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Québec, QC, Canada, G1V 0A6
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In the realm of cable-driven parallel robots (CDPRs),
the conventional notion entails that each cable is directly
actuated by a corresponding actuator, implying a direct
relationship between the number of cables and actuators.
However, this paper introduces a paradigm shift by con-
tending that the number of cables should be contingent
upon the desired workspace, while the number of actu-
ators should align with the robot’s degrees of freedom
(DoF). This novel perspective leads to an unconventional
design methodology for CDPRs. Instead of commenc-
ing with the number of actuators and cables in mind,
we propose an approach that begins with defining the
required workspace shape and determines the requisite
number of cables. Subsequently, an actuation scheme is
established where each actuator can drive multiple ca-
bles. This process entails the formulation of a transmis-
sion matrix that captures the interplay between actuators
and cables, followed by the mechanical implementation
of the corresponding cable-pulley routing. To illustrate
this approach, we provide an example involving a 2-DoF
CDPR aimed at covering a rectangular workspace. No-
tably, the resulting Wrench-Closure Workspace (WCW)
and Wrench-Feasible Workspace (WFW) of the proposed

designs exhibit favorable comparisons to existing CDPRs
with more actuators.

1 INTRODUCTION
Cable robots are typically categorized into three dis-

tinct classes, contingent upon the quantity of cables and
actuators: under-constrained, fully-constrained, and over-
constrained [1, 2, 3, 4, 5, 6]. While the presence of
redundancy in actuation becomes imperative owing to
the unilateral behavior of cables, which solely facili-
tate tension forces [7, 8], the concept of underactua-
tion represents a well-established notion in the realm of
robotics [9, 10, 11, 12, 13]. At its core, it signifies having
fewer inputs than outputs, and fewer actuators than de-
grees of freedom. Interestingly, the strategic allocation of
a larger number of cables than actuators can yield the dual
benefits of expanded workspace and reduced complexity
in the design of CDPRs [14, 15].

One of the prevalent architectural choices for planar
CDPRs is meant to encompass a rectangular workspace,
typically involving four cables and four actuators (see
Fig. 1(a)). This configuration imparts an actuation redun-
dancy of two to a CDPR equipped with four cables and a
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Fig. 1: Planar CDPRs with four cables and a point-mass
end-effector: (a) having four actuators; (b) using a trans-
mission system to drive four cables with three actuators

point-mass end-effector. To ensure a wrench-closure state
for the end-effector, an n-DoF CDPR generally requires
a minimum of n+ 1 actuated cables, given the constraint
that cables can exert tension but not compression. In the
context of the 2-DoF planar CDPR with a point-mass end-
effector under examination, this translates to a minimum
requirement of three actuators, resulting in an excess of
one actuator. The presence of additional actuator(s) adds
to the robot cost and complexity which prompts the explo-
ration of alternatives. Our approach consists in retaining
the existing four cables, while seeking a transmission sys-
tem that permits their operation with just three actuators,
as depicted in Fig. 1(b).

Birglen and Gosselin [16] delved into the force trans-
mission attributes of fingers in configurations of under-
actuation. In [17], the same authors present a thorough
investigation into the kinetostatic analysis of underactu-
ated fingers within robotic systems. The study conducted
in [18] encompasses a comprehensive exploration of the
design and applications of an optimally unstable underac-
tuated gripper. Furthermore, [19] offers an in-depth ex-
amination of geometric design considerations pertaining
to three-phalanx underactuated fingers, showcasing trans-
mission mechanisms either of linkages or tendons and
pulleys. The same authors, in [20], propose a method for
analyzing the force capabilities of interconnected differ-
ential mechanisms, namely, a pivotal aspect in extending
the underactuation principle from fingers to the encom-
passing hand. Additionally, [21] introduces an underac-
tuated hand featuring five actuators, adept at executing a
spectrum of grasping and in-hand repositioning tasks.

Cable-pulley transmission systems offer a distinct

amalgamation of advantages, including zero-backlash
motion, high stiffness, low stiction, and reduced friction,
rendering them highly desirable for applications involv-
ing force and torque control [22]. In [23], Kevac and
Filipovic presented a comprehensive overview of diverse
construction modeling methodologies in cable-suspended
parallel robots (CSPRs). They outlined six categories of
CSPR systems designed for camera carriers, capable of
covering the rectangular workspace using only three ac-
tuators instead of the conventional four. While they did
not specify the exact percentage of the desired workspace
area covered by their proposed concepts, their work intro-
duced an innovative approach to optimizing actuation in
cable-suspended parallel robots.

