix J† on the vector |u⟩⟩ of Eq. 105 only involves the application on the component
|u[λ.>0]⟩⟩ = J|k[λ.>0]⟩ of Eq. 107, and thus reduces to the application of the matrix J†J with the spectral decomposition
of Eq. 101 on the ket |k[λ.>0]⟩

J†|u⟩⟩ = J†|u[λ.>0]⟩⟩+ 0 = J†J|k[λ.>0]⟩ =
N∑

β=1

uβλβ |λL
β ⟩ (109)

3. Conclusion on the subspace of dimension N for the physical currents |jt⟩⟩ = J|pt⟩

The above discussion shows that the component |u[λ0=0]⟩⟩ of dimension (C − 1) corresponds to the unphysical
subspace orthogonal to the physical space for the currents |jt⟩⟩ = J|pt⟩ of Eq. 38 that are obtained from the application
of the current matrix J to a ket |pt⟩ of the configuration space. This explains why the spectral decomposition of Eq.

67 only involves the bi-orthogonal basis of the ⟨⟨in| and the |jn⟩⟩ for n = 0, 1, .., (N − 1), even if the partner Ĥ that
governs the dynamics of the current is a matrix of size M ×M .
The main conclusion is thus that the projector PPhysicalSpaceCurrents onto the subspace of dimension N for the

physical currents can be written either with the bi-orthogonal basis of the ⟨⟨in| and the |jn⟩⟩ for n = 0, 1, .., (N − 1)
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or with the orthonormalized basis |λR
β=1,..,N ⟩⟩ of the right singular vectors of the current matrix J associated to the

strictly positive singular values λR
β=1,..,N > 0

PPhysicalSpaceCurrents =

N−1∑
n=0

|jn⟩⟩⟨⟨in| =
N∑

β=1

|λR
β ⟩⟩⟨⟨λR

β | (110)

while the orthogonal projector involving the other (C − 1) right singular vectors |λR
β=−(C−2),..,0⟩⟩ associated to the

vanishing singular value λ0 = 0

PUnhysicalSpaceCurrents =

0∑
β=−(C−2)

|λR
β ⟩⟩⟨⟨λR

β | (111)

corresponds to the unphysical subspace for the currents.

4. Application to the definition of the pseudo-inverse Jpseudo[−1] of the current matrix J

The linear system involving the rectangular current matrix J with the SVD of Eq. 98

|u⟩⟩ = J|k⟩ ≡
N∑

β=1

λβ |λR
β ⟩⟩⟨λL

β |k⟩ (112)

for the unknown ket |k⟩ of dimension N when the vector |u⟩⟩ of dimension M is given, can be analyzed via the
following adaptation of the discussion of subsection IVD4 :

(i) The (C − 1) coefficients uβ=0,−1,..,−(C−2) should vanish

uβ ≡ ⟨⟨λR
β |u⟩⟩ = 0 for β = 0,−1, ..,−(C − 2) (113)

(ii) The solution for the ket |k⟩

|k⟩ = Jpseudo[−1]|u⟩⟩ (114)

corresponds to the application to the vector |u⟩⟩ of the pseudo-inverse Jpseudo[−1] of the current matrix J with the
SVD of Eq. 98

Jpseudo[−1] ≡
N∑

β=1

1

λβ
|λL

β ⟩⟨⟨λR
β | (115)

C. Solving the linear system |j∗⟩⟩ = J|p∗⟩ to obtain the steady state p∗ and the current j∗

Let us consider the application of the previous subsection to the linear system of Eq. 33

|j∗⟩⟩ = J|p∗⟩ ≡
N∑

β=1

λβ |λR
β ⟩⟩⟨λL

β |p∗⟩ (116)

for the unknown steady state |p∗⟩ in the space of the N configurations, once the steady current |j∗⟩⟩ has been
parametrized by its C coefficients in Eq. 31 :

(i) Eq. 113 gives (C − 1) equations for the C coefficients parametrizing the steady current |j∗⟩⟩

⟨⟨λR
β |j∗⟩⟩ = 0 for β = 0,−1, ..,−(C − 2) (117)

(ii) Eq. 114 gives the steady state of dimension N

|p∗⟩ = Jpseudo[−1]|j∗⟩⟩ =
N∑

β=1

1

λβ
|λL

β ⟩⟨⟨λR
β |j∗⟩⟩ (118)

in terms of the projections of the steady current |j∗⟩⟩ on the N singular eigenvectors ⟨⟨λR
β=1,..,N |. Then the nor-

malization of the steady state p∗(.) of Eq. 118 determines the last remaining unknown coefficient for the steady
current.
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D. Consequences for the excited right eigenstates |rn=1,..,N−1⟩ and their associated currents |jn⟩⟩ = J|rn⟩

Plugging the SVD of J of Eq. 98 into Eq. 53

|jn⟩⟩ = J|rn⟩ =
N∑

β=1

λβ |λR
β ⟩⟩⟨λL

β |rn⟩ (119)

yields that the excited right eigenstate |rn=1,..,N−1⟩ can be also computed from the current |jn⟩⟩ via the pseudo-inverse

Jpseudo[−1] as in Eq. 118

|rn⟩ = Jpseudo[−1]|jn⟩⟩ =
N∑

β=1

1

λβ
|λL

β ⟩⟨⟨λR
β |jn⟩⟩ (120)

E. Consequences for the left eigenstates ⟨ln=0,..,N−1| and their associated ⟨⟨in| satisfying ⟨ln| = ⟨⟨in|J

Plugging the SVD of J of Eq. 98 into Eq. 57 yields

⟨ln| = ⟨⟨in|J =

N∑
β=1

λβ⟨⟨in|λR
β ⟩⟩⟨λL

β | (121)

Since ⟨⟨in| belongs to the subspace of physical currents of Eq. 110, Eq. 121 can be inversed to compute ⟨⟨in| in terms
of ⟨ln| via

⟨⟨in| =

N∑
β=1

⟨⟨in||λR
β ⟩⟩⟨⟨λR

β | =
N∑

β=1

⟨ln|λL
β ⟩

λβ
⟨⟨λR

β | = ⟨ln|Jpseudo[−1] (122)

that involves the pseudo-inverse Jpseudo[−1].
For n = 0 with the left eigenvector l0(x) = 1, Eq. 122 yields that the bra ⟨⟨i0| can be evaluated from the pseudo-

inverse Jpseudo[−1] via

⟨⟨i0| = ⟨l0|Jpseudo[−1] =
∑
x

⟨l0|x⟩⟨x|Jpseudo[−1]

=
∑
x

⟨x|Jpseudo[−1] =

N∑
β=1

⟨x|λL
β ⟩

λβ
⟨⟨λR

β | (123)

F. Discussion

In summary, the Singular Value Decomposition of the current matrix J of size M ×N is very useful to characterize
the subspace of dimension N for the physical currents via the projector of Eq. 110, while the definition of the
pseudo-inverse Jpseudo[−1] clarifies the relations between the biorthogonal basis of right and left eigenvectors of the
Hamiltonian H = I†J and of its supersymmetric partner Ĥ = JI†.
The general analysis of spectral properties of non-equilibrium Markov jump processes is now finished for the present

paper : the application to a simple translation-invariant model can be found in Appendix A, while the next section
of the main text is devoted to the comparison with the spectral properties of non-equilibrium diffusion processes in
dimension d = 3.

