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Front propagation in hybrid reaction-diffusion epidemic
models with spatial heterogeneity

Quentin Griette and Hiroshi Matano

Abstract. We consider a two-species reaction-diffusion system in one space dimension that is derived
from an epidemiological model in a spatially periodic environment with two types of pathogens: the
wild type and the mutant. The system is of a hybrid nature, partly cooperative and partly competitive,
but neither of these entirely. As a result, the comparison principle does not hold. We study spreading
properties of solution fronts when the infection is localized initially. We show that there is a well-
defined spreading speed and that it coincides with the minimal speed of the traveling waves. Next
we study the case where the coefficients are spatially homogeneous and show that, when spreading
occurs, every solution to the Cauchy problem converges to the unique positive stationary solution as
𝑡→∞. Finally we consider the case of rapidly oscillating coefficients, that is, when the spatial period
of the coefficients, denoted by 𝜀, is very small. We show that there exists a unique positive stationary
solution, and that every positive solution to the Cauchy problem converges to this stationary solution
as 𝑡 → ∞. We then discuss the homogenization limit as 𝜀 → 0.

1. Introduction

In this paper we consider the following reaction-diffusion system:{
𝑢𝑡 =

(
𝜎(𝑥)𝑢𝑥

)
𝑥
+

(
𝑟𝑢 (𝑥) − 𝜅𝑢 (𝑥) (𝑢 + 𝑣)

)
𝑢 + 𝜇𝑣 (𝑥)𝑣 − 𝜇𝑢 (𝑥)𝑢, 𝑡 > 0, 𝑥 ∈ R,

𝑣𝑡 =
(
𝜎(𝑥)𝑣𝑥

)
𝑥
+

(
𝑟𝑣 (𝑥) − 𝜅𝑣 (𝑥) (𝑢 + 𝑣)

)
𝑣 + 𝜇𝑢 (𝑥)𝑢 − 𝜇𝑣 (𝑥)𝑣, 𝑡 > 0, 𝑥 ∈ R.

(1.1)

Here 𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥) stand for the density of a population of individuals living in a peri-
odically heterogeneous environment. We assume that the growth rates 𝑟𝑢 (𝑥) and 𝑟𝑣 (𝑥) are
𝐿-periodic functions, and that the coefficients 𝜅𝑢 (𝑥) and 𝜅𝑣 (𝑥) which represent the inten-
sity of the competition are 𝐿-periodic and positive. Finally, the coefficients 𝜇𝑢 (𝑥) > 0,
𝜇𝑣 (𝑥) > 0 (also 𝐿-periodic) denote the mutation rates between the two populations, which
creates an effect of cooperative coupling in the region where both 𝑢 and 𝑣 are small. We
consider system (1.1) under the initial condition

𝑢(0, 𝑥) = 𝑢0 (𝑥), 𝑣(0, 𝑥) = 𝑣0 (𝑥), 𝑥 ∈ R, (1.2)
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where 𝑢0, 𝑣0 are bounded nonnegative functions onRwhose supports are typically localized
in some region. Our goal is to study the speed of propagation of fronts that appear in (1.1).

The above problem is motivated partly by the study of SIS epidemiological models
describing the propagation of pathogens that are subject to mutations, such as the following:

𝜕𝑡𝑆𝑡 = 𝜕𝑥 (𝜎(𝑥)𝜕𝑥𝑆) −
(
𝛽1 (𝑥)𝐼1 + 𝛽2 (𝑥)𝐼2

)
𝑆 + 𝛾1 (𝑥)𝐼1 + 𝛾2 (𝑥)𝐼2, 𝑡 > 0, 𝑥 ∈ R

𝜕𝑡 𝐼1 = 𝜕𝑥 (𝜎(𝑥)𝜕𝑥 𝐼1) + 𝛽1 (𝑥)𝑆𝐼1 − 𝛾1 (𝑥)𝐼1 + 𝜇2 (𝑥)𝐼2 − 𝜇1 (𝑥)𝐼1, 𝑡 > 0, 𝑥 ∈ R
𝜕𝑡 𝐼2 = 𝜕𝑥 (𝜎(𝑥)𝜕𝑥 𝐼2) + 𝛽2 (𝑥)𝑆𝐼2 − 𝛾2 (𝑥)𝐼2 + 𝜇1 (𝑥)𝐼1 − 𝜇2 (𝑥)𝐼2, 𝑡 > 0, 𝑥 ∈ R.

(1.3)
Here the 𝛽1, 𝛽2 denote the infection rates, 𝛾1, 𝛾2 the recovery rates, and 𝜇1, 𝜇2 stand for the
mutation rates between the pathogens.

It is not difficult to show that the quantity 𝑁 (𝑡, 𝑥) := 𝑆(𝑡, 𝑥) + 𝐼1 (𝑡, 𝑥) + 𝐼2 (𝑡, 𝑥) satisfies
a pure diffusion equation 𝜕𝑡𝑁 = 𝜕𝑥 (𝜎(𝑥)𝜕𝑥𝑁). Therefore, if we assume that 𝑁 (0, 𝑥) is
constant in 𝑥, then 𝑁 (𝑡, 𝑥) remains constant in 𝑡 and 𝑥. Thus we obtain that 𝑢 = 𝐼1, 𝑣 = 𝐼2
satisfy (1.1) with 𝑟∗ (𝑥) := 𝑁𝛽𝑖 (𝑥) − 𝛾𝑖 (𝑥) and 𝜅𝑖 (𝑥) := 𝛽𝑖 (𝑥), where 𝑖 = 1, 2 and ∗ = 𝑢, 𝑣 .
Hence the propagation dynamics of (1.3) is equivalent to that of (1.1).

System (1.3) describes the propagation of a genetically unstable pathogen in a pop-
ulation of hosts which exhibit heterogeneity in space. This heterogeneity represents the
spatially heterogeneous environment that affects the behavior of individuals depending on
where they are. Spatial heterogeneity in the use of antibiotics, fungicides or insecticides
affects the transmission of pathogens and pests and is explored as a way to minimize the
risk of emergence of drug resistance [10]. Beaumont et al [4] study a related model of prop-
agation of salmonella in an industrial hen house. In their study the heterogeneity comes
from the alignment of cages separated by free space that allow farmers to take care of the
animals. Griette et al [17] studied the propagation properties of a closely related model in
the context of the evolution of drug resistance.

The propagation speed of the solutions of reaction-diffusion equations is often linked to
special solutions called traveling wave solutions, that are particular solutions that propagate
at a prescribed speed. There exists a large literature around traveling wave solutions and
the propagation dynamics of solutions to reaction-diffusion equations and systems, see
[2, 3, 14, 24, 26–28, 34, 37] among others. When the coefficients depend periodically on
the spatial variable such as (1.1), the traveling waves are often called pulsating traveling
waves, see [5, 33, 38, 39] among others.

Our system has a rather intriguing character in the sense that it is cooperative when (𝑢, 𝑣)
is small while the competitive nature becomes dominant when (𝑢, 𝑣) is large. Therefore the
standard comparison principle does not apply to the entire system. Such a system has been
studied by Wang [35], Wang and Castillo-Chavez [36], Griette and Raoul [19], Girardin
[15, 16], and Morris, Börger and Crooks [30], when the coefficients are homogeneous in
space. However, in our case, the coefficients are spatially periodic. As far as scalar equations
are concerend, there is a large literature on equations with periodic coefficients, notably
[5,27,33,38,39]. As for systems, Alfaro and Griette [1] constructed a traveling wave for a
related system that travels at the expected minimal speed. Apart from this last result, to the
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best of our knowledge, little is known for systems of hybrid nature with spatially periodic
coefficients.

In this paper we study propagation properties of solutions of (1.1). We first discuss under
what conditions propagation occurs by using certain principal eigenvalues. and investigate
the spreading speed of solution fronts that starts from compactly supported initial data. We
next prove the existence of pulsating traveling waves and show that the above spreading
speed coincides with the minimal speed of traveling waves.

Next we consider the special case where the coefficients are spatially homogeneous.
This case has been treated in [15,16,19,30,35,36], but the behavior of the solution behind
the spreading fronts has not been completely understood. We show that, under the assump-
tion that (𝑢, 𝑣) = (0,0) is unstable, every positive solution to the Cauchy problem converges
to the unique positive stationary solution (𝑢∗, 𝑣∗) as 𝑡 → +∞ locally uniformly on R.

Finally we study the system with rapidly oscillating coefficients and discuss their homog-
enization limit as the spatial period 𝜀 tends to 0. Among other things we show that every
positive solution to the Cauchy problem converges to the unique positive stationary solu-
tion as 𝑡 → +∞. Note that, when 𝜀 is not small, such convergence is generally not known.
We also prove that the above positive stationary solution and the spreading speed for 𝜀 > 0
converge to those of the homogenized system as 𝜀 → 0.

Our paper is organized as follows. In section 2 we first recall key mathematical notions
such as principal eigenvalues of various kinds, left and right spreading speeds, and so on.
Then we present our main results including a formula for the spreading speeds (Theorem
2.6), the hair-trigger effect (Theorem 2.9), existence of critical and non-critical traveling
waves (Theorem 2.10), global asymptotic stability of stationary solution for the homoge-
neous problem (Theorem 2.14), and the homogenization limit (Theorem 2.15).

In section 3 we give the proof of those results. This section is further subdivided as fol-
lows: in section 3.1 we establish some results on the principal eigenvalues of the linearized
system; in section 3.2 we prove our statement on the propagations dynamics of solutions
of the Cauchy problem; in section 3.3 we construct traveling wave solutions; in section 3.4
we prove the global asymptotic stability of the positive equilibrium for the homogeneous
problem; in section 3.5 we prove our statement on the homogenization formula for the
speed and the global stability of the positive equilibrium in the case of rapidly oscillating
coefficients.

2. Main results

Throughout this article we make the following assumption on the coefficients of (1.1).

Assumption 1 (Cooperative-competitive system). We let 𝜎(𝑥) > 0, 𝜅𝑢 (𝑥) > 0, 𝜅𝑣 (𝑥) > 0,
𝜇𝑣 (𝑥) > 0, 𝜇𝑢 (𝑥) > 0, be 𝐿-periodic positive continuous functions and 𝑟𝑢 (𝑥), 𝑟𝑣 (𝑥) be
𝐿-periodic continuous functions of arbitrary sign. We assume moreover that 𝜎 ∈ 𝐶1 (R).
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Before presenting our main results, let us recall that system (1.1) has a cooperative
nature for small solutions. To see this, we rewrite (1.1) as:{

𝑢𝑡 =
(
𝜎(𝑥)𝑢𝑥

)
𝑥
+

(
𝑟𝑢 (𝑥) − 𝜇𝑢 (𝑥) − 𝜅𝑢 (𝑥)𝑢

)
𝑢 +

(
𝜇𝑣 (𝑥) − 𝜅𝑢 (𝑥)𝑢

)
𝑣,

𝑣𝑡 =
(
𝜎(𝑥)𝑣𝑥

)
𝑥
+

(
𝑟𝑣 (𝑥) − 𝜇𝑣 (𝑥) − 𝜅𝑣 (𝑥)𝑣

)
𝑣 +

(
𝜇𝑢 (𝑥) − 𝜅𝑣 (𝑥)𝑣

)
𝑢.

Therefore, if 𝑓 𝑢 (𝑥, 𝑢, 𝑣), 𝑓 𝑣 (𝑥, 𝑢.𝑣) denote the nonlinearities of the above system, then

𝜕𝑣 𝑓
𝑢 (𝑥, 𝑢, 𝑣) = 𝜇𝑣 (𝑥) − 𝜅𝑢 (𝑥)𝑢, 𝜕𝑢 𝑓

𝑣 (𝑥, 𝑢, 𝑣) = 𝜇𝑢 (𝑥) − 𝜅𝑣 (𝑥)𝑣.

Consequently, we have 𝜕𝑣 𝑓 𝑢 ≥ 0, 𝜕𝑢 𝑓 𝑣 ≥ 0 so long as 𝑢, 𝑣 satisfy

𝜅𝑢 (𝑥)𝑢 ≤ 𝜇𝑣 (𝑥), 𝜅𝑣 (𝑥)𝑣 ≤ 𝜇𝑢 (𝑥). (2.1)

We call the range of (𝑢, 𝑣) satisfying (2.1) the cooperative zone of system (1.1). The coop-
erative zone becomes larger if the mutation rates 𝜇𝑢, 𝜇𝑣 increase, while it shrinks if the
competition rates 𝜅𝑢, 𝜅𝑣 increase. It is important that the cooperative zone is always non-
empty. Note that, for large values of (𝑢, 𝑣) for which neither of the inequalities in (2.1)
holds, we have 𝜕𝑣 𝑓 𝑢 < 0, 𝜕𝑢 𝑓 𝑣 < 0, hence (1.1) exhibits a competitive nature in this range
of (𝑢, 𝑣).

2.1. Principal eigenvalues of the linearized system

First we introduce different notions of principal eigenvalues that we use in our results.
Even in the scalar case, multiple notions of principal eigenvalues turn out to be useful in
the analysis of spreading properties; we refer to Berestycki and Rossi [7] and Nadin [31]
for an overview of these notions.

The linearized system associated with (1.1) is the following.{
𝑢𝑡 =

(
𝜎(𝑥)𝑢𝑥

)
𝑥
+ 𝑟𝑢 (𝑥)𝑢 + 𝜇𝑣 (𝑥)𝑣 − 𝜇𝑢 (𝑥)𝑢, 𝑡 > 0, 𝑥 ∈ R,

𝑣𝑡 =
(
𝜎(𝑥)𝑣𝑥

)
𝑥
+ 𝑟𝑣 (𝑥)𝑣 + 𝜇𝑢 (𝑥)𝑢 − 𝜇𝑣 (𝑥)𝑣, 𝑡 > 0, 𝑥 ∈ R.

(2.2)

Note that this is a cooperative system. We first define the notions of periodic principal,
𝜆-periodic principal and Dirichlet principal eigenelements as follows.

Definition 1 (Periodic principal eigenpair). By a periodic principal eigenpair associated
with (2.2) we mean any pair

(
𝜆
𝑝𝑒𝑟

1 , (𝜑(𝑥), 𝜓(𝑥))
)

where 𝜆𝑝𝑒𝑟1 ∈ R, 𝜑(𝑥) and 𝜓(𝑥) are
positive 𝐿-periodic smooth functions that satisfy{

𝐿1 [𝜑, 𝜓] (𝑥) :=
(
𝜎(𝑥)𝜑𝑥

)
𝑥
+ 𝑟𝑢 (𝑥)𝜑 + 𝜇𝑣 (𝑥)𝜓 − 𝜇𝑢 (𝑥)𝜑 = 𝜆

𝑝𝑒𝑟

1 𝜑,

𝐿2 [𝜑, 𝜓] (𝑥) :=
(
𝜎(𝑥)𝜓𝑥

)
𝑥
+ 𝑟𝑣 (𝑥)𝜓 + 𝜇𝑢 (𝑥)𝜑 − 𝜇𝑣 (𝑥)𝜓 = 𝜆

𝑝𝑒𝑟

1 𝜓.
(2.3)

We call 𝜆𝑝𝑒𝑟1 the principal eigenvalue and (𝜑, 𝜓) a principal eigenvector.

It follows from the Krein-Rutman Theorem that 𝜆𝑝𝑒𝑟1 is, indeed, unique, and that (𝜑,𝜓)
is unique up to multiplication by a positive scalar. Heuristically, 𝜆𝑝𝑒𝑟1 corresponds to the
rate of growth of a small population, given that the initial data is 𝐿-periodic.

We continue with the notion of 𝜆-periodic principal eigenpair.
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Definition 2 (𝜆-periodic principal eigenpair). For 𝜆 > 0, by a 𝜆-periodic principal eigen-
pair associated with (2.2) we mean any pair

(
𝑘 (𝜆), (𝜑(𝑥), 𝜓(𝑥))

)
where 𝑘 (𝜆) ∈ R, 𝜑(𝑥)

and 𝜓(𝑥) are positive 𝐿-periodic smooth functions that satisfy{
𝐿1
𝜆 [𝜑, 𝜓] (𝑥) := 𝑒𝜆𝑥𝐿1 [𝑒−𝜆𝑥𝜑, 𝑒−𝜆𝑥𝜓] (𝑥) = 𝑘 (𝜆)𝜑,
𝐿2
𝜆 [𝜑, 𝜓] (𝑥) := 𝑒𝜆𝑥𝐿2 [𝑒−𝜆𝑥𝜑, 𝑒−𝜆𝑥𝜓] (𝑥) = 𝑘 (𝜆)𝜓.

(2.4)

or, equivalently,{(
𝜎(𝑥)𝜑𝑥

)
𝑥
− 2𝜆𝜎(𝑥)𝜑𝑥 +

(
𝜆2𝜎(𝑥) − 𝜆𝜎𝑥 (𝑥) + 𝑟𝑢 (𝑥)

)
𝜑 + 𝜇𝑣 (𝑥)𝜓 − 𝜇𝑢 (𝑥)𝜑 = 𝑘 (𝜆)𝜑,(

𝜎(𝑥)𝜓𝑥
)
𝑥
− 2𝜆𝜎(𝑥)𝜓𝑥 +

(
𝜆2𝜎(𝑥) − 𝜆𝜎𝑥 (𝑥) + 𝑟𝑣 (𝑥)

)
𝜓 + 𝜇𝑢 (𝑥)𝜑 − 𝜇𝑣 (𝑥)𝜓 = 𝑘 (𝜆)𝜓.

(2.4′)
We call 𝑘 (𝜆) the 𝜆-periodic principal eigenvalue and (𝜑, 𝜓) a 𝜆-periodic principal eigen-
vector.

Again, it follows from the Krein-Rutman Theorem that 𝑘 (𝜆) is unique and that (𝜑,𝜓) is
unique up to multiplication by a positive scalar. We use the notation 𝑘 (𝜆) to emphasize that
this eigenvalue should be considered as a function of the parameter𝜆. Note that𝜆𝑝𝑒𝑟1 = 𝑘 (0).

