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Flat dynamic model analysis of a
delta-wing convertible aircraft ⋆

Monika Pasquali ∗ Tudor-Bogdan Airimitoaie ∗

Patrick Lanusse ∗

∗ Univ. Bordeaux, CNRS, Bordeaux INP, IMS, 33405 Talence, France
(e-mail: firstname.lastname@u-bordeaux.fr)

Abstract: This paper proposes the study of a tail-sitter, delta-wing, convertible aircraft that
combines the advantages of vertical take-off and landing (VTOL) and fixed-wing aircraft.
Control during the transition between VTOL and horizontal flight, as well as the design of
fault detection and isolation (FDI) algorithms should be considered to ensure safe operation.
The main contribution of the paper is in the analysis of the flatness property of the convertible
aircraft. Flat systems have the property that their inputs and states can be written as functions
of a set of variables called flat outputs and their derivatives. Thus, an inverse dynamic model
can be obtained which can be used to design path planning, nonlinear feedforward control, and
FDI algorithms. First, the analysis of flatness in the horizontal flight is presented. Then, it is
shown that this first set of flat outputs is singular at hover flight. Fortunately, this is only an
apparent singularity as a second set of flat outputs can be obtained, which defines a chart of
the aircraft’s dynamical model at hover and slow aerodynamic speed.

Keywords: Aerospace Control Systems, UAVs, convertible aircraft, autonomous vehicles,
non-linear systems, algebraic/geometric methods

1. INTRODUCTION

Unmanned aerial vehicles (UAVs) made their initial ap-
pearance in the military as remote-control aircrafts, but
nowadays are widely used also in civil applications. As
Phung (2015) reports, UAVs were traditionally classified
into: fixed-wing and vertical take-off landing (VTOL).
Concerning fixed-wing UAVs, the flight is mainly based
on the propellers’ thrust to cancel the drag induced by the
air movement and the aerodynamic lift on the wings to
compensate for the weight of the vehicle. These vehicles are
very efficient in the forward flight and they require runways
for take-off and landing. VTOL UAVs, in contrast, have
the ability to hover, but are not very efficient in forward
flight. Increasingly popular are convertible aircrafts which
combine the advantages of VTOL and fixed-wing aircrafts.
From the first, they take their ease of maneuverability
at slow speed, while from the second they inherit the
energy efficiency in fast horizontal flight. As such, they
are good candidates for many real-world applications (see
WingtraOne (2023) and its fields of applications).

Among the possible diverse configurations for a convertible
aircraft (Basset et al. (2014)), this paper is focused on the
tilt-body aerial vehicles, which are increasingly popular
in unmanned applications. Tilt-body convertible UAVs
require the body of the aircraft to rotate during the
transition flight and, additionally, wings and rotor hubs
⋆ This research was funded, in part, by l’Agence Nationale de
la Recherche (ANR), project MICA ANR-16-CE22-0003. For the
purpose of open access, the author has applied a CC-BY-NC-ND 4.0
public copyright licence to any Author Accepted Manuscript (AAM)
version arising from this submission http://creativecommons.org/

licenses/by-nc-nd/4.0/.

are rigidly attached to the aircraft body. Also, a special
kind of tilt-body aircraft, which is considered here, is the
so-called tail-sitter due to the ability to take-off and land
on its tail (Kubo (2006)).

In this paper, first the nonlinear dynamic model of
the delta-wing convertible aircraft is presented, which is
largely built on previous work by Airimitoaie et al. (2019).
The intent of the model is to provide a foundation for
the paper’s main contribution, namely the proof of the
differential flatness property of the model, under given
assumptions.

Flat systems have the property that their inputs and states
can be written as functions of a set of variables called flat
outputs and their derivatives (Lévine (2009)). Thus, an
inverse dynamic model can be obtained which can be used
to design path planning and nonlinear feedforward control
(see Louembet et al. (2010); Formentin and Lovera (2011);
Joos et al. (2019)), and FDI algorithms (Torres (2014)).