VI. COMPARISON WITH SPECTRAL PROPERTIES OF FOKKER-PLANCK GENERATORS

For diffusion processes in dimension d, the essential ideas are the same as in the previous sections concerning Markov
jump processes, but there are some important technical differences :
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(i) the number N of configurations, the number M of links, and the number C of independent cycles become
infinite, so there is the complication that the different spaces and subspaces discussed previously become all infinite-
dimensional.

(ii) the incidence matrix I and the current matrix J of size M ×N become first-order differential operators acting
on scalar functions to produce vector fields, so there is the simplification that the vector calculus operators like the
gradient and the divergence, as well as the Helmholtz decomposition of vectors, are more familiar in continuous space
than in discrete space.

For concreteness and to simplify the notations, we will focus on the spatial dimension d = 3 in order to use the
standard 3D curl operator that is simpler than its generalization in higher dimensions d > 3.

A. Fokker-Planck dynamics in terms of the probability density pt(x⃗) and the 3D current j⃗t(x⃗)

The Fokker-Planck equation for the probability density pt(x⃗) to be around the position x⃗ at time t can be written
as the continuity equation

∂tpt(x⃗) = −div j⃗t(x⃗) (124)

where the 3D current j⃗t(x⃗) involves the force F⃗ (x⃗) and the diffusion coefficient D(x⃗)

j⃗t(x⃗) = F⃗ (x⃗)pt(x)−D(x⃗) ⃗grad pt(x⃗) (125)

B. Rephrasing with the first-order differential operators J and I

The analog of the current matrix J of size M ×N of Eqs 36 and 38 is the first-order differential operator

J ≡ F⃗ (x⃗)−D(x⃗) ⃗grad =

F1(x⃗)−D(x⃗) ∂
∂x1

F2(x⃗)−D(x⃗) ∂
∂x2

F3(x⃗)−D(x⃗) ∂
∂x3

 (126)

that acts on the scalar density pt(x) to produce the 3D current j⃗t(x⃗) of Eq. 125

j⃗t(x⃗) = Jpt(x) (127)

The analog of the incidence matrix I of size M ×N of Eq. 41 43 is the opposite of the gradient operator, that can

be recovered from the current operator of Eq. 126 for the simplest case where the force vanishes F⃗ (x⃗)→ 0 and where
the diffusion coefficient reduces to unity D(x⃗)→ 1

I ≡ − ⃗grad = −

 ∂
∂x1
∂

∂x2
∂

∂x3

 (128)

The adjoint operator I† is the divergence operator that acts on 3D vectors to produce a scalar

I† ≡ div =
(

∂
∂x1

∂
∂x2

∂
∂x3

)
(129)

which is the analog of the discrete divergence matrix of size N ×M of Eqs 44 and 45.
The Fokker-Planck Eq. 124 can be rewritten as the euclidean Schrödinger equation

−∂tpt(x⃗) = Hpt(x⃗) (130)

where the second-order differential non-hermitian Hamiltonian H ̸= H† is factorized in terms of the two first-order
differential operators I† and J

H = I†J =
(

∂
∂x1

∂
∂x2

∂
∂x3

)F1(x⃗)−D(x⃗) ∂
∂x1

F2(x⃗)−D(x⃗) ∂
∂x2

F3(x⃗)−D(x⃗) ∂
∂x3

 =

3∑
µ=1

∂

∂xµ

(
Fµ(x⃗)−D(x⃗)

∂

∂xµ

)
(131)
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C. Electromagnetic quantum interpretation of the non-hermitian Hamiltonian H

The electromagnetic quantum interpretation of the non-hermitian Hamiltonian H of Eq. 131 is based on the
rewriting

H = −
3∑

µ=1

(
∂

∂xµ
−Aµ(x⃗)

)
D(x⃗)

(
∂

∂xµ
−Aµ(x⃗)

)
+ V (x⃗)

=

3∑
µ=1

(
−i ∂

∂xµ
+ iAµ(x⃗)

)
D(x⃗)

(
−i ∂

∂xµ
+ iAµ(x⃗)

)
+ V (x⃗)

=
(
−i∇⃗+ iA⃗(x⃗)

)
D(x⃗)

(
−i∇⃗+ iA⃗(x⃗)

)
+ V (x⃗) (132)

that involves a purely imaginary vector potential [−iA⃗(x⃗)] of real amplitude

A⃗(x⃗) ≡ F⃗ (x⃗)

2D(x⃗)
(133)

which is the analog of the antisymmetric function A(., .) of Eq. 6 that appears in the off-diagonal terms H(x, x′) of
Eq. 8, while the scalar potential

V (x⃗) ≡
3∑

µ=1

(
D(x⃗)A2

µ(x⃗) +
∂[D(x⃗)Aµ(x⃗)]

∂xµ

)

=

3∑
µ=1

(
F 2
µ(x⃗)

4D(x⃗)
+

1

2

∂Fµ(x⃗)

∂xµ

)
(134)

is the analog of the on-site potential H(x, x) of Eq. 9.

The magnetic field B⃗(x⃗) associated to the vector potential A⃗(x⃗) of Eq. 133

B⃗(x⃗) ≡ curl A⃗(x⃗) = ∇⃗ × A⃗(x⃗) =

∂A3

∂x2
− ∂A2

∂x3
∂A1

∂x3
− ∂A3

∂x1
∂A2

∂x2
− ∂A1

∂x2

 (135)

is useful to rewrite the circulation of the vector potential A⃗(x⃗) around any closed curve γ

Γ[γ][A⃗(.)] ≡
∮
γ

d⃗l.A⃗(x⃗) =

∫
d2S⃗.B⃗(x⃗) (136)

as the flux of the magnetic field B⃗(x⃗) through the surface enclosed by the closed curve γ. This magnetic field B⃗(x⃗)
determines the equilibrium or non-equilibrium nature of the steady state as we now recall (see [46] for more detailed
discussions).

D. Reminder on the properties of the steady current j⃗∗(.)

1. Equilibrium steady state peq∗ (.) with vanishing steady currents j⃗eq∗ (x⃗) = 0⃗

At equilibrium, the steady current j⃗eq∗ (x⃗) associated to the steady density peq∗ (.) vanishes everywhere

0⃗ = j⃗eq∗ (x⃗) = F⃗ (x⃗)peq∗ (x)−D(x⃗)∇⃗peq∗ (x⃗) (137)

This is possible only if the vector potential A⃗ ≡ F⃗ (x⃗)
2D(x⃗) introduced in Eq. 133 can be written as the gradient

A⃗(x⃗) =
1

2
∇⃗ ln peq∗ (x⃗) (138)
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This condition is the continuous analog of Eq. 26 and means that the circulation of the vector potential A⃗(x⃗) of Eq.
136 vanishes along any closed curve γ as in Eq. 29

Γ[γ][A⃗(.)] ≡
∮
γ

d⃗l.A⃗(x⃗) = 0 (139)

i.e. that the magnetic field B⃗(x⃗) ≡ ∇⃗ × A⃗(x⃗) introduced in Eq. 135 vanishes everywhere

B⃗(x⃗) ≡ ∇⃗ × A⃗(x⃗) = 0⃗ (140)

