
HAL Id: hal-04671735
https://hal.science/hal-04671735v1

Preprint submitted on 16 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Efficient and scalable atmospheric dynamics simulations
using non-conforming meshes

Giuseppe Orlando, Tommaso Benacchio, Luca Bonaventura

To cite this version:
Giuseppe Orlando, Tommaso Benacchio, Luca Bonaventura. Efficient and scalable atmospheric dy-
namics simulations using non-conforming meshes. 2024. �hal-04671735�

https://hal.science/hal-04671735v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Efficient and scalable atmospheric dynamics simulations
using non-conforming meshes

Giuseppe Orlando(1),

Tommaso Benacchio(2), Luca Bonaventura(3)
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Abstract

We present the massively parallel performance of a h-adaptive solver for atmosphere
dynamics that allows for non-conforming mesh refinement. The numerical method is
based on a Discontinuous Galerkin (DG) spatial discretization, highly scalable thanks
to its data locality properties, and on a second order Implicit-Explicit Runge-Kutta
(IMEX-RK) method for time discretization, particularly well suited for low Mach
number flows. Simulations with non-conforming meshes for flows over orography can
increase the accuracy of the local flow description without affecting the larger scales,
which can be solved on coarser meshes. We show that the local refining procedure has
no significant impact on the parallel performance and, therefore, both efficiency and
scalability can be achieved in this framework.
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1 Introduction

Efficient numerical simulations of atmospheric flows are crucial for weather and climate
predictions and pose several computational challenges. Peculiar to this application are
the timeliness constraints that dictate maximum admissible simulation runtimes in
operational weather prediction. Medium range numerical weather prediction (NWP)
forecasts up to ten days ahead are typically expected to complete within one hour
in the forecast cycles of weather centres, thus imposing demanding modelling choices
in order to guarantee computational efficiency. In a context of increasing need for
computational resources due to higher spatial resolutions, massively parallel model
scalability is therefore required.

From a physical standpoint, slow-moving atmospheric flows of meteorological in-
terest are characterized by a speed much lower than the speed of sound, so that their
Mach number is low and compressibility effects are usually deemed not very relevant.
Weakly compressible flows are an example of problem with multiple length and time
scales [11]. Moreover, atmospheric flows display phenomena on a very wide range of
spatial scales that interact with each other. Strongly localized features require a very
high spatial resolution to be correctly resolved, while larger scale features, such as
midlatitude pressure systems and stratospheric flows, can be adequately resolved on
coarser meshes. Hence, the design of efficient and stable numerical schemes for such
models is a challenging task.

Because of its multi-scale nature, NWP and, in particular, flows over orography
are an apparently ideal framework to develop adaptive numerical approaches based
on variable resolution meshes. However, mesh adaptation strategies have slowly found
their way into the NWP literature, due to concerns about the accuracy of variable
resolution meshes for the correct representation of atmospheric wave phenomena, and
the greater complexity of an efficient parallel implementation for non-uniform or adap-
tive meshes. Moreover, numerical strategies with variable resolution meshes typically
employ local mesh refinement only in the horizontal directions, while columns of cells
with the same horizontal dimension are employed in the vertical direction [12, 16, 24].
A non-conforming mesh is characterized by neighbouring cells with different resolution
on both the horizontal and the vertical direction [21]. In [9], a full 3D nesting approach
for atmospheric flows is presented. However, the method is tested only on cases with-
out orography. To the best of our knowledge, in [21] the authors firstly proposed a
method able to decrease both horizontal and vertical resolution as height increases,
filling a gap in the NWP literature and showing how fully 3D non-conforming meshes
can be successfully employed for flows over orography. The solver is based on the
IMEX-DG method proposed in [18] (see also [22]) and employed for atmospheric flows
in [19, 20, 21]. Thanks to its data locality features, DG simulations are character-
ized by small communication-to-computation ratios and increasingly good scalability
at higher orders of accuracy.

In this work, we present the parallel performance of the solver implementation,
carried out in the framework of the deal.II library [1, 2] which natively allows for
the use of non-conforming meshes. Using a well-established library with an active user
community allows the investigation of advanced numerical choices without the need to
code basic features of the numerical method or to implement parallel paradigms. Here
we show that the local mesh refinement procedure does not adversely affect the parallel
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efficiency and scalability of the model compared to the simulations using uniform
meshes, as measured in runs performed on the MeluXina EuroHPC high-performance
computing facility.

