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Abstract

In clouds and under cold weather, water droplets impact and freeze on aircraft structures. The Eulerian

model for the droplet flow predicts the impinging water mass. The model equations are close to the Euler

equations but without the pressure term, known as pressureless Euler model. Consequently, the resulting

system is only weakly hyperbolic and standard Riemann solvers strongly relying on the eigenstructure of the

system cannot solve the Eulerian model. To circumvent this problem, the model is supplemented with an

extra-term mimicking the divergence of a particle pressure. The main purpose of this work is to implement a

multidimensional aware Riemann solver for a Finite Volume simulation code for the modified formulation of

the Eulerian droplet model. The numerical method should preserve physical properties such as the positivity

of the liquid water content, and must produce accurate results without sacrificing the general robustness.

The flow around a cylinder assess the numerical method in 2D on radial meshes.

Key words: Multi-phase flow, Pressureless Euler equations, multi-dimensional aware Riemann solver,

Finite Volume scheme, In-flight icing.

1. Introduction

In-flight icing causes many crashes and accidents, as much as 8% of regional aircraft deathly accident

[1]. Ice accretion on aircraft lifting structures induces a drag increase, a loss of lift, and a reduction of

the stall angle [2]. This performance degradation, especially if sudden, is the cause of many accidents [3].

Ice accretion can also occur on engine air intakes, spinners and inlet fan blades. Frozen fan blades induce

overload and unbalanced mass that would degrade the engine immediately. When this ice breaks away, and

is ingested through the remainder of the propulsion system (engine and nacelle), it creates multiple damages.
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These damages have a serious negative impact on the operating costs and may also generate some incident

concern [4, 5]. To minimize ice accretion, wings and propulsion systems have Ice Protection Systems (IPS)

which mostly use air-heated technology through engine bled offs [6, 7]. Air-heated IPS carry associated

design penalties and have themselves performance issues. If manufacturers use too cautious design margins,

it leads to conservative non-optimized solutions.

The conception of aircraft IPS requires the prediction of areas impacted in-flight by cloud droplets.

Critical aircraft surfaces where droplets impinge are prone to aircraft icing and must be protected. In

clouds, the airflow around the wing transports suspended water droplets. Due to their high inertia, they

impact aircraft surfaces and may freeze. The mass loading, i.e. the bulk density of the droplets over the

bulk density of air, is of the order of 10−3 in icing conditions. The gas-particle flow is dilute and controlled

by local aerodynamic forces. The droplets do not collide, and particle information is not transmitted by

particle-particle collision, leading to the absence of a particle pressure. The gas-particle flow in this situation

can be modelled using a one-way coupling algorithm since the droplet effects on the airflow is negligible

because of the low liquid water content [8, 9]. Generally, one-way coupling is valid if the mass loading is

smaller than 0.1 [10].

The classical way to compute impingement in icing, is first to compute the air flow solution. This solution

can be obtained solving Euler or Navier-Stokes equations. Taking into account air density and velocity, the

droplets trajectory and impact are then computed. Since the objective of this paper is to test the proposed

mutidimensional scheme solving the droplets model, then the air flow solution is simply computed using

Euler equations, neglecting viscous effects. Computing an inviscid air flow solution is commonly done in

icing community, see [11, 12]. Possibly using a turbulent airflow solution may have an impact on shadow

zones behind the bodies, but this is beyond the scope of this paper.

For droplet diameters smaller than 100µm, many works investigated the equation for droplet motion in

airflow [13]. The spherical drag coefficient links the droplet momentum to the airflow. The gravity force can

also be involved in large droplets or low air velocity flows. Early numerical icing codes use a Lagrangian

coordinate system attached to the droplet [14, 15]. Instead, the CFD codes use an Eulerian coordinate

system to solve for the droplet velocity u and the volume fraction of water ρ [9, 16, 17]. Compared to the

Lagrangian method, the Eulerian method does not make a priory estimate on the location of the impingement

region and enables the identification of shadow areas [18]. In the shadow areas downstream of the aircraft,

the droplets vanish. However, for simple cases, the calculation cost of the Eulerian method is higher when

compared to the Lagrangian method. Still, high order implicit solvers, at least second order, enabling large

CFL numbers can reduce the computational efforts.

The Eulerian droplet equation system is a particular form of the pressureless gas. The pressureless
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gas equations are often used to model clouds of dust [19, 20], with ρ the dust density and u the velocity.

The pressureless gas equations are weakly hyperbolic and the Jacobian matrix is not diagonalizable. The

development of delta-shocks, and the emergence of the vacuum state characterize this weakly hyperbolic

system.

First order and second order schemes are developed to solve the pressureless gas equations, such as

the schemes based on the kinetic approximations [21], the relaxation methods [22], or central schemes [23].