In [24], researchers addressed the challenge of ensur-
ing that the orientation of a CDPR moving platform (MP)
remains independent from moments generated by the ca-
ble loops. The aim is to achieve this while utilizing
no more actuators than the number of degrees of free-
dom of the CDPR. The solution introduced is a planar
Cable-Driven Parallel Crane design, featuring the MP
with an embedded mechanism and a specialized transmis-
sion module. The MP’s connection to the framework in-
volves a triple parallel cable arrangement that constrains
orientation and includes a cable loop for actuating the em-
bedded mechanism. The design and fabrication of the
transmission system allow it to control over both the dou-
ble parallelogram’s dimensions and the cable loop’s cir-
culation. This approach results in a robotic system with
three actuators and DoF.

In [25], two novel architectures for planar spring-
loaded CDPRs that do not require actuation redundancy
are proposed. The authors combine springs with a cable-
loop system to eliminate the need for actuator redun-
dancy, allowing for N actuators to control N -DoF mo-
tion. The proposed method ensures that the cables
and springs are kept in tension within a rectangular
workspace, but preloading of the springs is required to
cover the entire workspace. The authors suggest that
appropriate adjustments to the portion of stiffness and
preload can increase the workspace.

The exploration of pulleys and additional cables as a
means to reduce the number of actuators in CDPRs has
been previously investigated [26, 27, 4]. The idea of em-
ploying cable differentials in the design of both spatial
and planar CDPRs has been introduced in [26, 27]. The
authors primarily focus on comparing outcomes attained
by employing a single actuator alongside an increased
number of cables and differentials to ascertain the extent
of workspace coverage [26]. In [27], the authors resort to
differentials to drive multiple cables of a planar CDPR
through a single actuator, thereby minimizing the total



number of actuators required. Their findings demonstrate
that, for a given number of actuators, the implementation
of differentials can result in larger workspaces and en-
hanced kinetostatic performances. Notably, they covered
the triangular shape of the WCW using three actuated ca-
bles.

In [4], a configuration for planar CDPRs that utilizes
parallelogram links instead of conventional links is pre-
sented. The use of parallelogram links ensures that the
cables remain in tension during the robot movements,
thereby enhancing its dexterity and stiffness. The au-
thors take advantage of cable redundancy to preserve the
robot’s structure while employing three actuators in the
design of planar CDPRs. In this research, a general for-
mulation for parallelogram links is provided to support
the suitable design of planar CDPRs. Although the pro-
posed structure is applied to both fully constrained actu-
ated and redundantly actuated configurations, it is unable
to cover the entire rectangular workspace.

In our prior work [28], we designed a transmis-
sion system that enabled actuators to drive multiple ca-
bles through the use of a transmission matrix and cor-
responding cable-pulley routing. In that paper, we in-
troduced novel cable robot architectures with the mini-
mization number of actuators while simultaneously pre-
serving a rectangular WCW. These architectures diverge
from traditional cable robot designs, which convention-
ally maintain a one-to-one correspondence between ca-
bles and actuators. In the proposed architectures, a single
cable can be associated with multiple actuators, and vice
versa, leading to a reduction in the overall number of re-
quired actuators.

In a general scenario, if a CDPR with n degrees of
freedom is driven by p actuators and does not depend on
external forces like gravity to maintain cable tension, a
necessary equilibrium condition is given by p ≥ n+1. To
effectively describe the interplay between actuators and
driving cables, we employ the transmission matrix map-
ping the actuator torques onto the resulting cable tensions.
We determine which transmission matrices are equiva-
lent from the standpoint of wrench-closure of the end-
effector and we propose a unique representation for these
linear subspaces of equivalent matrices. Alongside this,
we present a new expression for the WCW and an or-
ganized synthesis method for determining optimal values
for the previously proposed transmission system in [28],
with the objective of expanding the robot’s workspace.

The organization of this paper is as follows. The
foundational mathematical groundwork for the kineto-
static analysis of n-degree of freedom (n-DoF), m-cable,
p-actuator CDPRs is presented in Section 2. Section 3
delves into the formulation of the transmission matrix for

the synthesis of the optimization problem, which is for-
mulated to determine the optimal values that yield the
maximum area for the WCW. Section 4 then presents
the solution to this synthesis problem, its embodiment,
WCW, wrench-feasible workspace (WFW), and experi-
mental validation; finally, the conclusions are presented
in Section 5.