The𝜆-periodic principal eigenpair plays an important role in the analysis of front behav-
iors at the leading edge for the following reasons: At the leading edge, where the solution
is very small, system (1.1) is well approximated by the linearized system (2.2), and the
function pair

𝑢(𝑡, 𝑥) := 𝛼𝑒−𝜆(𝑥−𝑐𝑡 )𝜑(𝑥) > 0, 𝑣(𝑡, 𝑥) := 𝛼𝑒−𝜆(𝑥−𝑐𝑡 )𝜓(𝑥) > 0,

where 𝛼 is a positive constant, satisfies (2.2) if and only (𝜑, 𝜓) is a 𝜆-periodic principal
eigenvector and 𝑐 = 𝑘 (𝜆)/𝜆.

Lastly, we define our notion of Dirichlet principal eigenvalue.

Definition 3 (Dirichlet principal eigenpair). Let 𝑅 > 0 be given. By a Dirichlet principal
eigenpair on (−𝑅, 𝑅) associated with (2.2) we mean any pair

(
𝜆𝑅1 , (𝜑(𝑥), 𝜓(𝑥))

)
where

𝜆𝑅1 ∈ R, 𝜑(𝑥) and 𝜓(𝑥) are positive smooth functions on [−𝑅, 𝑅] that satisfy{(
𝜎(𝑥)𝜑𝑥

)
𝑥
+ 𝑟𝑢 (𝑥)𝜑 + 𝜇𝑣 (𝑥)𝜓 − 𝜇𝑢 (𝑥)𝜑 = 𝜆𝑅1 𝜑,(

𝜎(𝑥)𝜓𝑥
)
𝑥
+ 𝑟𝑣 (𝑥)𝜓 + 𝜇𝑢 (𝑥)𝜑 − 𝜇𝑣 (𝑥)𝜓 = 𝜆𝑅1 𝜓,

(2.5a)

and
𝜑(−𝑅) = 𝜓(−𝑅) = 0 and 𝜑(𝑅) = 𝜓(𝑅) = 0. (2.5b)

We call 𝜆𝑅1 the principal eigenvalue and (𝜑, 𝜓) a principal eigenvector.

As before, the Krein-Rutman theorem ensures that 𝜆𝑅1 is unique and (𝜑, 𝜓) is unique
up to multiplication by a positive scalar. Heuristically, 𝜆𝑅1 corresponds to the rate of growth
of a small population that vanishes at 𝑥 = −𝑅 and 𝑥 = 𝑅.
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We are now in a position to state our results on the properties of these different notions
of principal eigenvalue and their relations. First we establish properties of the 𝜆-periodic
principal eigenvalue and the map 𝜆 ↦→ 𝑘 (𝜆).

Proposition 2.1 (Properties of 𝑘 (𝜆)). Let Assumption 1 hold true. Then:
(i) For each 𝜆 ∈ R, there exists a 𝜆-periodic principal eigenpair

(
𝑘 (𝜆), (𝜑, 𝜓)

)
with

𝜑(𝑥) > 0 and 𝜓(𝑥) > 0 for all 𝑥 ∈ R, which solves (2.4), and (𝜑, 𝜓) is unique up
to the multiplication by a positive scalar.

(ii) The following characterization of 𝑘 (𝜆) is valid:

𝑘 (𝜆) = min
𝜑>0,𝜓>0

(𝜑,𝜓) ∈𝐶2
𝑝𝑒𝑟 (R)2

sup
𝑥∈R

max

(
𝐿1
𝜆
[𝜑, 𝜓] (𝑥)
𝜑(𝑥) ,

𝐿2
𝜆
[𝜑, 𝜓] (𝑥)
𝜓(𝑥)

)
, (2.6)

where 𝐿1
𝜆
[𝜑, 𝜓] (𝑥), 𝐿2

𝜆
[𝜑, 𝜓] (𝑥) are as defined in (2.4). In addition, the right-

hand side has a unique minimizer up to multiplication by a positive scalar, which
coincides with the principal eigenvector of the problem (2.4).

(iii) The function𝜆 ↦→ 𝑘 (𝜆) is analytic and strictly convex. Furthermore, the following
inequalites hold:

𝜎min𝜆
2 + 𝑟min ≤ 𝑘 (𝜆) ≤ 𝜎max𝜆

2 + 𝑟max for all 𝜆 ∈ R, (2.7)

where 𝜎min := min𝑥∈R 𝜎(𝑥), 𝜎max := max𝑥∈R 𝜎(𝑥) and

𝑟min := min
(
min
𝑥∈R

𝑟𝑢 (𝑥),min
𝑥∈R

𝑟𝑣 (𝑥)
)
, 𝑟max := max

(
max
𝑥∈R

𝑟𝑢 (𝑥),max
𝑥∈R

𝑟𝑣 (𝑥)
)
.

Next we recall some classical properties of the principal eigenvalue for the Dirichlet
problem.

Proposition 2.2 (On the Dirichlet principal eigenvalue for cooperative systems). Let Assump-
tion 1 hold true. Then: for any 𝑅 ∈ (0, +∞), there exists a principal eigenvector (𝜑, 𝜓)
associated with 𝜆𝑅1 , which is unique up to the multiplication by a positive scalar. Moreover,
the mapping 𝑅 ↦→ 𝜆𝑅1 is strictly increasing.

The following theorem states that the minimum of the function 𝑘 (𝜆) is exactly given
by the supremum of all 𝜆𝑅1 for 𝑅 > 0.

Theorem 2.3 (Comparison between Dirichlet and 𝜆-periodic principal eigenvalues). Let
Assumption 1 hold true. Then 𝜆𝑅1 < 𝑘 (𝜆) for all 𝑅 > 0 and 𝜆 ∈ R. Furthermore,

lim
𝑅→+∞

𝜆𝑅1 = min
𝜆∈R

𝑘 (𝜆). (2.8)

From (2.8) we see that

lim
𝑅→+∞

𝜆𝑅1 = min
𝜆∈R

𝑘 (𝜆) ≤ 𝑘 (0) = 𝜆𝑝𝑒𝑟1 ,
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but the equality does not necessarily hold in general. In the case of scalar equations, it
is known that 𝑘 (−𝜆) = 𝑘 (𝜆), which is a consequence of the Fredholm alternative since
the operator 𝐿−𝜆 [𝜑] := 𝑒−𝜆𝑥𝐿 [𝑒𝜆𝑥𝜑] is the adjoint operator of 𝐿𝜆 [𝜑] := 𝑒𝜆𝑥𝐿 [𝑒−𝜆𝑥𝜑],
provided that 𝐿 is self-adjoint (see also [31, , Prop. 2.14]). In such a case, the equality
min𝜆 𝑘 (𝜆) = 𝑘 (0) always holds since 𝑘 (𝜆) is even and convex. As we see below, the same
result holds for our system under additional symmetry assumptions.

Proposition 2.4. Suppose that Assumption 1 holds true, and assume further that either:
(i) 𝜇𝑢 (𝑥) = 𝜇𝑣 (𝑥) for all 𝑥 ∈ R, or
(ii) all coefficients are even:𝜎(𝑥) = 𝜎(−𝑥), 𝑟𝑢 (𝑥) = 𝑟𝑢 (−𝑥), 𝑟𝑣 (𝑥) = 𝑟𝑣 (−𝑥), 𝜇𝑢 (𝑥) =

𝜇𝑢 (−𝑥) and 𝑟𝑣 (𝑥) = 𝑟𝑢 (−𝑥), for all 𝑥 ∈ R.
Then the function 𝜆 ↦→ 𝑘 (𝜆) is even, i.e. 𝑘 (𝜆) = 𝑘 (−𝜆) for all 𝜆 ∈ R. Consequently, we have

lim
𝑅→+∞

𝜆𝑅1 = min
𝜆∈R

𝑘 (𝜆) = 𝑘 (0) = 𝜆𝑝𝑒𝑟1 . (2.9)

2.2. Propagation dynamics

Before presenting our main results in this section, we remark that nonnegative solutions of
(1.1) are all bounded as 𝑡 → +∞. To state this basic estimate, we introduce the following
notation:

𝑟max := sup
𝑥∈R

max
(
𝑟𝑢 (𝑥), 𝑟𝑣 (𝑥)

)
, 𝜅min := inf

𝑥∈R
min

(
𝜅𝑢 (𝑥), 𝜅𝑣 (𝑥)

)
, 𝐾 :=

𝑟max
𝜅min

. (2.10)

Proposition 2.5 (Basic boundedness estimate). Let (𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥)) be a solution of (1.1)
with nonnegative bounded initial data (𝑢0 (𝑥), 𝑣0 (𝑥)). Then 𝑢(𝑡, 𝑥) ≥ 0, 𝑣(𝑡, 𝑥) ≥ 0 for all
𝑡 ≥ 0, 𝑥 ∈ R, and

𝑢(𝑡, 𝑥) + 𝑣(𝑡, 𝑥) ≤ max
(
𝐾, sup

𝑥∈R
(𝑢0 (𝑥) + 𝑣0 (𝑥))

)
for all 𝑡 ≥ 0, 𝑥 ∈ R, (2.11)

lim sup
𝑡→+∞

sup
𝑥∈R

(
𝑢(𝑡, 𝑥) + 𝑣(𝑡, 𝑥)

)
≤ 𝐾. (2.12)

In particular, if 𝑢0 (𝑥) + 𝑣0 (𝑥) ≤ 𝐾 (𝑥 ∈ R), then 𝑢(𝑡, 𝑥) + 𝑣(𝑡, 𝑥) ≤ 𝐾 (𝑡 ≥ 0, 𝑥 ∈ R).

As we shall see, the above proposition follows by a rather simple comparison argument.
Note that uniform boundedness guarantees that any nonnegative solution of (1.1) exists
globally for 𝑡 ≥ 0.

Now we discuss the propagation dynamics of the solutions of (1.1). We first focus on
solutions with front-like initial data, then we consider solutions with compactly supported
initial data. Since the propagation speed may differ depending on whether the front faces
toward the right or toward the left, we distinguish the right and left spreading speeds.

Definition 4. The pair of bounded nonnegative functions (𝑢0, 𝑣0) onR that appears in (1.2)
is called right front-like if there exist real numbers 𝐾1 < 𝐾2 such that

inf
𝑥≤𝐾1

min(𝑢0 (𝑥), 𝑣0 (𝑥)) > 0, 𝑢0 (𝑥) = 𝑣0 (𝑥) = 0 for all 𝑥 ≥ 𝐾2.
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It is called left front-like if there exist real numbers 𝐾1 < 𝐾2 such that

𝑢0 (𝑥) = 𝑣0 (𝑥) = 0 for all 𝑥 ≤ 𝐾1, inf
𝑥≥𝐾2

min(𝑢0 (𝑥), 𝑣0 (𝑥)) > 0.

Theorem 2.6 (Spreading speeds for front-like initial data). Let Assumption 1 hold true and
assume that 𝜆𝑝𝑒𝑟1 > 0. Then there exist real numbers 𝑐∗

𝑅
, 𝑐∗
𝐿

and a positive number 𝜂 > 0
such that for any solution (𝑢, 𝑣) of (1.1)–(1.2) whose initial data (𝑢0, 𝑣0) is right front-like,
it holds that 

lim inf
𝑡→∞

[
inf
𝑥≤𝑐𝑡

min(𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥))
]
≥ 𝜂, for all 𝑐 < 𝑐∗

𝑅
,

lim sup
𝑡→∞

[
sup
𝑥≥𝑐𝑡

max(𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥))
]
= 0, for all 𝑐 > 𝑐∗

𝑅
,

(2.13)

while for any solution (𝑢, 𝑣) of (1.1)–(1.2) whose initial data (𝑢0, 𝑣0) is left front-like, it
holds that 

lim inf
𝑡→∞

[
inf
𝑥≥−𝑐𝑡

min(𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥))
]
≥ 𝜂, for all 𝑐 < 𝑐∗

𝐿
,

lim sup
𝑡→∞

[
sup
𝑥≤−𝑐𝑡

max(𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥))
]
= 0, for all 𝑐 > 𝑐∗

𝐿
.

(2.14)

Furthermore, we have the following formula:

𝑐∗𝑅 = inf
𝜆>0

𝑘 (𝜆)
𝜆

= min
𝜆>0

𝑘 (𝜆)
𝜆

𝑐∗𝐿 = inf
𝜆<0

𝑘 (𝜆)
−𝜆 = min

𝜆<0

𝑘 (𝜆)
−𝜆 = min

𝜆>0

𝑘 (−𝜆)
𝜆

, (2.15)

where 𝑘 (𝜆) is the 𝜆-principal periodic eigenvalue defined in Definition 2.

Definition 5 (Right- and left spreading speed). The above quantities 𝑐∗
𝑅

and 𝑐∗
𝐿

are called
the right spreading speed and left spreading speed of solutions to (1.1), respectively.

Note that the constant 𝜂 that appears in (2.13), (2.14) does not depend on the choice of
the initial data. The formula (2.15) is well-known for scalar KPP type equations [5, 6, 31,
38,39]. Since we are assuming 𝜆𝑝𝑒𝑟1

(
= 𝑘 (0)

)
> 0, the values of 𝑐∗

𝑅
and 𝑐∗

𝐿
are well-defined

and finite.
By virtue of the inequalities (2.7), the following estimates of the spreading speeds hold:

Proposition 2.7. Let 𝜎min, 𝜎max, 𝑟min, 𝑟max be the constants that appear in (2.7). Then

𝑐∗𝑅 ≤ 2
√
𝜎max𝑟max, 𝑐∗𝐿 ≤ 2

√
𝜎max𝑟max.

Furthermore, if 𝑟min > 0, then

𝑐∗𝑅 ≥ 2
√
𝜎min𝑟min, 𝑐∗𝐿 ≥ 2

√
𝜎min𝑟min.

Let us explain the meaning of the formula (2.15) from a different point of view. As we
mentioned in section 2.1, the pair of positive functions of the form

𝑢(𝑡, 𝑥) := 𝛼𝑒−𝜆(𝑥−𝑐𝑡 )𝜑(𝑥), 𝑣(𝑡, 𝑥) := 𝛼𝑒−𝜆(𝑥−𝑐𝑡 )𝜓(𝑥) (2.16)
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satisfies the linear system (2.2) if and only if (𝜑, 𝜓) is a 𝜆-periodic principal eigenvector
of (2.4) and 𝑐 = 𝑘 (𝜆)/𝜆. Therefore, 𝑐∗

𝑅
can be characterized as follows:

𝑐∗𝑅 = min {𝑐 ∈ R : the pair (𝑢, 𝑣) in (2.16) satisfies (2.2) for some 𝜆 > 0} . (2.17)

As regards the left spreading speed, we consider a pair of functions the form

𝑢(𝑡, 𝑥) := 𝛼𝑒−𝜆(𝑥+𝑐𝑡 )𝜑(𝑥), 𝑣(𝑡, 𝑥) := 𝛼𝑒−𝜆(𝑥+𝑐𝑡 )𝜓(𝑥) (2.18)

with 𝜆 < 0, since we deal with a front that faces the negative direction of 𝑥-axis. Then we
have

𝑐∗𝐿 = min {𝑐 ∈ R : the pair (𝑢, 𝑣) in (2.18) satisfies (2.2) for some 𝜆 < 0} . (2.19)

Incidentally, combining (2.15) and Proposition 2.4, we obtain the following proposition:

Proposition 2.8. Let the assumption (i) or (ii) of Proposition 2.4 hold. Then 𝑐∗
𝑅
= 𝑐∗

𝐿
. In

particular, if all the coefficients are spatially homogeneous, then 𝑐∗
𝑅
= 𝑐∗

𝐿
.

The above result is an immediate consequence of the fact that 𝑘 (−𝜆) = 𝑘 (𝜆) which
holds under the assumption (i) or (ii). However, without such assumptions, we may have
𝑐∗
𝑅
≠ 𝑐∗

𝐿
. We shall show such an example in our forthcoming paper [18]. Note that, in the

case of spatially periodic scalar KPP type equations, it is known that 𝑘 (−𝜆) = 𝑘 (𝜆), as we
mentioned earlier, hence we always have 𝑐∗

𝑅
= 𝑐∗

𝐿
.

We next consider solutions with compactly supported initial data and discuss the so-
called “hair-trigger effect”. This concept was introduced by Aronson and Weinberger [2],
who showed that any solution of the monostable equation 𝑢𝑡 = Δ𝑢 + 𝑓 (𝑢) on R𝑁 with non-
negative nontrivial initial data 𝑢0 with compact support converges to a positive stationary
solution as 𝑡→+∞, no matter how small 𝑢0 is. However, in the case of system (1.1), we do
not know if the condition 𝜆𝑝𝑒𝑟1 > 0 is sufficient to guarantee the hair-trigger effect, even if
we weaken its statement to allow the solution to become simply uniformly positive instead
of convergent to a positive equilibrium.

As we state below, a proper criterion for obtaining a hair-trigger effect is the sign of
Dirichlet principal eigenvalues on large domains, which guarantees that both 𝑐∗

𝐿
and 𝑐∗

𝑅

are positive.

Theorem 2.9 (Hair-trigger effect). Let Assumption 1 hold true. Then the following three
conditions are equivalent:

(a) 𝜆𝑅1 > 0 for some 𝑅 > 0, (b) min
𝜆∈R

𝑘 (𝜆) > 0, (c) 𝑐∗𝑅 > 0, 𝑐∗𝐿 > 0.