Recently, [24, 25] used the theory of Jordan canonical forms to solve the weakly hyperbolic systems and

derive an upwind scheme. The addition of a perturbation parameter ϵ transforms the system in a strictly

hyperbolic one, enabling the use of Riemann solvers, such as the Roe solver [26]. The perturbation parameter

is equivalent to a particle pressure [27] with the pressure proportional to the density, p = a2ρ. If the sound

speed vanishes, a → 0, then the pressureless system is recovered. [28] applied an idea developed originally

in computational magnetohydrodynamics (MHD) [29]. Starting with the Eulerian droplet equation system,

they add and subtract a vector term involving the divergence of a particle pressure. Next, they split the

system between a strictly hyperbolic part and a source term. They suggest a HLLC approximate Riemann

solver that satisfied the positivity condition for the liquid water content. Once the Eulerian droplet equations

are converted into a strictly hyperbolic system, one can use any standard Riemann solvers, such as the Roe

solver, the HLLC solver or the HLLC-AUSM solver, as recently studied by [30].

Recent works have led to the development of a new Riemann solver[31, 32]. This solver is of the HLLC

type and authors derive it from a Lagrangian framework. In this solver, the face flux is divided into two

sub-face fluxes. The sub-face fluxes, related to a node, depend not only on the two states next to the sub-

face but also on the nodal velocity. This nodal velocity is computed using all states surrounding the node,

hence the name multi-dimensional aware flux. In the context of gas dynamics, the multi-point scheme shows

good performance in suppressing numerical instabilities like even-odd decoupling and shock instabilities

like carbuncles. In the context of pressureless Euler model, classical methods may encounter convergence

difficulties in presence of complex turbulent background flows. This could be related to the weaknesses

of two-point schemes, possibly due to their lack of multidimensionality [33, 34]. Moreover thanks to the

positivity preserving property of our approach, we expect more robustness compared to classic solvers when

droplet trajectories will be unaligned with the mesh lines. This paper is a proof of concept of using the

multidimensional aware scheme to solve the pressureless Euler model.

This work modifies the Eulerian droplet equations according to Jung and Myong technique [28]. The

objective is to investigate a new Godunov type Finite Volume scheme with multidimensional aware Riemann

solvers: the multi-point Riemann solver. First, the Eulerian droplet equation system is derived from the

force balance over a single droplet and the equations are modified to obtain a hyperbolic system. Second,
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the new multi-point Riemann solver is described in the context of gas dynamics. Third, the algorithm used

to solve iteratively the pressureless system of equations is detailed. In the numerical section we present a

convergence study for a 1D Riemann problem, and, a more advanced 2D test case – a flow around a cylinder.

Conclusions are finally drawn.

2. Problem Statement

This work focuses on 2D situations in a Cartesian referential of center O = (0, 0)t with unit directions

ex = (1, 0)t and ey = (0, 1)t, so that any vector position x is represented as: x = (x, y)t = xex + yey.

Accordingly any velocity vector is given by u = (u, v)t = uex + vey.

Physically speaking, inside a cloud, the compressible air and small liquid droplets flow around and

impact the aircraft parts. Because the liquid water content is small, the effect of the droplets on the airflow

is neglected, and, the flow is modelled as a two-phase material with one way coupling. The droplets are

considered rigid and mono-dispersed. First the airflow solution, using classical Euler system of equations, is

solved, and, ua and ρa are then known all over the mesh.

In our model the momentum equations compute the velocity components u = (u, v)t of spherical droplets

of water. As illustrated on Figure 1, the droplets with diameter d > 0 and constant density ρw > 0 are

carried by the airflow of density 0 < ρa ≪ ρw and viscosity µ > 0. The air velocity ua = (ua, va)
t creates

a drag force FD parallel to the relative velocity vector ua − u. The gravity force, arbitrarily pointing

downward in the y directon as g = (0,−g)t, with g > 0, also acts on the droplet, such as the buoyancy force

FB = (0, ρ
ρa
ρw

g)t, which could be possibly neglected thanks to the ratio
ρa
ρw

≪ 1. These forces accelerate

the droplet such that it reaches its velocity u at time t. The Eulerian droplet equations consist of a mass

Figure 1: Forces acting on a droplet in an airflow

conservation equation for the liquid water content, ρ, and momentum conservation equations for the droplet

velocity u. The momentum equations do include the source terms simulating the drag force exerted by the
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air onto the droplets:

FD = Au(ua − u), (1)

where the coefficient Au adapted from [13] is defined as

Au =
3

4

ρCDReµ
ρwd2

=
3

4
ρ
ρa
ρw

CD

d
∥ua − u∥ ≥ 0, (2)

and the local Reynolds number being defined as Re =
ρad

µ
∥ua − u∥. At last the droplet drag coefficient CD

is modelled as

CD =


24

Re
(
1.0 + 0.15Re0.687

)
if Re ≤ 1300,

0.4 if Re > 1300.
(3)

Notice that CD and Au are functions of density and velocity variables. Usually the droplets behave as a

pressureless gas, and, unless the calculation requires droplet temperatures, the system does not involve any

energy equation.