2 KINETOSTATIC ANALYSIS
In this section, we present the kinetostatic analysis

of the proposed n-DoF m-cable p-actuator planar CDPR.
The equations of equilibrium of the end-effector can be
written as Eq. (1), as reported in [29].

Wt+we = 0n , t > 0m, (1)

where W ∈ Rn×m is the wrench matrix of the cable
robot when its end-effector is located at pose p, we is the
external wrench and t is the array of cable tensions. The
WCW is the set of poses of the end effector where any
wrench can be generated at the end effector by tightening
the cables [30]. Roberts et al. [31] showed that a given
pose lies inside the WCW (i.e., is wrench closure) if and
only if one can find a vector t⊥ > 0m in the nullspace of
W, where > indicates a componentwise strict inequality.

In our case, however, not all the tensions found in the
nullspace of W can be generated from p < m actuators.
Let us define matrix T ∈ Rm×p, which represents the
linear transmission between actuators and winches. The
matrix T maps the actuator torques τ ∈ Rp onto the cable
tensions t ∈ Rm, namely,

t = Tτ . (2)

To determine whether there exists a solution (T, τ )
to Eqs. (1) and (2) for any external wrench we ∈ Rn, we
must identify a positive vector t that lies simultaneously
within the nullspace of the wrench matrix W(p) and in
the range1 of matrix T. To accomplish this, we recast
Eqs. (1) and (2) into matrix form, which yields:

[
W 0n×p

1m×m −T

][
t
τ

]
=

[
0n

0m

]
, (3)

1The range (a.k.a. the column space or image) of a matrix is the span
of its column vectors.



where 1m×m is the m × m identity matrix and 0n×p is
the n × p zero matrix. The solution to Eq. (3) amounts
to computing the nullspace of the (m + n) × (m + p)
matrix and verifying whether t > 0m. As p = n + 1,
the number of columns is one more than the number of
rows and this matrix has a rank of m + n unless one of
W and T is rank-deficient. To compute this nullspace
symbolically, let us modify it by adding two vectors of
dummy variables: z1 ∈ Rm and z2 ∈ Rp, as the first row
of the matrix of Eq. (3). This yields the square matrix

A =

 zT1 zT2
Wn×m 0n×p

1m×m −Tm×p

 (4)

Lemma 1. Let z be any vector in Rm+p, let W′ ∈
R(m+n)×(m+n+1) be of full rank, and let us define

A ≡
[
zT

W′

]
∈ R(m+n+1)×(m+n+1) and

x⊥ ≡ ∂det(A)

∂z
.

(5)

Then x⊥ is different from 0(m+n+1) and lies in the
nullspace of W′, i.e., W′x⊥ = 0(m+n).

Proof. If we let det(A) be the determinant of A,
then, by definition, we have

Aadj(A) = det(A)1(m+n+1)×(m+n+1). (6)

where adj(A) is the adjoint of A. Let us partition this
matrix as adj(A) = [α Γ], where α ∈ Rm+n+1 and
Γ ∈ R(m+n+1)×(m+n). This allows us to rewrite eq. (6)
as

[
zT

W′

]
[α Γ] =

[
zTα zTΓ
W′α W′Γ

]
=

[
det(A) 0T

m+n

0m+n det(A)1(m+n)×(m+n)

]
.

(7)

Focusing on the upper-left blocks of this matrix equality,
we have the equation zTα = det(A). Because z appears
in exactly one row of A, the properties of determinants
allow us to conclude that det(A) is linear in z. If det(A)

is linear in z and equal to zTα, then this implies that α
is independent from z. As a result, the differentiation of
both sides of zTα = det(A) with respect to z yields sim-
ply

∂zTα

∂z
= α =

∂det(A)

∂z
= x⊥. (8)

Moreover, because W′ is of full rank by assumption, we
have det(A) = 0. This determinant being linear in z,
we conclude that its gradient cannot be null, i.e., x⊥ =
0(m+n+1). On the other hand, the lower-left block of the
matrix equality (7) yields

W′α = 0m+n, (9)

and therefore α is in the nullspace of W′.
We complete the proof by comparing Eqs. (8) and (9)

concluding that

x⊥ = α =
∂det(A)

∂z
. (10)

□
Using Lemma 1 to calculate the cable tensions,

we can take the partial derivative of the determinant of
Eq. (4). As stated in Lemma 1, W′ should be of full
rank. This condition is satisfied when both Wn×m and
Tm×p are of full rank. By knowing that t⊥ is the first
column of adj(A), the WCW of the proposed CDPR is
the set of poses where:

t⊥ =
∂

∂z1
det(A) > 0m, (11)

Since t⊥ can be computed in closed form, leav-
ing the pose parameters as variables and equating to
zero the entries of t⊥ yields the potential bound-
aries of the WCW. In this research the boundary
equations were computed in Maple with the code
Gradient(Determinant(A),z1); but it could be
done with any other symbolic computation language. To
our best knowledge, this method of tracing the WCW for
CDPRs where T ̸= Im×m has not been reported before.

