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Abstract 

Purpose: Application of standardised and automated assessments of head computed tomography (CT) for neuro‑
prognostication after out‑of‑hospital cardiac arrest.

Methods: Prospective, international, multicentre, observational study within the Targeted Hypothermia versus 
Targeted Normothermia after out‑of‑hospital cardiac arrest (TTM2) trial. Routine CTs from adult unconscious patients 
obtained > 48 h ≤ 7 days post‑arrest were assessed qualitatively and quantitatively by seven international raters 
blinded to clinical information using a pre‑published protocol. Grey–white‑matter ratio (GWR) was calculated from 
four (GWR‑4) and eight (GWR‑8) regions of interest manually placed at the basal ganglia level. Additionally, GWR was 
obtained using an automated atlas‑based approach. Prognostic accuracies for prediction of poor functional outcome 
(modified Rankin Scale 4–6) for the qualitative assessment and for the pre‑defined GWR cutoff < 1.10 were calculated.

Results: 140 unconscious patients were included; median age was 68 years (interquartile range [IQR] 59–76), 76% 
were male, and 75% had poor outcome. Standardised qualitative assessment and all GWR models predicted poor out‑
come with 100% specificity (95% confidence interval [CI] 90–100). Sensitivity in median was 37% for the standardised 
qualitative assessment, 39% for GWR‑8, 30% for GWR‑4 and 41% for automated GWR. GWR‑8 was superior to GWR‑4 
regarding prognostic accuracies, intra‑ and interrater agreement. Overall prognostic accuracy for automated GWR 
(area under the curve [AUC] 0.84, 95% CI 0.77–0.91) did not significantly differ from manually obtained GWR.
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Conclusion: Standardised qualitative and quantitative assessments of CT are reliable and feasible methods to predict 
poor functional outcome after cardiac arrest. Automated GWR has the potential to make CT quantification for neuro‑
prognostication accessible to all centres treating cardiac arrest patients.

Keywords: Cardiac arrest, Computed tomography, Prognosis, Hypoxic–ischaemic encephalopathy, GWR 

Introduction
According to the European Resuscitation Council (ERC) 
and the European Society for Intensive Care Medicine 
(ESICM), “diffuse and extensive anoxic injury” on neu-
roimaging is predictive of poor functional outcome after 
cardiac arrest [1]. Head computed tomography (CT) is 
widely available and is frequently used for neuroprog-
nostication [2–4]. Recent meta-analyses conclude that 
the Grading of Recommendations Assessment, Develop-
ment, and Evaluation (GRADE) level of evidence for CT 
to predict outcome after cardiac arrest is very low [5–7]. 
Signs of “diffuse and extensive anoxic injury” seen as a 
reduced differentiation between grey and white matter 
and/or effacement of the cerebral sulci on CT correlate 
well with elevated levels of neuronal injury markers [8] 
and histopathological severity of hypoxic–ischaemic 
encephalopathy (HIE) [9].

In clinical practice, CTs are usually assessed qualita-
tively using a non-standardised approach [10]. Some 
specialised centres use non-standardised quantita-
tive methods such as grey–white-matter ratio (GWR) 
placing regions of interest at the basal ganglia and/or 
in (sub)cortical regions to quantify oedema [7]. Man-
ual assessments carry the risk of interrater variabil-
ity and standardisation and/or automatisation may be 
necessary to ensure a safe translation from research to 
clinical routine [11–14]. In stroke imaging, automated 
quantification of non-contrast CTs is routinely used 
[15]. This has not yet been achieved for neuroprognos-
tication and a few single-centre retrospective studies 
with automated quantification of GWR after cardiac 
arrest have been published [16, 17].

Based on our retrospective studies with adult out-
of-hospital cardiac arrest patients, we established 
Standard Operating Procedures (SOPs) for qualita-
tive (visual interpretation) and quantitative (GWR) CT 
assessments for clinical use [13, 18–20]. In line with 
the previous studies [18, 19, 21–24], our recent pilot 
study from the Target Temperature Management after 
Out-of-hospital Cardiac Arrest (TTM)-trial confirmed 
that GWR was most accurate at the basal ganglia level 
where a cutoff < 1.10 predicted poor functional out-
come with 100% specificity [18].

We here present the results of a prospective observa-
tional substudy of an international multicentre trial in 
which we applied our previously published criteria for 

standardised qualitative and quantitative CT assess-
ment as well as an atlas-based automated GWR method 
for neuroprognostication after cardiac arrest [14]. Our 
main hypotheses were that “Definite signs of severe 
HIE”, by standardised assessment and manually or auto-
matically obtained GWR < 1.10, would predict poor 
functional outcome without false positives in CTs per-
formed 48 h–7 days after cardiac arrest [13].