Consequently the 2D pressureless equations, named here the Eulerian droplet equations, are expressed as

∂

∂t
U +∇ · F(U) = Q(U), (4)

and feature the conservative variables, the physical flux and source term as:

U =

 ρ

ρu

 , F(U) =

 ρut

ρu ⊗ u

 , Q(U) =

 0

Au(ua − u) + ρ

(
1− ρa

ρw

)
g

 (5)

where FD = Au(ua − u) stands for the aerodynamic drag force in x and y directions, FB = −ρ ρa

ρw
g is the

buoyancy force and FG = ρg is the gravity force. Notice that the convective part of the Eulerian droplet

equations is not strictly hyperbolic. When considering Q(U) = 0, the homogeneous system has a non-

diagonalizable Jacobian matrix with the degenerate eigenvalue u (multiplicity 3). In order to derive weak

solutions to these equations, some special treatments are needed. When it comes to writing a Finite Volume

(FV) simulation code based on an approximate Riemann Solver (RS), most of the time, a strictly hyperbolic

system of equations is required. Therefore, classical RS cannot solve appropriately such a weakly hyperbolic

system. Here, to circumvent this problem, the same artificial term on both sides of the equations is added

to the system [35]. As such, the modified system turns into a strictly hyperbolic system, and, classical RS

within a FV code becomes once again usable.
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2.1. Modified pressureless model

One possible modified pressureless model consists in changing system (4) into

∂

∂t
U +∇ · F(U) = ∇ · Fp(U) + Q(U), (6)

where U remains unchanged but

F(U) =

 ρut

ρu ⊗ u + pI

 , Fp(U) =

 0t

pI

 Q(U) =

 0

Au(ua − u) + ρ

(
1− ρa

ρw

)
g

 . (7)

Notice that the artificial pressure terms in F and Fp do annihilate each other. The value of the artificial

pressure p relates the liquid water density, ρ, the gravity magnitude, g, and a reference droplet diameter

d > 0 as

p ≡ p(ρ) = ρgd. (8)

The idea is to supplement the system with an artificial pressure term equivalent to a classical pressure,

p ∝ ρ, for continuous compressible fluid. Specifically, for isothermal Euler equations, we have p(ρ) = a2ρ,

where a is the speed of sound. Here, for our homogeneous system, if one defines a =
√
gd, then one

retrieves the isothermal Euler equations. They are known to be strictly hyperbolic with ordered eigenvalues

u−
√
gd< u < u+

√
gd, supplemented by a full set of right eigenvectors. Consequently, classical RS based on

the eigenstructure of the homogeneous system could be employed safely. Obviously, at the price of solving

an extra source-term.

2.2. Boundary conditions

At farfield, inlet or outlet supersonic boundary conditions are imposed, taking into account that the

speed of sound a =
√
gd should be small compared to the droplet velocity, recalling that a is linked to

the artificial pressure p = ρgd. At any solid surface, a special boundary condition must be imposed. The

impinging droplets stay on the surface and no droplet are ejected from the surface. Thus, the flow can leave

the computational domain but it cannot enter into it. To emulate such a behavior, one have to first compute

the projection of the velocity vector onto the solid surface normal vector, un = u ·n. Then, if the flow leaves

the computational domain, supersonic outlet boundary conditions are imposed. In the contrary, the flow

enters the computational domain, i.e. the droplets are ejected from the wall, a supersonic inlet is imposed
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with the conservative variables set to zero. It is summarized as

uwall =

 0 if un > 0,

u if un ≤ 0.
(9)

3. Godunov type Finite Volume schemes

In this section we describe a FV discretization to solve the previous Eulerian droplet equations in 2D

on unstructured meshes. This numerical method is inspired from the seminal work of G. Gallice [36] which

has been recently pursued in [37] in 1D and [31] in 2D. This solver is a particular FV scheme designed

for hyperbolic systems of conservation laws, possibly with source terms. A FV scheme considers constant

variable per cell, the values of which evolve in time via interface fluxes, which are usually located in-between

two cells. Classically, a RS is computed between two constant states in the normal direction to an edge/face

between two neighbor cells. Contrarily in the work [31], a subface (half-face) based RS is computed in such

a way that all surrounding neighbour cells participate to the update of the current one. Our goal in this

work is to adapt this subface-based FV scheme to solve the Eulerian droplet equations.