If any of these conditions holds, there exists a number 𝜂 > 0 depending only on the coeffi-
cients of system (1.1) such that for any nonnegative bounded initial data (𝑢0, 𝑣0) satisfying
(𝑢0 (𝑥), 𝑣0 (𝑥)) . (0, 0), the solution

(
𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥)

)
of (1.1)–(1.2) has the following prop-

erty:
lim inf
𝑡→+∞

𝑢(𝑡, 𝑥) ≥ 𝜂 and lim inf
𝑡→+∞

𝑣(𝑡, 𝑥) ≥ 𝜂 for all 𝑥 ∈ R. (2.20)
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Furthermore, if, in addition, 𝑢0 and 𝑣0 are compactly supported, then the right front and
the left front of (𝑢, 𝑣) propagate at the speed 𝑐∗

𝑅
and 𝑐∗

𝐿
, respectively. More precisely,

lim inf
𝑡→∞

[
inf

0≤𝑥≤𝑐𝑡
min(𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥))

]
≥ 𝜂, for all 0 < 𝑐 < 𝑐∗𝑅, (2.21a)

lim sup
𝑡→∞

[
sup
𝑥≥𝑐𝑡

max(𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥))
]
= 0, for all 𝑐 > 𝑐∗𝑅 . (2.21b)


lim inf
𝑡→∞

[
inf

−𝑐𝑡≤𝑥≤0
min(𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥))

]
≥ 𝜂, for all 0 < 𝑐 < 𝑐∗𝐿 , (2.22a)

lim sup
𝑡→∞

[
sup
𝑥≤−𝑐𝑡

max(𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥))
]
= 0, for all 𝑐 > 𝑐∗𝐿 . (2.22b)

The assertions (2.21a) and (2.22a) hold for any nonnegative nontrivial solution of (1.1).

The above theorem shows that the propagation speeds of solutions with compactly sup-
ported initial data are the same as those of solutions with front-like initial data. Therefore,
the notions of right and left spreading speeds, 𝑐∗

𝑅
and 𝑐∗

𝐿
, have a rather universal nature.

Note that if the coefficients of (1.1) satisfy the symmetry conditions stated in (i) or
(ii) of Proposition 2.4, then by (2.9), the above conditions (a), (b), (c) are all equivalent to
𝜆
𝑝𝑒𝑟

1 > 0.

2.3. Traveling waves

Next we recall the notion of traveling wave solutions under a spatially periodic environment.
We distinguish the “right traveling waves” and “left traveling waves”.

Definition 6 (Traveling wave solutions). Let (𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥)) be an entire solution to (1.1),
i.e. a solution that is defined for all 𝑡 ∈ R and 𝑥 ∈ R. We say that (𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥)) is a right
traveling wave propagating at speed 𝑐 if it satisfies

𝑢

(
𝑡 + 𝐿

𝑐
, 𝑥

)
= 𝑢(𝑡, 𝑥 − 𝐿), 𝑣

(
𝑡 + 𝐿

𝑐
, 𝑥

)
= 𝑣(𝑡, 𝑥 − 𝐿), for all (𝑡, 𝑥) ∈ R2, (2.23)

as well as the following asymptotics at 𝑥 = ±∞:

lim
𝑥→+∞

𝑢(𝑡, 𝑥) = 0, lim
𝑥→+∞

𝑣(𝑡, 𝑥) = 0, for all 𝑡 ∈ R, (2.24a)

lim inf
𝑥→−∞

𝑢(𝑡, 𝑥) > 0, lim inf
𝑥→−∞

𝑣(𝑡, 𝑥) > 0, for all 𝑡 ∈ R. (2.24b)

The left traveling wave is defined the same way by reversing the direction of the 𝑥-axis,
namely

𝑢

(
𝑡 + 𝐿

𝑐
, 𝑥

)
= 𝑢(𝑡, 𝑥 + 𝐿), 𝑣

(
𝑡 + 𝐿

𝑐
, 𝑥

)
= 𝑣(𝑡, 𝑥 + 𝐿), for all (𝑡, 𝑥) ∈ R2, (2.25)

with reversed asymptotics at 𝑥 = ±∞.
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Theorem 2.10 (Existence of traveling waves). Let Assumption 1 hold and assume that
𝜆
𝑝𝑒𝑟

1 > 0. Then there exists a right (resp. left) traveling wave for (1.1) with speed 𝑐 if,
and only if, 𝑐 ≥ 𝑐∗

𝑅
(resp. 𝑐 ≥ 𝑐∗

𝐿
), where 𝑐∗

𝑅
and 𝑐∗

𝐿
are the spreading speeds defined in

Definition 5.

Remark 2.11. The above theorem shows that the right and left spreading speeds for solu-
tions with front-like initial data (Theorem 2.6) or with compactly supported initial data
(Theorem 2.9) coincide with the minimal speeds of the right traveling waves and left trav-
eling waves.

Figure 1 gives a typical image of traveling waves for different parameter values. In all
these examples, the intrinsic growth rates satisfy 𝑟𝑢 < 𝑟𝑣 so that the natural front speed of
𝑣 is faster than that of 𝑢, while their carrying capacity (in the absence of the other species
and mutation) satisfy 𝑟𝑢/𝜅𝑢 > 𝑟𝑣/𝜅𝑣 so that 𝑢 will eventually dominate 𝑣 in the long run.

x

(a)

u
v

x

(b)

u
v

x

(c)

u
v

Figure 1. Profiles of traveling waves of (1.1) for different parameter values. (a) Spatially homo-
geneous coefficients with large mutation rates 𝜇𝑢, 𝜇𝑣. In this case, the cooperative zone of system
(1.1) is rather large, and the traveling wave lies entirely in this zone. As a result, both 𝑢 and 𝑣 have
monotone profiles, just as in the case of scalar equations. (b) Spatially homogeneous coefficients with
small mutation rates 𝜇𝑢, 𝜇𝑣. In this case, a large part of the traveling wave profile lies outside the
cooperative zone, and a hump appears on 𝑣. (c) Spatially periodic case. The coefficients are the same
as in (b), except 𝑟𝑢 (𝑥) and 𝑟𝑣 (𝑥), which have a cosine-like periodic perturbation.
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The upper and lower barriers that are used in the proof of Theorem 2.10 also give the
following decay estimates of traveling waves on the leading edge.

Theorem 2.12 (Decay rate of traveling waves). Let the assumptions of Theorem 2.10 hold.
Then, for each 𝑐 > 𝑐∗

𝑅
, there exists a right traveling wave

(
𝑢𝑐 (𝑡, 𝑥), 𝑣𝑐 (𝑡, 𝑥)

)
that satisfies

the following for some 𝜀 > 0, where 𝜆 is the smallest positive solution of 𝑘 (𝜆) = 𝜆𝑐 and(
𝜑𝜆, 𝜓𝜆

)
denotes the principal eigenvector of (2.4):{
𝑢(𝑡, 𝑥) = 𝑒−𝜆(𝑥−𝑐𝑡 )𝜑𝜆 (𝑥) + O

(
𝑒−(𝜆+𝜀) (𝑥−𝑐𝑡 ) ) ,

𝑣(𝑡, 𝑥) = 𝑒−𝜆(𝑥−𝑐𝑡 )𝜓𝜆 (𝑥) + O
(
𝑒−(𝜆+𝜀) (𝑥−𝑐𝑡 ) ) as 𝑥 − 𝑐𝑡 → +∞. (2.26)

If, on the other hand, 𝑐 = 𝑐∗
𝑅

, there exists a right traveling wave
(
𝑢∗ (𝑡, 𝑥), 𝑣∗ (𝑡, 𝑥)

)
that

satisfies the following, where 𝜆∗ is the unique solution of 𝑘 (𝜆∗) = 𝜆∗𝑐∗
𝑅

:{
𝑢∗ (𝑡, 𝑥) =

(
𝑥 − 𝑐∗

𝑅
𝑡 + O(1)

)
𝑒−𝜆

∗ (𝑥−𝑐∗
𝑅
𝑡 )𝜑𝜆

∗ (𝑥),
𝑣∗ (𝑡, 𝑥) =

(
𝑥 − 𝑐∗

𝑅
𝑡 + O(1)

)
𝑒−𝜆

∗ (𝑥−𝑐∗
𝑅
𝑡 )𝜓𝜆

∗ (𝑥)
as 𝑥 − 𝑐∗𝑅 𝑡 → +∞. (2.27)

Similar statements hold for left traveling waves, if we replace 𝑥 − 𝑐𝑡 by 𝑥 + 𝑐𝑡 and define 𝜆
as the largest negative solution of 𝑘 (𝜆) = −𝜆𝑐.

2.4. Global asymptotic stability of the positive equilibrium

Next we turn to the asymptotic behavior of the solutions to the Cauchy problem (1.1)
in the case where the coefficients are independent of 𝑥. More precisely, we consider the
homogeneous problem{

𝑢𝑡 − 𝜎𝑢𝑥𝑥 =
(
𝑟𝑢 − 𝜅𝑢 (𝑢 + 𝑣)

)
𝑢 + 𝜇𝑣𝑣 − 𝜇𝑢𝑢,

𝑣𝑡 − 𝜎𝑣𝑥𝑥 =
(
𝑟𝑣 − 𝜅𝑣 (𝑢 + 𝑣)

)
𝑣 + 𝜇𝑢𝑢 − 𝜇𝑣𝑣,

𝑡 > 0, 𝑥 ∈ R, (2.28)

where 𝜎 > 0, 𝑟𝑢 ∈ R, 𝑟𝑣 ∈ R, 𝜅𝑢 > 0, 𝜅𝑣 > 0, 𝜇𝑢 > 0, 𝜇𝑣 > 0. The linearization of (2.28)
around (𝑢, 𝑣) = (0, 0) is given in the following form, which is a spatially homogeneous
version of (2.2): {

𝑢𝑡 − 𝜎𝑢𝑥𝑥 = (𝑟𝑢 − 𝜇𝑢)𝑢 + 𝜇𝑣𝑣,
𝑣𝑡 − 𝜎𝑣𝑥𝑥 = (𝑟𝑣 − 𝜇𝑣)𝑣 + 𝜇𝑢𝑢,

𝑡 > 0, 𝑥 ∈ R. (2.29)

As we have seen before, this is a cooperative system, and since the nonlinearity of (2.28)
is sublinear, any nonnegative solutions of (2.28) is a subsolution of the cooperative system
(2.29). Consequently, if we denote by

(
𝑢, 𝑣

)
and

(
�̄�, �̄�

)
the solutions of (2.28) and (2.29),

respectively, then we have(
𝑢(0, 𝑥), 𝑣(0, 𝑥)

)
≤

(
�̄�(0, 𝑥), �̄�(0, 𝑥)

)
for 𝑥 ∈ R

⇒
(
𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥)

)
≤

(
�̄�(𝑡, 𝑥), �̄�(𝑡, 𝑥)

)
for 𝑡 ≥ 0, 𝑥 ∈ R.
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The coefficient matrix of the right-hand side of (2.29) is given by

𝐴 :=
(
𝑟𝑢 − 𝜇𝑢 𝜇𝑣

𝜇𝑢 𝑟𝑣 − 𝜇𝑣

)
. (2.30)

Since the off-diagonal entries of 𝐴 are positive, we easily see that 𝐴 has real eigenvalues.
Define

𝜆𝐴 := max{𝜆 ∈ R | 𝜆 is an eigenvalue of A}. (2.31)

By the Perron-Frobenius theory, the eigenvector (𝜑𝑢
𝐴
, 𝜑𝑣
𝐴
)𝑇 corresponding to 𝜆𝐴 is positive.

The sign of 𝜆𝐴 plays a key role in the analysis of the corresponding ODE system{
𝑢𝑡 = (𝑟𝑢 − 𝜅𝑢 (𝑢 + 𝑣))𝑢 + 𝜇𝑣𝑣 − 𝜇𝑢𝑢,
𝑣𝑡 = (𝑟𝑣 − 𝜅𝑣 (𝑢 + 𝑣))𝑣 + 𝜇𝑢𝑢 − 𝜇𝑣𝑣.

(2.32)

By definition, the trivial equilibrium point (0, 0) is linearly unstable if 𝜆𝐴 > 0 and linearly
stable if 𝜆𝐴 < 0. Incidentally, if 𝑟𝑢 = 𝑟𝑣, then 𝜆𝐴 = 𝑟𝑢 = 𝑟𝑣.

We remark that the value of 𝜆𝐴 also plays an important role in the propagation dynam-
ics of (2.28). To see this, note first that the principal eigenvector

(
𝜑(𝑥), 𝜓(𝑥)

)
of (2.4)

is a constant function. This is because, for any real number 𝛼,
(
𝜑(𝑥 + 𝛼), 𝜓(𝑥 + 𝛼)

)
is

again a principal eigenvector since the coefficients are spatially homogeneous, hence by
the uniqueness of the principal eigenvector (up to multiplication of a constant), we have(
𝜑(𝑥 + 𝛼), 𝜓(𝑥 + 𝛼)

)
=

(
𝜑(𝑥), 𝜓(𝑥)

)
for any 𝑎 ∈ R, which implies that

(
𝜑(𝑥), 𝜓(𝑥)

)
is

independent of 𝑥. Consequently, the 𝜆-periodic eigenproblem (2.4) is given in the follow-
ing simpler form: {

(𝜆2𝜎 + 𝑟𝑢)𝜑 + 𝜇𝑣𝜓 − 𝜇𝑢𝜑 = 𝑘 (𝜆)𝜑,
(𝜆2𝜎 + 𝑟𝑣)𝜓 + 𝜇𝑢𝜑 − 𝜇𝑣𝜓 = 𝑘 (𝜆)𝜓.

(2.33)

It follows that
𝑘 (𝜆) = 𝜎𝜆2 + 𝜆𝐴. (2.34)

In particular, we have
𝜆𝐴 = 𝑘 (0) = 𝜆𝑝𝑒𝑟1 . (2.35)

If 𝜆𝐴 > 0, then by (2.34) and (2.15),

𝑐∗𝑅 = 𝑐∗𝐿 = 2
√︁
𝜎𝜆𝐴 > 0, (2.36)

hence the hair-trigger effect holds by virtue of Theorem 2.9.
Let us come back to the ODE system (2.32) and discuss its dynamics. Throughout this

section we assume the following, which is a restatement of Assumption 1 in the spatial
homogeneous setting:

Assumption 2. The coefficients of (2.28) satisfy Assumption 1, that is, 𝜎, 𝜅𝑢, 𝜅𝑣, 𝜇𝑣, 𝜇𝑢
are positive constants and 𝑟𝑢, 𝑟𝑣 are constants of an arbitrary sign.
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It can be seen that the condition 𝜆𝐴 > 0 is always satisfied when 𝑟𝑢 > 0 and 𝑟𝑣 > 0, and
always fails when 𝑟𝑢 < 0 and 𝑟𝑣 < 0. The situation when 𝑟𝑢 and 𝑟𝑣 do not have the same
sign is more intricate. In this case, there may exist a threshold depending on the values of
𝜇𝑢, 𝜇𝑣, such that (0, 0) is stable for small values of 𝜇𝑢, 𝜇𝑣, and unstable for larger values.
We discuss this threshold later in remark 3.11.

The following proposition classifies the long-time behavior of all nonnegative solutions
of (2.32) in terms of the sign of 𝜆𝐴. Note that elements of the proof of this proposition can
be found in the work of Cantrell, Cosner and Yu [9], who proved the global asymptotic
stability of the positive equilibrium for a similar system in a bounded domain.

Proposition 2.13 (Asymptotic behavior of the ODE system). Let Assumption 2 hold, and
let (𝑢(𝑡), 𝑣(𝑡)) be the solution of (2.32) starting from a nonnegative nontrivial initial con-
dition (𝑢0, 𝑣0).

(i) If𝜆𝐴 > 0, there is a unique positive equilibrium (𝑢∗, 𝑣∗) for (2.32), and (𝑢(𝑡), 𝑣(𝑡))
converges to (𝑢∗, 𝑣∗) as 𝑡 → +∞.

(ii) If 𝜆𝐴 ≤ 0, then (𝑢(𝑡), 𝑣(𝑡)) converges to (0, 0) as 𝑡 → +∞.

As we shall see, the statement (ii) of the above proposition follows easily from the
fact that solutions of (2.32) are subsolutions of the linearized system (the ODE version of
(2.29)), which is a cooperative system. On the other hand, the proof of the statement (i)
is highly nontrivial, because the system (2.32) is neither entirely cooperative nor entirely
competitive. To prove the convergence (𝑢(𝑡), 𝑣(𝑡)) → (𝑢∗, 𝑣∗), we will use two different
methods separately depending on the parameter values, one based on a Lyapunov function,
and the other based on the so-called “ultimate cooperative” property; see section 3.4 for
details.

The following theorem states that, under the assumption𝜆𝐴 > 0, solutions to the Cauchy
problem associated with (2.28) converge in long time to the stationary solution (𝑢∗, 𝑣∗).
The proof of this theorem is based on a Liouville type result on entire solutions of (2.28)
(Theorem 3.14).

Theorem 2.14 (Asymptotic behavior of the homogeneous RD problem). Let Assumption 2
hold, and assume 𝜆𝐴 > 0. Let 𝑐∗

𝑅
, 𝑐∗
𝐿

be the right and left spreading speeds associated with
(2.28), respectively. Then 𝑐∗

𝑅
= 𝑐∗

𝐿
= 2

√
𝜎𝜆𝐴 > 0. Furthermore, any nonnegative solution

(𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥)) to the Cauchy problem with bounded nontrivial initial data converges as
𝑡 → +∞ to the unique positive stationary solution (𝑢∗, 𝑣∗) of (2.28), uniformly in the sense
that for each 0 < 𝑐 < 𝑐∗

𝑅
we have:

lim
𝑡→+∞

sup
|𝑥 | ≤𝑐𝑡

max
(
|𝑢(𝑡, 𝑥) − 𝑢∗ |, |𝑣(𝑡, 𝑥) − 𝑣∗ |

)
= 0. (2.37)

2.5. Homogenization

Here we extend the global stability result of the last section to the case of rapidly oscil-
lating coefficients. Our method is based on a combination of dynamical systems theory
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and parabolic homogenization techniques. In the case of scalar equations with periodic
coefficients, the homogenization limits of spreading speeds and traveling waves have been
studied in particular by El Smaily [11, 12] and El Smaily, Hamel and Roques [13].