The differential flatness analysis of a tailsitter UAV pro-
posed in this paper can be compared with the one from
Tal and Karaman (2022); Tal et al. (2023), where the
modelling approach using the ϕ-theory parametrisation
from Lustosa (2017) is used. As in these papers, the
aircraft representation for the flatness analysis is done
based on Euler angles. It is well known that Euler angles
can lose one degree of freedom when two axes of rotation
align, phenomenon better known as Gimbal lock, which
can occur in acrobatic flight maneuvers.

The solution proposed in the present paper is to introduce
a second set of Euler angles, complementary to the first one
in the sense that one can switch between them to avoid



Gimbal lock at all configurations in space. The flatness
property is first analysed in the fast horizontal flight and
a flat output is proposed. Then, analysis in hover flight
shows that this initial set of flat outputs is singular in this
case (see Kaminski et al. (2018) for a definition of intrinsic
and apparent singularities of differentially flat systems).
Fortunately, this singularity is only apparent as a second
set of flat outputs can be found for hover and slow speeds.

This paper is organized as follows. Section 2 introduces the
notations and conventions that will be used. The system is
described in Section 3. In Section 4 the forces and moments
acting on the aircraft are given and the nonlinear model,
using the Newton-Euler formalism, is shown in Section 7.
This model is used for the flatness analysis in horizontal
flight, illustrated in Section 8.1, since it uses Euler angles
for attitude description, which are not suitable to deal with
the gimbal lock issue. Hence, for the vertical and hover
flight modes, a modification of this model and its related
flatness analysis is proposed in Section 8.2. Concluding
remarks are given in Section 9.

2. NOTATIONS AND ASSUMPTIONS

Notations and assumptions similar to those in Airimitoaie
et al. (2018) are used. They are recalled in this section
for completeness. The trigonometric functions sin, cos, tan
are abbreviated into c, s, t respectively, and in some of the
following equations the dependence on time (t) is avoided
to save space.

A constant gravity field is assumed, hence the Center of
Mass (CoM) of the aircraft coincides with its Center of
Gravity (CG). The earth is assumed flat and fixed.

The reference frames are indicated with upper-case calli-
graphic letters and the lower-case superscripts denote the
projection frames, and are expressed with the right-hand
rule.

The inertial-frame I = (O;xi, yi, zi) has the origin O at
the surface of the earth and the North-East-Down (NED)
convention is used to define its axis xi, yi, zi.

The vehicle-carried normal Earth O = (CG;xo, yo, zo),
has the origin at the CG of the aircraft and its axes are
parallel to those of I. The gravitational force vector is
defined in this frame as Go = [0, 0,mg]⊺.

The body-frame B = (CG;xb, yb, zb) is centered in the
aircraft’s Center of Gravity. Its orientation can be observed
in Figure 1.

The relation between the body-frame B and the normal
Earth-frame O is through 3 successive rotations ϕ(t), θ(t)
and ψ(t), called Euler angles:

Ro
b = Rz(ψ(t))Ry(θ(t))Rx(ϕ(t)) (1)

where the subscript b denotes a vector defined in the frame
B, which is transformed into a vector in the frame O,
denoted with the superscript o.

The kinematic frame K = (CG;xk, yk, zk) has the origin
at the aircraft CG, and the axis xk points towards the
direction of the kinematic speed of the aircraft.

The aerodynamic-frame A = (CG;xa, ya, za), with the
origin at the aircraft CG, has the xa axis pointing towards

the aircraft’s aerodynamic speed. Frame O is related to A
as:

Ro
a = Rz(χ(t))Ry(γ(t))Rx(µ(t)) (2)

Through the angle of attack α(t) and the side-slip angle
β(t), the relation between A and B can be defined as:

Rb
a = Ry(−α(t))Rz(β(t)) (3)

When the aerodynamic velocity va(t) = 0, the axis of the
frame A and those of the frame B are aligned.

The relation between the kinematic speed, aerodynamic
speed and Vw(t), the velocity of the air mass relative to
the ground, namely the wind velocity is given by:

Vk(t) = Va(t) + Vw(t) (4)

Assuming zero wind condition, Vw(t) = 0, then Vk(t) =
Va(t), namely A coincides with K.

The angular velocity of B relative to O is Ωbo.