More precisely this new FV scheme is written in a non-conservative way to allow for discontinuous fluxes

across subfaces. Conservation is, however, retrieved by equilibrating the vertex based flux jumps. Although

not classic, this approach has the main advantage to couple all neighbour cells regardless the mesh structure

or the cell type. The RS, which is of ’HLLC type’ [38], is derived from the Lagrangian framework [36]

and further expressed in the Eulerian one by a Lagrange-to-Euler mapping. As such the properties of the

Lagrangian RD are naturally inherited by the Eulerian one: consistency, positivity preservation, entropy

dissipation and wave ordering [31] with a well-defined time-step control. When tested on hydrodynamics

equations, this new FV scheme seems relatively insensitive to spurious oscillatory phenomena sometimes

encountered such as the carbuncle phenomena, odd-even decoupling, excess wall heating, etc. [39, 40].

In this section we will recall the main characteristics of this new Godunov type FV scheme with multidi-

mensional aware RS. This scheme is referred as the ’Multi-point’ solver. We will also point the differences

with a classical FV scheme using the HLLC RS which we refer to as a ’two-point’ solver.

3.1. Finite Volume framework on unstructured mesh

The 2D computational domain Ω is a polygon covered by non-overlapping polygonal cells ωc. c is the

generic label of any of the Nc > 0 cells. P(c) the set of the points of cell ωc. The generic label of a point is

1 ≤ p ≤ Np and xp = (xp, yp)
t denotes its vector position. The points of the cell ωc are counter-clockwise

ordered, and p− and p+ are respectively the previous and the next points with respect to p, see figure 2.
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Figure 2: Notation and geometrical entities in a generic cell ωc — Left: polygonal cell ωc and subface f associated to subcell
ωcp — Right: subface (half interface) between cell ωc and cell ωd, with possibly discontinuous fluxes F pcf , F pdf .

The cell center xc = (xc, yc)
t is the isobarycenter of the points in P(c). The sub-cell ωpc is the quadrangle

formed by joining the cell center, xc, to the midpoints of the edges [xp− ,xp], [xp,xp+ ] and to the vertex xp.

The set of sub-cells ωpc for p ∈ P(c) constitutes a partition of the cell ωc, that is, ωc =
⋃

p∈P(c) ωpc. We

can define the dual volume around point p as: ωp =
⋃

c∈C(p) ωpc, where C(p) is the set of cells surrounding

point p. The set of faces/edges of the cell ωc is denoted by F(c). Each face f of cell ωc is decomposed

into subfaces (half-faces) by means of the partition of c induced by the sub-cells pc for p ∈ P(c). Doing

so, we define SF(pc) the set of subfaces attached to the sub-cell ωpc. We denote respectively by lpcf and

npcf = (nx,pcf , ny,pcf )
t the length and the unit outward-pointing normal of the subface f of cell c attached

to point p. Sometimes we lighten the notation to lf and nf = (nx,f , ny,f )
t. We observe that the set of

subfaces SF(pc) for p ∈ P(c) constitutes a partition of the set of faces of ωc, that is, F(c) =
⋃

p∈P(c) SF(pc).

Given a cell c and one of its faces f , the unique ’neighbour’ cell associated is d(c, f) or simply d to shorten

the notation. The set of neighbours of the cell c is called N (c) and it will be more appropriately defined,

either faced-based or node-based.

Any vector a can be projected onto the canonical or normal/tangent nf ⊥ tf base associated to a generic

face f as: a = annf + attf .

The time domain [0, tfinal] with tfinal > 0 is split into time intervals [tn, tn+1] with time-step ∆t > 0 such

that tn+1 = tn +∆t. ∆t shall be constrained by stability and positivity arguments.

The mean value of a vector U in cell ωc at time t, and tn is denoted as

Uc(t) ≡
1

|ωc|

∫
ωc

U(x, t) dv, Un
c = Uc(t

n) ≡ 1

|ωc|

∫
ωc

U(x, tn) dv, (10)

where |ωc| is the surface of cell ωc.
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3.2. Subface-based FV scheme for 2D isothermal gasdynamics

Let us consider the 2D isothermal Euler equations with the equation of state p = Kργ with K = gd > 0,

a constant, and, γ = 1, for which the sound speed is given by a2 = K. Doing this, the considered model

consists of the homogeneous system (6) which is further integrated over a generic cell ωc and time interval

[tn, tn+1] as ∫ tn+1

tn

∫
ωc

(
∂

∂t
U(x, t) +∇ · F(U(x, t))

)
dv dt = 0. (11)

Considering (10) we can rewrite (11) as

Un+1
c − Un

c +
1

|ωc|

∫ tn+1

tn

∫
∂ωc

F(U(x, t))n ds dt = 0. (12)

Notice that in (12) no approximation has yet been made. An explicit version of (12) consists in approximating

the time integral at discrete time tn as

Un+1
c − Un

c +
∆t

|ωc|

∫
∂ωc

F(Un)n ds = 0. (13)

The FV scheme (13) requires the construction of an approximation of the explicit normal flux integral.