The exploration of the impact of various T matrices



on the WCW area can shed light on the importance of
this critical component in the successful implementation
of 2-DoF CDPRs with three actuators. As an example,
the WCW resulting from two T matrices are illustrated
in Fig. 2. Due to the significance of the T matrix in de-
termining the WCW area, the next section of this paper
focuses on a methodology to optimize the transmission
matrix to achieve a rectangular-shaped workspace.

T =


1 1 0
0 −1 1
1 −1 0
1 0 −1



(a)

T =


1 1 0
1 1 1
1 −1 0
1 0 −1



(b)

Fig. 2: Influence of two different transmission matrices
on ((a) and (b)) the WCW of a 2-DoF CDPR with three
actuators

3 FORMULATION OF THE SYNTHESIS OF THE
TRANSMISSION MATRIX
For the 2-DoF three-actuator planar CDPR of

Fig. 1(b), we have T ∈ R4×3. In order to find the op-
timum value of this matrix, our strategy consists in test-
ing wrench-closure at a number of control points in the
workspace. We then maximize the number of such points
where wrench-closure is achieved. From Eq. (11), the

wrench-closure condition at position pk may be deter-
mined by solving the problem

maximize sk

subject to
∂

∂z1
det(Ak) ≥ sk14,

over T, sk, k = 1, ..., q

(12)

where Ak is matrix A evaluated at pk. When the so-
lution yields sk = 0, this implies that there is no vec-
tor ∂

∂z1
det(Ak) that is strictly positive. When sk → ∞,

the problem is unbounded and we have wrench-closure
at pk for the corresponding matrix T. To prevent the
problem from being unbounded, we add the constraints
sk ≤ 1, k = 1, ..., q which limits sk within finite values.
Upon combining several poses pk, k = 1, ..., q, we obtain
the synthesis problem

maximize
q∑

k=1

sk

subject to
∂

∂z1
det(Ak) ≥ sk14,

sk ≤ 1, k = 1, ..., q

over T, sk, k = 1, ..., q

(13)

where q is the number of points at which the WCW area
is evaluated. The constraints defined in Eq. (13) are of the
third-degree in the entries of T, making the optimization
problem challenging to solve directly. It can be simpli-
fied, however, by exploiting a property of column spaces
and echelon forms, by which the range of a matrix and
its echelon form are the same. Indeed, going back to the
original wrench-closure conditions of Eqs. (1) and (2),
we notice that several matrices T can lead to the same
WCW. More specifically, since τ ∈ Rp, any two matrices
T that have the same range generate the same subspace
in the space of tensions Rm. Therefore, we would like to
limit the synthesis problem of Eq. (13) to a unique T for
each possible range in Rm×p. The reduced echelon form
of the transpose of T provides this unique representation
of the range (see [32], page 48). Indeed, the reduced ech-
elon forms in R4×3 cover all the possible ranges of R4

and yet no two such matrices can have the same range.



Te =


1 0 0
0 1 0
0 0 1
v1 v2 v3

 (14)

where vi will serve as the new variables in the optimiza-
tion problem. As a result, the updated matrix will be:

B =

 zT1 zT2
Wn×m 0n×p

1m×m −Te

 (15)

By replacing the A matrix with B into Eq. (11) and
computing the partial derivatives, we obtain expressions
that are linear in v1, v2 and v3. These linear constraints
can be written in the form

bj0 + bj1v1 + bj2v2 + bj3v3 ≥ 0, (16)

where bji, j = 1, ..., (m+ p), i = 0, ..., 3 represent con-
stant coefficients. The presence of the constant value bj0
on the left side of the inequality constraint prevents this
linear form from being homogeneous. We would like to
have homogeneity because it would make the numerical
solution robust, less susceptible to changing tolerances
and stopping criteria. To this end, we introduce the sub-
stitutions v1 = V1/V0, v2 = V2/V0, and v3 = V3/V0.
This leads to the following representation:

1
′

m×m =

[
1(m−1)×(m−1) 0m−1

0T
(m−1) V0

]
and

T
′

e =


1 0 0
0 1 0
0 0 1
V1 V2 V3

. (17)

The final matrix is represented as B
′

as follows:

B
′
=

 zT1 zT2
Wn×m 0n×p

1
′

m×m −T
′

e

. (18)

Upon entering these changes in the optimization
problem as defined in Eq. (13), we obtain the following
new form:

maximize
q∑

k=1

sk

subject to
∂

∂z1
det(B

′

k) ≥ sk14,

sk ≤ 1, k = 1, ..., q

over Vi, i = 0, ..., 3, sk.
(19)

As evidenced in Eq. (19), the optimization prob-
lem involves five constraints for each central point where
wrench-closure is tested. This constraint count will in-
crease with the addition of more points. By exploiting
properties of determinants, the constraints in Eq. (19) can
be formulated as follows:

bj0V0 + bj1V1 + bj2V2 + bj3V3 ≥ sk. (20)

As a result, Eq. (19) is a linear problem, a class of
optimization problems that is well known. There exist
methods that are very efficient to solve this type of prob-
lem, even for high numbers of constraints. Because they
are convex, one can always find the global maximum if it
exists.

4 SOLUTION OF THE SYNTHESIS OF THE
TRANSMISSION MATRIX
Consider the scenario of the 2-DoF CDPR depicted

in Fig. 1(b). In this configuration, the objective is to de-
termine the transmission matrix that allows its particle
end-effector to cover a workspace that closely approxi-
mates the rectangular region formed by the fixed attach-
ment points of its four cables.

4.1 Determination of the transmission matrix T of
the 2-DoF CDPR

As previously mentioned, the number of constraints
grows in tandem with the increasing number of control
points. In addressing problem (19), an in-depth analysis
involving 40 points was conducted, resulting in a total of
200 constraints for the problem. Each position was metic-
ulously chosen with a spacing of 0.0001 inside the spec-
ified boundaries of the desired rectangular workspace the



dimension of which are 0.7 m × 1 m (Fig. 3). The res-
olution of the problem was executed through the appli-
cation of the LPSolve function within Maple, yielding
the optimal values: V0 = 1.627 × 10−10, V1 = 1.631 ×
10−10, V2 = −1.633 × 10−10, V3 = 1.641 × 10−10.
Subsequently, the Te matrix is obtained from Eq. (14).
Because the solution to the linear program also yields
sk = 1, k = 1, ..., 40, we conclude that the WCW
of this robot encompasses all 40 control points. However,
it is necessary to verify a posteriori whether the full rect-
angle is included in the WCW.

Fig. 3: Control points which are defined for the con-
straints in Eq. (19)

Te =


1 0 0
0 1 0
0 0 1

1.0022 −1.0039 1.0085

. (21)

The last row of the Te matrix in Eq. (21),
[1.0022 −1.0039 1.0085] is very close to [1 −1 1], so

Te =


1 0 0
0 1 0
0 0 1
1 −1 1

. (22)

This convergence arises because the last row of the
Te matrix delineates the directions of the actuator forces.
This validates our intuitive understanding of the pivotal
role played by the last row of Te.

To facilitate the mechanical design of the robot, we
should not limit ourselves to Te, but instead consider any
4 × 3 matrix whose range corresponds to that of Te. A
workable T matrix was identified by linearly combining
the columns of the Te while looking for symmetry in the
system. It has a range identical to that of Te, thereby
producing an identical wrench-closure workspace:

T =


1 1 0
1 0 1
1 −1 0
1 0 −1

. (23)

The WCW of each matrix remains consistent with that of
the Te matrix.

The value of the element Ti,j of T is Ti,j = 1 when
the ith cable is directly connected to the jth actuator, and
Ti,j = −1 when the ith cable is connected to the jth

actuator in reverse. Ti,j = 0 when the ith cable is not
connected to the jth actuator. The second actuator needs
to connect to cables one and three, while the third actu-
ator connects to cables two and four. When the second
actuator winds the first cable, it simultaneously unwinds
the third cable at the same rate. Similarly, the relation-
ship between cable numbers two and four holds for the
third actuator.