In stating our results, we restrict ourselves to the case 𝐿 = 1, without loss of generality.
For each 1-periodic function 𝜎(𝑥), 𝜎(𝑥), 𝑟𝑢 (𝑥), 𝑟𝑣 (𝑥), 𝜇𝑢 (𝑥), 𝜇𝑣 (𝑥), we define:

𝑟 𝜀𝑢 (𝑥) := 𝑟𝑢
( 𝑥
𝜀

)
, 𝜅𝜀𝑢 (𝑥) := 𝜅𝑢

( 𝑥
𝜀

)
, 𝜇𝜀𝑢 (𝑥) := 𝜇𝑢

( 𝑥
𝜀

)
,

𝑟 𝜀𝑣 (𝑥) := 𝑟𝑣
( 𝑥
𝜀

)
, 𝜅𝜀𝑣 (𝑥) := 𝜅𝑣

( 𝑥
𝜀

)
, 𝜇𝜀𝑣 (𝑥) := 𝜇𝑣

( 𝑥
𝜀

)
,

𝜎𝜀 (𝑥) := 𝜎
( 𝑥
𝜀

) (2.38)

and

𝑟𝑢 :=
∫ 1

0
𝑟𝑢 (𝑥)d𝑥, 𝜅𝑢 :=

∫ 1

0
𝜅𝑢 (𝑥)d𝑥, 𝜇𝑢 :=

∫ 1

0
𝜇𝑢 (𝑥)d𝑥,

𝑟𝑣 :=
∫ 1

0
𝑟𝑣 (𝑥)d𝑥, 𝜅𝑣 :=

∫ 1

0
𝜅𝑣 (𝑥)d𝑥, 𝜇𝑣 :=

∫ 1

0
𝜇𝑣 (𝑥)d𝑥,

(2.39)

𝜎𝐻 :=
(∫ 1

0

1
𝜎(𝑥) d𝑥

)−1

.

We study the following system, whose coefficients oscillate rapidly when 𝜀 is small:{
𝑢𝑡 = (𝜎𝜀 (𝑥)𝑢𝑥)𝑥 + (𝑟 𝜀𝑢 (𝑥) − 𝜅𝜀𝑢 (𝑥) (𝑢 + 𝑣))𝑢 + 𝜇𝜀𝑣 (𝑥)𝑣 − 𝜇𝜀𝑢 (𝑥)𝑢,
𝑣𝑡 = (𝜎𝜀 (𝑥)𝑣𝑥)𝑥 + (𝑟 𝜀𝑣 (𝑥) − 𝜅𝜀𝑣 (𝑥) (𝑢 + 𝑣))𝑣 + 𝜇𝜀𝑢 (𝑥)𝑢 − 𝜇𝜀𝑣 (𝑥)𝑣

on R. (2.40)

On a formal level, the homogenization limit of (2.40) as 𝜀 → 0 is given by:{
𝑢𝑡 = 𝜎

𝐻𝑢𝑥𝑥 + (𝑟𝑢 − 𝜅𝑢 (𝑢 + 𝑣))𝑢 + 𝜇𝑣𝑣 − 𝜇𝑢𝑢,
𝑣𝑡 = 𝜎

𝐻𝑣𝑥𝑥 + (𝑟𝑣 − 𝜅𝑣 (𝑢 + 𝑣))𝑣 + 𝜇𝑢𝑢 − 𝜇𝑣𝑣
on R. (2.41)

The main result of this section is the following:

Theorem 2.15 (Homogenization). Let 𝜎(𝑥), 𝑟𝑢 (𝑥), 𝑟𝑣 (𝑥), 𝜅𝑢 (𝑥), 𝜅𝑣 (𝑥), 𝜇𝑢 (𝑥) and 𝜇𝑣 (𝑥)
be 1-periodic functions that satisfy Assumption 1 with 𝐿 = 1, and that the matrix 𝐴 in (2.30)
with the entries 𝑟𝑢, 𝑟𝑣, 𝜇𝑢 and 𝜇𝑣 satisfy 𝜆𝐴 > 0. Then there is 𝜀 > 0 such that for each
0 < 𝜀 < 𝜀,

(i) the system (2.40) possesses a unique positive stationary solution (𝑢∗𝜀 (𝑥), 𝑣∗𝜀 (𝑥));
furthermore, (𝑢∗𝜀 (𝑥), 𝑣∗𝜀 (𝑥)) is 𝜀-periodic and converges to (𝑢∗, 𝑣∗) as 𝜀→ 0 uni-
formly onR, where (𝑢∗, 𝑣∗) is the positive stationary solution of the homogenized
system (2.41);

(ii) let 𝑐∗
𝜀,𝑅
, 𝑐∗
𝜀,𝐿

denote the right and left spreading speeds of the system (2.40),
respectively, then 𝑐∗

𝜀,𝑅
> 0, 𝑐∗

𝜀,𝐿
> 0 and

lim
𝜀→0

𝑐∗𝜀,𝑅 = lim
𝜀→0

𝑐∗𝜀,𝐿 = 𝑐∗
𝑅
( = 𝑐∗

𝐿
) = 2

√︃
𝜎𝐻𝜆𝐴, (2.42)
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where 𝑐∗
𝑅

and 𝑐∗
𝐿

denote the right and left spreading speeds of the homogenized
system (2.41);

(iii) any solution to the Cauchy problem (2.40) starting from a nonnegative nontrivial
bounded initial condition converges as 𝑡 → +∞ to (𝑢∗𝜀 (𝑥), 𝑣∗𝜀 (𝑥)), uniformly in
the sense that for any 𝑐1, 𝑐2 with 0 < 𝑐1 < 𝑐

∗
𝜀,𝐿

, 0 < 𝑐2 < 𝑐
∗
𝜀,𝑅

, we have

lim
𝑡→+∞

sup
−𝑐1𝑡≤𝑥≤𝑐2𝑡

max
(
|𝑢(𝑡, 𝑥) − 𝑢∗𝜀 (𝑥) |, |𝑣(𝑡, 𝑥) − 𝑣∗𝜀 (𝑥) |

)
= 0. (2.43)

x

(a)

u
v

x

(b)

u
v

x
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u
v

Figure 2. Illustration of the homogenization process of traveling fronts. In each figure, the reproduc-
tion rates 𝑟𝑢 (𝑥), 𝑟𝑣 (𝑥) are periodic functions of the form 𝑟𝑖 (𝑥) = 𝑟𝑖 + 𝐴𝑖 cos

(
(𝑥 + 𝜑𝑖) × (2𝜋)/𝐿

)
for

𝑖 = 𝑢, 𝑣, where 𝐿 is a varying parameter, and all other coefficients including 𝐴𝑖 are spatially homo-
geneous and fixed. 𝐿 is relatively large in (a), smaller in (b) and very small in (c). As 𝐿 decreases,
the amplitude of oscillation of the traveling wave profiles becomes smaller and the shape ultimately
converges to that of a traveling wave for the homogenized problem.
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3. Proof of the mathematical results

3.1. Principal eigenvalues of the linearized system

In this section we focus on the principal eigenvalue problem for general cooperative elliptic
systems with periodic coefficients.

Proof of Proposition 2.1. Statement (i) is a direct consequence of the Krein-Rutman The-
orem. We concentrate on the remaining statements.

Proof of Statement (ii). We prove the minimax formula (2.6). Let (𝜑𝜆, 𝜓𝜆) denote a
principal eigenfunction of (2.4). Then

𝐿1
𝜆
[𝜑𝜆, 𝜓𝜆] (𝑥)
𝜑𝜆 (𝑥)

=
𝐿1
𝜆
[𝜑𝜆, 𝜓𝜆] (𝑥)
𝜑𝜆 (𝑥)

= 𝑘 (𝜆).

Thus, using (𝜑𝜆, 𝜓𝜆) as a test function in (2.6), we find that

𝑘 (𝜆) ≥ 𝑘∗ := min
𝜑>0,𝜓>0

(𝜑,𝜓) ∈𝐶2
𝑝𝑒𝑟 (R)2

sup
𝑥∈R

max

(
𝐿1
𝜆
[𝜑, 𝜓] (𝑥)
𝜑(𝑥) ,

𝐿2
𝜆
[𝜑, 𝜓] (𝑥)
𝜓(𝑥)

)
,

Next let us show the converse inequality. Let 𝜀 > 0 be given, then by the definition of
𝑘∗ there exists (𝜑, 𝜓) such that(

𝜎(𝑥)𝜑𝑥
)
𝑥
− 2𝜆𝜎(𝑥)𝜑𝑥 +

(
𝜆2𝜎(𝑥) − 𝜆𝜎𝑥 (𝑥) + 𝑟𝑢 (𝑥) − 𝜇𝑢 (𝑥)

)
𝜑(𝑥) + 𝜇𝑣 (𝑥)𝜓(𝑥)

≤ (𝑘∗ + 𝜀)𝜑(𝑥),(
𝜎(𝑥)𝜓𝑥

)
𝑥
− 2𝜆𝜎(𝑥)𝜓𝑥 +

(
𝜆2𝜎(𝑥) − 𝜆𝜎𝑥 (𝑥) + 𝑟𝑣 (𝑥) − 𝜇𝑣 (𝑥)

)
𝜓(𝑥) + 𝜇𝑢 (𝑥)𝜑(𝑥)

≤ (𝑘∗ + 𝜀)𝜓(𝑥).

Let 𝜇∗ > 0 be the largest constant such that 𝜇∗𝜑𝜆 ≤ 𝜑, 𝜇∗𝜓𝜆 ≤ 𝜓. Then there exists a
point 𝑥0 ∈ [0, 𝐿] such that either 𝜇∗𝜑𝜆 is tangential to 𝜑 from below at 𝑥 = 𝑥0 or 𝜇∗𝜓𝜆
is tangential to 𝜓 from below at 𝑥 = 𝑥0. In the former case we have 𝜇∗ (𝜑𝜆)𝑥𝑥 (𝑥0) ≤
𝜑𝑥𝑥 (𝑥0), 𝜇∗ (𝜑𝜆)𝑥 (𝑥0) = 𝜑𝑥 (𝑥0), 𝜇∗𝜑𝜆 (𝑥0) = 𝜑(𝑥0) > 0, while in the latter case, we have
𝜇∗ (𝜓𝜆)𝑥𝑥 (𝑥0) ≤ 𝜓𝑥𝑥 (𝑥0), 𝜇∗ (𝜓𝜆)𝑥 (𝑥0) = 𝜓𝑥 (𝑥0), 𝜇∗𝜓𝜆 (𝑥0) = 𝜓(𝑥0) > 0. In either case,
one can deduce from the above inequalities that 𝑘∗ + 𝜀 ≥ 𝑘 (𝜆). Since 𝜀 > 0 is arbitrary,
𝑘∗ ≥ 𝑘 (𝜆). Statement (ii) is proved.

Proof of Statement (iii). We first note that the analyticity of 𝑘 (𝜆) is classical. In the
terminology of Kato [23], the family of unbounded operators in the left-hand side of (2.4)
is a holomorphic family of type (A) [23, Paragraph 2.1 on page 375] and the principal
eigenvalue is isolated in the spectrum by the Krein-Rutman Theorem; therefore the spectral
projection and the principal eigenvalue are analytic (see [23, Remark 2.9 on page 379]. The
analyticity of 𝑘 (𝜆) with respect to 𝜆 follows.

The convexity of 𝑘 (𝜆) can be established by following the proof of Nadin [31, Propo-
sition 2.10] in the scalar case. For the sake of brevity, we omit the proof. Since 𝑘 (𝜆) is
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analytic and convex, it is either strictly convex everywhere, or is a linear function. The
latter, however, is not possible by the inequality (2.7), which we will prove in the next
paragraph. Hence 𝑘 (𝜆) is strictly convex.

Now we prove (2.7). Let 𝑤(𝑥) := 𝜑(𝑥) + 𝜓(𝑥). Adding up the two equations in (2.4′),
we get(

𝜎(𝑥)𝑤𝑥
)
𝑥
− 2𝜆𝜎(𝑥)𝑤𝑥 +

(
𝜆2𝜎(𝑥) − 𝜆𝜎𝑥 (𝑥)

)
𝑤 + 𝑟𝑢 (𝑥)𝜑 + 𝑟𝑣 (𝑥)𝜓 = 𝑘 (𝜆)𝑤. (3.1)

Let us first prove the upper bound in (2.7). From the above equation we have

𝑘 (𝜆)𝑤2 ≤
(
𝜎(𝑥)𝑤𝑥

)
𝑥
𝑤 − 2𝜆𝜎(𝑥)𝑤𝑥𝑤 +

(
𝜆2𝜎(𝑥) − 𝜆𝜎𝑥 (𝑥) + 𝑟max

)
𝑤2.

Integrating by parts and recalling the 𝐿-periodicity of the coefficients and 𝑤, we obtain

𝑘 (𝜆)
∫ 𝐿

0
𝑤2d𝑥 ≤ −

∫ 𝐿

0
𝜎𝑤2

𝑥d𝑥 +
∫ 𝐿

0

(
𝜆2𝜎(𝑥) + 𝑟max

)
𝑤2d𝑥 ≤

(
𝜎max𝜆

2 + 𝑟max
) ∫ 𝐿

0
𝑤2d𝑥.

This proves the upper bound in (2.7). Next we prove the lower bound. From (3.1) we get

𝑘 (𝜆) ≥ (𝜎(𝑥)𝑤𝑥)𝑥
𝑤

− 2𝜆𝜎(𝑥)𝑤𝑥
𝑤

+ 𝜆2𝜎(𝑥) − 𝜆𝜎𝑥 (𝑥) + 𝑟min.

Now we integrate the above inequality over [0, 𝐿]. First note that integration by parts gives∫ 𝐿

0

(𝜎(𝑥)𝑤𝑥)𝑥
𝑤

d𝑥 =
∫ 𝐿

0
𝜎(𝑥)

(𝑤𝑥
𝑤

)2
d𝑥.

Consequently,

𝑘 (𝜆)𝐿 ≥
∫ 𝐿

0
𝜎(𝑥)

(
𝑤2
𝑥

𝑤2 − 2𝜆
𝑤𝑥

𝑤
+ 𝜆2

)
d𝑥 + 𝑟min𝐿 =

∫ 𝐿

0
𝜎(𝑥)

(𝑤𝑥
𝑤

− 𝜆
)2

d𝑥 + 𝑟min𝐿

≥ 𝜎min

∫ 𝐿

0

(𝑤𝑥
𝑤

− 𝜆
)2

d𝑥 + 𝑟min𝐿 = 𝜎min

∫ 𝐿

0

(
𝑤2
𝑥

𝑤2 + 𝜆2
)

d𝑥 + 𝑟min𝐿

≥ 𝜎min𝜆
2𝐿 + 𝑟min𝐿.

This proves the lower bound of (2.7). The proof of Proposition 2.1 is complete.

Proof of Theorem 2.3. The following proof is inspired by [31, Theorem 2.11] for the scalar
case.

We fix 𝜆 ∈ R and let (𝜑, 𝜓) be the associated 𝜆-periodic principal eigenvector. The
functions 𝜑(𝑥) := 𝑒−𝜆𝑥𝜑(𝑥) and 𝜓(𝑥) := 𝑒−𝜆𝑥𝜓(𝑥) satisfy(

𝜎(𝑥)𝜑𝑥
)
𝑥
+

(
𝑟𝑢 (𝑥) − 𝜇𝑢 (𝑥)

)
𝜑 + 𝜇𝑣 (𝑥)𝜓 = 𝑘 (𝜆)𝜑(𝑥), and(

𝜎(𝑥)𝜓𝑥
)
𝑥
+

(
𝑟𝑣 (𝑥) − 𝜇𝑣 (𝑥)

)
𝜓 + 𝜇𝑢 (𝑥)𝜑 = 𝑘 (𝜆)𝜓.

By comparing
(
𝜑, 𝜓

)
to the Dirichlet principal eigenvector in [−𝑅, 𝑅] for 𝑅 > 0, we find

that 𝑘 (𝜆) > 𝜆𝑅1 for all 𝑅 > 0 and 𝜆 ∈ R.
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Let us show that there exists 𝜆 ∈ R such that lim𝑅→+∞ 𝜆𝑅1 = 𝑘 (𝜆). Let (𝜑, 𝜓) be the
locally uniform limit of a sequence of Dirichlet principal eigenpairs (𝜑𝑅, 𝜓𝑅) with 𝑅 →
+∞, normalized with 𝜑𝑅 (0) + 𝜓𝑅 (0) = 1. Then (𝜑, 𝜓) is positive and satisfies(

𝜎(𝑥)𝜑𝑥
)
𝑥
+

(
𝑟𝑢 (𝑥) − 𝜇𝑢 (𝑥)

)
𝜑 + 𝜇𝑣 (𝑥)𝜓 = 𝜆∞1 𝜑,(

𝜎(𝑥)𝜓𝑥
)
𝑥
+

(
𝑟𝑣 (𝑥) − 𝜇𝑣 (𝑥)

)
𝜓 + 𝜇𝑢 (𝑥)𝜑 = 𝜆∞1 𝜓

on R,

where 𝜆∞1 := lim𝑅→+∞ 𝜆𝑅1 . We let

�̃�(𝑥) :=
𝜑(𝑥 + 𝐿)
𝜑(𝑥) and �̃�(𝑥) :=

𝜓(𝑥 + 𝐿)
𝜓(𝑥) .

Then, applying the Harnack inequality for fully coupled elliptic systems [8, Theorem 8.2]
to (�̃�, �̃�), we see that the function (�̃�, �̃�) (𝑥) is uniformly bounded. We let

𝑚 := sup
𝑥∈R

max
(
�̃�(𝑥), �̃�(𝑥)

)
< +∞.