Following [31] we design an original node-based approximation of this integral term relying on the partition

of ωc into sub-cells ωpc, and subfaces of subcells, as

∫
∂ωc

F(Un)n ds =
∑

p∈P(c)

∫
∂ωpc∩∂ωc

F(Un)n ds ≃
∑

p∈P(c)

∑
f∈SF(pc)

lpcfFpcf . (14)

where the surface integral term in the middle term is approximated along the subfaces f by means of the

subface flux attached to the subcell pc which is denoted by Fpcf .

Substituting (14) into (13) yields the subface-based generic Finite Volume scheme

Un+1
c −Un

c +
∆t

|ωc|
∑

p∈P(c)

∑
f∈SF(pc)

lpcfFpcf = 0, (15)

entirely characterized by the subface flux Fpcf .

Remark 1. We can retrieve the classical face-based FV scheme (also called two-point FV scheme)

Un+1
c −Un

c +
∆t

|ωc|
∑

f∈F(c)

lfFf = 0, (16)

assuming that the face flux, lfFf , from face f = [xp,xq] is equal to the sum of the two subface fluxes, that is
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0

dΛ

Figure 3: Left: illustration of a generic simple Riemann solver — Right: simple Riemann problem for our system composed of
three waves and two intermediate states.

lfFf = lpcfFpcf + lqcfFqcf .

3.2.1. Simple Lagrangian/Eulerian Riemann Solvers

A RS consists in computing, exactly or approximately, the solution of the system in the normal direction

n to an edge separating two constant cell states Uc and Ud. A so-called simple Eulerian RS considers

constant intermediate states U⋆
k, separated by simple waves, therefore given by constant wave speeds Λk, for

k = 1, . . . ,K, with U⋆
0 = Uc and U⋆

K = Ud, see figure 3 for an illustration. In our case we choose a simple

RS made of two intermediate states U⋆
c and U⋆

d, and, three waves Λc, Λ0 and Λd. These waves are deduced

from their Lagrangian counterparts −λc ≤ λ0 = 0 ≤ λd as

Λc = un,c − λc
1

ρc
= u⋆

n − λc
1

ρ⋆c
, Λ0 = u⋆

n, Λd = u⋆
n + λd

1

ρ⋆d
= un,d + λd

1

ρd
. (17)

In (17) we have considered the projection of the velocity vectors onto the normal, such that un,c = uc · n

and un,d = ud · n. Also, u⋆
n = up · n is the projection of an unknown point-centered velocity vector up.

If the RS preserves the positivity of intermediate densities, i.e.: ρ⋆c ≥ 0 and ρ⋆d ≥ 0, then the Eulerian wave

speeds in (17) are ordered by construction: Λc ≤ Λ0 ≤ Λd. In [31], it is shown that the positivity holds

true granted that the Lagrangian wave speeds satisfy an explicit condition on the star velocity u⋆
n. The

Lagrangian and Eulerian simple approximate RSs operating over the two states, called left and right, and

respectively associated to the cell c and d in the direction n, are expressed as (m is the constant Lagrangian
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mass)

WL

(
Vc,Vd,

m

t

)
=



Vc if m
t ≤ −λc,

V⋆
c if − λc <

m
t ≤ 0,

V⋆
d if 0 < m

t ≤ λd,

Vd if λd < m
t .

WE

(
Uc,Ud,

xn

t

)
=



Uc if xn

t ≤ Λc,

U⋆
c = U(V⋆

c ) if Λc <
xn

t ≤ Λ0,

U⋆
d = U(V⋆

d) if Λ0 < xn

t ≤ Λd,

Ud if Λd < xn

t .

(18)

Here, V 7→ U(V) is the Lagrange-to-Euler mapping defined by V =
1

ρ
(U− ρex) +

1

ρ
ex, where ex = (1, 0)t

[36, 31]. Because the Eulerian variables are U = (ρ, ρun, ρut)
t, then the Lagrangian ones are V = (ρ, un, ut)

t.