Method
Study design
This prospective international multicentre observational 
study (Clinicaltrials.gov NCT03913065) was a substudy 
of the Targeted Hypothermia versus Targeted Normo-
thermia after out-of-hospital cardiac arrest (TTM2) trial 
[25] (Clinicaltrials.gov NCT02908308). The design and 
statistical analysis plan of this substudy has previously 
been published [13].

Patient selection and ethics
Between November 2017 and January 2020, the 
TTM2-trial consecutively screened unconscious 
patients ≥ 18 years admitted to hospital after out-of-hos-
pital cardiac arrest of a presumed cardiac or unknown 
cause [25]. Approval was waived/obtained from the 
appropriate ethics committees. The trial was performed 
in accordance with the ethical standards laid down in the 
Declaration of Helsinki and its later amendments [26]. 
Consent was obtained from legal representatives and/or 
patients according to local legislation.

Thirteen sites from Sweden, Germany, France, and 
United Kingdom that routinely use CT for neuroprog-
nostication in patients unconscious > 48  h post-arrest 
participated (electronic supplementary material [ESM] 
Table  E1). Unconsciousness was defined as not obey-
ing verbal commands. Included patients were man-
aged according to the TTM2-trial protocol regarding 
randomisation, clinical management, neurological 

Take‑home message 

In a prospective international trial, blinded and standardised qualita‑
tive, manual and automated quantitative assessments of CT reliably 
predicted poor functional outcome in unconscious patients after 
out‑of‑hospital cardiac arrest
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prognostication, decisions on withdrawal of life-sustain-
ing therapy, and follow-up [25, 27–29].

Data collection and technical requirements
All types of scanners and software were permitted. Tech-
nical prerequisites were availability of axial slices of 
4–5 mm thickness obtained with a tube voltage of 120 kV.

CT assessments
CTs with artefacts or structural lesions interfering with 
reliable evaluation were excluded. Five radiologists and 
two neurologists with 3–15  years of experience of CTs 
after cardiac arrest from four countries evaluated images 
individually using a virtual private network (VPN) 
secured platform (Human Observer Net) [30] (ESM 
Table E2). Raters were blinded to all information except 
the patients age, since brain volume may decrease with 
age, and thus, this information was considered necessary 
for assessing the extent of cerebral oedema. The raters 
received approximately 30  min of training for the soft-
ware used for evaluations, but unrelated to the actual rat-
ing of images. Raters were encouraged to have the SOP 
accessible during ratings.

Standardised operating procedures for qualitative 
assessments
Axial images were evaluated at four levels; brain stem and 
cerebellum, basal ganglia, frontoparietal cortex at corona 
radiata level, and at high convexity cortex (ESM Fig. E1A) 
[13]. The raters confirmed or declined; “Are there definite 
signs of severe HIE defined as complete or near complete 
loss of grey–white-matter differentiation at the basal gan-
glia level and in the frontoparietal cortex with additional 
evidence of brain swelling/sulcal effacement?”.

Standardised operating procedures for quantitative 
assessments
Circular 0.1  cm2 regions of interest were manually placed 
at the basal ganglia level in the putamen, the caudate 
nucleus (caput), the posterior limb of the internal cap-
sule, and the genu corpus callosum bilaterally (ESM Fig. 
E1B) [13].

Automated measurements
The software pipeline for automated GWR determina-
tions has been published [17]. Images were co-regis-
tered to a freely available standard brain atlas and mean 
Hounsfield Units were quantified in each individual CT 
space using inversely transferred probabilistic tissue 
maps [31, 32] (ESM Figs. E2–E3).

GWR calculations
GWR was calculated as the sum of the radiodensity of the 
grey matter regions of interest divided by the sum of the 
radiodensity of the white matter regions of interest (ESM 
Fig. E1B). The GWR-8 model included all eight regions 
of interest. The GWR-4 model and the automated GWR 
only included the measurements in the putamen and in 
the posterior limb of the internal capsule.

Outcome assessment
Functional outcome by the modified Rankin Scale (mRS) 
was assessed by a trained outcome assessor at a struc-
tured face-to-face or telephone follow-up, at six months 
after randomisation. Functional outcome was dichot-
omised into good (mRS 0–3) and poor (mRS 4–6) [25, 
27, 33].