Taking into account the symmetry of the aircraft, the
inertia matrix is defined in frame B as:

I =

[
Ix 0 −Ixz
0 Iy 0

−Ixz 0 Iz

]
(5)

3. SYSTEM DESCRIPTION

Figure 1 shows the schematic model of the delta-wing
convertible aircraft proposed in this paper. It is a tail-

Fig. 1. Schematic model of the convertible aircraft.

sitter, tilt-body, with two counter-rotating rotors. The
wings are symmetric triangular shaped, called delta-wing.

Generally, when standard aircraft configurations are con-
sidered, the control surfaces include the elevator, the
aileron and the rudder (see Beard and McLain (2012)).
The aileron, rudder and elevator deflections are denoted
respectively as δa, δr and δe.

In the case of a delta-wing configuration, the control
surfaces are called elevons. The left and right angular
deflections are denoted respectively as δel and δer. Driving
the elevons differentially δel = −δer has the same effect
as ailerons, providing a torque about the x axis of the
aircraft (roll control), instead driving the elevons together
δel = δer has the same effect as an elevator, producing
a torque about the y axis of the aircraft (pitch control).
The yaw movement is controlled with different spinning
of the propellers ωl ̸= ωr, called “Differential Propeller



Rotation”. Thus, the four control inputs are defined in
this way:

• δel, δer which are the deflections of the left and right
elevons, are expressed in (rad).

• ωl, ωr which are the rotation speeds of the left
and right counter-rotating propeller-engines, are ex-
pressed in (PWM).

When the elevons are deflected downward simultaneously,
a nose-up pitching moment is generated, causing the
aircraft’s nose to pitch up (positive pitch control), instead
for upward deflections of the elevons a negative pitch
control is generated. When the left elevon is deflected
upward and the right elevon is deflected downward, the
aircraft rolls to the right (positive roll control), instead for
opposite deflections of the elevons a negative roll control
is generated.

During the take-off, landing and hover flight modes, the
aircraft is positioned vertically on its tail, the aerodynamic
velocity is small (or zero during hover) and the thrust from
its propellers allows it to take off, hover and land like a
helicopter. During the horizontal flight (cruise) the aircraft
flies horizontally with higher aerodynamic velocities, like a
conventional fixed-wing airplane and the control surfaces
become the primary means of maneuvering the aircraft.

4. FORCES AND MOMENTS

4.1 Longitudinal aerodynamics

Lift and drag forces, Flift and Fdrag, act in the xb and zb

axis, and the pitch moment, mpitch, in the yb axis:

Flift =
1

2
ρv2aSCL(α, q, δe) (6)

Fdrag =
1

2
ρv2aSCD(α, q, δe) (7)

mpitch =
1

2
ρv2aSCm(α, q, δe) (8)

CL, CD and Cm are non dimensional aerodynamic coeffi-
cients, S (m2) is the planform area of the wing and ρ is
the air density. Phung (2015) proposes to model the lift
and drag aerodynamic coefficients as nonlinear functions
of α. The lift coefficient is given by the interpolation of
two models: one for small angles of attack and one for
large angles of attack:


cL1(α,Re) = c1 sin(2α) for 0 ≤ α ≤ α0(Re)

or 180o − αo(Re) ≤ α ≤ 180o

cL2(α,Re) = c2 sin(2α) otherwise
(9)

where Re is the Reynolds number.

A function σ(α, αo(Re)), which combines two sigmoid
curves is exploited:

σ(α, αo(Re)) =
1

1 + eα−α0(Re)
+

1

1 + e180◦−α−α0(Re)
(10)

where αo(Re) represents the stall angle, that depends
on the Reynolds number. Thus, the lift, drag and pitch
moments are given, respectively, by the following relations.
(More details in Beard and McLain (2012)):

Flift =
1

2
ρv2aS(cL1(α,Re)σ(α, αo(Re)) (11)

+ cL2(α,Re)(1− σ(α, αo(Re))) (12)

+ CLq

c

2va
q + CLδe

δe) (13)

Fdrag =
1

2
ρv2aS(c1 + 2c2 sin

2(α) + CDq

c

2va
q + CDδe

δe)

(14)

mpitch =
1

2
ρv2aS(Cm0

+ Cmα
α+

Cmqcq

2va
+ Cmδe

δe) (15)

Fig. 2. Lift aerodynamic coefficient CL versus the angle
of attack α, for Reref = 160000. The linear behaviour
CL = CL0

+ CLα
α is maintained for small α.