2. Non-equilibrium steady state p∗(.) with nonvanishing steady currents j⃗∗(x⃗) = 0⃗

When the magnetic field B⃗(x⃗) ≡ ∇⃗ × A⃗(x⃗) associated to the vector potential A⃗(x⃗) ≡ F⃗ (x⃗)
2D(x⃗) of Eq. 133 does not

vanish

B⃗(x⃗) ≡ ∇⃗ × A⃗(x⃗) ̸= 0⃗ (141)

then the steady current

j⃗∗(x⃗) ≡ F⃗ (x⃗)p∗(x)−D(x⃗)∇⃗p∗(x⃗) = 2D(x⃗)p∗(x)

[
A⃗(x⃗)− 1

2
∇⃗ ln p∗(x⃗)

]
̸= 0⃗ (142)

cannot vanish, but should be divergenceless

div⃗j∗(x⃗) = 0 (143)

So the steady current j⃗∗(x⃗) can be rewritten as the curl of another divergenceless vector ω⃗∗(x⃗)

j⃗∗(x⃗) = ∇⃗ × ω⃗∗(x⃗)

div ω⃗∗(x⃗) ≡ ∇⃗.ω⃗∗(x⃗) = 0 (144)

which is the analog of the decomposition into cycles-currents of Eq. 31. The curl of the steady current

∇⃗ × j⃗∗(x⃗) = ∇⃗ ×
(
∇⃗ × ω⃗∗(x⃗)

)
= ∇⃗

(
∇⃗.ω⃗∗(x⃗)

)
−∆ω⃗∗(x⃗) = −∆ω⃗∗(x⃗) (145)

corresponds to the opposite Laplacian of the vector ω⃗∗(x⃗).

E. Spectral decomposition of the Hamiltonian H in the bi-orthogonal basis of right and left eigenvectors

In order to simplify the discussion and the notations, we will consider that the Fokker-Planck dynamics takes place
in a finite domain x⃗ ∈ V with reflecting boundary conditions, so that the spectral decomposition of the non-hermitian
Hamiltonian H ̸= H† of Eq. 131 does not involve a continuum of eigenvalues, but only an infinite series of discrete
eigenvalues En=0,1,2,.. (instead of the finite number N of eigenvalues of Eq. 10 for Markov jump processes in a space
of N configurations)

H =

+∞∑
n=0

En|rn⟩⟨ln| (146)

The corresponding right eigenvectors rn(x⃗) = ⟨x⃗|rn⟩, and the corresponding left eigenvectors ln(x⃗) = ⟨x⃗|ln⟩, that are
equivalently the right eigenvectors of the adjoint operator H† associated to the complex-conjugate eigenvalue E∗

n,
satisfy the eigenvalue equations

Enrn(x⃗) = Hrn(x⃗) =

3∑
µ=1

∂

∂xµ

(
Fµ(x⃗)rn(x⃗)−D(x⃗)

∂rn(x⃗)

∂xµ

)

E∗
nln(x⃗) = H†ln(x⃗) = −

3∑
µ=1

(
Fµ(x⃗) +

∂

∂xµ
D(x⃗)

)
∂ln(x⃗)

∂xµ
(147)
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and form a bi-orthogonal basis where the orthonormalization and closure relations of Eq. 12 become

δn,n′ = ⟨ln|rn′⟩ =
∫
V
d3x⃗⟨ln|x⃗⟩⟨x⃗|rn′⟩ =

∫
V
d3x⃗l∗n(x⃗)rn(x⃗

′)

δ(3)(x⃗− x⃗′) = ⟨x⃗|x⃗′⟩ =
+∞∑
n=0

⟨x⃗|rn⟩⟨ln|x⃗′⟩ =
+∞∑
n=0

rn(x⃗)l
∗
n(x⃗

′) (148)

As in Eq. 13, the vanishing eigenvalue E0 = 0 is associated to the positive left eigenvector unity and to the positive
right eigenvector given by the steady density p∗(.)

E0 = 0

l0(x⃗) = 1

r0(x⃗) = p∗(x⃗) (149)

while the other eigenvalues En=1,..,+∞ with strictly positive real parts Re(En) > 0 govern the relaxation towards the
steady density p∗(x) as in Eqs 15 and 16.
At the level of the eigenvalues Eq. 147, the factorization H = I†J of Eq. 131 corresponds for the right eigenvectors

rn(x⃗) to the splitting into the pair of two first-order differential equations

Enrn(x⃗) = I†j⃗n(x⃗) = ∇⃗.⃗jn(x⃗)

j⃗n(x⃗) = Jrn(x⃗) =
[
F⃗ (x⃗)−D(x⃗)∇⃗

]
rn(x⃗) (150)

that is the analog of Eqs 53 54, while the corresponding splitting for the left eigenvectors ln(x⃗)

ln(x⃗) = J†⃗in(x⃗) = F⃗ (x⃗).⃗in(x⃗) + ∇⃗.
(
D(x⃗).⃗in(x⃗)

)
E∗

n⃗in(x⃗) = Iln(x⃗) = −∇⃗ln(x⃗) (151)

is the analog of Eq 57.

F. Dynamics of the current j⃗t(x⃗) governed by the supersymmetric partner Ĥ = JI†

As in Eq. 48, the current j⃗t(x⃗) satisfies the closed dynamics

−∂tj⃗t(x⃗) = J

(
− ∂t|pt⟩

)
= JI†j⃗t(x⃗) ≡ Ĥj⃗t(x⃗) (152)

governed by the supersymmetric partner Ĥ = JI† of the Hamiltonian H = I†J of Eq. 131

Ĥ = JI† =

F1(x⃗)−D(x⃗) ∂
∂x1

F2(x⃗)−D(x⃗) ∂
∂x2

F3(x⃗)−D(x⃗) ∂
∂x3

( ∂
∂x1

∂
∂x2

∂
∂x3

)
=

[(
Fµ(x⃗)−D(x⃗)

∂

∂xµ

)
∂

∂xν

]
µ=1,2,3;ν=1,2,3

(153)

that corresponds to a 3× 3 matrix of differential operators acting on the 3 components of the current.
As discussed around between Eqs 51 and 67, the dynamics of the current j⃗t(x⃗) involves the same non-vanishing

eigenvalues En=1,..,+∞ as the hamiltonian H, where the right and left eigenvectors of the partner Ĥ are given by the

j⃗n(x⃗) of Eq. 150 and i⃗n(x⃗) of Eq. 151

Enj⃗n(x⃗) = JI†j⃗n(x⃗) = Ĥj⃗n(x⃗)

E∗
n⃗in(x⃗) = IJ†⃗in(x⃗) = Ĥ†⃗in(x⃗) (154)

For n = 0, the steady current j⃗n=0(x⃗) = j⃗∗(x⃗) is annihilated by the divergence operator I† = div and thus by the

partner Ĥ

I†j⃗∗(x⃗) = 0 = Ĥj⃗∗(x⃗) (155)

while i⃗0(x⃗) satisfies Eq. 151 with l0(x⃗) = 1 annihilated by I = −grad

1 = l0(x⃗) = J†⃗i0(x⃗) = F⃗ (x⃗).⃗i0(x⃗) + ∇⃗.
(
D(x⃗).⃗i0(x⃗)

)
0 = Il0(x⃗) = IJ†⃗i0(x⃗) = Ĥ†⃗i0(x⃗) (156)
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G. Singular Value Decompositions for the differential operator I = − ⃗grad and its adjoint I† ≡ div

The Singular Value Decomposition for the operator I = − ⃗grad and its adjoint I† ≡ div involves an infinite series
of strictly positive singular values Iα > 0 (instead of the (N − 1) values in Eq. 68 concerning Markov jump processes
in a space of N configurations)