Statistical analysis
The results are reported according to the Standards of 
Reporting Diagnostic Studies [34] and the Standards for 
Studies of Neurological Prognostication in Comatose 
Survivors of Cardiac Arrest [35]. Continuous variables 
are reported as median (interquartile range, IQR) or 
means (± standard deviation) and categorical variables in 
numbers (percentages). Sensitivities and specificities for 
prediction of poor functional outcome, and negative and 
positive predictive values are presented with 95% confi-
dence intervals (CI) calculated with Wilsons´s method. 
Results from the manual standardised assessments are 
presented separately for each rater and as median (min–
max) of all raters. For GWR, we decided to apply the cut-
off < 1.10, since this yielded a 100% specificity for poor 
outcome prediction in our pilot study [18]. In addition, 
we analysed the pre-specified GWR cutoff < 1.15. The 
overall prognostic performance of GWR for good ver-
sus poor functional outcome was assessed by the area 
under the receiver-operating characteristic curve (AUC) 
with 95% CI. AUC was classified as; < 0.60 = failure, 0.60–
0.70 = poor, 0.70–0.80 = fair, 0.80–0.90 = good, and 0.90–
1.00 = excellent [36]. The mean AUC for manual GWR 
was compared to the automated GWR using DeLong.

The interrater agreement between the blinded raters 
was calculated with Fleiss’ kappa. Intra-rater agreements 
for 20% of the images re-evaluated by each rater (iden-
tical for all raters) were analysed with Cohen’s kappa. 
The strength of the agreement was classified as kappa 
(κ); < 0.20 = poor, 0.21–0.40 = fair, 0.41–0.60 = moderate, 
0.61–0.80 = good, and 0.81–1.00 = very good for Fleiss’ 
and Cohen’s kappa [37–39].

CT’s performed 48  h–7  days post-arrest were 
included in our prospective cohort. To assess the accu-
racy of automated GWR, we included all patients 
with CTs performed ≤ 7d in a post hoc cohort. We 
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assessed the impact of timing on prognostic accura-
cies for automated GWR < 1.10 in time-windows < 2  h, 
2–6  h, > 6–48  h, > 48–96  h, and > 96–168  h after cardiac 
arrest.

Sensitivities and specificities with 95% CI are also pre-
sented separately for patients randomised to hypother-
mia and normothermia within the prospective cohort for 
each rater for the standardised qualitative assessment, 
GWR-8 and GWR-4 at cutoff < 1.10 and for automated 
GWR < 1.10.

We further examined whether "severe HIE" by qualita-
tive rating and GWR-8 cutoff < 1.10 evaluated by four or 
more raters corresponded with pathological findings of 
routine prognostic methods.

Statistical analyses were performed with IBM SPSS 
Statistics (SPSS Statistics for Windows, Version 29.0.0.0 
Armonk, NY: IBM Corp) and R, version 4.0.4 (The R 
Foundation for Statistical Computing).

Results
Patient demographics
387/635 (60.9%) patients underwent at least one head 
CT ≤ 7  days after cardiac arrest. Forty-six patients 
were excluded due to unmet technical requirements or 
the presence of other intracranial pathologies (Fig.  1). 
N = 140 patients were unconscious and examined with 
CT 48 h–7 days after cardiac arrest, thereby meeting the 
inclusion criteria for our prospective cohort. Together 
with the prospective cohort, further N = 201 patients 
examined ≤ 48 h post-arrest were included in a post hoc 
analysis using automated GWR [13]. The median age of 
our prospective cohort was 68 years, 76% were male, and 
the median time from cardiac arrest to CT was 84 h (IQR 
66–109) (Table  1). Poor functional outcome was more 
frequent among included than excluded patients (75% 
versus 50%). Prognostic accuracies for predicting poor 
functional outcome by other routine prognostic tests 
used within the prospective cohort are displayed in ESM 
Table  E3. Life-sustaining therapy was withdrawn due to 
poor neurological prognosis in 66/140 (47%), at median 
121 h (IQR 98–156) post-arrest.

Prediction of functional outcome
Blinded qualitative assessment
The standardised qualitative assessment of “definite 
signs of severe HIE” predicted poor outcome with 100% 
specificity and 100% positive predictive value in all seven 
raters (980 ratings overall) (Table  2, ESM Table  E4). 
The median sensitivity of all raters was 37% (min–max 
11–61%). Inter-rater agreement between raters was mod-
erate (κ = 0.6) (ESM Table  E5). Intra-rater agreement 

ranged from fair (κ = 0.33) to very good (κ = 0.93) (ESM 
Table E6).