4.2 Lateral Aerodynamics

The lateral force Fy, the roll moment l and the yaw
moment n, are respectively:

Fy =
1

2
ρv2aSCY (β, p, r, δel, δer) (16)

l =
1

2
ρv2aSbCl(β, p, r, δel, δer) (17)

n =
1

2
ρv2aSbCn(β, p, r, δel, δer) (18)

with b (m) the wingspan of the aircraft, namely the
distance from one wingtip to the opposite wingtip, and
CY , CL and Cn non dimensional aerodynamic coefficients.
Common representations of the aerodynamic coefficients
are developed in the following equations and detailed
explanations can be found in Beard and McLain (2012):

Fy ≈ 1

2
ρv2aS(CY0

+ CYβ
β +

CYpbp

2va
+
CYrbr

2va
+ CYδa

δa)

(19)

l ≈ 1

2
ρv2aSb(Cl0 + Clββ +

Clpbp

2va
+
Clrbr

2va
+ Clδa

δa)

(20)

n ≈ 1

2
ρv2aSb(Cn0

+ Cnβ
β +

Cnpbp

2va
+
Cnr

bp

2va
+ Cnδa

δa)

(21)



4.3 Propulsion Forces and Moments

Based on the Bernoulli’s principle, Beard and McLain
(2012) proposes the following equations to model the
propulsion force and torque in frame B:

F b
pi

=
1

2
ρSpropCprop

[
(kmotorωi)

2 − v2a 0 0
]T

(22)

mt =
[
−KTP

(kΩωi)
2 0 0

]T
(23)

with i ∈ {l, r}. kmotor specifies the efficiency of the motor,
KTP

is a constant obtained by experiment and Ω = (kΩωi)
the left and right propeller speed.

Each propulsion force induces also a moment, in B, as:
mpi =

−−−−−−→
(CG,Oi)|B ∧

[
F b
pi

0 0
]T

(24)

where
−−−−−−→
(CG,Oi)|B gives the coordinates of the application

point for each of the two propulsion forces in the body-
frame, i ∈ {l, r}.
Since the two propellers are positioned in a symmetric way
in the plane formed by xb and yb, with a distance of xp on

the axis xb and yp = b
4 on yb, then the total moment from

the propulsion forces, in frame B, is:
mp =

[
0 0 yp(f

b
pl
− f bpr

)
]T

(25)

5. WING-PROPELLER INTERACTION

In order to allow attitude control in hover flight, it is
necessary to introduce the slip-stream air induced velocity,
due to the spinning of the two propellers:

vi =
1

2

[√
(va cos(α))2 +

2Fthrust

ρSprop
− va cos(α)

]
(26)

where Sprop (m2) is the area of the propeller disk. More
details in Lustosa et al. (2015). The aerodynamic forces
and moments in the slip-stream area are considered to act
in the body frame B and are given by the lift force, the
drag force and the pitch moment respectively:

Lw =
1

2
ρv2i SwCLδe

δe (27)

Dw =
1

2
ρv2i SwCDδe

δe (28)

mw =
1

2
ρv2i cSwCmδe

δe (29)

Sw ≈ 1
2S is called wet area. It is also considered the roll

moment induced by the propeller wing interaction in B:

me = yp
1

2
ρv2i SwCLδa

(δa) (30)

6. TOTAL FORCES AND MOMENTS

The total force vector acting in frame A is given by:

F a =

[
Xa(t)
Y a(t)
Za(t)

]
= F a

a +Ra
bF

b
p +Ra

bF
b
w (31)

with F a
a defined as the contributions of the lift force, the

lateral force and the drag force in frame A:

F a
a = [−Fdrag Fy −Flift]

T
(32)

and F b
w as the contribution of the aerodynamic forces due

to the wing-propeller interaction:

F b
w = [−Dw 0 −Lw]

T
(33)

The total torque vector is expressed in frame B:

τ b =

Lb(t)
M b(t)
N b(t)

 = τ ba +mp +mt +mw +me (34)

with the vector τ ba defined as follows:

τ ba =

Lb
a(t)

M b
a(t)

N b
a(t)