Having defined T, our focus now shifts towards com-
puting its associated WCW. This computation follows
the method elaborated in Section 2, which leads to the
WCW depicted in Fig. 4(a). As illustrated, the WCW
of this robot effectively encompasses the entire rectan-
gle defined by the fixed cable attachment points. In
Fig. 4(b), we present the WCW of a comparable Cable-
Driven Parallel Robot (CDPR) proposed in [4], which
covered most but not all of the rectangular workspace.
Utilizing Maple 2018, we derived symbolic expressions
for the workspace boundaries using the four inequalities
t⊥ = ∂

∂z1
det(A) > 04. The boundaries of the workspace

in the Cartesian plane, given by t⊥(x, y) = 04, are non-
linear and non-algebraic in terms of x and y.



(a) (b)

Fig. 4: Comparison of two 2-DoF, 3-actuator CDPRs:
(a) WCW corresponding to the optimum transmission
matrix in Eq. (22), (b) WCW of the planar CDPR pro-
posed in [4].

4.2 Determination of the Wrench-Feasible-
Workspace of a 2-DoF CDPR

The Wrench-Feasible Workspace (WFW) is defined
as the collection of platform poses where all the wrenches
within a specified set can be balanced using tension forces
in the cables, while ensuring that the cable tensions sat-
isfy the prescribed limits [30, 33]. The determination of
the WFW for the CDPR is formulated as a constraint sat-
isfaction problem, as defined in Eq. (24).

satisfy Wt = we,

t−Tτ = 04,

14 ≤ t ≤ 2014,

over t, τ ,

(24)

where W is constant for a given pose p and T is the con-
stant optimum value given in Eq. (22).

The first constraint in Eq. (24) ensures that the exter-
nal wrench can be balanced at the platform pose p. The
second constraint represents the relationship between ca-
ble tensions and the actuator torques. The effect of the
third constraint is to maximize the minimum cable ten-
sions. The fourth constraint ensures that cable tensions
are bounded between 1 N and 20 N, reflecting the char-
acteristics of the cables and actuators employed in the
CDPR prototype.

We investigated the WFW with drum radius values
of R1 = R2 = R3 = 25 mm, while imposing ten-
sion limits of 1 N and 20 N (Figs. 5(a), 6(a), 7(a)). Our
observations reveal that the WFW exhibits an approxi-
mately rectangular shape, but its scale diminishes as the
external force range increases. In contrast, the WFW of
the conventional variant of the 2-DoF planar CDPR with
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Fig. 5: WFW of the CDPR considering −0.5N ≤ fx ≤
0.5N and −0.5N ≤ fy ≤ 0.5N external forces: (a) pro-
posed CDPR; (b) classic CDPR.
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Fig. 6: WFW of the CDPR considering −2.5N ≤ fx ≤
2.5N and −2.5N ≤ fy ≤ 2.5N external forces: (a) pro-
posed CDPR; (b) classic CDPR.

four actuators is depicted in Figs. 5(b), 6(b), 7(b). The
comparison between the WFWs of the proposed and clas-
sic CDPRs shows that going from four to three motors
contracts the WFW, but not dramatically. The dynamic
workspace can be computed as a special case of the WFW
where the external wrenches are the inertial forces of the
moving platform. Accordingly, one can expect a simi-
lar comparison between the dynamic workspaces of the
proposed and classic CDPRs. We conjecture that the dy-
namic workspace of the proposed CDPR would be some-
what smaller than that of the classic CDPR, for the same
dynamic characteristics.

Having established the ability of the proposed CDPR
architecture to achieve wrench closure across the entire
rectangular region defined by its fixed attachment points
using three actuators, let us shift our focus to devising a
practical implementation of this theoretical design.

4.3 Embodiment of the Transmission System in the
2-DoF Planar CDPR

To implement the proposed transmission matrix, we
opted for a cable-pulley transmission system to distribute
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Fig. 7: WFW of the CDPR considering −5N ≤ fx ≤
5N and −5N ≤ fy ≤ 5N external forces: (a) proposed
CDPR; (b) classic CDPR.

the power of the three actuators among the four cables.
The schematic of the cable routing corresponding to the
transmission matrix of Eq. (23) is shown in Fig. 8(a).

In order to reach this cable routing, we proceeded
by first observing the connections between each actuator
and cable dicated by the transmission matrix. We then
attempted to reach this connectivity through trials and er-
rors, by drawing cable routings that were likely to repli-
cate this mapping. For instance, consider the first actu-
ator, which has a relationship with all cables as repre-
sented in the T matrix by the first column [1 1 1 1]T .
To achieve the goal of controlling all cables with a single
actuator, we incorporated two suspended pulleys. Given
that the second column of the optimum T in Eq. (23) is
[1 0 −1 0]T , the second actuator should control the first
and third cables, but in opposite directions. The second
actuator should wind the first cable while simultaneously
unwinding the third cable. Similarly, the third actuator
should control the second and fourth cables, in symmetry
with the second actuator’s operation.