Blinded quantitative assessment
Median GWR was significantly lower in poor outcome 
patients compared to good outcome patients, p < 0.0001 
(ESM Table  E7). In both models, GWR < 1.10 predicted 
poor functional outcome with 100% specificity and 100% 
positive predictive value in all 980 ratings (Table 2, ESM 
Table  E4, ESM Fig. E4A–B). A cutoff < 1.15 yielded two 
false-positive predictions of poor outcome for GWR-8 
(median specificity 100%, min–max 94–100%) and five 
false-positive predictions for GWR-4 (median speci-
ficity 100%, min–max 91–100%) (ESM Table  E4, ESM 
Table  E8, ESM Fig. E4A–B). Median sensitivities were 
higher for GWR-8 than GWR-4 at cutoff < 1.10 (39% ver-
sus 30%) and at cutoff < 1.15 (48% versus 38%). Median 
AUC of all seven raters was 0.86 for GWR-8 and 0.81 for 
GWR-4 (Fig. 2A–C).

The interrater agreement for GWR-8 ranged from 
good (κ = 0.72) for < 1.10 to very good (κ = 0.83) for < 1.15 
(ESM Table  E5). The interrater agreement for GWR-4 
was moderate (κ = 0.57) at both cutoffs. Examples of CTs 
with low, moderate, and high interrater agreement are 
found in the ESM Fig. E5A–C. Intra-rater agreements for 
GWR-8 ranged from moderate to very good (κ = 0.58–1) 
and from fair to good for GWR-4 (κ = 0.26–0.75) (ESM 
Table E9).

Effect of targeted temperature management
ESM Table  E10 depicts prognostic accuracy measures 
for hypothermia and normothermia groups. We found 
no clinically relevant effect of temperature allocation on 
prognostic accuracies for prediction of poor functional 
outcome.

Congruence of HIE with routine prognostic methods
In patients with "severe HIE" in qualitative assessment 
or a GWR-8 < 1.10 diagnosed by the majority of raters, 
96% of patients had high levels of neuron-specific eno-
lase (NSE) (> 60 ng/ml), 44–53% had bilaterally absent 
somatosensory evoked potentials (SSEP) N20 poten-
tials and 66–68% had a highly malignant electroen-
cephalogram (EEG) (ESM Tables E11A–B). The lowest 
congruence was seen for bilaterally absent corneal and 
pupillary reflexes (29–37%).

Automated GWR 
Automated GWR < 1.10 predicted poor outcome with 
100% specificity (95% CI 90–100) and 41% sensitivity 
(95% CI 32–51) (Table  2, Fig.  3, ESM Table  E12). AUC 
was 0.84 (95% CI 0.77–0.91) with no significant difference 
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compared to the average of manually determined GWR-8 
or GWR-4 (Fig. 2C). Automated GWR was significantly 
lower in poor outcome patients, regardless of tempera-
ture management, p < 0.001, ESM Fig. E6.

Post hoc analysis of automated GWR 
GWR was significantly lower in poor outcome patients 
compared to good outcome patients at all timepoints 
except for CT examinations performed < 2  h post-
arrest (ESM Table  E13). In CTs obtained ≤ 7  days after 

cardiac arrest (N = 341), overall specificity of auto-
mated GWR < 1.10 was 99% (95% CI 96–100) (ESM 
Table  E12). Poor outcome was incorrectly predicted in 
one patient, probably due to a lacunar infarction and 
enlarged perivascular spaces (ESM Fig. E7). Sensitivity 
for automated GWR < 1.10 increased gradually from 9% 
(95% CI 2–27%) for CTs performed < 2  h post-arrest to 
a peak of 48% (95% CI 37–59%) for examinations per-
formed > 48–96 h (Fig. 3, ESM Table E12).

Fig. 1 Flowchart of patient selection and exclusion. The prospective cohort included N = 140 unconscious patients not obeying verbal commands 
at 48 h post‑arrest examined with CT 48 h–7 days post‑arrest. The post hoc cohort included all patients examined with CT within 7 days post‑arrest 
(N = 341 patients). For the N = 42 patients examined with ≥ 2 CT examinations, only the latest examination within the 7 days time‑range was 
included. CT head computed tomography, h hours, d days
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Table 1 Characteristics of included and excluded patients

Results are presented in numbers (percentages), in mean (± standard deviation) or in median (interquartile range). The low denominator for some of the variables is 
due to missing data

CT head computed tomography, NYHA New York Heart Association, ROSC return of spontaneous circulation, ECG electrocardiogram, CPR cardiopulmonary 
resuscitation, mRS modified Rankin Scale
a Indicates the number of available lactate samples

Post-hoc cohort CT ≤ 7 days (N = 341) Excluded  
(N = 294)