The Eulerian intermediate states, U⋆
s = (ρ⋆s, ρ

⋆
su

⋆
n, ρ

⋆
su

⋆
t,s)

t, will be entirely deduced from their Lagrangian

counterparts, V⋆
s = (1/ρ⋆s, u

⋆
n, u

⋆
t,s)

t for s = c, d respectively, refer to [36, 31] for more details. Following the

derivation in [31], we observe that the simple Lagrangian RS WL in (18) is parameterized by the normal

star-velocity u⋆
n, and, the intermediate states then read

1

ρ⋆c
=

1

ρc
+

u⋆
n − un,c

λc
,

1

ρ⋆d
=

1

ρd
− u⋆

n − un,d

λd
, (19)

u⋆
t,c = ut,c, u⋆

t,d = ut,d. (20)

In the Rankine-Hugoniot jump conditions (19-20) we have ommitted the ones related to the normal velocity

which state that

λc(u
⋆
n − un,c) + (pc − pc) = 0, and λd(u

⋆
n − un,d)− (pd − pd) = 0, (21)

where pc and pd may be different. Next, we invoke the consistency of the simple Lagrangian RS. By arranging

the previous equations, we arrive at

pd − pc = (λc + λd)u
⋆
n − λcun,c − λdun,d + pd − pc = (λc + λd)

{
u⋆
n −

[
λcun,c + λdun,d

λc + λd
− pd − pc

λc + λd

]}
. (22)

Introducing the Godunov acoustic normal velocity

un =
λcun,c + λdun,d

λc + λd
− pd − pc

λc + λd
, (23)

we can rewrite (22) as

pd − pc = (λc + λd) {u⋆
n − un} . (24)
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It is then important to remark that if u⋆
n = un then pd = pc and the simple Lagrangian RS is consistent with

its underlying conservation law. Thus, it induces a classical conservative Godunov-type FV scheme. On the

other hand, if u⋆
n ̸= un, then the simple Lagrangian RS is not consistent with its underlying conservation

law and thus does not induce a conservative Godunov-type FV scheme. The next section will construct a

nodal solver that allows to retrieve a node-based conservation.

The Lagrangian wave speeds −λc, λ0 and λd are ordered by construction and must be large enough to ensure

positivity preservation, for instance by fulfilling [31]

λc ≥ max (ρcac,−ρc(u
⋆
n − un,c)) , λd ≥ max (ρdad, ρd(u

⋆
n − un,d)) . (25)

Notice that the simple RS has been parametrized by the only remaining unknown: u⋆
n. Also, by construction,

the Eulerian approximate RS WE inherits the same properties as its Lagrangian counterpart WL such as

positivity preservation, wave ordering, etc.

3.2.2. Nodal solver

Recall that the simple Lagrangian RS previously described is parametrized by the normal velocity u⋆
n to

the current subface. Consequently, around a point p, there is as many normal velocities as subfaces impinging

on p. We make the fundamental assumption that there exists a unique nodal velocity up such that for any

point p we have

up · nf = u⋆
nf

, ∀f ∈ SF(p), (26)

that is for any subface f impinging at the node p with normal nf . Therefore up is shared by all subfaces/cells

around p, see figure 4. We recall that f is one subface impinging at point p which shares cell c and d, the

subface normal is nf and is oriented from c to d, and lf is the half-length of the subface f . The nodal solver

consists in solving a balance equation around the point p by summing the contributions produced by each

RS.

∑
fSF(p)

lf (pd − pc)nf = 0. (27)
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Figure 4: Illustration of the situation around a point p sharing three cells. The nodal velocity up projected onto the subface
normals n producing the u⋆

n velocities that parametrize the Riemann solver in direction n.

Substituting (24) into (28) and reminding that u⋆
n = up · nf , yields the linear system

∑
fSF(p)

lf ((λc + λd) {up · nf − un})nf = 0 (28)

⇐⇒

 ∑
fSF(p)

lf (λc + λd) (nf ⊗ nf )


︸ ︷︷ ︸

Mp

up =
∑

fSF(p)

lf (λc + λd)unnf︸ ︷︷ ︸
wp

, (29)

where (nf ⊗nf ) =

 n2
x nxny

nxny n2
y

 is a 2× 2 matrix in 2D attached to subface f . The matrix Mp is always

invertible if the mesh is non-degenerated. This linear system has a unique nodal velocity vector solution up

for any point p.

Once up is known, we can compute u⋆
nf

, the Lagrangian wave speeds λ, then the intermediate Lagrangian

Riemann states V∗
s , and, finally, deduce the Eulerian ones U∗

s. The foregoing system has been already

obtained when constructing a cell-centered FV discretization of multidimensional Lagrangian hydrodynamics

[41], also retrieved in [42, 31] for designing an Eulerian FV scheme.

By construction, the Eulerian approximate RS WE inherits the same properties as its Lagrangian coun-

terpart WL such as the positivity preservation, entropy production and wave ordering [31].