To implement the mechanical design, we selected
specific dimensions and components. The workspace di-
mensions are set at 1m × 0.7m, and the radii of all
drums are chosen to be 25mm. For the actuators, we em-
ployed Pittman DC motors, Series 9236, which operate at
30.3 V and have a speed in nominal torque of 749 rpm
with a nominal torque of 0.395 Nm. As illustrated in
Fig. 8(a), our approach involves two mobile three-level
pulleys, serving as direct controllers for the cables within
the workspace. In this configuration, the first actuator fa-
cilitates the operation of all moving pulleys, whereas the
second and third actuators drive two cable loops concur-
rently.

To validate the correspondance between the cable
routings depicted in Fig. 8(a) and the transmission matri-
ces outlined in Eq. (23), a static analysis of the schematic
depicted in Fig. 8(a) was conducted. This analysis led
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Fig. 8: The planar CDPR with four cables and a point-
mass end-effector driven by three actuators: (a) CDPR
proposed schematic; (b) CDPR prototype

to the derivation of the relationship presented in Eq. (30)
between actuator torques and cable tensions.

The summation of moments acting on the drum of
actuator two results in the expression:

∑
MM2

= R2t3 + τ2 −R2t1 = 0, (25)

where R2 denotes the radius of drum two. Additionally,
the summation of forces exerted on the first pulley is given
by:

∑
fP1 = t3 + t1 −

τ1
R1

= 0, (26)

where R1 represents the radius of drum one. By subtract-



ing 1/R2 of Eq. (25) from Eq. (26), we obtain:

t3 + t1 −
τ1
R1

− t3 + t1 −
τ2
R2

= 0,

2t1 =
τ1
R1

+
τ2
R2

,

t1 =
[

1
2R1

1
2R2

0
]
τ .

(27)

Then, by adding 1/R2 from Eq. (26) to Eq. (25), we
get:

t3 + t1 −
τ1
R1

+ t3 − t1 +
τ2
R2

= 0,

2t3 =
τ1
R1

− τ2
R2

,

t3 =
[

1
2R1

− 1
2R2

0
]
τ .

(28)
Following the same method, the sum of moments on

the drum of the third actuator yields:

∑
MM3

= R3t4 + τ3 −R3t2 = 0, (29)

where R3 is the third drum radius.
By summing the forces acting on the second moving

pulleys and solving the resulting equation and Eq. (29)
for t2 and t4, we obtain t2 =

[
1

2R1
0 1

2R3

]
τ and t4 =[

1
2R1

0 −1
2R3

]
τ . Upon assembling the latter equations

along with Eqs. (27) and (28), we obtain the desired rela-
tionship:

T′ =


1

2R1

1
2R2

0
1

2R1
0 1

2R3
1

2R1
− 1

2R2
0

1
2R1

0 − 1
2R3

. (30)

In this matrix, Ri represents the radius of the drum
associated with the ith actuator. When all the drums share
the same radius, i.e., R1 = R2 = R3 = R, it follows that
T = 2RT′.

In order to validate the practical feasibility and per-
formance of the proposed CDPR design, a prototype,
shown in Fig. 8(b), was built. This prototype embod-
ies the innovative architecture that reduces the number of

actuators while preserving a rectangular WCW. To wit-
ness the capabilities of our prototype in action, we invite
the reader to view a demonstration video on YouTube
[https://youtu.be/qmGK_-rO6Ds]. This video
showcases the ability of the robot to cover the wrench-
feasible workspace.

The observed limitation preventing the robot from
reaching the corners of the workspace is attributed to the
limited actuator torques. Nevertheless, the robot main-
tains a rectangular WFW, even though the corners of the
rectangle remain unattainable due to these limited input
torques (see Figs. 5(a), 6(a), 7(a)). This demonstration
provides an understanding of the robot’s capabilities and
limitations, accounting for real-world influences.

5 CONCLUSIONS
In this research, we introduced a novel approach to

the design of planar CDPRs with fewer actuators than
cables, achieved through suitable transmission systems.
Notably, our approach leads to a 2-DoF CDPR that covers
a rectangular WCW with just one less actuator compared
to the conventional four-actuator version. While previous
researchers have also explored CDPRs with fewer actu-
ators than cables [25, 27, 4], this work differentiates it-
self through the chosen design methodology. Instead of
starting with the selection or enumeration of mechanical
components for the transmission system, we first focus
on finding the optimum transmission matrix mapping ac-
tuator torques onto cable tensions. Once the transmission
matrix is established, its implementation is realized using
machine components such as cables and pulleys, but al-
ternative components like gears and belts could also have
been employed.