Then there exists a sequence (𝑥𝑛) such that either �̃�(𝑥𝑛) → 𝑚 or �̃�(𝑥𝑛) → 𝑚. We define

𝜑𝑛 (𝑥) :=
1

𝜑(𝑥𝑛)
𝜑

(
𝑥 + 𝐿

⌊ 𝑥𝑛
𝐿

⌋ )
, 𝜓𝑛 (𝑥) :=

1
𝜑(𝑥𝑛)

𝜓

(
𝑥 + 𝐿

⌊ 𝑥𝑛
𝐿

⌋ )
,

�̃�𝑛 (𝑥) := �̃�
(
𝑥 + 𝐿

⌊ 𝑥𝑛
𝐿

⌋ )
, �̃�𝑛 (𝑥) := �̃�

(
𝑥 + 𝐿

⌊ 𝑥𝑛
𝐿

⌋ )
,

where ⌊·⌋ denotes the integer part. Applying the Harnack inequality for fully coupled ellip-
tic systems, the sequences 𝜑𝑛 and 𝜓𝑛 are locally bounded. Moreover, we have

𝜑𝑛 (𝑥 + 𝐿)
𝜑𝑛 (𝑥) =

𝜑
(
𝑥 + 𝐿

⌊
𝑥𝑛
𝐿

⌋
+ 𝐿

)
𝜑

(
𝑥 + 𝐿

⌊
𝑥𝑛
𝐿

⌋ ) = �̃�𝑛 (𝑥),

and similarly
𝜓𝑛 (𝑥 + 𝐿)
𝜓𝑛 (𝑥) =

𝜓
(
𝑥 + 𝐿

⌊
𝑥𝑛
𝐿

⌋
+ 𝐿

)
𝜓

(
𝑥 + 𝐿

⌊
𝑥𝑛
𝐿

⌋ ) = �̃�𝑛 (𝑥).

Up to the extraction of subsequences, the sequences 𝜑𝑛, 𝜓𝑛, �̃�𝑛, and �̃�𝑛, converge locally
uniformly to 𝜑∞, 𝜓∞, �̃�∞ and �̃�∞; and importantly, the supremum of max(�̃�∞, �̃�∞) is
attained on the interval [0, 𝐿]. We remark that 𝜑

∞ (𝑥+𝐿)
𝜑∞ (𝑥 ) = �̃�∞ (𝑥), 𝜓

∞ (𝑥+𝐿)
𝜓∞ (𝑥 ) = �̃�∞ (𝑥), and

that (�̃�∞, �̃�∞) solves(
𝜎(𝑥)�̃�∞𝑥

)
𝑥
+ 𝜎(𝑥) 𝜑

∞
𝑥

𝜑∞
�̃�∞𝑥 + 𝜇𝑣 (𝑥)

𝜓∞

𝜑∞
(
�̃�∞ − �̃�∞

)
= 0,(

𝜎(𝑥)�̃�∞
𝑥

)
𝑥
+ 𝜎(𝑥)𝜓

∞
𝑥

𝜓∞ �̃�
∞
𝑥 + 𝜇𝑢 (𝑥)

𝜑∞

𝜓∞
(
�̃�∞ − �̃�∞)

= 0.

Consequently the functions Φ(𝑥) := �̃�∞ (𝑥) − 𝑚 and Ψ(𝑥) := �̃�∞ (𝑥) − 𝑚 satisfy(
𝜎(𝑥)Φ𝑥

)
𝑥
+ 𝜎(𝑥) 𝜑

∞
𝑥

𝜑∞
Φ𝑥 + 𝜇𝑣 (𝑥)

𝜓∞

𝜑∞
(
Ψ − Ψ

)
= 0,
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(
𝜎(𝑥)Ψ𝑥

)
𝑥
+ 𝜎(𝑥)𝜓

∞
𝑥

𝜓∞Ψ𝑥 + 𝜇𝑢 (𝑥)
𝜑∞

𝜓∞
(
Φ − Ψ

)
= 0.

This is a cooperative, fully coupled elliptic system. Furthermore,Φ,Ψ ≤ 0 and eitherΦ orΨ
attains its maximum somewhere. Hence [8, Proposition 12.1] implies thatΦ(𝑥) ≡Ψ(𝑥) ≡ 0,
that is, �̃�∞ (𝑥) ≡ 𝑚 and �̃�∞ (𝑥) ≡ 𝑚. Let 𝜆 := 1

𝐿
ln(𝑚), then we have

𝜑∞ (𝑥 + 𝐿) = �̃�∞ (𝑥)𝜑∞ (𝑥) = 𝑚𝜑∞ (𝑥) = 𝑒𝜆𝐿𝜑∞ (𝑥) and 𝜓∞ (𝑥 + 𝐿) = 𝑒𝜆𝐿𝜓∞ (𝑥),

therefore the vector function 𝑒−𝜆𝑥
(
𝜑∞ (𝑥), 𝜓∞ (𝑥)

)
is 𝐿-periodic. Moreover it satisfies(

𝜎(𝑥)𝜑∞𝑥
)
𝑥
− 2𝜆𝜎(𝑥)𝜑∞𝑥 +

(
𝜆2𝜎(𝑥) − 𝜆𝜎𝑥 (𝑥) + 𝑟𝑢 (𝑥) − 𝜇𝑢 (𝑥)

)
𝜑∞ (𝑥) + 𝜇𝑣 (𝑥)𝜓∞ (𝑥)

= 𝜆∞1 𝜑
∞ (𝑥),(

𝜎(𝑥)𝜓∞
𝑥

)
𝑥
− 2𝜆𝜎(𝑥)𝜓∞

𝑥 +
(
𝜆2𝜎(𝑥) − 𝜆𝜎𝑥 (𝑥) + 𝑟𝑣 (𝑥) − 𝜇𝑣 (𝑥)

)
𝜓∞ (𝑥) + 𝜇𝑢 (𝑥)𝜑∞ (𝑥)

= 𝜆∞1 𝜓
∞ (𝑥).

Thus we have shown that 𝜆∞1 = 𝑘 (𝜆) for some 𝜆 ∈ R. This finishes the proof of Theorem
2.3.

Proof of Proposition 2.4. We first prove statement (ii). For each𝜆 ∈R, let
(
𝑘 (𝜆), (𝜑(𝑥),𝜓(𝑥))

)
be a 𝜆-periodic principal eigenpair of (2.4); in other words, suppose that it satisfies (2.4′).
Then it is easily seen that (𝜑(−𝑥), 𝜓(−𝑥)) satisfies (2.4′) with 𝜆 replaced by−𝜆 but with the
constant 𝑘 (𝜆) unchanged. This means that

(
𝑘 (𝜆), (𝜑(−𝑥), 𝜓(−𝑥))

)
is a 𝜆-periodic principal

eigenpair of (2.4) for −𝜆, which shows that the equality 𝑘 (−𝜆) = 𝑘 (𝜆) holds.
Next we prove statement (i). Since 𝜇𝑢 = 𝜇𝑣, the joint operator

(
𝐿1
−𝜆, 𝐿

2
−𝜆

)𝑇 is the formal
adjoint of the operator

(
𝐿1
𝜆
, 𝐿2
𝜆

)𝑇 for the canonical scalar product in 𝐿2
𝑝𝑒𝑟 (R)2:〈(

𝜑1, 𝜓1
)
,
(
𝜑2, 𝜓2

)〉
=

∫ 𝐿

0
𝜑1 (𝑥)𝜑2 (𝑥)d𝑥 +

∫ 𝐿

0
𝜓1 (𝑥)𝜓2 (𝑥)d𝑥.

Hence, by the Fredholm alternative, 𝑘 (−𝜆) = 𝑘 (𝜆). This completes the proof of Proposi-
tion 2.4.

3.2. Analysis of propagation dynamics

Here we first prove the basic boundedness estimate, Proposition 2.5.

Proof of Proposition 2.5. The nonnegativity of 𝑢(𝑥), 𝑣(𝑥) follows easily from the maxi-
mum principle, since 𝜇𝑢 (𝑥) ≥ 0, 𝜇𝑣 (𝑥) ≥ 0. The details are omitted. Next let 𝑤(𝑡, 𝑥) :=
𝑢(𝑡, 𝑥) + 𝑣(𝑡, 𝑥). Summing up the two equations in (1.1) yields

(𝑢 + 𝑣)𝑡 =
(
𝜎(𝑥) (𝑢 + 𝑣)𝑥

)
𝑥
+ 𝑟𝑢 (𝑥)𝑢 + 𝑟𝑣 (𝑥)𝑣 −

(
𝜅𝑢 (𝑥)𝑢 + 𝜅𝑣 (𝑥)𝑣

)
≤

(
𝜎(𝑥) (𝑢 + 𝑣)𝑥

)
𝑥
+ 𝑟max (𝑢 + 𝑣) − 𝜅min (𝑢 + 𝑣)2.

Therefore, 𝑤 satisfies

𝑤𝑡 ≤
(
𝜎(𝑥)𝑤𝑥

)
𝑥
+

(
𝑟max − 𝜅min𝑤

)
𝑤 (𝑡 > 0, 𝑥 ∈ R). (3.2)
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Let𝑊 (𝑡) be the solution of the following ODE problem:

𝑊𝑡 =
(
𝑟max − 𝜅min𝑊

)
𝑊, 𝑊 (0) = max

(
𝐾, sup

𝑥∈R
(𝑢0 (𝑥) + 𝑣0 (𝑥))

)
,

where 𝐾 := 𝑟max/𝜅min. Then by the comparison principle we have 𝑤(𝑡, 𝑥) ≤ 𝑊 (𝑡) for all
𝑡 ≥ 0, 𝑥 ∈ R. Furthermore, it is clear from the equation for 𝑊 that 𝑊 (𝑡) is nonincreasing
in 𝑡 and converges to 𝐾 as 𝑡 → +∞. The conclusion of the proposition then follows.

Next we prove Theorems 2.6 for the spreading speeds and Theorem 2.9 for the hair-
trigger effect. In the proof of Theorem 2.6, we only consider the case where (𝑢0, 𝑣0) are
right front-like and focus on the right spreading speed 𝑐∗

𝑅
, since the other case can be treated

precisely the same way. Theorem 2.6 follows as a direct consequence of Lemma 3.1 and
Lemma 3.3 below.

Lemma 3.1 (Upper spreading speed). Let Assumption 1 hold true. Let 𝜆 > 0 be fixed and(
𝑘 (𝜆), (𝜑𝜆 (𝑥), 𝜓𝜆 (𝑥))

)
be the associated 𝜆-periodic principal eigenpair. Assume that, for

some 𝛼 > 0,

𝑢0 (𝑥) ≤ 𝛼𝑒−𝜆𝑥𝜑𝜆 (𝑥) and 𝑣0 (𝑥) ≤ 𝛼𝑒−𝜆𝑥𝜓𝜆 (𝑥) for all 𝑥 ∈ R. (3.3)

Then if 𝑐 = 𝑘 (𝜆)
𝜆

we have

𝑢(𝑡, 𝑥) ≤ 𝛼𝑒−𝜆(𝑥−𝑐𝑡 )𝜑𝜆 (𝑥) and 𝑣0 (𝑥) ≤ 𝛼𝑒−𝜆(𝑥−𝑐𝑡 )𝜓𝜆 (𝑥) for all 𝑥 ∈ R and 𝑡 > 0. (3.4)

Proof. The vector function 𝛼𝑒−𝜆(𝑥−𝑐𝑡 )
(
𝜑𝜆 (𝑥), 𝜓𝜆 (𝑥)

)
is an explicit solution to the linear

system (2.2), as we mentioned in section 3.1 and also in (2.16). Consequently, this vector
function is a super solution to (1.1) since the nonlinearity of (1.1) is sublinear. This implies
(3.4).

Before stating the next result on the lower spreading speed, we introduce some key
notations. Let

𝐾 := min
(

inf
𝑥∈R

𝜇𝑣 (𝑥)
𝜅𝑢 (𝑥)

, inf
𝑥∈R

𝜇𝑢 (𝑥)
𝜅𝑣 (𝑥)

)
, 𝛽 := 2

max
(
sup𝑥∈R 𝑟𝑢 (𝑥), sup𝑥∈R 𝑟𝑣 (𝑥)

)
𝐾

, (3.5)

and let
(
�̃�(𝑡, 𝑥), �̃�(𝑡, 𝑥)

)
denote a solution to the auxiliary system:{

�̃�𝑡 =
(
𝜎(𝑥)�̃�𝑥

)
𝑥
+

(
𝑟𝑢 (𝑥) − 𝜅𝑢 (𝑥) (�̃� + �̃�) − 𝛽�̃�

)
�̃� + 𝜇𝑣 (𝑥) �̃� − 𝜇𝑢 (𝑥)�̃�, 𝑡 > 0, 𝑥 ∈ R,

�̃�𝑡 =
(
𝜎(𝑥) �̃�𝑥

)
𝑥
+

(
𝑟𝑣 (𝑥) − 𝜅𝑣 (𝑥) (�̃� + �̃�) − 𝛽�̃�

)
�̃� + 𝜇𝑢 (𝑥)�̃� − 𝜇𝑣 (𝑥) �̃�, 𝑡 > 0, 𝑥 ∈ R.

(3.6)

Lemma 3.2 (Comparison with a lower barrier). Let Assumption 1 hold true. Let �̃�0 (𝑥) and
�̃�0 (𝑥) be continuous functions such that

0 ≤ �̃�0 (𝑥) ≤ min
(
𝑢0 (𝑥),

1
2
𝐾
)

and 0 ≤ �̃�0 (𝑥) ≤ min
(
𝑣0 (𝑥),

1
2
𝐾
)
, (3.7)
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and let
(
�̃�(𝑡, 𝑥), �̃�(𝑡, 𝑥)

)
be the solution of (3.6) starting from �̃�(0, 𝑥) = �̃�0 (𝑥) and �̃�(0, 𝑥) =

�̃�0 (𝑥). Then for all 𝑡 > 0 and 𝑥 ∈ R we have

�̃�(𝑡, 𝑥) ≤ 𝑢(𝑡, 𝑥) and �̃�(𝑡, 𝑥) ≤ 𝑣(𝑡, 𝑥). (3.8)

Proof. We first show that �̃� + �̃� ≤ 𝐾 . Summing up the two equations in (3.6) yields

(�̃� + �̃�)𝑡 ≤
(
𝜎(𝑥) (�̃� + �̃�)𝑥

)
𝑥
+ 𝑟𝑢 (𝑥)�̃� + 𝑟𝑣 (𝑥) �̃� − 𝛽

(
�̃�2 + �̃�2

)
.

Therefore, the function �̃� := �̃� + �̃� satisfies

�̃�𝑡 ≤
(
𝜎(𝑥)�̃�𝑥

)
𝑥
+ max(sup 𝑟𝑢, sup 𝑟𝑣)�̃� − 𝛽

2
�̃�2 =

(
𝜎(𝑥)�̃�𝑥

)
𝑥
+ 𝛽

2
(𝐾 − �̃�) �̃�. (3.9)

Since �̃�(0, 𝑥) = �̃�0 (𝑥) + �̃�0 (𝑥) ≤ 𝐾 , by the comparison principle we have �̃�(𝑡, 𝑥) ≤ 𝐾 . Hence

�̃�(𝑡, 𝑥) + �̃�(𝑡, 𝑥) ≤ 𝐾 for all 𝑡 ≥ 0, 𝑥 ∈ R. (3.10)

In particular, �̃�(𝑡, 𝑥) ≤ 𝐾 and �̃�(𝑡, 𝑥) ≤ 𝐾 , which imply

𝜇𝑣 (𝑥) − 𝜅𝑢 (𝑥)�̃�(𝑡, 𝑥) ≥ 0 and 𝜇𝑢 (𝑥) − 𝜅𝑣 (𝑥) �̃�(𝑡, 𝑥) ≥ 0 for all 𝑡 > 0, 𝑥 ∈ R. (3.11)

Now, in order to prove (3.8), we define𝑈 := 𝑢 − �̃�,𝑉 := 𝑣 − �̃�. Then a direct calculation
shows

𝑈𝑡 = (𝜎𝑈𝑥)𝑥 +
(
(𝑟𝑢 − 𝜇𝑢) − 𝜅𝑢 (𝑢 + �̃� + 𝑣)

)
𝑈 + (𝜇𝑢 − 𝜅𝑢�̃�)𝑉 + 𝛽�̃�2,

𝑉𝑡 = (𝜎𝑉𝑥)𝑥 +
(
(𝑟𝑣 − 𝜇𝑣) − 𝜅𝑣 (𝑢 + 𝑣 + �̃�)

)
𝑉 + (𝜇𝑣 − 𝜅𝑣 �̃�)𝑈 + 𝛽�̃�2,

hence

𝑈𝑡 ≥ (𝜎𝑈𝑥)𝑥 +
(
(𝑟𝑢 − 𝜇𝑢) − 𝜅𝑢 (𝑢 + �̃� + 𝑣)

)
𝑈 + (𝜇𝑢 − 𝜅𝑢�̃�)𝑉,

𝑉𝑡 ≥ (𝜎𝑉𝑥)𝑥 +
(
(𝑟𝑣 − 𝜇𝑣) − 𝜅𝑣 (𝑢 + 𝑣 + �̃�)

)
𝑉 + (𝜇𝑣 − 𝜅𝑣 �̃�)𝑈, (3.12)

By virtue of the inequalities (3.11), the right-hand side of (3.12) is a cooperative system.
In view of this, and the fact that𝑈 (0, 𝑥) = 𝑢0 (𝑥) − �̃�0 (𝑥) ≥ 0, 𝑉 (0, 𝑥) = 𝑣0 (𝑥) − �̃�0 (𝑥) ≥ 0,
we obtain𝑈 (𝑡, 𝑥) ≥ 0, 𝑉 (𝑡, 𝑥) ≥ 0 for all 𝑡 ≥ 0 and 𝑥 ∈ R, which implies (3.8). The lemma
is proved.