3.2.3. Multi-dimensional aware numerical flux.

Recall that the subface-based generic FV scheme (15) is entirely characterized by the subface flux Fpcf ,

which is computed taking into account the Eulerian RS (derived from its Lagrangian counterpart). Hence,
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the subface flux Fpcf between cells c and d sharing point p in direction n = npcf is given by:

Fn =
1

2
[Fn(Uc) + Fn(Ud)] − 1

2

[
|Λc|(U⋆

c −Uc) + |Λ0|(U⋆
d −U⋆

c) + |Λd|(Ud −U⋆
d)
]

− λc + λd

2
[up · n− un] (0, 1, 0)

t, (30)

where the point velocity up is computed by the nodal solver, the Eulerian wave speeds by (17), while the

Lagrangian ones (25) and the Godunov acoustic mean velocity unpcf
is given by (23). The extra-term in

(30) only appears for the momentum in the normal direction. It is easy to recognize that a classical (two

points) numerical flux is retrieved when one set up · n = un because the last term in (30) cancels out. In

this only case, the flux is the same at the face f for cell c and d but applied with a plus (resp. a minus) sign

in the cell c (resp. d). The conservation is classically obtained because there is no flux jump at the interface

between neighbour cells. However there is no reason a priori that a unique nodal velocity up exists to fulfill

this requirement.

Contrarily, in our approach, we accept that up ·n ̸= un. As such the numerical flux depends not only on the

two states adjacent to the subface but also on all states surrounding node p through the expression of the

nodal velocity up. Hence the name multi-point or multidimensional aware flux.

3.3. Time-step condition.

The time step, ∆t, is computed to ensure that the updated cell-average value, Un+1
c is a convex combina-

tion of Un
c , U⋆

c . Omitting the details that can be retrieved in [31] the practical explicit time step condition

writes

∆tc ≤
|ωc|∑

p∈P(c)

∑
f∈SF(pc)

lpcf

(
|un

c · npcf |+
λc

ρnc

) . (31)

The minimal time step over the cells is selected and reduced by a CFL < 1 number as

∆t = CFLmin
c

∆tc (32)

3.4. Second-order extension.

The second-order extension of the previous FV scheme is obtained by piece-wise reconstruction of prim-

itive variables supplemented with minmod or Ventakakrishnan slope limiters in space and Strong Stability

Preserving Runge-Kutta scheme in time for the second-order extension for the Eulerian FV scheme. The

first-order and second-order versions of the scheme have been validated for gas dynamics [37, 31] and shallow

water equations [43], in 1D, 2D and 3D.
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4. Algorithm for pressureless system of equations

In order to solve the pressureless system of equations, one must adapt the previous solver. The source

terms in (7) are easily taken into account. The second and third components of
∫
ωc

∇ · Fp(U) dv are simply

discretized as

∫
∂ωc

pn ds =
∑

f∈F(c)

lfpfnf , (33)

where pf = (ρf )gd, and, ρf is given by the Riemann solver, that is, it is either ρL, ρ⋆L, ρ⋆R or ρR depending

on the wave speeds, see (18).

On the other hand Q is nothing but a reaction term which at first and second orders in space can be

approximated as

∫
ωc

Q(U) dv = |ωc|


0

(Au)c ((ua)c − un
c )

(Au)c ((va)c − vnc )− ρnc g(1− (ρa)c/ρw)

 . (34)

For the second order in time, the source terms are approximated once for the predictor and one more time

for the corrector stage (the same if a RK scheme is employed).

This completes the description of the numerical method.

5. Numerical results

In this section, we present two test cases to present the behavior of the numerical method. The first one

is a classical Riemann problem for which we perform a grid convergence study. Then a more advanced 2D

test involving the flow around a cylinder is simulated for which we show that the current numerical method

is able to produce a physically valid solution. Notice that this numerical method has been already validated

for gas dynamics and shallow-water systems of equations [31, 43]. The Courant number is set to 0.5 for all

computations.

5.1. 1D Riemann problem

The first test case is a 1D Riemann problem on domain [0 : 50] where the discontinuity is located at

x = 25. The left/right states have the same density of 1 kg/m−3, and v = 0 component. The x-velocity

component are uL = −5 m/s and uR = 5 m/s. This leads to the generation of two rarefaction waves
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emanating from the discontinuity, leading to an almost vaccum central state. The parameters are set to

g = 1 and d = 1 for simplification. For this test the source term is canceled to solely validate the numerical

method for the homogeneous system of PDEs. In figure 5 we plot the density/velocity when using a mesh

made of 50, 100 and 200 cells. We can clearly see that the method can capture the rarefaction waves and

converges as the mesh is further refined. No spurious effect is observed even if the density drops to ∼ 10−3

in the rarefied central region.
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Figure 5: 1D Riemann problem — Numerical density (left) and velocity (right) for 50, 100 and 200 uniform cells.