The manuscript is structured as follows. In Section 2, we briefly review the model
equations and the numerical framework. The application and the analysis of paral-
lel performance for a relevant benchmark is presented in Section 3. Finally, some
conclusions are reported in Section 4.

2 The model equations and the numerical frame-

work

The compressible Euler equations of gas dynamics represent the most comprehensive
mathematical model for atmosphere dynamics [7, 23]. Let Ω ⊂ Rd, 2 ≤ d ≤ 3 be a
domain and denote by x and t the spatial coordinates and the temporal coordinate,
respectively. The mathematical model reads as follows:

∂ρ

∂t
+∇· (ρu) = 0

∂ (ρu)

∂t
+∇· (ρu⊗ u) +∇ p = ρg (1)

∂ (ρE)

∂t
+∇· [(ρE + p)u] = ρg · u,

for x ∈ Ω, t ∈ (0, Tf ], supplied with suitable initial and boundary conditions. Here
Tf is the final time, ρ is the density, u is the fluid velocity, p is the pressure, and ⊗
denotes the tensor product. Moreover, g = −gk is the acceleration of gravity, with
g = 9.81m s−2 and k being the upward pointing unit vector in the standard Cartesian
frame of reference. Finally, E denotes the total energy per unit of mass and we point
out the one can rewrite ρE = ρe+ ρk, where e is the internal energy and k = 1

2∥u∥
2 is

the kinetic energy. System (1) is complemented by the equation of state of ideal gases,
given by p = ρRT , where R is the specific gas constant and T denotes the temperature.
We take R = 287 J kg−1K−1.

A dimensional analysis can be carried out, leading to the following system of equa-
tions [11, 17, 18, 22]:

∂ρ

∂t
+∇· (ρu) = 0

∂ (ρu)

∂t
+∇· (ρu⊗ u) +

1

M2
∇ p = − 1

Fr2
ρk (2)

∂ (ρE)

∂t
+∇·

[(
ρe+M2ρk + p

)
u
]

= −M2

Fr2
ρk · u,

where, with a slight abuse of notation, the non-dimensional variables have the same
symbols of the dimensional ones. Here, M denotes the Mach number, i.e. the ratio
between the local fluid speed and the speed of sound, while Fr is the Froude number,
i.e. the ratio between the flow inertia and gravitational forcing.

Atmospheric flows, as those considered in this work, are characterized by low Mach
number values. In the low Mach number limit, pressure gradient terms yield stiff
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components for the resulting semi-discretized ODE system, since the pressure gradients
in (2) are proportional to 1

M2 . Hence, following [4, 5], the method proposed in [18]
couples implicitly the energy equation to the momentum equation, while the continuity
equation is treated in a fully explicit fashion. High-order accuracy in time is then
achieved making use of Implicit-Explicit Runge-Kutta (IMEX-RK) time integrators
[10], which are widely employed for ODE systems that include both stiff and non-
stiff components. Finally, for the spatial discretization we employ the Discontinuous
Galerkin (DG) method [6], which combines high-order accuracy and flexibility in a
highly data-local framework. More specifically, we aim at employing non-conforming
meshes, i.e. meshes for which the resolution between two neighbouring cells can be
different along both horizontal and vertical direction. The DG method naturally allows
the use of this kind of meshes [8] without any hanging node appearing. We refer to [21]
for a short introduction to non-conforming meshes, and to [18, 19, 22] for a complete
analysis and discussion of the numerical methodology.

3 Numerical results

In this Section, we consider an idealized three-dimensional test case of an atmospheric
flow over orography [14, 15, 21]. Simulation parameters are related to two Courant
numbers, the so-called acoustic Courant number C, which is based on the speed of
sound c, and the advective Courant number Cu, which is based on the speed of the
local flow velocity u:

C = rc∆t/H Cu = ru∆t/H.

Here, r is the polynomial degree used for the DG spatial discretization, H is the
minimum cell diameter of the computational mesh, and ∆t is the time step adopted
for the time discretization. We consider polynomial degree r = 4. In the following, we
analyze the accuracy of the simulations with mesh refinement and then focus on the
scalability of the numerical model. The 9.5.2 deal.II [1, 2] release has been used to
produce the results in this section. The simulations have been run using up to 1024
2x AMD EPYC Rome 7H12 64c 2.6GHz CPUs at MeluXina supercomputer 1 and
OpenMPI 4.1.5 has been employed.