 =

[
l

mpitch

n

]
(35)

7. NONLINEAR DYNAMIC MODEL

The nonlinear model for the convertible aircraft is de-
scribed using the Newton-Euler formalism, where the
equation for the translational motion are expressed in
frame A and those for the rotational motion in frame B:

ξ̇ = Ro
aV

a
a (36)

m
dV a

a

dt
+Ωa

ao ∧mV a
a = F a + (Ro

a)
TGo (37)

Ṙo
a = Ro

a[Ω
a
ao]× (38)

d(IΩb
bo)

dt
+Ωb

bo ∧ IΩb
bo = τ b (39)

Ωb
bo = [p, q, r]T , where (p, q, r) are the rotational speeds,

and [.]× represents the skew-symmetric operator. The
relation between Ωa

ao and Ωb
bo derives from the following

property:
Ωao = Ωab +Ωbo (40)

Projecting this equation in frame A:

Ωa
ao = Ωa

ab +Ra
bΩ

b
bo (41)

and using:

Ṙb
a = Rb

a[Ω
a
ab]× =⇒ [Ωa

ab]× = (Rb
a)

T Ṙb
a (42)

it becomes possible to determine the elements of Ωa
ab as

functions of α(t) and β(t), and their derivatives:

Ωa
ab =

[
−α̇sβ −α̇cβ β̇

]T
(43)

Substituting (43) in (41), the expression of Ωa
ao as a

function of Ωb
bo is obtained.

The complete nonlinear dynamic equations of the model
are developed as follows:

ẋ(t) = cχcγva (44a)

ẏ(t) = sχcγva (44b)

ż(t) = −sγva (44c)

v̇a(t) =
Xa

m
− sγg (44d)

β̇(t) = sαp− cαr +
cγsµmg + Y a

mva
(44e)

α̇(t) = q − (cαp+ sαr)tβ +
cγcµ

cβ

g

va
+

Za

cβmva
(44f)

χ̇(t) =
−Zasµ+ Y acµ

vamcµ
(44g)

γ̇(t) =
−cγgm− Y asµ− Zacµ

vam
(44h)

µ̇(t) =
−cµcγsβg
vacβ

+
pcα+ rsα

cβ
− Zasβ

vamcβ
(44i)

+
sγ(Y acµ− Zasµ)

vamcγ
(44j)



ṗ(t) =
(Ixz(Ixx − Iyy + Izz)p

IxxIzz − I2xz
−

− (I2xz − Izz(Iyy − Izz))r)q + IxzN
b + IzzL

b

IxxIzz − I2xz
(44k)

q̇(t) =
−Ixzp2 − r(Ixx − Izz)p+ Ixzr

2 +M b

Iyy
(44l)

ṙ(t) =
((I2xz + Ixx(Ixx − Iyy))p

IxxIzz − I2xz
−

− Ixz(Ixx − Iyy + Izz)r)q + IxxN
b + IxzL

b

IxxIzz − I2xz
(44m)

8. DIFFERENTIAL FLATNESS ANALYSIS

Flatness is a system property that extends the notion of
controllability from linear systems to nonlinear dynamical
systems.

In particular, a nonlinear system

ẋ = f(x, u), u ∈ Rm, x ∈ Rn, m ≤ n (45)

is differentially flat if, and only if, there exists an m-
dimensional vector

y = ϕ(x, u, u̇, ..., u(α)) (46)

such that x and u can be expressed as functions of
the components of y and a finite number of their time
derivatives. If one system proves this property is called
flat system and the outputs y are called flat-outputs.

Before introducing the overall analysis, it is necessary to
remark that the aircraft has to perform a rotation of
90o around the pitch axis from the vertical take-off to
the forward flight, and from the forward flight to the
vertical landing. The use of Euler angles ψ(t), θ(t) and
ϕ(t) introduces a gimbal lock issue for θ(t) close to 90o.
Also, the aerodynamic velocity is equal to zero in hover
flight and singularity issues can arise. To overcome these
problematics, in this paper it is proposed to perform two
different flatness analyses: one for the horizontal flight
and another one for the vertical take-off, vertical landing
and hover flight. More detailed explanations are present in
Section 8.1 and Section 8.2.