5.2. Droplets motion around a cylinder

The flow of cloud droplets around a cylinder is studied to demonstrate the new solver’s capability. The

Figure 6: Mesh made of 20000 radial quadrangles. Left: full view. Right: zoom.
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computational domain is a disk of radius 1.5 into which a cylinder at position (0, 0) of radius 0.5 is embeded.

A structured mesh made of 20000 radial quadrangles is considered – 200 points cover the cylinder and 100

cells in radial direction, see figure 6.

First, the Euler flow solution around this cylinder is computed, see figure 7-top panels. Farfield boundary

conditions are imposed on the domain and slip wall boundary condition on the cylinder. The farfield

temperature is set to 273.15 K, the pressure at 101325.0 Pa, u∞ = 66.2643 m/s, ρ∞ = 1.2922 kg/m3 and

the Mach number at 0.2.

Once the airflow steady state solution is computed, the pressureless system is solved. The initial velocity

field for the droplet is the same as the air velocity field. The water density is ρw = 1000 kg/m3. At farfield,

the droplet velocity is equal to the air velocity and ρ/LWC = 1 with LWC the liquid water content of the

cloud. In our computations the reference droplet diameter that appears in the artificial pressure is equal

to the droplet diameter and set to 20 µm or 40µm. The steady state solution of the pressureless model is

computed and presented in figure 7-middle/bottom. The droplet solution shows an increase in liquid water

content on the cylinder front part. Also, very low-density region is visible on the back of the cylinder. In

a narrow area close to the cylinder, the liquid water content goes from around one to around zero. Results

are in agreement with literature. When the droplet diameter increases from 20 to 40 we can observe a slight

variation on the density and velocity component plots. Moreover the heavier the droplets, the less prone

they are to be dragged by the background flow, i.e the density of droplets sticking to the cylinder is then

higher.

Next in figure 8 we present the streamlines of the background flow, and the solution for droplet diameters

20 and 40 µm. We can obviously observe that the droplet diameter plays a role in the streamlines. The

massive droplets are less entrained by the background flow as can be seen on the middle and right panels.

At last, in figure 9, we present the value of the collection efficiency, βc = ρc max(uc · ncf,cyl, 0)/u∞, for

each cell in contact with the cylinder and where nf,cyl is the unit edge normal pointing inside the cylinder.

In this figure βc has been clipped if its value is negative. As expected the maximal values of β are located

close to the stagnation point. We can observe that if the droplets are heavier, as expected, the value of β is

higer, meaning that more droplets impact the cylinder.

6. Conclusion and Perspectives

In this work, we investigate the multi-point Riemann solver adapted to solve water droplets flow. The

two-phase flow is modelled using a one-way coupling. The obtained Eulerian droplet equations, a pressureless

equation system, must be modified to obtain a hyperbolic system. A perturbation parameter equivalent to
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Figure 7: Flow solution around the cylinder. Density, velocity components (letf to right) — Top panels: background flow.
Middle/Bottom Panels: pressureless model for droplet diameter of 20µm and 40µm respectively.
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Figure 8: Flow solution around the cylinder. Streamlines of the background flow (left), and of the droplets with diameters
20 µm (center) and 40 µm (right).
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Figure 9: Pressureless flow solution around the cylinder. Collection efficiency βc = ρc max(uc · ncf,cyl, 0)/u∞ for droplet
diameters 20 µm and 40 µm.
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a pressure term is added on the left side and subtracted on the right side of the momentum equations. The

multi-point solver is then adapted to the pressureless system. A second order in time explicit scheme is used

to march the solution toward the steady state. Preliminary results have been obtained for the simulation of

droplets of different masses dragged around a cylinder. This numerical method presents some advantages

compared to classical two-point schemes. First it is a mutli-dimensionally aware scheme, meaning that

all surrounding cells participate to the update. As such the method is insensitive to classical pathologies

that plague classical approaches such as carbuncle or odd-even instabilities. Second, the formulation of the

method is by construction independent of the mesh, should it be structured or unstructured, and is positivity

and entropy preserving. Therefore there is less mesh-imprint [31, 32]. And third, the derivation of the scheme

allows to discretize naturally diffusive terms and effects, see [44, 45], opening the path towards more advanced

droplet models. Further investigations and simulations should be performed to assess the capacities of the

proposed scheme to solve the pressureless system in genuine demanding flying situations. This is the topic

of a set of future works, where genuine comparisons with existing experimental and simulation data are

envisionned.
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