Developing this synthesis method also required mak-
ing some more focused contributions along the way.
Among those, let us point out the compact mathematical
expression of the WCW boundaries presented in Eq. (11).
Because it resorts to mathematical functions that are
widely available in symbolic scientific software, it allows
to trace the WCW with very few lines of code. We should
also mention the unique representation of CDPR trans-
mission sytems through the echelon form of their trans-
mission matrices. This narrows significantly the search
space of the associated synthesis problem. Finally, we
consider the formulation of this transmission synthesis
problem as a standard linear problem. This is an impor-
tant contribution, since it allows to tackle problems with
large numbers of control points and because it guarantees
that any feasible transmission matrix found is globally op-
timum for the chosen control points.

The research presents such a globally optimum trans-

https://youtu.be/qmGK_-rO6Ds


mission matrix for the 2-DoF CDPR, along with a possi-
ble mechanical implementation. Furthermore, the anal-
ysis is extended to determine the WFW of the 2-DoF
CDPR under three different external force scenarios. The
CDPR exhibits reasonably good behavior when compared
to the WFW of an analogous four-actuator CDPR.

As a next step, the optimization approach for the
WCW and WFW of CDPRs will be extended to higher
degrees of freedom and spatial CDPR configurations.
This is a challenging task, as the optimization problem
may become non-linear and non-convex in these cases.
It will therefore require a reliable algorithm to solve the
optimization problem.

Other avenues of research may also be explored, such
as the replacement of wrench-closure conditions with
wrench-feasibility conditions in the proposed synthesis
method. This would significantly increase the complexity
of the ensuing optimization problem, however, as it would
become non-convex and larger.
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ceptual design and static analysis of novel pla-
nar spring-loaded cable-loop-driven parallel mech-
anisms,” Journal Mechanisms Robotics.

[26] Khakpour, H., and Birglen, L., 2014, “Workspace
augmentation of spatial 3-dof cable parallel robots
using differential actuation,” In 2014 IEEE/RSJ
International Conference on Intelligent Robots and
Systems, IEEE, pp. 3880–3885.

[27] Khakpour, H., Birglen, L., and Tahan, S.-A., 2014,
“Synthesis of differentially driven planar cable par-
allel manipulators,” IEEE Transactions on Robotics,
30(3), pp. 619–630.

[28] Behroozi, F., Cardou, P., and Caro, S., 2023, “Trans-
mission systems to extend the workspace of planar
cable-driven parallel robots,” In Cable-Driven Par-
allel Robots, S. Caro, A. Pott, and T. Bruckmann,
eds., Springer Nature Switzerland, pp. 308–320.

[29] Gouttefarde, M., and Gosselin, C. M., 2004, “On
the properties and the determination of the wrench-
closure workspace of planar parallel cable-driven
mechanisms,” In International Design Engineer-
ing Technical Conferences and Computers and In-
formation in Engineering Conference, Vol. 46954,
pp. 337–346.

[30] Gouttefarde, M., and Gosselin, C. M., 2006, “Anal-
ysis of the wrench-closure workspace of planar par-
allel cable-driven mechanisms,” IEEE Transactions
on Robotics, 22(3), pp. 434–445.

[31] Roberts, R. G., Graham, T., and Lippitt, T., 1998,
“On the inverse kinematics, statics, and fault toler-
ance of cable-suspended robots,” Journal of Robotic
Systems, 15(10), pp. 581–597.

[32] Meyer, C. D., 2001, Solutions manual: Matrix anal-
ysis and applied linear algebra SIAM: Society for

Industrial and Applied Mathematics.
[33] Gouttefarde, M., Merlet, J.-P., and Daney, D.,

2007, “Wrench-feasible workspace of parallel
cable-driven mechanisms,” In Proceedings 2007
IEEE International Conference on Robotics and Au-
tomation, pp. 1492–1497.


	Introduction
	Kinetostatic Analysis
	Formulation of the Synthesis of the Transmission matrix
	Solution of the synthesis of the transmission matrix
	Determination of the transmission matrix T of the 2-DoF CDPR
	Determination of the Wrench-Feasible-Workspace of a 2-DoF CDPR
	Embodiment of the Transmission System in the 2-DoF Planar CDPR

	Conclusions