I ≡ − ⃗grad =

+∞∑
α=1

Iα|IRα ⟩⟩⟨ILα |

I† ≡ div =

+∞∑
α=1

Iα|ILα ⟩⟨⟨IRα | (157)

As in Eq. 69, the vanishing singular value

I(α=0) = 0 (158)

is associated to the uniform normalized eigenvector ⟨x|IL(α=0)⟩ over the bounded volume x⃗ ∈ V where the Fokker-Planck

dynamics takes place. The operator I†I corresponds to the opposite of the Laplacian

I†I = div(−grad) = −
(

∂
∂x1

∂
∂x2

∂
∂x3

) ∂
∂x1
∂

∂x2
∂

∂x3

 = −
3∑

µ=1

∂2

∂x2
µ

= −∆ (159)

while its evaluation from the SVD decompositions of Eq. 157

−∆ = I†I =

+∞∑
α=1

I2α|ILα ⟩⟨ILα | (160)

gives its spectral decomposition in terms of its positive eigenvalues I2α with the corresponding orthonormalized basis
of eigenvectors |ILα ⟩. So the left singular kets |ILα=0,1,..,+∞⟩ form an orthonormal basis of the space of scalar functions

δα,α′ = ⟨ILα |ILα′⟩ =
∫
V
d3x⃗⟨ILα |x⃗⟩⟨x⃗|ILα′⟩

δ(3)(x⃗− x⃗′) = ⟨x⃗|x⃗′⟩ =
+∞∑
α=0

⟨x⃗|ILα ⟩⟨ILα |x⃗′⟩ (161)

Whenever the basis of eigenvectors |ILα=0,..,+∞⟩ of the opposite Laplacian [−∆] of Eq. 160 over the bounded

volume x⃗ ∈ V is known, the corresponding right singular vectors |IRα=1,..,+∞⟩ can be obtained via the application of

the operator I = − ⃗grad

I|ILα ⟩ = − ⃗grad|ILα ⟩ = Iα|IRα ⟩⟩ (162)

while the application of the adjoint operator I† = div to these right singular vectors |IRα=1,..⟩

I†|IRα ⟩⟩ = div|IRα=1,..⟩ = Iα|ILα ⟩ (163)

reproduce the left singular vectors |ILα ⟩.
The supersymmetric partner

II† = −grad div = −

 ∂
∂x1
∂

∂x2
∂

∂x3

( ∂
∂x1

∂
∂x2

∂
∂x3

)
= −

[
∂2

∂xµ∂xν

]
µ=1,2,3;ν=1,2,3

(164)

corresponds to the opposite of the 3× 3 symmetric matrix of the double derivatives ∂2

∂xµ∂xν
.
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The SVD decomposition of Eq. 68 yields that its spectral decomposition

II† =

+∞∑
α=1

I2α|IRα ⟩⟩⟨⟨IRα | (165)

involves the same strictly positive eigenvalues I2α=1,..,+∞ > 0 as the opposite-Laplacian of Eq. 160, while the corre-

sponding eigenvectors |IRα=1,..,⟩⟩ are related to the eigenvectors |ILα=1,..⟩ of the opposite-Laplacian via Eq. 77. However

the eigenvectors |IRα=1,..,⟩⟩ should be supplemented by an infinite series of other kets |IRα=0,−1,−2..,−∞⟩⟩ (instead of the
finite number C of Eq. 73 of the main text concerning Markov jump processes in a space of N configurations with C
independent cycles) in order to obtain an orthonormal basis of the space of 3D vector fields

δα,α′ = ⟨⟨IRα |IRα′⟩⟩

1{3DVectorFields} =

+∞∑
α=−∞

|IRα ⟩⟩⟨⟨IRα | =
+∞∑
α=1

|IRα ⟩⟩⟨⟨IRα |+
0∑

α=−∞
|IRα ⟩⟩⟨⟨IRα | (166)

As discussed in detail in subsection IVD concerning the finite configuration space, the right singular vectors |IRα′⟩⟩ are
directly related to the Helmholtz decomposition for an arbitrary 3D vector fields v⃗(x⃗)

v⃗(x⃗) =

+∞∑
α=−∞

vα|IRα ⟩⟩ ≡ v⃗[I.>0](x⃗) + v⃗[I0=0](x⃗)

v⃗[I.>0](x⃗) ≡
+∞∑
α=1

vα|IRα ⟩⟩

v⃗[I0=0](x⃗) ≡
0∑

α=−∞
vα|IRα ⟩⟩ (167)

into two orthogonal components with the following properties :
(i) the component v⃗[I0=0](x⃗) associated to the vanishing singular value I0 = 0 is annihilated by the divergence

operator I† = div

0 = I†v⃗[I0=0](x⃗) = divv⃗[I0=0](x⃗) (168)

As already discussed on the special case of the divergencesless steady current j⃗∗(x⃗) around Eq. 143, this divergencesless
component v⃗[I0=0](x⃗) can be rewritten as the curl of another divergenceless vector ω⃗(x⃗)

v⃗[I0=0](x⃗) = ∇⃗ × ω⃗(x⃗)

div ω⃗(x⃗) = 0 (169)

(ii) the component v⃗[I.>0](x⃗) associated to the strictly positive singular values Iα > 0 can be rewritten using Eq.
162

v⃗[I.>0](x⃗) ≡
+∞∑
α=1

vα|IRα ⟩⟩ = − ⃗grad

(
+∞∑
α=1

vα
Iα
|ILα ⟩

)
≡ − ⃗grad g(x⃗) (170)

as the opposite gradient of the scalar function

g(x⃗) ≡
+∞∑
α=1

vα
Iα
|ILα ⟩ (171)

(iii) The application of the divergence I† = div to the vector field v⃗(x⃗) of Eq. 167 only involves the application to

the gradient component v⃗[I.>0](x⃗) = − ⃗grad g(x⃗) of Eq. 170

divv⃗(x⃗) = divv⃗[I.>0](x⃗) + 0 = −∆g(x⃗) (172)

and reduces to the opposite Laplacian of the scalar function g(x⃗). The application of the curl to the vector field v⃗(x⃗)

of Eq. 167 only involves the application to the component v⃗[I0=0](x⃗) = ∇⃗ × ω⃗(x⃗) of Eq. 169

∇⃗ × v⃗(x⃗) = 0 + ∇⃗ × v⃗[I0=0](x⃗)∇⃗ ×
(
∇⃗ × ω⃗(x⃗)

)
= ∇⃗

(
∇⃗.ω⃗(x⃗)

)
−∆ω⃗(x⃗) = −∆ω⃗(x⃗) (173)

and reduces to the opposite Laplacian of the the field ω⃗(x⃗).
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H. Singular Value Decomposition of the current differential operator J and its adjoint J†

Let us replace the force F⃗ (x⃗) = 2D(x⃗)A⃗(x⃗) in terms of the vector potential A⃗(x⃗) introduced in Eq. 133 and write
the Singular Value Decomposition for the current differential operator J and its adjoint J† that involves an infinite
series of strictly positive singular values λβ=1,2,..,+∞ > 0 (instead of the N values in Eq. 98 of the main text concerning
non-equilibrium Markov jump processes in a space of N configurations)

J = D(x⃗)