Prospective CT 48 h–7days 
(N = 140)

Early CT ≤ 48 h  
(N = 201)

Demographics characteristics

 Age (years) 68 (59–76) 64 (56–73) 67 (55–74)

 Male 106 (76) 158 (79) 229 (78)

CT

 Hours from cardiac arrest to CT 84 (66–109) 3 (2–4) –

Characteristics of cardiac arrest

 Minutes from cardiac arrest to ROSC 30 (20–45) 26 (15–40) 28 (18–41)

 First monitored rhythm on ECG shockable 94 (67) 141 (70) 218 (74)

 Bystander witnessed arrest 136 (97) 190 (95) 269 (92)

 Bystander CPR performed 106 (76) 163 (81) 230 (78)

 Cardiac arrest at the place of residence 86 (61) 109 (54) 159 (54)

Characteristics on hospital admission

 Corneal reflexes bilaterally absent 58/84 (69) 56/91 (62) 94/139 (68)

 Pupillary reflexes bilaterally absent 47/120 (39) 61/156 (39) 78/226 (35)

 ST‑segment elevation myocardial infarction 58 (41) 46/151 (30) 110/290 (38)

 Circulatory shock 37 (26) 55 (27) 81 (28)

 Randomized to hypothermia 70 (50) 98 (49) 145 (49)

 Arterial lactate level mmol/L 6.21 (± 3.96)
a139

6.54 (± 4.63)
a193

5.77 (± 4.35)
a280

Medical history

 Hypertension 57/132 (43) 75 (37) 101/281 (36)

 Dementia 0 (0) 3 (1) 7 (2)

 Cerebrovascular disease 9 (6) 10 (5) 23 (8)

 Hemiplegia 2 (1) 2 (1) 7 (2)

 Diabetes 26 (19) 33 (16) 57 (20)

 Myocardial infarction 23 (16) 21 (10) 45 (15)

 Heart failure NYHA III or IV 17 (12) 12 (6) 35 (12)

 Renal failure 6 (4) 9 (4) 15 (5)

 Severe liver failure 0 (0) 2 (1) 4 (1)

 Charlson comorbidity index 3 (2–4) 3 (1–4) 3 (2–5)

Withdrawal of treatment

 Withdrawal for any reason 85 (61) 66 (33) 116 (39)

 Withdrawal poor neurological prognosis 66 (47) 26 (13) 42 (14)

 Hours from cardiac arrest to withdrawal due to poor neurologi‑
cal prognosis

121 (98–156) 110 (92–139) 106 (106–143)

Functional outcome after 6 months

 Good, modified Rankin Scale 0–3 35 (25) 100 (50) 134 (46)

 Poor, modified Rankin Scale 4–6 105 (75) 101 (50) 159 (54)

 mRS 0 13/137 (9) 37/189 (20) 39/269 (14)

 mRS 1 8/137 (6) 18/189 (10) 24/269 (9)

 mRS 2 12/137 (9) 25/189 (13) 45/269 (17)

 mRS 3 2/137 (1) 11/189 (6) 6/269 (2)

 mRS 4 0/137 (0) 5/189 (3) 4/269 (1)

 mRS 5 5/137 (4) 0/189 (0) 3/269 (1)

 mRS 6 97/137 (71) 93/189 (49) 148/269 (55)
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Discussion
In this prospective multicentre study, evaluating three 
different methods of diagnosing severe hypoxic ischae-
mic injury on CT for prediction of poor functional out-
come after cardiac arrest, we validate pre-published 
standardised criteria and evaluate GWR cutoff < 1.10 for 
manual and automated assessments [13]. We conclude 
that CT is a highly specific prognostic tool for neuro-
prognostication, regardless of assessment method, with 
highest sensitivities for poor outcome prediction when 
performed 48–96  h post-arrest. GWR determination at 
the basal ganglia level < 1.10 performed either manually 
or automated offer a more objective measure of HIE with 
reduced interrater variability.

CT is a guideline-recommended predictor of outcome 
after cardiac arrest with very low quality of evidence [1, 5, 
7, 40]. The main concerns raised by ERC/ESICM include 
the lack of multicentre validation and standardised 

assessments of both qualitative and quantitative methods 
[1]. Our study provides a framework that is easy to use in 
clinical practice and addresses several concerns raised in 
recent publications [5–7, 10, 41].