3.1 3D medium-steep bell-shaped hill

We consider a three-dimensional configuration of a flow over a bell-shaped hill, origi-
nally proposed in [14] and also employed in [15, 19, 21]. The computational domain is
Ω = (0, 60)× (0, 40)× (0, 16) km. The mountain profile is defined as follows:

h(x, y) =
hc[

1 +
(
x−xc
ac

)2
+
(
y−yc
ac

)2
] 3

2

, (3)

with hc = 400m, ac = 1km, xc = 30 km, and yc = 20 km. The buoyancy frequency
is N = 0.01 s−1, whereas the background velocity is u = 10m s−1. The final time is

1https://docs.lxp.lu/
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Tf = 10h. The initial conditions read as follows [3]:

p = pref

{
1− g

N2
Γ
ρref
pref

[
1− exp

(
−N2z

g

)]}1/Γ

(4)

ρ = ρref

(
p

pref

)1/γ

exp

(
−N2z

g

)
, (5)

where pref = 105 Pa and ρref =
pref
RTref

, with Tref = 293.15K. Finally, we set Γ = γ−1
γ ,

with γ = 1.4 being the isentropic exponent. Wall boundary conditions are employed
for the bottom boundary, whereas non-reflecting boundary conditions are required by
the top boundary and the lateral boundaries. We refer to [21] for the implementation
of non-reflecting boundary conditions.

We consider two different meshes: a uniform mesh composed by 60 × 40 × 16 ele-
ments, i.e. a spatial resolution of 250m along all the directions, and a non-conforming
mesh composed by Nel = 1958, with its finest resolution corresponding to that of the
uniform mesh (Figure 1). Notice that the resolution depends on the polynomial degree
r employed for the spatial discretization. More specifically, the effective resolution is
computed dividing the size of the element along each direction by the polynomial de-
gree. We take ∆t = 2 s, yielding a maximum acoustic Courant number C ≈ 2.75 and
a maximum advective Courant number Cu ≈ 0.13 for the finest uniform mesh.

The contours plots of the vertical velocity on a x − z slice placed at y = 20 km
and on a x − y slice at z = 800m show the accuracy and the robustness of simula-
tions employing non-conforming meshes, without significant differences compared to
the simulation with uniform meshes (Figures 2 and 3). Specifically, no spurious wave
reflections arise at the internal boundaries that separate regions with different mesh
resolutions. Hence, it is sufficient to employ a higher resolution only around the orog-
raphy, whereas larger scales along all the directions can be resolved at a much coarser
resolution.

Figure 1: 3D medium-steep bell-shaped hill test case, non conforming mesh. x − z
slice at y = 20 km.
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Figure 2: Vertical velocity in the 3D medium-steep bell-shaped hill test case at
Tf = 10h, x − y slice at z = 800m. Contours in the range [−1.5, 1.3]m s−1 with
a 0.1m s−1 interval. Top: comparison between the uniform mesh (black lines) and
the non-conforming mesh (red lines). Negative contours are dashed. Bottom: abso-
lute difference between the uniform mesh and the non-conforming mesh.

3.2 Efficiency and scalability results

Besides producing results that are of comparable accuracy with those obtained with
a uniform mesh, the non-conforming mesh provides sizeable computational savings.
With reference to the results in Figures 2 and 3, the wall-clock time of the simulation
with the non-conforming mesh is 2560 s, whereas the wall-clock time of the simulation
with the uniform mesh is 36 500 s. Hence, the use of the non-conforming mesh yields a
computational time saving of around 93% with respect to the uniform mesh (see also
Table 6 in [21]).

The size of this benchmark makes it a good candidate for a parallel scaling test.

7



Figure 3: As in Figure 2, but showing an x − z slice at y = 20 km, and contours in
the range [−2.25, 2]m s−1 with a 0.2m s−1 interval.

We consider a uniform mesh composed by 120 × 80 × 32 = 307200 elements with
polynomial degree r = 4, leading to around 38.5 millions of unknowns for each scalar
variable, and a non-conforming mesh composed by Nel = 204816 elements, yielding
around 25.6 millions of unknowns for each scalar variable.