(
2A⃗(x⃗)− ∇⃗

)
=

+∞∑
β=1

λβ |λR
β ⟩⟩⟨λL

β |

J† ≡
(
2A⃗(x⃗) + ∇⃗

)
D(x⃗). =

+∞∑
β=1

λβ |λL
β ⟩⟨⟨λR

β | (174)

For a non-equilibrium steady state with a non-vanishing steady current j⃗∗(x⃗) ̸= 0, the left singular vectors
λL
β=1,2,..,+∞ form an orthonormal basis of the space of scalar functions on the finite domain V

δβ,β′ = ⟨λL
β |λL

β′⟩ =
∫
V
d3x⃗⟨λL

β |x⃗⟩⟨x⃗|λL
β′⟩

δ(3)(x⃗− x⃗′) = ⟨x⃗|x⃗′⟩ =
+∞∑
β=1

⟨x⃗|λL
β ⟩⟨λL

β |x⃗′⟩ (175)

that can be obtained from the spectral decomposition of the supersymmetric operator

J†J =

(
2A⃗(x⃗) + ∇⃗

)
D2(x⃗)

(
2A⃗(x⃗)− ∇⃗

)
=

+∞∑
β=1

λ2
β |λL

β ⟩⟨λL
β | (176)

The supersymmetric partner

JJ† =

[
D(x⃗)

(
2Aµ(x⃗)−

∂

∂xµ

)(
2Aν(x⃗) +

∂

∂xµ

)
D(x⃗)

]
µ=1,2,3;ν=1,2,3

=

+∞∑
β=1

λ2
β |λR

β ⟩⟩⟨⟨⟨λR
β | (177)

involves the same strictly positive eigenvalues λ2
β=1,2,...,+∞ as Eq. 176, where the corresponding eigenvectors |λR

β ⟩⟩
are related to the eigenvectors |λL

β ⟩ via

J|λL
β ⟩ = λβ |λR

β ⟩⟩ (178)

These eigenvectors |λR
β=1,2,..,+∞⟩⟩ should be supplemented an infinite series of other kets |λR

β=0,−1,..,−∞⟩⟩ (instead of

the finite number (C−1) of Eq. 99 of the main text concerning Markov jump processes in a space of N configurations
with C independent cycles) in order to obtain an orthonormal basis of the space of 3D vector fields

δβ,β′ = ⟨⟨λR
β |λR

β′⟩⟩

1{3DVectorFields} =

+∞∑
β=−∞

|λR
β ⟩⟩⟨⟨λR

β | =
+∞∑
β=1

|λR
β ⟩⟩⟨⟨λR

β |+
0∑

β=−∞

|λR
β ⟩⟩⟨⟨λR

β | (179)

As discussed in subsection VB for Markov jump processes, it is interesting to define the analog of the Helmholtz
decomposition when the operator I = −grad is replaced by the current operator J using its SVD decomposition of
Eq. 174 as follows.

An arbitrary 3D vector field u⃗(x⃗) can be decomposed into two orthogonal components

u⃗(x⃗) =

+∞∑
β=−∞

uβ |λR
β ⟩⟩ ≡ u⃗[λ.>0](x⃗) + u⃗[λ0=0](x⃗)

u⃗[λ.>0](x⃗) ≡
+∞∑
β=1

uβ |λR
β ⟩⟩

u⃗[λ0=0](x⃗) ≡
0∑

β=−∞

uβ |λR
β ⟩⟩ (180)
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with the following properties :
(i) the component u⃗[λ0=0](x⃗) of Eq. 180 associated to the vanishing singular value λ0 = 0 is annihilated by the

adjoint operator J† of Eq. 174

0 = J†u⃗[λ0=0](x⃗) =

(
2A⃗(x⃗) + ∇⃗

)
.

(
D(x⃗)u⃗[λ0=0](x⃗)

)
(181)

(ii) the component u⃗[λ.>0](x⃗) associated to the strictly positive singular values λβ=1,2,..+∞ > 0 can be rewritten
using Eq. 178

u⃗[λ.>0](x⃗) =

+∞∑
β=1

uβ |λR
β ⟩⟩ = J

+∞∑
β=1

uβ

λβ
|λL

β ⟩

 ≡ J k(x⃗) (182)

as the application of the current operator J to the scalar function

k(x⃗) ≡
+∞∑
β=1

uβ

λβ
|λL

β ⟩ (183)

The application of the adjoint operator J† to the vector field u⃗(x⃗) of Eq. 180 only involves the application to the
component u⃗[λ.>0](x⃗) = Jk(x⃗) of Eq. 182 and reduces to the application of the supersymmetric operator J†J of Eq.
176 to the scalar function k(x⃗) of Eq. 183

J†u⃗(x⃗) = J†u⃗[λ.>0](x⃗) + 0 = J†Jk(x⃗) =

+∞∑
β=1

uβλβ |λL
β ⟩ (184)

As discussed in subsection VB3 concerning Markov jump processes, the component |u[λ0=0]⟩⟩ corresponds to the

unphysical subspace orthogonal to the physical space of the currents j⃗t(x⃗) = Jpt(x⃗) that are obtained from the
application of the current operator J to a ket |pt⟩. The projector PPhysicalSpaceCurrents onto the physical subspace
for currents can be written either with the bi-orthogonal basis of the ⟨⟨in| and the |jn⟩⟩ for n = 0, 1, ..,+∞ or with
the orthonormalized basis |λR

β=1,..,+∞⟩⟩ of the right singular vectors of the current matrix J associated to the strictly

positive singular values λR
β=1,..,+∞ > 0

PPhysicalSpaceCurrents =

+∞∑
n=0

|jn⟩⟩⟨⟨in| =
+∞∑
β=1

|λR
β ⟩⟩⟨⟨λR

β | (185)

with the following consequences :
(a) As in Eqs 116 117 118, the decomposition of the steady current on the basis of right singular vectors |λR

β ⟩⟩

|j∗⟩⟩ = J|p∗⟩ ≡
+∞∑
β=1

λβ |λR
β ⟩⟩⟨λL

β |p∗⟩ (186)

yields the vanishing of the components for β = 0,−1, ..,−∞

⟨⟨λR
β |j∗⟩⟩ = 0 for β = 0,−1, ..,−∞ (187)

while the steady state |p∗⟩ can be obtained from the inversion of Eq. 186

|p∗⟩ = Jpseudo[−1]|j∗⟩⟩ =
N∑

β=1

1

λβ
|λL

β ⟩⟨⟨λR
β |j∗⟩⟩ (188)

with the pseudo-inverse operator

Jpseudo[−1] ≡
+∞∑
β=1

1

λβ
|λL

β ⟩⟨⟨λR
β | (189)



27

that can also be used for the excited right eigenvectors |rn=1,..,+∞⟩ and their associated currents |jn⟩⟩ = J|pn⟩ as in
Eq. 120

|rn⟩ = Jpseudo[−1]|jn⟩⟩ =
+∞∑
β=1

1

λβ
|λL

β ⟩⟨⟨λR
β |jn⟩⟩ (190)

(b) As in Eqs 121 122, the pseudo-inverse operator Jpseudo[−1] of Eq. 189 is also useful to invert

⟨ln| = ⟨⟨in|J =

+∞∑
β=1

λβ⟨⟨in|λR
β ⟩⟩⟨λL

β | (191)

into

⟨⟨in| =

+∞∑
β=1

⟨⟨in||λR
β ⟩⟩⟨⟨λR

β | =
+∞∑
β=1

⟨ln|λL
β ⟩

λβ
⟨⟨λR

β | = ⟨ln|Jpseudo[−1] (192)

For n = 0 with the left eigenvector l0(x⃗) = 1, Eq. 192 yields that the bra ⟨⟨i0| is given by

⟨⟨i0| = ⟨l0|Jpseudo[−1] =
∑
x⃗

⟨l0|x⃗⟩⟨x⃗|Jpseudo[−1]

=
∑
x⃗

⟨x⃗|Jpseudo[−1] =

+∞∑
β=1

⟨x⃗|λL
β ⟩

λβ
⟨⟨λR

β | (193)

I. Discussion

In summary, the spectral decompositions of the non-hermitian Hamiltonians H = I†J and Ĥ = JI† as well as
the properties of the Singular Value Decompositions of I and J that have been discussed in detail in the previous
sections concerning non-equilibrium Markov jump processes in a space of N configurations can be adapted to the case
of non-equilibrium diffusion processes in dimension d = 3 despite the technical differences. The comparison between
these two types of continuous-time Markov processes is actually very useful to better understand each of them, since
each particular idea is usually clearer or more familiar either in discrete space or in continuous space.