Note that, by the inequality (3.11), (�̃�(𝑡, 𝑥), �̃�(𝑡, 𝑥)) can be regarded as a solution of the
following system so long as the initial data satisfies �̃�0 (𝑥) + �̃�0 (𝑥) ≤ 𝐾 .{

�̃�𝑡 = (𝜎(𝑥)�̃�𝑥)𝑥 +
(
𝑟𝑢 (𝑥) − 𝜇𝑢 (𝑥) − (𝜅𝑢 + 𝛽)�̃�

)
�̃� + �̃�

(
𝜇𝑣 (𝑥) − 𝜅𝑢 (𝑥)�̃�

)
+,

�̃�𝑡 = (𝜎(𝑥) �̃�𝑥)𝑥 +
(
𝑟𝑣 (𝑥) − 𝜇𝑣 (𝑥) − (𝜅𝑣 + 𝛽) �̃�

)
�̃� + �̃�

(
𝜇𝑢 (𝑥) − 𝜅𝑣 (𝑥) �̃�

)
+.

(3.13)

This is a cooperative system, therefore the comparison principle holds.

Lemma 3.3 (Spreading properties of (3.6)). The system (3.6) possesses an 𝐿-periodic
positive stationary solution

(
𝑝(𝑥), 𝑞(𝑥)

)
satisfying 𝑝(𝑥) + 𝑞(𝑥) ≤ 𝐾 with the following

properties.



Front propagation in hybrid reaction-diffusion epidemic models with spatial heterogeneity 23

(i) For any solution
(
�̃�(𝑡, 𝑥), �̃�(𝑡, 𝑥)

)
of (3.6) whose initial data

(
�̃�0 (𝑥), �̃�0 (𝑥)

)
is 𝐿-

periodic and satisfies 0 < �̃�0 (𝑥) ≤ 𝑝(𝑥), 0 < �̃�0 (𝑥) ≤ 𝑞(𝑥), it holds that

lim
𝑡→∞

�̃�(𝑡, 𝑥) = 𝑝(𝑥), lim
𝑡→∞

�̃�(𝑡, 𝑥) = 𝑞(𝑥) uniformly on R. (3.14)

(ii) For any solution
(
�̃�(𝑡, 𝑥), �̃�(𝑡, 𝑥)

)
of (3.6) whose initial data

(
�̃�0 (𝑥), �̃�0 (𝑥)

)
is right

front-like and satisfies 0 ≤ �̃�0 (𝑥) ≤ 𝑝(𝑥), 0 ≤ �̃�0 (𝑥) ≤ 𝑞(𝑥), it holds that

lim
𝑡→+∞

sup
𝑥≤𝑐𝑡

(
|�̃�(𝑡, 𝑥) − 𝑝(𝑥) | + |�̃�(𝑡, 𝑥) − 𝑞(𝑥) |

)
= 0, for every 𝑐 < 𝑐∗𝑅, (3.15)

where 𝑐∗
𝑅

is the right spreading speed defined in (2.15).

Proof. As we have shown in the proof of Lemma 3.2, there is no distinction between the
solutions of (3.6) and those of (3.13) so long as the initial data satisfies �̃�0 (𝑥) + �̃�0 (𝑥) ≤
𝐾 , thanks to the inequality (3.10). Since (3.13) is a cooperative system, the comparison
principle holds for such solutions. Note that the linearized system for (3.6) is (2.2), the
same as that for (1.1). Hence the principal eigenvalues 𝜆𝑝𝑒𝑟1 , 𝜆𝑅1 , 𝑘 (𝜆) associated with
(3.6) are identical to those associated with (1.1).

Let us first prove the existence of the periodic stationary solution (𝑝, 𝑞) with the prop-
erty (i). Thus, for the moment, we focus on solutions of (3.6) whose initial data (�̃�0 (𝑥), �̃�0 (𝑥))
is 𝐿-periodic. Since 𝜆𝑝𝑒𝑟1 > 0, there exists 𝜀0 > 0 such that, for any 𝜀 ∈ (0, 𝜀0], the pair(
𝜀𝜑𝑝𝑒𝑟 , 𝜀𝜓𝑝𝑒𝑟

)
is a strict subsolution of (3.6), where (𝜑𝑝𝑒𝑟 ,𝜓𝑝𝑒𝑟 ) is the principal eigenvec-

tor of the problem (2.3). We choose 𝜀0 sufficiently small if necessary, so that 𝜀0𝜑
𝑝𝑒𝑟 (𝑥) +

𝜀0𝜓
𝑝𝑒𝑟 (𝑥) ≤ 𝐾 . Let

(
𝑢𝜀 (𝑡, 𝑥), 𝑣𝜀 (𝑡, 𝑥)

)
denote the solution of (3.6) whose initial data is(

𝜀𝜑𝑝𝑒𝑟 , 𝜀𝜓𝑝𝑒𝑟
)
. Then, since

(
𝑢𝜀 (𝑡, 𝑥), 𝑣𝜀 (𝑡, 𝑥)

)
is also a solution of (3.13), which is a coop-

erative system, this solution is strictly monotone increasing in 𝑡. Moreover it is bounded
from above by the inequality (3.10). Hence it converges to an 𝐿-periodic stationary solution(
𝑝(𝑥), 𝑞(𝑥)

)
as 𝑡 → +∞. Note that we have

𝑝(𝑥) > 𝜀0𝜑
𝑝𝑒𝑟 (𝑥), 𝑞(𝑥) > 𝜀0𝜓

𝑝𝑒𝑟 (𝑥),

since otherwise 𝑝 (or 𝑞) would have to be tangential to 𝜀1𝜑
𝑝𝑒𝑟 (or 𝜀1𝜓

𝑝𝑒𝑟 ) from above
for some 0 < 𝜀1 ≤ 𝜀0, but this is impossible by the strong maximum principle and the fact
that

(
𝜀1𝜑

𝑝𝑒𝑟 , 𝜀1𝜓
𝑝𝑒𝑟

)
is a strict subsolution. Consequently, the limit stationary solution(

𝑝(𝑥), 𝑞(𝑥)
)

does not depend on the choice of 𝜀 ∈ (0, 𝜀0].
Now let

(
�̃�0 (𝑥), �̃�0 (𝑥)

)
be any 𝐿-periodic initial data that satisfies 0 < �̃�0 (𝑥) ≤ 𝑝(𝑥),

0 < �̃�0 (𝑥) ≤ 𝑞(𝑥). Then there exists 𝜀 > 0 such that 𝜀𝜑𝑝𝑒𝑟 ≤ �̃�0, 𝜀𝜓𝑝𝑒𝑟 ≤ �̃�0. Since the
solution of (3.6) with initial data

(
𝜀𝜑𝑝𝑒𝑟 , 𝜀𝜓𝑝𝑒𝑟

)
converges to (𝑝, 𝑞) as 𝑡 → +∞, we see,

by the comparison principle, that the same holds for the solution with initial data (�̃�0, �̃�0),
which proves (3.14).

Next we prove statement (ii). This is actually a direct consequence of the result of
Weinberger [38], after adapting our problem to make it fit into the scalar framework used
in the paper. The paper deals with propagation dynamics of a system defined by a rather
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abstract order-preserving real-valued operator 𝑄 defined on a close set H ⊂ R𝑑 . To make
this result applicable to our vector-valued system, we rewrite our system (3.6) as a nonlocal
scalar equation defined on H := R × {0, 1} ⊂ R2, which represents two parallel straight
lines. We remark that any continuous vector function

(
�̃�(𝑡, 𝑥), �̃�(𝑡, 𝑥)

)
can be represented

as a scalar function 𝑤 : R × H → R by letting 𝑤(𝑡, 𝑥, 0) = �̃�(𝑡, 𝑥) and 𝑤(𝑡, 𝑥, 1) = �̃�(𝑡, 𝑥).
Therefore our system can be regarded as a scalar system on the habitat H . If we define the
operator 𝑄 as the time-1 map of the system (3.6):

𝑄 :
(
�̃�0 (𝑥), �̃�0 (𝑥)

)
↦→

(
�̃�(1, 𝑥), �̃�(1, 𝑥)

)
then it is not difficult to see that the assumptions of [38, Theorem 2.1] are all fulfilled,
thanks, in particular, to the property (3.14). The fact that the right spreading speed of

(
�̃�, �̃�

)
coincides with the value 𝑐∗

𝑅
in (2.15) follows from [38, Corollary 2.1] and the fact that the

𝜆-principal eigenvalues 𝑘 (𝜆) for (3.6) are identical to those for (1.1). (We remark that the
same conclusion also follows from the abstract results of Liang and Zhao [26, Theorems
2.11, 2.15, 3.10]). The Lemma is proved.

Proof of Theorem 2.6. Since the assertions (2.13) and (2.14) can be shown precisely the
same way by simply reversing the direction of 𝑥-axis, we only prove the former.

The second assertion of (2.13) is a consequence of Lemma 3.1. The first assertion of
(2.13) follows from the inequalities (3.8) and Lemma 3.3 (ii). Finally, the “inf” in (2.15)
can be replaced by “min”, since 𝑘 (0) = 𝜆𝑝𝑒𝑟 > 0 and 𝑘 (𝜆) grows quadratically by virtue
of (2.7). The Theorem is proved.

Proof of Proposition 2.7. We only prove the assertion for 𝑐∗
𝑅

, as the proof for 𝑐∗
𝐿

is precisely
the same. By (2.7),

𝑐∗𝑅 = min
𝜆>0

𝑘 (𝜆)
𝜆

≤ min
𝜆>0

(
𝜎max𝜆 +

𝑟max
𝜆

)
= 2

√
𝜎max𝑟max.

Next, assume 𝑟min > 0. Let the above minimum of 𝑘 (𝜆)/𝜆 is attained at 𝜆 = 𝜆0 > 0. Then

𝑐∗𝑅 =
𝑘 (𝜆0)
𝜆0

≥ 𝜎min𝜆0 +
𝑟min
𝜆0

≥ min
𝜆>0

(
𝜎min𝜆 +

𝑟min
𝜆

)
= 2

√
𝜎min𝑟min.

This completes the proof of the proposition.

Proof of Theorem 2.9 (hair-trigger effect). Let us first prove that the conditions (a), (b), (c)
are equivalent. The equivalence (a) ⇔ (b) is already implied in (2.8), since 𝜆𝑅1 is strictly
increasing in 𝑅. The assertion (b) ⇒ (c) is also clear since 𝑘 (𝜆) is convex. Now assume
that (c) holds. Then by the formula (2.15), we have 𝑘 (𝜆) > 0 for 𝜆 > 0 and also for 𝜆 < 0.
It remains to show that 𝑘 (0) > 0. Assume by contradiction that 𝑘 (0) = 0. This means that
𝑘 (0) = 𝑘 ′ (0) = 0. Then we have

𝑐∗𝑅 = min
𝜆>0

𝑘 (𝜆)
𝜆

= 𝑘 ′ (0) = 0, 𝑐∗𝐿 = min
𝜆<0

𝑘 (𝜆)
−𝜆 = −𝑘 ′ (0) = 0,
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contradicting the assumption (c). This contradiction proves that (c) ⇒ (b) holds. The equiv-
alence of (a), (b), (c) is proved.

Next we prove (2.20). Actually this statement follows from (2.13) and (2.14), but since
the proof of the latter two statements relies on Theorem 2.6, we give a much simpler direct
proof of (2.20). By Lemma 3.2, it suffices to prove the claim for solutions of (3.6).

Choose a large enough 𝑅 > 0 such that 𝜆𝑅1 > 0 and that 𝑅 ≥ 𝐿, and consider the system
(3.6) on the interval [−𝑅, 𝑅] under the Dirichlet boundary conditions at 𝑥 = ±𝑅, namely

�̃�𝑡 =
(
𝜎�̃�𝑥

)
𝑥
+

(
𝑟𝑢 − 𝜅𝑢 (�̃� + �̃�) − 𝛽�̃�

)
�̃� + 𝜇𝑣 �̃� − 𝜇𝑢�̃�, 𝑡 > 0, 𝑥 ∈ (−𝑅, 𝑅),

�̃�𝑡 =
(
𝜎�̃�𝑥

)
𝑥
+

(
𝑟𝑣 − 𝜅𝑣 (�̃� + �̃�) − 𝛽�̃�

)
�̃� + 𝜇𝑢�̃� − 𝜇𝑣 �̃�, 𝑡 > 0, 𝑥 ∈ (−𝑅, 𝑅),

�̃�(𝑡,−𝑅) = �̃�(𝑡, 𝑅) = 0, �̃�(𝑡,−𝑅) = �̃�(𝑡, 𝑅) = 0, 𝑡 > 0.
(3.16)

As in the case of (3.6), for any solution of (3.16) whose initial data satisfies �̃�0 (𝑥) + �̃�0 (𝑥) ≤
𝐾 , the inequality (3.10) holds on the interval [−𝑅, 𝑅], therefore the comparison principle
holds among such solutions of (3.16). Since 𝜆𝑅1 > 0, there exists 𝜀0 > 0 such that, for
any 𝜀 ∈ (0, 𝜀0], the pair

(
𝜀𝜑𝑅, 𝜀𝜓𝑅

)
is a strict subsolution of (3.16), where (𝜑𝑅, 𝜓𝑅)

denotes the principal eigenvector of the problem (2.5). We choose 𝜀0 small enough so that
𝜀0𝜑

𝑅 (𝑥) + 𝜀0𝜓
𝑅 (𝑥) ≤ 𝐾 . Let

(
𝑢𝜀 (𝑡, 𝑥), 𝑣𝜀 (𝑡, 𝑥)

)
denote the solution of (3.16) whose initial

data is
(
𝜀𝜑𝑅, 𝜀𝜓𝑅

)
. Then, by the comparison principle, this solution is strictly monotone

increasing in 𝑡 and is bounded from above by the inequality (3.10). Hence it converges to
a stationary solution

(
𝑃𝑅 (𝑥), 𝑄𝑅 (𝑥)

)
as 𝑡 → +∞. Note that we have

𝑃𝑅 (𝑥) > 𝜀0𝜑
𝑅 (𝑥), 𝑄𝑅 (𝑥) > 𝜀0𝜓

𝑅 (𝑥),

since otherwise 𝑃𝑅 (or 𝑄𝑅) has to be tangential to 𝜀1𝜑
𝑅 (or 𝜀1𝜓

𝑅) from above for some
0 < 𝜀1 ≤ 𝜀0, but this is impossible by the strong maximum principle, Hopf boundary lemma
and the fact that

(
𝜀1𝜑

𝑅, 𝜀1𝜓
𝑅
)

is a strict subsolution of the system (3.16). Consequently,
the limit stationary solution

(
𝑃𝑅 (𝑥), 𝑄𝑅 (𝑥)

)
does not depend on the choice of 𝜀 ∈ (0, 𝜀0].

Now let
(
�̃�(𝑡, 𝑥), �̃�(𝑡, 𝑥)

)
be any solution of (3.6) whose initial data is nonnegative,

nontrivial and satisfies �̃�0 (𝑥) + �̃�0 (𝑥) ≤ 𝐾 . Fix 𝜏 > 0. Then �̃�(𝜏, 𝑥) > 0, �̃�(𝜏, 𝑥) > 0 for all
𝑥 ∈ R, hence �̃�(𝜏, 𝑥) ≥ 𝜀𝜑𝑅 (𝑥), �̃�(𝜏, 𝑥) ≥ 𝜀𝜓𝑅 (𝑥) on [−𝑅, 𝑅] for some 𝜀 ∈ (0, 𝜀0]. By the
comparison principle,

�̃�(𝑡 + 𝜏, 𝑥) ≥ �̃�𝜀 (𝑡, 𝑥), �̃�(𝑡 + 𝜏, 𝑥) ≥ �̃�𝜀 (𝑡, 𝑥) for all 𝑡 > 0. 𝑥 ∈ [−𝑅, 𝑅],

where
(
𝑢𝜀 (𝑡, 𝑥), 𝑣𝜀 (𝑡, 𝑥)

)
denote the solution of (3.16) whose initial data is

(
𝜀𝜑𝑅, 𝜀𝜓𝑅

)
.

Letting 𝑡 → +∞, we obtain

lim inf
𝑡→+∞

�̃�(𝑡, 𝑥) ≥ 𝑃𝑅 (𝑥), lim inf
𝑡→+∞

�̃�(𝑡, 𝑥) ≥ 𝑄𝑅 (𝑥), for 𝑥 ∈ [−𝑅, 𝑅] .

Replacing the interval [−𝑅, 𝑅] by [−𝑅 + 𝑘𝐿, 𝑅 + 𝑘𝐿] (𝑘 ∈ Z) and repeating the same
argument, we see that the following estimate holds for all 𝑘 ∈ Z:

lim inf
𝑡→+∞

�̃�(𝑡, 𝑥) ≥ 𝑃𝑅 (𝑥 + 𝑘𝐿), lim inf
𝑡→+∞

�̃�(𝑡, 𝑥) ≥ 𝑄𝑅 (𝑥 + 𝑘𝐿), for 𝑥 ∈ [−𝑅 + 𝑘𝐿, 𝑅 + 𝑘𝐿] .
(3.17)
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Since 𝑅 ≥ 𝐿, the family of intervals [−𝑅 + 𝑘𝐿, 𝑅 + 𝑘𝐿] (𝑘 ∈ Z) covers the entire 𝑥-axis with
much overlapping. Therefore, (3.17) gives a uniform positive lower bound. The assertion
(2.20) is proved.

Next we prove the second part of the theorem. As mentioned before, we only prove
(2.21), since (2.22) can be shown precisely the same way by simply reversing the direction
of the 𝑥-axis. By what we have just shown above, the following inequalities hold:

lim inf
𝑡→+∞

�̃�(𝑡, 0) ≥ 𝑃𝑅 (0), lim inf
𝑡→+∞

�̃�(𝑡, 0) ≥ 𝑄𝑅 (0).