Our standardised qualitative criteria define signs of 
severe HIE as a “complete or nearly complete loss of 
grey-white matter differentiation in the basal ganglia and 
in the frontoparietal cortex with additional evidence of 
brain swelling/sulcal effacement” [13]. A visual interpre-
tation according to a checklist with mandatory evaluation 
at several levels of the brain had to be completed before 
reaching a conclusion. This qualitative assessment pre-
dicted poor outcome with 0% false-positive rate in 980 
blinded ratings overall. In line with the previous quali-
tative studies, sensitivities for individual raters ranged 
between 11 and 61% for imaging performed 48 h–7 days 
post-arrest [18, 20, 41].

Table 2 Prediction of poor functional outcome by individual raters

Prognostic accuracies for prediction of poor functional outcome (mRS 4–6) at 6 months post-arrest in N = 140 patients included in the prospective cohort examined 
48 h–7 days post-arrest. Results are presented with 95% confidence intervals for each of the seven raters individually for the standardised qualitative assessment, 
manual GWR-8 and manual GWR-4 at pre-specified cutoff < 1.10, and for the automated GWR at pre-specified cutoff < 1.10

GWR  grey–white-matter ratio, TP true positive (pathological CT and poor functional outcome), TN true negative (normal CT and good functional outcome), FP false 
positive (pathological CT and good functional outcome), FN false negative (normal CT and poor functional outcome)

Method rater Specificity 
(95% CI)

Sensitivity 
(95% CI)

TP TN FP FN PPV (95% CI) NPV (95% CI) N

Qualitative assessment
 1 100 (90–100) 11 (7–19) 12 35 0 93 100 (76–100) 27 (20–36) 140

 2 100 (90–100) 37 (29–47) 39 35 0 66 100 (91–100) 35 (26–44) 140

 3 100 (90–100) 36 (28–46) 38 35 0 67 100 (91–100) 34 (26–44) 140

 4 100 (90–100) 61 (51–70) 64 35 0 41 100 (94–100) 46 (35–57) 140

 5 100 (90–100) 35 (27–45) 37 35 0 68 100 (91–100) 34 (26–44) 140

 6 100 (90–100) 57 (48–66) 60 35 0 45 100 (94–100) 44 (33–55) 140

 7 100 (90–100) 40 (31–50) 42 35 0 63 100 (92–100) 36 (27–46) 140

GWR–8 < 1.10
 1 100 (90–100) 31 (23–41) 33 35 0 72 100 (90–100) 33 (25–42) 140

 2 100 (90–100) 34 (26–44) 36 35 0 69 100 (90–100) 34 (25–43) 140

 3 100 (90–100) 38 (29–48) 40 35 0 65 100 (91–100) 35 (26–45) 140

 4 100 (90–100) 46 (37–55) 48 35 0 57 100 (93–100) 38 (29–48) 140

 5 100 (90–100) 47 (37–56) 49 35 0 56 100 (93–100) 38 (29–49) 140

 6 100 (90–100) 39 (30–49) 41 35 0 64 100 (91–100) 35 (27–45) 140

 7 100 (90–100) 46 (37–55) 48 35 0 46 100 (93–100) 43 (33–54) 140

GWR–4 < 1.10
 1 100 (90–100) 30 (22–39) 31 35 0 74 100 (89–100) 32 (24–41) 140

 2 100 (90–100) 18 (12–27) 19 35 0 86 100 (83–100) 29 (22–38) 140

 3 100 (90–100) 22 (15–31) 23 35 0 82 100 (86–100) 30 (22–39) 140

 4 100 (90–100) 27 (19–36) 28 35 0 77 100 (88–100) 31 (23–40) 140

 5 100 (90–100) 31 (23–41) 33 35 0 72 100 (90–100) 33 (25–42) 140

 6 100 (90–100) 28 (20–37) 29 35 0 76 100 (88–100) 32 (24–41) 140

 7 100 (90–100) 37 (29–47) 39 35 0 66 100 (91–100) 35 (26–44) 140

Automated 
GWR < 1.10

100 (90–100) 41 (32–51) 43 35 0 62 100 (92–100) 36 (27–46) 140
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Both the ERC/ESICM and the American Neurocriti-
cal Care Society recommendations use similar, unde-
fined terminology to describe signs of severe HIE on 
CT; "diffuse", "extensive" or "bilaterally across vascular 

territories", with a "loss of grey-white-matter differentia-
tion" [1, 5]. While our standardised qualitative criteria 
may offer a more precise definition of severe HIE than 
those given in the current guidelines, it achieved only 