VII. CONCLUSIONS

In order to clarify the spectral properties of continuous-time non-equilibrium Markov processes, we have considered
the continuity equation for the probability density as an Euclidean Schrödinger equation governed by the non-hermitian
quantum Hamiltonian H = divJ that is naturally factorized into the product of the divergence operator div and the
current operator J.
We have first discussed in detail the case of non-equilibrium Markov jump processes in a space of N configurations

with M links between them and C = M − (N − 1) ≥ 1 independent cycles. The factorization of the N × N non-
hermitian Hamiltonian H = I†J then involves the incidence matrix I and the current matrix J that are both of
size M × N , so that the supersymmetric partner Ĥ = JI† governing the dynamics of the currents living on the M
links is a priori of size M ×M . To better understand the relations between the spectral decompositions of these
two Hamiltonians H = I†J and Ĥ = JI† with respect to their bi-orthogonal basis of right and left eigenvectors that
characterize the relaxation dynamics towards the steady state and the steady currents, we have analyzed the properties
of the Singular Value Decompositions of the two rectangular matrices I and J of size M ×N and the interpretations
in terms of discrete Helmholtz decompositions. This general framework is illustrated by a simple translation-invariant
example in Appendix A.

Finally in the last section VI of the main text, we have described how these spectral properties concerning non-
equilibrium Markov jump processes in a space of N configurations can be translated for the case of non-equilibrium
diffusion processes in dimension d = 3, where the two matrices I and J of size M ×N become first-order differential
operators acting on scalar functions to produce 3D vector fields, while the non-hermitian Hamiltonians H = I†J and
Ĥ = JI† become second-order differential operators acting on scalar functions and 3D vectors respectively.
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Appendix A: Application to a translation-invariant ring with all-to-all transition rates depending on distance

In this Appendix, the general framework for arbitrary Markov jump processes described in the main text is illus-
trated by the example of a translation-invariant ring of N sites where all-to-all transition rates depend only on the
distance. As is well-known in spectral problems, the translation-invariance is a very strong symmetry that implies
that eigenvectors reduce to Fourier modes that can be written explicitly for arbitrary sizes. This huge simplification
will thus produce many additional specific properties with respect to the general theory discussed in the main text.

1. Model with N = 2L+ 1 sites, M = N(N−1)
2

oriented links and C = (N−1)(N−2)
2

independent cycles

The configuration space is a ring containing an odd number

N = 2L+ 1 of sites labelled by the positions x = −L,−(L− 1), ..,−1, 0, 1, .., L− 1, L (A1)

with periodic boundary conditions (L + 1) ≡ −L. The model is fully-connected, i.e. transitions rates w(., .) exist

between any pair of sites, so that there are M = N(N−1)
2 = (2L + 1)L oriented links whose properties are described

in the next subsection.

a. Properties of the M = N(N−1)
2

= (2L+ 1)L oriented links

The M = N(N−1)
2 = (2L+ 1)L = 2L2 + L oriented links between x ∈ {−L,+L} and x′ = (x+ y) with y = 1, .., L

are characterized by the two transition rates of Eq. 4 where the two functions D(x+ y, x) = Dy and A(x+ y, x) = Ay

depend only on the distance y

w(x+ y, x) = Dye
Ay

w(x, x+ y) = Dye
−Ay (A2)

so that the model is translation-invariant along the ring.
The current matrix J of size M × N has for matrix elements for x ∈ {−L,+L} and y = 1, .., L with the rates of

Eq. A2

⟨⟨x+y
x |J|z⟩ = w(x+ y, x)δz,x − w(x, x+ y)δx+y,z = Dy

(
eAyδz,x − e−Ayδx+y,z

)
(A3)

while the incidence matrix I of Eq. 41 reduces to

⟨⟨x+y
x |J|z⟩ = δz,x − δx+y,z (A4)

b. Properties of the C = M − (N − 1) = (N−1)(N−2)
2

= L(2L− 1) independent cycles

The C = M − (N − 1) = L(2L− 1) = 2L2 − L independent cycles can be chosen as follows :
• the (2L + 1)(L − 1) = 2L2 − L − 1 = C − 1 cycles containing the oriented link (x → x + y) with the (2L + 1)

values x ∈ {−L,+L} and the (L − 1) values y ∈ {2, .., L}, as well as the corresponding y backward-links between
nearest-neighbors along the ring

γ(x+ y, x) ≡ {x→ x+ y → x+ y − 1→ ...→ x+ 1→ x} of length l[γ(x+y,x)] = (y + 1) ∈ {3, .., L+ 1} (A5)

are characterized by the following circulations of the antisymmetric function A(., .)

Γ[γ(x+y,x)][A(., .)] = Ay − yA1 for x ∈ {−L,+L} and y ∈ {2, .., L} (A6)

• the remaining independent cycle can be chosen as the cycle containing the N = (2L+ 1) nearest-neighbors links
along the ring that will be denoted by

γ0 ≡ {0→ 1→ ...→ +L→ −L→ ...→ −1→ 0} of length l[γ0] = N = 2L+ 1 (A7)

with the circulation of the antisymmetric function A(., .)

Γ[γ0][A(., .)] = NA1 = (2L+ 1)A1 (A8)

As recalled around Eq. 29, the non-equilibrium nature of the steady state comes from the non-vanishing of some
of the circulations of Eqs A6 and A8.
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2. Steady currents j∗(x+ y, x) on the M oriented links and the decomposition onto the C independent cycles

Since the (2L+ 1) sites are equivalent as a consequence of the translation-invariance of the model, the normalized
steady state is simply uniform

p∗(x) =
1

2L+ 1
(A9)

The corresponding steady currents on theM oriented links can be computed from the rates of Eq. A2 for x ∈ {−L,+L}
and x′ = (x+ y) with y = 1, .., L

j∗(x+ y, x) = −j∗(x, x+ y) = w(x+ y, x)p∗(x)− w(x, x+ y)p∗(x+ y)

=
Dy

2L+ 1

[
eAy − e−Ay

]
=

Dy2 sinh(Ay)