The strong scaling test evaluates the wallclock time of the simulations at fixed
computational load (resolution) and using an increasing amount of computational re-
sources. More specifically, we use 1, 2, 4, 8 and 16 full MeluXina CPU nodes with 128
cores each. In an ideal situation, the simulations speed up linearly with the amount
of resources used. A good linear scaling is obtained up to 2048 cores, even with
super-linear behaviour due to cache effects up to 1024 cores (Figure 4). In addition to
the mentioned data locality of the discontinuous finite element approach, the favorable
scaling is due to the matrix-free approach adopted in the solver, where no global sparse
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matrix is built and only the action of the linear operators is actually computed. These
results represent a sensible improvement with respect to those previously presented in
[19], which evaluated scalability up to approximately half the cores used in this paper.
The apparent better behaviour of the uniform mesh for a larger number of cores is
due to the fact that more degrees of freedoms are involved and, therefore, the role of
communication costs is less evident.

In order to further emphasize this point, we perform an analogous scalability anal-
ysis with shared nodes, i.e. using computational nodes in which other jobs are simul-
taneously running. More specifically, we use 48, 96, 192, 384, 768 and 1536 MeluXina
cores in shared nodes, and also perform runs at different polynomial degrees. One can
easily notice that the use of shared nodes strongly degrades the parallel performance for
more than about a thousand cores, and the effect is more marked at lower polynomial
orders (Figure 4). Importantly, the speedup with the non-conforming mesh is compa-
rable with that with the uniform mesh. Overall, the results confirm that the use of
the Discontinuous Galerkin method, for which the stencil involves only the neighbours
of each element, independently of the polynomial degree, provides an advantageous
framework in terms of parallelization.

Moreover, a weak scaling analysis has been performed, using around 105 unknowns
per core for each scalar variable and increasing the problem size for an increasing
amount of resources. For ideal scaling, wallclock time should not increase for increasing
problem size. For the simulations both using the uniform mesh and using the non-
conforming mesh, parallel performance is less than optimal in this case (Figure 5).
However, the implementation actually outperforms the findings of previous deal.II

studies [13], where the efficiency of the Navier-Stokes solver implemented using the
same library as in this paper drops to 20%. In our simulations, a profiling study reveals
that most of the time is spent in the fixed point loop to update the pressure variable, for
which a non-symmetric linear system arises and a GMRES solver is therefore employed
[18, 19, 21]. However, in terms of percentage time with respect to the total run time,
the time spent in the linear solver is similar with increasing core counts (Figure 5).
It is therefore expected that an improved solver strategy based on, e.g., advanced
preconditioning techniques, will improve efficiency independently of the computational
resources employed.
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Figure 4: Strong scaling analysis. Computed speedup as a function of the number of
cores used in the simulations with the uniform mesh using polynomial degree 4 (solid
black lines) and polynomial degree 2 (dashed blue lines), and with the non-conforming
mesh (dashed red lines). Top: exclusive use of computational nodes. Bottom: shared
use of computational nodes.
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Figure 5: Weak scaling analysis. Top: parallel efficiency as a function of number of
cores used in the simulations with the uniform mesh (solid black line) and the non-
conforming mesh (dashed red line). Bottom: distribution of the computational time
spent in various blocks of the algorithm as a function of number of cores.
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4 Conclusions

This paper has reported results of performance tests with a new high-order Discon-
tinuous Galerkin model for atmospheric dynamics simulations using non-conforming
mesh refinement. On a three-dimensional Cartesian benchmark of dry compressible
fluid flow over orography with a stably stratified background atmosphere, the sim-
ulations using non-conforming meshes provide results that are equally accurate and
more than 90% more efficient than simulations using uniform meshes that are standard
in operational atmospheric modelling. In addition, the data locality features of the
matrix-free, discontinuous finite element-based approach ensure good CPU scalability
as measured in parallel runs with the state-of-the-art MeluXina EuroHPC facility.

These results open up a number of future avenues for investigations. First, en-
hanced realistic simulations will come from the inclusion of more complex physical
phenomena, in particular moist air, and the use of more general equations of state for
real gases, for which the numerical method proposed in [18] has been already shown to
be effective. Next, the development of a three-dimensional dynamical core in spherical
geometry including rotation will enable the testing on more realistic atmospheric flows,
for which more sizeable computational resources will be required. This more general
and computationally heavier context will make it easier to fine-tune the performance
and improve the findings in this paper, especially regarding weak scaling, and to gauge
the viability of the proposed model towards full-fledged numerical weather prediction
capability.
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