Fig. 2 A–C Manual and automated GWR assessments for overall prediction of functional outcome. Comparison of manual and automated GWR 
for prediction of good versus poor functional outcome (modified Rankin Scale 0–3 versus 4–6) at 6 months post‑arrest in N = 140 patients included 
in the prospective cohort. The area under the receiver‑operating characteristics curve (AUC) is presented with 95% confidence intervals. Results 
are presented separately for all raters for the manual GWR‑4 (A) and the manual GWR‑8 (B). C Displays the prognostic accuracy for the automated 
measurements versus mean of the seven raters’ manual assessments of GWR‑4 and GWR‑8, respectively. In C, the AUC for automated GWR did not 
differ significantly between mean manual GWR‑8 (p = 0.10) or between mean manual GWR‑4 (p = 0.84)

Fig. 3 Automated GWR for prediction of functional outcome. Automated GWR and functional outcome (modified Rankin Scale 0–3 versus 4–6) at 
6 months post‑arrest grouped by timing of CT acquisition in hours after cardiac arrest. Examinations are evaluated in the following time‑windows 
after cardiac arrest; < 2 h: N = 67, > 2–6 h: N = 102, > 6–48 h: N = 32, > 48–96 h: N = 90, > 96 h–168 h: N = 50. Automated GWR was significantly lower 
in poor outcome patients than in good outcome patients at all timepoints ≥ 2 h post‑arrest. ns not significant, **p > 0.01, ***p < = 0.001,****p < = 0.0
001. Overall, automated GWR < 1.10 predicted poor outcome with 1 false pathological prediction at 2 h post‑arrest, with an overall specificity of 99% 
(95% CI 96–100) and 30% sensitivity (95% CI 24–36). Exact prognostic accuracies and a contingency table for each timepoint in this figure can be 
seen in ESM Table E12. Median GWR values for good and poor outcome patients are displayed in ESM Table E13. The CT image and case description 
of the 1 false‑positive patient is displayed in ESM Fig. E7
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moderate interrater reliability. The CT evaluation in 
our study was mostly performed by experienced raters 
(3–15  years with CTs of cardiac arrest patients). Rater 
experience may impact both sensitivity and specific-
ity of CT evaluation using our SOP. This should be kept 
in mind when implementing our CT analysis in clinical 
routine. Future improvements to improve interrater reli-
ability are necessary and may include a better standardi-
sation of windowing during visual analysis, standards 
regarding decision in case of residual grey–white dif-
ferentiation and awareness of the effects from residual 
contrast agents. In contrast to clinical practice, our raters 
only had one CT available for analysis and did not have 
access to pre-cardiac arrest CTs. We plan a subsequent 
study using serial CTs to evaluate whether an analysis of 
changes in grey–white-matter differentiation and brain 
volume over time improves prognostic accuracy.

GWR is the only guideline-recommended method 
to quantify the extent of HIE on CT and can be applied 
with routine radiological software, but there is no con-
sensus on the number, size, and exact location of regions 
of interest [1, 10, 22, 42–44]. Based on previous inves-
tigations and our retrospective pilot study, we chose 
to validate manually placed 0.1  cm2 regions of interest 
at the basal ganglia level [18]. Importantly, we included 
the instruction to place the regions of interest in a sub-
region with a radiodensity representative of the entire 
anatomical target region and to avoid potential con-
founders (artefacts, calcifications, lacunar infarcts, etc.). 
We confirmed that both manual GWR models had a 
maximal specificity at GWR < 1.10, which is in accord-
ance with the previous studies [6, 7, 18]. As expected, 
sensitivities increased at cutoff < 1.15 at cost of a slightly 
decreased specificity. None of the false positives through 
quantitative measurements fulfilled criteria for "severe 
HIE" with the qualitative assessment, underlining the 
potential value of combining both approaches. As in our 
pilot study, GWR-8 was consistently superior to GWR-4 
concerning prognostic accuracies, intra- and interrater 
agreements [18]. A possible explanation for the higher 
accuracy of GWR-8 is the reduction of noise due to the 
larger number of regions of interest [18, 45]. GWR-8 was 
superior to the qualitative assessment for some raters 
and the interrater reliability for GWR-8 was superior to 
that of qualitative assessments—highlighting a poten-
tial advantage of quantification. We presume that the 
interrater reliability of manual GWR could be further 
improved by applying stricter instructions for measure-
ments within anatomical regions or using non-circular 
and/or larger regions of interest.