2L+ 1
(A10)

that depend only on y as a consequence of translation-invariance, and that are non-vanishing when Ay ̸= 0.
On the other hand, these steady currents on the M oriented links can be rewritten via Eq. 31 in terms of the C

steady cycle-currents j
Cycle[γ]
∗ flowing around the C independent cycles γ of Eqs A5 A7 for x ∈ {−L,+L}

j∗(x+ y, x) = j
Cycle[γ(x+y,x)]
∗ for y ∈ {2, .., L}

j∗(x+ 1, x) = j
Cycle[γ0]
∗ −

L∑
y=2

x∑
z=x+1−y

j
Cycle[γ(z+y,z)]
∗ (A11)

The identification with Eq. A10 yields that the cycle-currents j
Cycle[γ(x+y,x)]
∗ for y ∈ {2, .., L} reduce to the link-

currents j∗(x+ y, x)

j
Cycle[γ(x+y,x)]
∗ = j∗(x+ y, x) =

Dy2 sinh(Ay)

2L+ 1
for y ∈ {2, .., L} (A12)

while the remaining cycle current along the ring reads

j
Cycle[γ0]
∗ = j∗(x+ 1, x) +

L∑
y=2

x∑
z=x+1−y

j
Cycle[γ(z+y,z)]
∗ =

D12 sinh(A1)

2L+ 1
+

L∑
y=2

y
Dy2 sinh(Ay)

2L+ 1
(A13)

3. Spectral properties governing the dynamics of the probabilities pt(x) and of the currents jt(x
′, x)

a. Reminder on the diagonalization of N ×N real-space-circulant-matrices in the Fourier basis

A real-space-circulant matrix C whose matrix elements only depend only on the difference (x′ − x)

⟨x′|C|x⟩ = c(x′ − x) (A14)

becomes diagonal

C =

+L∑
q=−L

ĉq|q⟩⟨q| (A15)

in the orthonormalized Fourier basis |q⟩ involving the N = 2L+ 1 values q = −L, ..,+L with components

⟨x|q⟩ ≡ 1√
2L+ 1

ei2π
qx

2L+1 (A16)

with the eigenvalues

ĉq =

L∑
y=−L

c(y)e−i2π qy
2L+1 (A17)

In the three following subsections, this general result will be applied to the three following N ×N real-space-circulant
matrices that appear in the present translation-invariant model : the non-hermitian Hamiltonian H = I†J, and the
two supersymmetric matrices J†J and I†I.
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b. Spectral decomposition of the opposite Markov generator (−w) = H in the Fourier basis

With the rates of Eq. A2, the off-diagonal elements of Eq. 8 read for y ∈ {1, .., L}

H(x+ y, x) = −Dye
Ay ≡ h(y)

H(x, x+ y) = −Dye
−Ay ≡ h(−y) (A18)

while the diagonal elements of Eq. 9 become

H(x, x) =

L∑
y=1

[
Dye

−Ay +Dye
Ay
]
≡ h(0) (A19)

This non-hermitian real-space-circulant matrix H is thus diagonal in the orthonormalized Fourier basis |q⟩ of Eq.
A16, which is an important simplification with respect to the bi-orthogonal basis of left and right eigenvectors for the
general case of Eq. 10

H =
+L∑

q=−L

Eq|q⟩⟨q| (A20)

The eigenvalues Eq are given by Eq. A17 in terms of the function h(y) introduced in Eqs A18 A19

Eq =

L∑
y=−L

h(y)e−i2π qy
2L+1 = h(0) +

L∑
y=1

[
h(y)e−i2π qy

2L+1 + h(−y)ei2π
qy

2L+1

]

=

L∑
y=1

Dy

[
eAy

(
1− e−i2π qy

2L+1

)
+ e−Ay

(
1− ei2π

qy
2L+1

)]
(A21)

Besides the expected vanishing eigenvalue E(q=0) = 0 associated to zero-momentum q = 0, the other (2L) eigenvalues
Eq ̸=0 for q = −L, ..,−1,+1, ..,= L display the following real parts and imaginary parts (the real parts being strictly
positive in agreement with the general property of Eq. 14)

Re(Eq) =

L∑
y=1

Dy

[
eAy + e−Ay

] [
1− cos

(
2π

qy

2L+ 1

)]
= Re(E−q) > 0 for q = 1, 2, .., L

Im(Eq) =

L∑
y=1

Dy

[
eAy − e−Ay

]
sin

(
2π

qy

2L+ 1

)
= −Im(E−q) for q = 1, 2, .., L (A22)

and thus appear in complex-conjugate pairs (Eq;E−q) for q = 1, 2, .., L

E−q = Re(E−q) + iIm(E−q) = Re(Eq)− iIm(Eq) = E∗
q (A23)

These (2L) non-vanishing eigenvalues Eq ̸=0 govern the relaxation towards the normalized uniform steady state
p∗(x) =

1
2L+1 of Eq. A9 via the propagator of Eq. 15

pt(x|x0) ≡ ⟨x|e−tH|x0⟩ =

L∑
q=−L

e−tEq ⟨x|q⟩⟨q|x0⟩ =
1

2L+ 1

L∑
q=−L

e−tEqei2π
q(x−x0)
2L+1

=
1

2L+ 1

[
1 +

L∑
q=1

(
e−tEqei2π

q(x−x0)
2L+1 + e−tE−qe−i2π

q(x−x0)
2L+1

)]
(A24)

that is real, as it should, as a consequence of the complex-conjugate property E−q = E∗
q of Eq. A23.
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c. Singular Value Decomposition of the Current matrix J of size M ×N

The N ×N supersymmetric matrix J†J with the matrix elements of Eq. 102

⟨x|J†J|x′⟩ =


L∑

y=1

(
w2(x+ y, x) + w2(x− y, x)

)
=

L∑
y=1

D2
y

(
e2Ay + e−2Ay

)
if x = x′

−D2
|x′−x| if x ̸= x′

(A25)

is a symmetric real-space-circulant-matrix that becomes diagonal in the orthonormalized Fourier basis |q⟩ of Eq. A16

J†J =

+L∑
q=−L

λ2
q|q⟩⟨q| (A26)

where the (2L+ 1) eigenvalues given by Eq. A17 in terms of the matrix elements of Eq. A25

λ2
q =

L∑
y=1

D2
y

(
e2Ay + e−2Ay

)
−

L∑
y=1

Dy

(
e−i2π qy

2L+1 + ei2π
qy

2L+1

)

=

L∑
y=1

D2
y

[
e2Ay + e−2Ay − 2 cos

(
2π

qy

2L+ 1

)]
(A27)

are strictly positive for any non-equilibrium case where the Ay=1,2,..,L do not all vanish.
So the left singular vectors |λL

q ⟩ that appear in the spectral decomposition of J†J in Eq. 101 reduce to the Fourier
basis of Eq. A16

|λL
q ⟩ = |q⟩ (A28)

and the Singular Value Decomposition of the current matrix J of Eq. 98 reads

J =

+L∑
q=−L

λq|λR
q ⟩⟩⟨q|

J† =

+L∑
q=−L

λq|q⟩⟨⟨λR
q | (A29)

where the corresponding right singular vectors |λR
q ⟩⟩ can be obtained via Eq. 103 using Eq. A3