8.1 Differential flatness analysis for horizontal flight

Assumptions: The equations (44) are considered with the
following simplifying assumptions. It is assumed that the
side-slip angle β is equal to zero, which implies Y a(t) = 0.
Also, the velocity induced by the propeller-wing interac-
tion is assumed to be null and the aerodynamic coefficients
are assumed to be linear in α(t).

A set of flat-outputs for this model is given by:

y = (x(t), y(t), z(t), α(t)) (47)

where x(t), y(t), z(t) is the position of the CG of the
aircraft relative to frame I and α(t) is the angle of attack.
The first step consists in deriving from (44a), (44b), (44c),
the aerodynamic velocity va(t) and the angles γ(t) and
χ(t):

va(t) =
√
ẋ2 + ẏ2 + ż2 (48)

γ(t) = arcsin

(
− ż

va

)
(49)

χ(t) = arctan

(
ẏ

ẋ

)
(50)

Recall that no singularities are present in (49), as in all
the following equations, since the aerodynamic velocity is
always greater than zero, and it is exploited the atan2
instead of the arctan in (50).

Dividing (44g) by (44h), the angle µ(t) is obtained:

µ(t) = arctan

(
vamc(γ)χ̇

vamγ̇ + c(γ)gm

)
(51)

Za(t) is computed from (44h):

Za(t) = −vamγ̇ + c(γ)gm

c(µ)
(52)

From (44d), Xa(t) is computed:

Xa(t) = mv̇a + s(γ)g (53)

The pitch angular rate q(t) is obtained from (44f):

q(t) = α̇− c(γ)c(µ)g

va
− Za

mva
(54)

Then the roll and yaw angular rates, p(t) and r(t), are
obtained from (44j) and (44e) respectively:

p(t) =
1

(1 + tan2(α))

(
µ̇

cos(α)
− tan(α)

(
cos(γ) sin(µ)g

cos(α)va

)
(55)

+
Za sin(µ) sin(γ)

m cos(γ)va cos(α)

)
(56)

r(t) =
va sin(α)p+ cos(γ) sin(µ)g

cos(α)va
(57)

Finally, the components Lb(t),M b(t), N b(t) of the total
torque vector τ b, see (34), are computed from (44k), (44l)
and (44m):

Lb(t) = Ixxṗ− Ixz ṙ − q((Iyy − Izz)rIxzp (58)

M b(t) = q̇Iyy + Ixzp
2 + r(Ixx − Izz)p− Ixzr

2 (59)

N b(t) = −Ixz ṗ+ Izz ṙ − q((Ixx − Iyy)p− Ixzr) (60)

The total state vector x is now defined as functions of
only the flat-outputs and a finite number of their time
derivatives, of which the maximum order is four, included
in the derivatives of the states: v̇a, v̈a, γ̇, γ̈, χ̇, χ̈, µ̇, µ̈,
Ża, ṗ, q̇ and ṙ, which are needed to express all the states
found above.

The control inputs can now be derived from τ b and F a,
since they depend on Lb(t),M b(t), N b(t) and Xa(t), Y a(t)
assumed to be equal to zero and Za(t), obtained from the
flatness analysis.

The following diagram resumes this discussion.



x(t), y(t), z(t)

α(t)

va(t), γ(t), χ(t)

p(t), q(t), r(t), Xa(t)

Lb(t),M b(t), N b(t)

δel, δer, ωl, ωr

µ(t)

Za(t)

d
dt

d
dtd

dt

d
dt

d
dt

d
dt

d
dt

d
dt

d
dt

8.2 Differential flatness analysis for vertical take-off,
vertical landing and hover flight

The analysis performed in Section 8.1 does not take into
account the gimbal lock, introduced in Section 8, and it
also raises singularity issues due to the aerodynamic veloc-
ity which is zero in hover flight. Therefore another flatness
analysis is performed for the vertical take-off/landing and
hover flight. In this paper it is proposed to express the
equations for the translational motion of the nonlinear
dynamic model in frame I and those for the rotational
motion in the body frame B. The orientation of the aircraft
from frame B to frame O, is in terms of vertical Euler
angles ϕv, θv, ψv, presented in Castillo et al. (2005), in
order to avoid the gimbal lock issue. When the aircraft
is in a vertical orientation, the following rotation matrix
is used:

Ro
bv = Ry

(π
2

)
Rz(ψv)Ry(θv)Rx(ϕv) (61)

The resulting model is given by:

ξ̇ = V o
o (62)

m
dV o

o

dt
= Ro

bF
b +Go (63)

Ṙo
b = Ro

b [Ω
b
bo]× (64)

d(IΩb
bo)

dt
+Ωb

bo ∧ IΩb
bo = τ b (65)

V o
o = [vxo , vyo , vzo ]

T is the vector of the components of the
velocity along the x, y, z directions in the frame I.
Assumptions: Since the aircraft is flying with a null or
small aerodynamic speed, then the aerodynamic forces,
Flift, Fy and Fdrag, are neglected. The lift force due to the
propeller wing interaction, Lw, is also neglected. Hence:

F b =
[
F b
p −Dw 0 0

]T
(66)

The chosen flat-outputs are:

y = (x(t), y(t), z(t), ϕv(t)) (67)

where x(t), y(t), z(t) is the position of the CG of the
aircraft relative to frame I and ϕv(t) is the roll angle.

From (62) va(t) is computed:

va(t) =
√
ẋ2 + ẏ2 + ż2 (68)

From (63) F b
p −Dw, ψv(t) and θv(t) are obtained:

F b
p −Dw = m

√
ẍ2 + ÿ2 + (z̈ − g)2 (69)

ψv(t) = arctan

(
ÿ

g − z̈

)
(70)

θv(t) = − arcsin

(
mẍ

F b

)
(71)

From (64), p(t), q(t) and r(t) are derived:

p(t) = −ψ̇vsθv + ϕ̇v (72)

q(t) = sϕvψ̇vcθv + θ̇vcϕv (73)

r(t) = ψ̇vcϕvcθv − θ̇vsϕv (74)

From (65), the components of the total torque vector τ b

are computed:

Lb(t) = Ixxṗ− Ixz ṙ − q((Iyy − Izz)rIxzp) (75)

M b(t) = q̇Iyy + Ixzp
2 + r(Ixx − Izz)p− Ixzr

2 (76)

N b(t) = −Ixz ṗ+ Izz ṙ − q((Ixx − Iyy)p− Ixzr) (77)

The control inputs can be now derived from the total
torque vector τ b and the total force vector F b.

The following diagram resumes this discussion.

x(t), y(t), z(t)

ϕv(t)

va(t), ψv(t)

θv(t), F
b

p(t), q(t), r(t)

δel, δer, ωl, ωr

Lb(t),M b(t)

N b(t)

d
dt

d
dt

d
dt

d
dt

d
dt

d
dt

9. CONCLUSIONS

The differential flatness property studied in this paper
can be used for the design of feedforward–feedback (FF-
FB) control, path planning, and software analytical sensor
design in FDI algorithms. In the context of FF-FB con-
trol and path planning, an offline pre-recorded trajectory
and feedforward control based on the flatness property
can be enhanced in real-time by the feedback correction
given sensor measurements and observations, in order to
obtain fast and precise transitions between the convertible
aircraft flight phases (in a similar way to the feedforward
flatness based control of a pendulum swing up in Graichen
et al. (2007)).

Flat dynamic systems have the inherit property that their
inputs and outputs are functions of the flat output and
a finite number of its derivatives. This can be used to
compute analytical sensor observations, which compared
to true sensor outputs, can provide residual signals that
can be used for FDI (as described in Rammal et al. (2022)).
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Lévine, J. (2009). Analysis and Control of Nonlinear
Systems. A Flatness-based Approach. Springer-Verlag
Berlin Heidelberg.

Louembet, C., Cazaurang, F., and Zolghadri, A. (2010).
Motion planning for flat systems using positive B-
splines: An LMI approach. Automatica, 46(8), 1305–
1309. doi:10.1016/j.automatica.2010.05.001.

Lustosa, L.R., Defay, F., and Moschetta, J.M. (2015).
Longitudinal study of a tilt-body vehicle: modeling,
control and stability analysis. In 2015 International
Conference on Unmanned Aircraft Systems (ICUAS),
816–824. IEEE.
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