Automated atlas-based GWR measurements offer 
an alternative to manual measurements unaffected by 
interrater variability and could increase the availability 

of GWR for hospitals without on-site neuroradiologic 
expertise [17]. A few previous studies evaluate auto-
mated GWR quantification and they are limited by sin-
gle-centre, retrospective designs, and early assessment 
of functional outcome [16, 17]. The prognostic accuracy 
of automated GWR < 1.10 in our prospective cohort was 
as good as the manually assessed GWR with 40% sensi-
tivity at 100% specificity. This performance is also in the 
range of manual and automated GWR from CTs per-
formed > 24 h post-arrest in the previous studies [18, 20, 
24, 46], routine EEG, and SSEP [7]. Except for one study 
on early CTs, 1.10 was the lowest reported GWR cut-off 
with 100% specificity thus far [47]. Overall, automated 
GWR < 1.10 performed within 7 days post-arrest had one 
false-positive prediction of poor outcome in a patient 
with a subcortical low attenuating area close to puta-
men, most likely an old lacunar infarction or perivascular 
space, but with intact overall grey–white-matter differ-
entiation. The use of automated GWR relies on anatomic 
landmarks and its use must include a quality check for 
co-registration and exclusion of artefacts or acute brain 
pathologies potentially interfering with measurements 
[10]. Future studies on larger cohorts should investigate 
whether machine learning can predict outcome from CTs 
after cardiac arrest with superior accuracy compared to 
our human rater-based approach [48].

Data from our current and previous studies do not sug-
gest that CT can predict good outcome/absence of severe 
HIE. Future studies, for example using analysis of serial 
CTs, should re-investigate this issue.

Our results on optimal timing support guideline rec-
ommendations [1, 5] that CTs performed 48–96  h have 
higher sensitivity for predicting poor outcome than 
examinations performed within the first hours post-
arrest [5, 17, 18, 20, 23, 24, 49]. Examinations performed 
on hospital admission are often routinely used to exclude 
cerebral causes of unconsciousness and may be too early 
to detect HIE for most patients. The increase in sensitiv-
ity within the first days corresponds with developing HIE. 
The higher sensitivity of later examinations is in line with 
previous observations and supports the notion that an 
optimal time window of a few days exists for neuropro-
gnostic CT’s [17]. We found no clinically relevant effect 
of temperature allocation on prognostic accuracies for 
prediction of poor functional outcome. When performed 
at an optimal timepoint and analysed using standard-
ised interpretation, combining CT with other prognostic 
methods with higher sensitivities such as EEG or NSE 
could increase the number of correctly identified poor 
outcome patients.
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Strengths and limitations
Strengths of our study include the prospective, multi-
centre design with standardised criteria for neuropro-
gnostication and withdrawal of life-sustaining therapy 
and a structured assessment of functional outcome at 
6 months. CT’s were prospectively performed in uncon-
scious patients at a timepoint clinically most relevant for 
neuroprognostication. Radiological assessments were 
blinded and performed by multiple raters from different 
countries according to a pre-published protocol using 
standardised radiological criteria and pre-defined cutoffs. 
A comparison with automated GWR within the same 
cohort further strengthens our results.

Our main limitation is imprecision due to sample size 
[5]. A substantial proportion of patients were examined 
before the pre-specified time point, reasonably as part 
of clinical practice, and thus reported as part of a post 
hoc cohort examined ≤ 7  days. Additional patients did 
not receive CT > 48 h, because they underwent magnetic 
resonance imaging rather than CT, used other prognos-
tic methods or because CT could not be performed for 
logistical reasons.

In contrast to clinical practice, to standardise the pro-
tocol within a clinical trial, our raters only had axial CT 
images available, separately performed qualitative and 
quantitative assessments, their rating were final, and they 
did not have the possibility to discuss their results with 
colleagues.

Patients included in the TTM2-trial had a presumed 
cardiac or unknown cause of cardiac arrest and results 
may differ from other causes of arrest [25]. The conserva-
tive approach to prognostication within the TTM2-trial 
was designed to limit the risk of self-fulfilling prophecies, 
reflected in the longer times to withdrawal of life-sustain-
ing therapy in our prospective cohort [25, 28, 29]. None-
theless, despite the blinded CT evaluations in this study 
the risk of self-fulfilling prophecies cannot be entirely 
excluded, since local radiologists CT reports were avail-
able to treating physicians. Our results should be vali-
dated in a cohort where withdrawal of treatment was not 
performed.

Conclusion
The combination of a structured qualitative assessment 
of severe HIE with a quantitative assessment at the basal 
ganglia level (GWR-8 or automated GWR < 1.10) allows 
the prediction of poor functional outcome after cardiac 
arrest with high specificity and moderate sensitivity. CT 
should be considered in patients unconscious later than 
48 h after cardiac arrest using a multimodal approach to 
neuroprognostication. Automated GWR could help avoid 
errors compared to manual ratings and make head CT 
quantification more accessible.
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