⟨⟨x+y
x |λR

q ⟩⟩ =
1

λq
⟨⟨x+y

x |J|q⟩ =
1

λq

+L∑
z=−L

⟨⟨x+y
x J|z⟩⟨z|q⟩ = 1

λq

√
2L+ 1

+L∑
z=−L

Dy

(
eAyδz,x − e−Ayδx+y,z

)
ei2π

qz
2L+1

=
1

λq

√
2L+ 1

Dye
i2π qx

2L+1

(
eAy − e−Ayei2π

qy
2L+1

)
(A30)

and satisfy the orthonormalization of Eq. 99

⟨⟨λR
q |λR

q′⟩⟩ =

L∑
x=−L

L∑
y=1

⟨⟨λR
q |x+y

x ⟩⟩⟨⟨x+y
x |λR

q′⟩⟩

=
1

λqλq′

[
1

(2L+ 1)

L∑
x=−L

ei2π
(q′−q)x
2L+1

]
L∑

y=1

D2
y

(
eAy − e−Aye−i2π qy

2L+1

)(
eAy − e−Ayei2π

q′y
2L+1

)

=
δq,q′

λ2
q

L∑
y=1

D2
y

[
e2Ay + e−2Ay − ei2π

qy
2L+1 − e−i2π qy

2L+1

]
= δq,q′ (A31)

where the last simplification comes from the values λ2
q of Eq. A27.
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d. Singular Value Decomposition of the Incidence matrix I of size M ×N

Since the incidence matrix I can be obtained from the current matrix J when Dy → 1 and Ay → 0, one can adapt
the results of the previous subsection concerning J as follows.
The supersymmetric matrix I†I corresponding to the opposite Laplacian with the matrix elements of Eq. 75

⟨x|I†I|x′⟩ =

{
2L if x = x′

−1 if x ̸= x′ (A32)

leads to the spectral decomposition in the Fourier basis

I†I =

+L∑
q=−L

I2q |q⟩⟨q| (A33)

where the eigenvalues corresponds to Eq. A27 when Dy → 1 and Ay → 0

I2q =

L∑
y=1

2

[
1− cos

(
2π

qy

2L+ 1

)]
(A34)

with the vanishing eigenvalue Iq=0 = 0 associated to zero-momentum q = 0 in agreement with the general property
of Eq. 69.

So the left singular vectors |ILq ⟩ of the incidence matrix reduce to the Fourier basis of Eq. A16

|ILq ⟩ = |q⟩ (A35)

and the Singular Value Decomposition of the incidence matrix I of Eq. 68 that only involves the (N−1) = 2L positive
singular values Iq > 0 associated to q ̸= 0 reads

I =
∑

q∈{−L,..,+L}and q ̸=0

Iq|IRq ⟩⟩⟨q|

I† =
∑

q∈{−L,..,+L}and q ̸=0

Iq|q⟩⟨⟨IRq | (A36)

where the corresponding right singular vectors |IRq ̸=0⟩ can be obtained via Eq. 77 using Eq. A4

⟨⟨x+y
x |IRq ⟩⟩ =

1

Iq
⟨⟨x+y

x |I|q⟩ =
1

Iq

+L∑
z=−L

⟨⟨x+y
x I|z⟩⟨z|q⟩ = 1

Iq
√
2L+ 1

ei2π
qx

2L+1

(
1− ei2π

qy
2L+1

)
(A37)

The orthonormalization of Eq. 73 can be checked as in Eq. A31 when Dy → 1 and Ay → 0

⟨⟨IRq |IRq′ ⟩⟩ = δq,q′ (A38)

It is also useful to compute the scalar products with the right singular vectors |λR
q ⟩⟩ of Eq. A30

⟨⟨IRq |λR
q′⟩⟩ =

L∑
x=−L

L∑
y=1

⟨⟨IRq |x+y
x ⟩⟩⟨⟨x+y

x |λR
q′⟩⟩

=
1

Iqλq′

[
1

(2L+ 1)

L∑
x=−L

ei2π
(q′−q)x
2L+1

]
L∑

y=1

Dy

(
1− e−i2π qy

2L+1

)(
eAy − e−Ayei2π

q′y
2L+1

)

=
δq,q′

Iqλq

L∑
y=1

Dy

[
eAy

(
1− e−i2π qy

2L+1

)
+ e−Ay

(
1− ei2π

qy
2L+1

)]
=

Eq

Iqλq
δq,q′ (A39)
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where the last simplification comes from the eigenvalues Eq of Eq. A21. These scalar products appear when one plugs
the SVD of I† from Eq. A36 and the SVD of J from Eq. A29 into the Hamiltonian H

H = I†J =

 ∑
q∈{−L,..,+L}and q ̸=0

Iq|q⟩⟨⟨IRq |

 +L∑
q′=−L

λq′ |λR
q′⟩⟩⟨q′|


=

∑
q∈{−L,..,+L}and q ̸=0

Eq|q⟩⟨q| (A40)

and one recovers the spectral decomposition of Eq. A20 as it should for consistency.

e. Spectral decomposition of the supersymmetric partner Ĥ = JI† governing the dynamics of the currents

As explained in detail the main text, the time-dependent currents jt(x + y, x) defined on the M = N − 1 + C
oriented links live in the smaller subspace of dimension N = 2L+ 1 associated to the projector of Eq.110 that reads
for the present model

PPhysicalSpaceCurrents =
+L∑

q=−L

|jq⟩⟩⟨⟨iq| =
L∑

q=−L

|λR
q ⟩⟩⟨⟨λR

q | (A41)

where the second expression involve the right singular vectors |λR
q ⟩ appearing in the SVD of the current matrix J that

have been written in Eq. A30, while the first expression is related to the spectral decomposition of the supersymmetric
partner ĤPhys governing the dynamics of the physical currents in Eq. 67

e−tĤPhys

=

L∑
q=−L

e−tEq |jq⟩⟩⟨⟨iq| (A42)

The general properties of |jq⟩⟩ and ⟨⟨iq| have been discussed in detail between Eqs 51 and 67. In the present translation-
invariant model governed by the Fourier modes |q⟩, the ket |jq⟩⟩ ≡ J|q⟩ given by Eq. 53 is directly related to the right
singular ket |λR

q ⟩⟩ of Eq. A30

|jq⟩⟩ ≡ J|q⟩ = λq|λR
q ⟩⟩ (A43)

with the components

⟨⟨x+y
x |jq⟩⟩ =

1√
2L+ 1

Dye
i2π qx

2L+1

(
eAy − e−Ayei2π

qy
2L+1

)
(A44)

while ⟨⟨iq| is given by Eq. 122 that involves the pseudo-inverse Jpseudo[−1]

⟨⟨iq| = ⟨q|Jpseudo[−1] = ⟨q|

 +L∑
q′=−L

|q′⟩⟨⟨λR
q′ |

λq′

 =
⟨⟨λR

q |
λq

(A45)

and is thus also directly related to the right singular vector ⟨⟨λR
q |. Eqs A43 and A45 yields the simple relation

|jq⟩⟩⟨⟨iq| = |λR
q ⟩⟩⟨⟨λR

q | (A46)

so that the two decompositions of the projector of Eq. A41 coincide term by term in the present translation-invariant
model governed by Fourier modes. As a consequence, the spectral decomposition of Eq. A42 for the non-hermitian
Hamiltonian ĤPhys can be also rewritten in terms of the orthonormalized basis of the right singular vectors |λR

q ⟩ of
the current matrix J

e−tĤPhys

=

L∑
q=−L

e−tEq |λR
q ⟩⟩⟨⟨λR

q | (A47)
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4. Discussion

In conclusion, the translation-invariance of the model yields that the Fourier basis |q⟩ of the configuration space
plays an essential role in the spectral properties of the various matrices and produces many simplifications with respect
to the general theory described in the main text.
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