Fix a constant𝑚 satisfying 0 < 𝑚 < min(𝑃𝑅 (0),𝑄𝑅 (0)). Then there exists 𝑇 > 0 such that

�̃�(𝑡, 0) > 𝑚, �̃�(𝑡, 0) > 𝑚 for all 𝑡 ≥ 𝑇. (3.18)

Fix such 𝑇 > 0. Note that, since 𝑃𝑅 +𝑄𝑅 ≤ 𝐾 , we have 𝑚 < 𝐾/2.
Next we consider another auxiliary system of the form{
�̂�𝑡 =

(
𝜎(𝑥)�̂�𝑥

)
𝑥
+

(
𝑟𝑢 (𝑥) − 𝜅𝑢 (𝑥) (�̂� + �̂�) − 𝛽′�̂�

)
�̂� + 𝜇𝑣 (𝑥)̂𝑣 − 𝜇𝑢 (𝑥)�̂�, 𝑡 > 0, 𝑥 ∈ R,

�̂�𝑡 =
(
𝜎(𝑥)̂𝑣𝑥

)
𝑥
+

(
𝑟𝑣 (𝑥) − 𝜅𝑣 (𝑥) (�̂� + �̂�) − 𝛽′̂𝑣

)
�̄� + 𝜇𝑢 (𝑥)�̂� − 𝜇𝑣 (𝑥)̂𝑣, 𝑡 > 0, 𝑥 ∈ R,

(3.19)
where the constant 𝛽′ is given by

𝛽′ :=
𝐾

𝑚
𝛽,

with 𝐾 and 𝛽 being the constants defined in (3.5). This system is obtained by replacing
the constant 𝛽 in (3.6) by 𝛽′. By using an argument similar to (3.9), we see that 𝑤(𝑡, 𝑥) :=
�̂�(𝑡, 𝑥) + �̂�(𝑡, 𝑥) satisfies

𝑤𝑡 ≤
(
𝜎(𝑥)𝑤𝑥

)
𝑥
+ 𝛽𝐾

2
𝑤 − 𝛽′

2
𝑤2 =

(
𝜎(𝑥)𝑤𝑥

)
𝑥
+ 𝛽𝐾

2𝑚
(𝑚 − 𝑤) 𝑤.

Therefore, if the initial data of the solution of (3.19) satisfies

𝑤(0, 𝑥) := �̂�0 (𝑥) + �̂�0 (𝑥) ≤ 𝑚, (3.20)

then 𝑤(𝑡, 𝑥) := �̂�(𝑡, 𝑥) + �̂�(𝑡, 𝑥) ≤ 𝑚 for all 𝑡 ≥ 0, 𝑥 ∈ R. In particular, we have

�̂�(𝑡, 0) ≤ 𝑚, �̂�(𝑡, 0) ≤ 𝑚 for all 𝑡 ≥ 0, (3.21)

provided that (3.20) holds. Now we consider a solution
(
�̂�(𝑡, 𝑥), �̂�(𝑡, 𝑥)

)
whose initial data(

�̂�0, �̂�0
)

satisfies (3.20) and is left front-like in the sense that

inf
𝑥≤𝐾1

min
(
�̂�0 (𝑥), �̂�0 (𝑥)

)
> 0 for some 𝐾1 < 0, �̂�0 (𝑥) = �̂�0 (𝑥) = 0 for all 𝑥 ≥ 0.

Since 𝛽′ > 𝛽, this is a subsolution of the system (3.6). We claim that

�̂�(𝑡, 𝑥) < �̃�(𝑡 + 𝑇, 𝑥), �̂�(𝑡, 𝑥) < �̃�(𝑡 + 𝑇, 𝑥) for all 𝑡 ≥ 0, 𝑥 ≥ 0. (3.22)
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Indeed, at 𝑡 = 0, (3.22) certainly holds for all 𝑥 ≥ 0 since �̂�0 and �̂�0 are 0. At the boundary
𝑥 = 0, the above inequality holds by virtue of (3.18) and (3.21). Thus the comparison
principle implies (3.22).

By Theorem 2.6, the front of
(
�̂�(𝑡, 𝑥), �̂�(𝑡, 𝑥)

)
propagates at the speed 𝑐∗

𝑅
, since the

linearized system for (3.19) is the same as that for (1.1). This and (3.22) proves (2.21a).
Note that this statement holds for any nonnegative nontrivial solution of (1.1). For solutions
with compactly supported initial data, the assertion (2.21b) is a consequence of Lemma 3.1.
The Theorem is proved.

3.3. Existence of traveling waves

The goal of this section is to prove Theorems 2.10 and 2.12 on traveling waves. We consider
only the right traveling waves, as the left traveling waves can be treated precisely the same
way. The existence will be proved by a fixed-point argument. More precisely, for each speed
𝑐 ≥ 𝑐∗

𝑅
, we first restrict the system (1.1) on the moving interval −𝑀 + 𝑐𝑡 ≤ 𝑥 < +∞ and

prove the existence of a traveling wave for this restricted system by applying the Schauder
fixed-point theorem, then we let 𝑀 → ∞ to obtain a traveling wave of the original system.

In order to apply the fixed-point theorem, we need to construct upper and lower barriers.
The upper barrier is easy to construct, as it is simply a solution of the linearized system. On
the other hand, the construction of the lower barrier is much more involved. Our construc-
tion of lower barriers for 𝑐 > 𝑐∗

𝑅
is adapted from [20] on scalar equations, but the lower

barrier for 𝑐 = 𝑐∗
𝑅

is new. The latter requires subtler analysis because of the degeneracy of
the characteristic equation.

As a matter of fact, it is possible to prove the existence of traveling waves for the critical
case 𝑐 = 𝑐∗

𝑅
by a limiting argument, namely by taking the limit as 𝑐 → 𝑐∗

𝑅
of the traveling

waves of speed 𝑐 > 𝑐∗
𝑅

. Such an approach is more common in the study of scalar equations,
but it does not give detailed information about the spatial decay rate of the critical traveling
wave as 𝑥→ +∞. Our approach, on the other hand, gives an optimal decay rate directly for
the case 𝑐 = 𝑐∗

𝑅
.

Now, for each fixed 𝑀 ≥ 0 and 𝑐 ∈ R, let us consider the following system, which is
obtained by restricting the system (1.1) on the interval −𝑀 + 𝑐𝑡 ≤ 𝑥 < +∞:
𝑢𝑡 =

(
𝜎(𝑥)𝑢𝑥

)
𝑥
+

(
𝑟𝑢 (𝑥) − 𝜅𝑢 (𝑥) (𝑢 + 𝑣)

)
𝑢 + 𝜇𝑣 (𝑥)𝑣 − 𝜇𝑢 (𝑥)𝑢, 𝑡 > 0, 𝑥 > −𝑀 + 𝑐𝑡,

𝑣𝑡 =
(
𝜎(𝑥)𝑣𝑥

)
𝑥
+

(
𝑟𝑣 (𝑥) − 𝜅𝑣 (𝑥) (𝑢 + 𝑣)

)
𝑣 + 𝜇𝑢 (𝑥)𝑢 − 𝜇𝑣 (𝑥)𝑣, 𝑡 > 0, 𝑥 > −𝑀 + 𝑐𝑡,

𝑢𝑥 (𝑡,−𝑀 + 𝑐𝑡) = 𝑣𝑥 (𝑡,−𝑀 + 𝑐𝑡) = 0 (𝑡 > 0).
(3.23)

The global existence and the uniqueness of solutions of system (3.23) for nonnegative
bounded continuous initial data

(
𝑢0 (𝑥), 𝑣0 (𝑥)

)
is classical. We next consider the following

auxiliary system which is obtained by restricting (3.6) on the interval −𝑀 + 𝑐𝑡 ≤ 𝑥 < +∞:
�̃�𝑡 =

(
𝜎(𝑥)�̃�𝑥

)
𝑥
+

(
𝑟𝑢 (𝑥) − 𝜅𝑢 (𝑥) (�̃� + �̃�) − 𝛽�̃�

)
�̃� + 𝜇𝑣 (𝑥) �̃� − 𝜇𝑢 (𝑥)�̃�,

�̃�𝑡 =
(
𝜎(𝑥) �̃�𝑥

)
𝑥
+

(
𝑟𝑣 (𝑥) − 𝜅𝑣 (𝑥) (�̃� + �̃�) − 𝛽�̃�

)
�̃� + 𝜇𝑢 (𝑥)�̃� − 𝜇𝑣 (𝑥) �̃�,

�̃�𝑥 (𝑡,−𝑀 + 𝑐𝑡) = �̃�𝑥 (𝑡,−𝑀 + 𝑐𝑡) = 0 (𝑡 > 0).
(3.24)
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Then equivalents of Proposition 2.5 and Lemma 3.2 hold for this system, with virtually
the same proof except for a minor modification at the boundary 𝑥 = −𝑀 + 𝑐𝑡. We state
below an equivalent of Lemma 3.2 without proof.

Lemma 3.4 (Comparison with a lower barrier). Let Assumption 1 hold true and let 𝑀 ≥ 0
and 𝑐 ∈ R be given, and let 𝐾 be as in (2.10). Let

(
𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥)

)
be a solution of (3.23)

whose initial data
(
𝑢0 (𝑥), 𝑣0 (𝑥)

)
is bounded, nonnegative and continuous, and let �̃�0 (𝑥)

and �̃�0 (𝑥) be continuous functions such that

0 ≤ �̃�0 (𝑥) := min
(
𝑢0 (𝑥),

1
2
𝐾
)

and 0 ≤ �̃�0 (𝑥) ≤ min
(
𝑣0 (𝑥),

1
2
𝐾
)
. (3.25)

Then the solution
(
�̃�(𝑡, 𝑥), �̃�(𝑡, 𝑥)

)
of (3.24) with initial data

(
�̃�0 (𝑥), �̃�0 (𝑥)

)
satisfies

�̃�(𝑡, 𝑥) ≤ 𝑢(𝑡, 𝑥) and �̃�(𝑡, 𝑥) ≤ 𝑣(𝑡, 𝑥) for all 𝑡 > 0, 𝑥 ≥ −𝑀 + 𝑐𝑡. (3.26)

Next we construct upper and lower barriers in the form of several lemmas.

Lemma 3.5 (Upper barrier). Let Assumption 1 hold true, 𝐾 be as in (2.10) and 𝑀 ≥ 0 be
given. Let 𝜆 > 0 and 𝑐 ∈ R be such that 𝑐 ≥ 𝑘 (𝜆)

𝜆
. Define

𝑢(𝑡, 𝑥) := 𝑒−𝜆(𝑥−𝑐𝑡 )𝜑𝜆 (𝑥) 𝑣(𝑡, 𝑥) := 𝑒−𝜆(𝑥−𝑐𝑡 )𝜓𝜆 (𝑥), (3.27)

where (𝜑𝜆,𝜓𝜆) is the𝜆-periodic principal eigenvector of (2.4) that satisfies ∥(𝜑𝜆,𝜓𝜆)∥𝐿∞ =

1.
If 𝑀 is sufficiently large, then for any solution

(
𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥)

)
of (3.23) satisfying

𝑢(0, 𝑥) ≤ 𝑢(0, 𝑥), 𝑣(0, 𝑥) ≤ 𝑣(0, 𝑥), 𝑢(0, 𝑥) + 𝑣(0, 𝑥) ≤ 𝐾 , it holds that

𝑢(𝑡, 𝑥) ≤ 𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥) ≤ 𝑣(𝑡, 𝑥), 𝑢(𝑡, 𝑥) + 𝑣(𝑡, 𝑥) ≤ 𝐾 for all 𝑡 ≥ 0, 𝑥 ≥ −𝑀 + 𝑐𝑡.

Proof. The fact that 𝑢(𝑡, 𝑥) + 𝑣(𝑡, 𝑥) ≤ 𝐾 is a consequence of (an equivalent of) Proposi-
tion 2.5, so we prove the former two inequalities. Direct computation show that

𝑢𝑡 =
(
𝜎(𝑥)𝑢𝑥

)
𝑥
+

(
𝑟𝑢 (𝑥) − 𝜇𝑢 (𝑥) + 𝜆𝑐 − 𝑘 (𝜆)

)
𝑢 + 𝜇𝑣 (𝑥)𝑣,

𝑣𝑡 =
(
𝜎(𝑥)𝑣𝑥

)
𝑥
+

(
𝑟𝑣 (𝑥) − 𝜇𝑣 (𝑥) + 𝜆𝑐 − 𝑘 (𝜆)

)
𝑣 + 𝜇𝑢 (𝑥)𝑢.

(3.28)

Therefore (𝑢, 𝑣) is a solution of the linear cooperative system (3.28). Since 𝑐 ≥ 𝑘 (𝜆)
𝜆

, we
have

𝑢𝑡 =
(
𝜎(𝑥)𝑢𝑥

)
𝑥
+

(
𝑟𝑢 (𝑥) − 𝜇𝑢 (𝑥) − 𝜅𝑢 (𝑥) (𝑢 + 𝑣)

)
𝑢 + 𝜇𝑣 (𝑥)𝑣

≤
(
𝜎(𝑥)𝑢𝑥

)
𝑥
+

(
𝑟𝑢 (𝑥) − 𝜇𝑢 (𝑥) + 𝜆𝑐 − 𝑘 (𝜆)

)
𝑢 + 𝜇𝑣 (𝑥)𝑣,

𝑣𝑡 =
(
𝜎(𝑥)𝑣𝑥

)
𝑥
+

(
𝑟𝑣 (𝑥) − 𝜇𝑣 (𝑥) − 𝜅𝑣 (𝑥) (𝑢 + 𝑣)

)
𝑣 + 𝜇𝑢 (𝑥)𝑢

≤
(
𝜎(𝑥)𝑣𝑥

)
𝑥
+

(
𝑟𝑣 (𝑥) − 𝜇𝑣 (𝑥) + 𝜆𝑐 − 𝑘 (𝜆)

)
𝑣 + 𝜇𝑢 (𝑥)𝑢.

Hence (𝑢, 𝑣) is a subsolution to the system (3.28). Moreover, for 𝑀 sufficiently large, we
have

𝑢(𝑡,−𝑀 + 𝑐𝑡) = 𝑒𝜆𝑀𝜑𝜆 (−𝑀 + 𝑐𝑡) ≥ 𝐾 ≥ 𝑢(𝑡,−𝑀 + 𝑐𝑡)
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and similarly 𝑣(𝑡,−𝑀 + 𝑐𝑡) ≥ 𝑣(𝑡,−𝑀 + 𝑐𝑡). Thus by the comparison principle for coop-
erative parabolic systems, the following inequalities hold, which prove the lemma:

𝑢(𝑡, 𝑥) ≤ 𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥) ≤ 𝑣(𝑡, 𝑥) for all 𝑡 ≥ 0, 𝑥 ≥ −𝑀 + 𝑐𝑡.

Lemma 3.6 (Lower barrier for 𝑐 > 𝑐∗
𝑅

). Let Assumption 1 hold true and let 𝑀 ≥ 0, 𝑐 > 𝑐∗
𝑅

be given. Let 𝜆 > 0 be the smallest positive solution of 𝑘 (𝜆)
𝜆

= 𝑐. Define

𝑢(𝑡, 𝑥) := 𝑒−𝜆(𝑥−𝑐𝑡 )𝜑𝜆 (𝑥) −𝜔𝑒−𝜈 (𝑥−𝑐𝑡 )𝜑𝜈 (𝑥), 𝑣(𝑡, 𝑥) := 𝑒−𝜆(𝑥−𝑐𝑡 )𝜓𝜆 (𝑥) −𝜔𝑒−𝜈 (𝑥−𝑐𝑡 )𝜓𝜈 (𝑥),
(3.29)

where the constant 𝜈 > 0 satisfies 𝑘 (𝜈) − 𝜈𝑐 < 0 and 𝜆 < 𝜈 < 2𝜆. Then there exists 𝜔∗ > 0
such that, for all 𝜔 ≥ 𝜔∗, we have 𝑢(𝑡,−𝑀 + 𝑐𝑡) < 0 and 𝑣(𝑡,−𝑀 + 𝑐𝑡) < 0 for all 𝑡 ≥ 0,
and that, for any 𝑛 ∈

{
0, . . . ,

⌊
𝑀
𝐿

⌋ }
and any nonnegative solution

(
𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥)

)
of (3.23)

satisfying

𝑢0 (𝑥) ≥ 𝑢(0, 𝑥 + 𝑛𝐿), 𝑣0 (𝑥) ≥ 𝑣(0, 𝑥 + 𝑛𝐿) for all 𝑥 ≥ −𝑀,

we have

𝑢(𝑡, 𝑥) ≥ 𝑢(𝑡, 𝑥 + 𝑛𝐿), 𝑣(𝑡, 𝑥) ≥ 𝑣(𝑡, 𝑥 + 𝑛𝐿) for all 𝑡 ≥ 0, 𝑥 ≥ −𝑀 + 𝑐𝑡. (3.30)

The following proof is adapted from [20] on scalar KPP type equations.

Proof. We first prove the lemma for the special case 𝑛 = 0, then discuss the general case
later.

Let us first remark that 𝑢(𝑡 + 𝐿
𝑐
, 𝑥) = 𝑢(𝑡, 𝑥 − 𝐿) and 𝑣(𝑡 + 𝐿

𝑐
, 𝑥) = 𝑣(𝑡, 𝑥 − 𝐿). It follows

from direct computations that sup𝑡 ,𝑥 𝑢 and sup𝑡 ,𝑥 𝑣 are both finite and become arbitrarily
small when 𝜔 → +∞. By Lemma 3.4, it suffices to check that the vector function (𝑢, 𝑣) is
a lower barrier to the system (3.24) if 𝜔 > 0 is sufficiently large. Now direct computations
show

𝑢
𝑡
=

(
𝜎(𝑥)𝑢

𝑥

)
𝑥
+

(
𝑟𝑢 (𝑥) − 𝜇𝑢 (𝑥)

)
𝑢 + 𝜇𝑣 (𝑥)𝑣 − (−𝑘 (𝜈) + 𝜈𝑐)𝜔𝑒−𝜈 (𝑥−𝑐𝑡 )𝜑𝜈 (𝑥),

𝑣
𝑡
=

(
𝜎(𝑥)𝑣

𝑥

)
𝑥
+

(
𝑟𝑣 (𝑥) − 𝜇𝑣 (𝑥)

)
𝑣 + 𝜇𝑢 (𝑥)𝑢 − (−𝑘 (𝜈) + 𝜈𝑐)𝜔𝑒−𝜈 (𝑥−𝑐𝑡 )𝜓𝜈 (𝑥),

where we recall that −𝑘 (𝜈) + 𝜈𝑐 > 0. Note that we may assume

𝑥 − 𝑐𝑡 ≥ 1
𝜈 − 𝜆 ln(𝜔) + 1

𝜈 − 𝜆 inf
𝑦∈R

min
[
ln

(
𝜑𝜈 (𝑦)
𝜑𝜆 (𝑦)

)
, ln

(
𝜓𝜈 (𝑦)
𝜓𝜆 (𝑦)

)]
=:

1
𝜈 − 𝜆

(
ln(𝜔) + 𝐶0

)
,

(3.31)
otherwise we would have 𝑢 < 0 and 𝑣 < 0, in which case there is nothing to prove. In what
follows, we assume that𝜔 > 𝑒−𝐶0 so that 𝑢 < 0 and 𝑣 < 0 whenever 𝑥 − 𝑐𝑡 ≤ 0 (in particular
at the boundary 𝑥 = 𝑐𝑡 − 𝑀). Observe that

𝜅𝑢 (𝑥) (𝑢 + 𝑣)𝑢 + 𝛽𝑢2 ≤
(
sup 𝜅𝑢 + 𝛽

)
𝑢2 + sup 𝜅𝑢𝑢𝑣 ≤

(
3
2

sup 𝜅𝑢 + 𝛽
)
𝑢2 + 1

2
sup 𝜅𝑢𝑣2
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≤
(
2 sup 𝜅𝑢 + 𝛽

)
max

(
sup 𝜑𝜆, sup𝜓𝜆

)
𝑒−2𝜆(𝑥−𝑐𝑡 )

≤
[ (

2 sup 𝜅𝑢 + 𝛽
) max

(
sup 𝜑𝜆, sup𝜓𝜆

)
inf 𝜑𝜈

𝑒−(2𝜆−𝜈) (𝑥−𝑐𝑡 )
]
𝜑𝜈 (𝑥)𝑒−𝜈 (𝑥−𝑐𝑡 )

≤ 𝐶1

𝜔
2𝜆−𝜈
𝜈−𝜆

𝜑𝜈 (𝑥)𝑒−𝜈 (𝑥−𝑐𝑡 ) ,

for some constant 𝐶1 > 0. Taking 𝜔 ≥
(

𝐶1
−𝑘 (𝜈)+𝜈𝑐

) 𝜈−𝜆
𝜆 we obtain

𝐶1

𝜔
2𝜆−𝜈
𝜈−𝜆

≤ 𝜔(−𝑘 (𝜈) + 𝜈𝑐)

and therefore

𝜅𝑢 (𝑥) (𝑢 + 𝑣)𝑢 + 𝛽𝑢2 ≤ 𝜔(−𝑘 (𝜈) + 𝜈𝑐)𝜑𝜈 (𝑥)𝑒−𝜈 (𝑥−𝑐𝑡 ) .

Thus we finally get to

𝑢
𝑡
≤

(
𝜎(𝑥)𝑢

𝑥

)
𝑥
+

(
𝑟𝑢 (𝑥) − 𝜇𝑢 (𝑥) − 𝜅𝑢 (𝑥) (𝑢 + 𝑣) − 𝛽𝑢

)
𝑢 + 𝜇𝑣 (𝑥)𝑣.

Similarly, there is a constant 𝐶2 > 0 such that for any 𝜔 ≥
(

𝐶2
−𝑘 (𝜈)+𝜈𝑐

) 𝜈−𝜆
𝜆 we have

𝜅𝑣 (𝑥) (𝑢 + 𝑣)𝑣 + 𝛽𝑣2 ≤ 𝜔(−𝑘 (𝜈) + 𝜈𝑐)𝜓𝜈 (𝑥)𝑒−𝜈 (𝑥−𝑐𝑡 ) ,

hence
𝑣
𝑡
≤

(
𝜎(𝑥)𝑣

𝑥

)
𝑥
+

(
𝑟𝑣 (𝑥) − 𝜇𝑣 (𝑥) − 𝜅𝑣 (𝑥) (𝑢 + 𝑣) − 𝛽𝑣

)
𝑣 + 𝜇𝑢 (𝑥)𝑢.

The statement (3.30) then follows by applying Lemma 3.4. The lemma is proved for 𝑛 = 0.
Precisely the same argument holds for (𝑢(𝑡, 𝑥 + 𝑛𝐿), 𝑣(𝑡, 𝑥 + 𝑛𝐿)

)
since it satisfies the

same differential inequalities as the case 𝑛 = 0 and since 𝑢(𝑡, 𝑥 + 𝑛𝐿) < 0 and 𝑣(𝑡, 𝑥 + 𝑛𝐿) <
0 at the boundary 𝑥 = −𝑀 + 𝑐𝑡 for all 𝑛 = 1, . . . ,

⌊
𝑀
𝐿

⌋
. This latter claim holds because

𝑢(𝑡, 𝑥) < 0 and 𝑣(𝑡, 𝑥) < 0 whenever 𝑥 − 𝑐𝑡 < 0 by our choice of 𝜔. This completes the
proof of Lemma 3.6.

To construct upper and lower barriers for the critical speed 𝑐 = 𝑐∗
𝑅

, we need a different
approach, since the decay rate of the traveling wave as 𝑥 → +∞ is not purely exponential.
Let 𝜆∗ > 0 be the unique positive solution of 𝑘 (𝜆)

𝜆
= 𝑐∗

𝑅
, and define

𝑈 (𝑡, 𝑥) := − 𝜕

𝜕𝜆

(
𝑒−𝜆(𝑥−𝑐

∗
𝑅 𝑡)𝜑𝜆 (𝑥)

) ��
𝜆=𝜆∗ , 𝑉 (𝑡, 𝑥) := − 𝜕

𝜕𝜆

(
𝑒−𝜆(𝑥−𝑐

∗
𝑅 𝑡)𝜑𝜆 (𝑥)

) ��
𝜆=𝜆∗ ,

(3.32)
and, for positive constants 𝛼 > 0, 𝜔 > 0 and 𝜆∗ < 𝜈 < 2𝜆∗,

𝑢∗ (𝑡, 𝑥) := 𝑈 (𝑡, 𝑥) + 𝛼𝑒−𝜆∗ (𝑥−𝑐∗𝑅𝑡 )𝜑𝜆∗ (𝑥),
𝑣∗ (𝑡, 𝑥) := 𝑉 (𝑡, 𝑥) + 𝛼𝑒−𝜆∗ (𝑥−𝑐∗𝑅𝑡 )𝜓𝜆∗ (𝑥), (3.33)

𝑢∗ (𝑡, 𝑥) := 𝑈 (𝑡, 𝑥) + 𝑒−𝜈 (𝑥−𝑐∗𝑅𝑡 )𝜑𝜈 (𝑥) − 𝜔𝑒−𝜆∗ (𝑥−𝑐∗𝑅𝑡 )𝜑𝜆∗ (𝑥),
𝑣∗ (𝑡, 𝑥) := 𝑉 (𝑡, 𝑥) + 𝑒−𝜈 (𝑥−𝑐∗𝑅𝑡 )𝜓𝜈 (𝑥) − 𝜔𝑒−𝜆∗ (𝑥−𝑐∗𝑅𝑡 )𝜓𝜆∗ (𝑥). (3.34)
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Lemma 3.7 (Lower and upper barrier for 𝑐 = 𝑐∗
𝑅

). Let Assumption 1 hold, let 𝐾 be as in
(2.10) and let 𝑀 ≥ 0 be given. Then there exist 𝛼∗ > 0, 𝜔 > 0 and 𝜉0 > 0 such that

𝑢∗ (𝑡, 𝜉0 + 𝑐𝑡) < 0 and 𝑣∗ (𝑡, 𝜉0 + 𝑐𝑡) < 0 for all 𝑡 ≥ 0

and that, for any 𝛼 > 𝛼∗, any 𝑛 ∈
{
0, . . . ,

⌊
𝑀
𝐿

⌋ }
and any solution

(
𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥)

)
of (3.23)

satisfying

𝑢0 (𝑥) ≥ 0, 𝑣0 (𝑥) ≥ 0 and 𝑢0 (𝑥) + 𝑣0 (𝑥) ≤ 𝐾, ∀𝑥 ≥ −𝑀, (3.35a)

𝑢0 (𝑥) ≤ 𝑢∗ (0, 𝑥), 𝑣0 (𝑥) ≤ 𝑣∗ (0, 𝑥), ∀𝑥 ≥ 𝜉0, (3.35b)

𝑢0 (𝑥) ≥ 𝑢∗ (0, 𝑥 + 𝑛𝐿), 𝑣0 (𝑥) ≥ 𝑣∗ (0, 𝑥 + 𝑛𝐿), ∀𝑥 ≥ 𝜉0 − 𝑛𝐿, (3.35c)

it holds that

𝑢(𝑡, 𝑥) ≥ 0, 𝑣(𝑡, 𝑥) ≥ 0 and 𝑢(𝑡, 𝑥) + 𝑣(𝑡, 𝑥) ≤ 𝐾, ∀𝑡 ≥ 0 and ∀𝑥 ≥ −𝑀 + 𝑐∗𝑅𝑡, (3.36a)

𝑢(𝑡, 𝑥) ≤ 𝑢∗ (𝑡, 𝑥), 𝑣(𝑡, 𝑥) ≤ 𝑣∗ (𝑡, 𝑥), ∀𝑡 ≥ 0 and ∀𝑥 ≥ 𝜉0 + 𝑐∗𝑅𝑡, (3.36b)

𝑢(𝑡, 𝑥) ≥ 𝑢∗ (𝑡, 𝑥 + 𝑛𝐿), 𝑣(𝑡, 𝑥) ≥ 𝑣∗ (𝑡, 𝑥 + 𝑛𝐿), ∀𝑡 ≥ 0 and ∀𝑥 ≥ 𝜉0 − 𝑛𝐿 + 𝑐∗𝑅𝑡. (3.36c)

Proof. The claim (3.36a) is a direct consequence of (a variant of) Proposition 2.5 and
(3.35a). We next consider (3.36b). Differentiating (3.28) with respect to 𝜆 and evaluating
at 𝜆 = 𝜆∗, we find that

𝑈𝑡 =
(
𝜎(𝑥)𝑈𝑥

)
𝑥
+

(
𝑟𝑢 (𝑥) − 𝜇𝑢 (𝑥) + 𝑐∗𝑅 − 𝑘 ′ (𝜆∗)

)
𝑈 + 𝜇𝑣 (𝑥)𝑉

=
(
𝜎(𝑥)𝑈𝑥

)
𝑥
+

(
𝑟𝑢 (𝑥) − 𝜇𝑢 (𝑥)

)
𝑈 + 𝜇𝑣 (𝑥)𝑉,

𝑉𝑡 =
(
𝜎(𝑥)𝑉𝑥

)
𝑥
+

(
𝑟𝑣 (𝑥) − 𝜇𝑣 (𝑥) + 𝑐∗𝑅 − 𝑘 ′ (𝜆∗)

)
𝑉 + 𝜇𝑢 (𝑥)𝑈

=
(
𝜎(𝑥)𝑉𝑥

)
𝑥
+

(
𝑟𝑣 (𝑥) − 𝜇𝑣 (𝑥)

)
𝑉 + 𝜇𝑢 (𝑥)𝑈.

(3.37)

Indeed 𝜆∗ is the minimizer of 𝜆 ↦→ 𝑘 (𝜆)
𝜆

, which implies that 𝑐∗
𝑅
= 𝑘 ′ (𝜆∗). Thus, (𝑈,𝑉) is

a solution of the cooperative system (3.28), hence so is (𝑢∗, 𝑣∗). On the other hand, (𝑢, 𝑣)
is a subsolution of (3.28). Furthermore, for 𝛼 sufficiently large we have

𝑢∗ (𝑡, 𝜉0 + 𝑐∗𝑅𝑡) =
(
(𝜉0 + 𝛼)𝜑𝜆

∗ (𝜉0 + 𝑐∗𝑅𝑡) − 𝜕𝜆𝜑𝜆
∗ (𝜉0 + 𝑐∗𝑅𝑡)

)
𝑒−𝜆

∗ 𝜉0 ≥ 𝐾 ≥ 𝑢(𝑡, 𝜉0 + 𝑐∗𝑅𝑡),

and similarly 𝑣∗ (𝑡, 𝜉0 + 𝑐∗𝑅𝑡) ≥ 𝐾 ≥ 𝑣(𝑡, 𝜉0 + 𝑐∗𝑅𝑡). This, together with the inequality (3.35b)
and the comparison principle for the linear cooperative system (3.28), proves (3.36b).

Next we prove (3.36c) for 𝑛 = 0. By Lemma 3.4, in order to show that (𝑢, 𝑣) is a lower
barrier for (𝑢, 𝑣), it suffices to verify that (𝑢, 𝑣) is a subsolution of (3.24) in the range
𝑥 ≥ 𝜉0 + 𝑐∗𝑅𝑡 and that (𝑢, 𝑣) ≥ (𝑢, 𝑣) at 𝑥 = 𝜉0 + 𝑐∗𝑅𝑡 for sufficiently large 𝜔 > 0 and 𝜉0.
Direct computations show

𝑢∗
𝑡
=

(
𝜎(𝑥)𝑢∗

𝑥

)
𝑥
+

(
𝑟𝑢 (𝑥) − 𝜇𝑢 (𝑥)

)
𝑢∗ + 𝜇𝑣 (𝑥)𝑣∗ − (𝑘 (𝜈) − 𝜈𝑐∗𝑅)𝑒−𝜈 (𝑥−𝑐

∗
𝑅
𝑡 )𝜑𝜈 (𝑥),

𝑣∗
𝑡
=

(
𝜎(𝑥)𝑣∗

𝑥

)
𝑥
+

(
𝑟𝑣 (𝑥) − 𝜇𝑣 (𝑥)

)
𝑣∗ + 𝜇𝑢 (𝑥)𝑢∗ − (𝑘 (𝜈) − 𝜈𝑐∗𝑅)𝑒−𝜈 (𝑥−𝑐

∗
𝑅
𝑡 )𝜓𝜈 (𝑥),
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where we recall that 𝑘 (𝜈) − 𝜈𝑐∗
𝑅
> 0.

Now we show that, for 𝑥 − 𝑐∗
𝑅
𝑡 sufficiently large, the term 𝑒−𝜈 (𝑥−𝑐

∗
𝑅
𝑡 ) dominates the

quadratic nonlinearities (𝑢∗)2, (𝑣∗)2 and 𝑢∗𝑣∗ which behave like (𝑥 − 𝑐∗
𝑅
𝑡)2𝑒−2𝜆∗ (𝑥−𝑐∗

𝑅
𝑡 ) .

Once this is shown, we see that
(
𝑢∗, 𝑣∗

)
is a subsolution to (3.24) for carefully chosen

parameters.
We remark that the leading term in𝑈 (𝑡, 𝑥) near 𝑥 = +∞ is (𝑥 − 𝑐∗

𝑅
𝑡)𝑒−𝜆∗ (𝑥−𝑐∗𝑅𝑡 ) in both

𝑢∗ and 𝑣∗. Therefore there is 𝜉0 > 0 such that

1
2
(𝑥 − 𝑐∗𝑅𝑡)𝑒−𝜆

∗ (𝑥−𝑐∗
𝑅
𝑡 )𝜑𝜆

∗ (𝑥) ≤ 𝑈 (𝑡, 𝑥) ≤ 2(𝑥 − 𝑐∗𝑅𝑡)𝑒−𝜆
∗ (𝑥−𝑐∗

𝑅
𝑡 )𝜑𝜆

∗ (𝑥),

1
2
(𝑥 − 𝑐∗𝑅𝑡)𝑒−𝜆

∗ (𝑥−𝑐∗
𝑅
𝑡 )𝜓𝜆

∗ (𝑥) ≤ 𝑉 (𝑡, 𝑥) ≤ 2(𝑥 − 𝑐∗𝑅𝑡)𝑒−𝜆
∗ (𝑥−𝑐∗

𝑅
𝑡 )𝜓𝜆

∗ (𝑥)

for all 𝑥 − 𝑐∗
𝑅
𝑡 ≥ 𝜉0. We define

𝜔(𝜉0) := 2𝜉0 + 𝑒−(𝜈−𝜆∗ ) 𝜉0 max
(
sup
𝑥∈R

𝜑𝜈 (𝑥)
𝜑𝜆

∗ (𝑥) , sup
𝑥∈R

𝜓𝜈 (𝑥)
𝜓𝜆

∗ (𝑥)

)
,

so that whenever 𝜔 ≥ 𝜔(𝜉0) we have

𝑢∗ (𝑡, 𝜉0 + 𝑐∗𝑅𝑡) < 0, 𝑣∗ (𝑡, 𝜉0 + 𝑐∗𝑅𝑡) < 0 for all 𝑡 ≥ 0. (3.38)

In what follows we fix 𝜔 = 𝜔(𝜉0) and will use the fact that 𝜔 ≤ 3𝜉0, which is true for 𝜉0
sufficiently large. Note that by increasing 𝜉0 we can bound the supremum of 𝑢∗ (𝑡, 𝑥) and
𝑣∗ (𝑡, 𝑥) over the moving interval 𝑥 ∈ [𝜉0 + 𝑐∗𝑅𝑡,+∞) by an arbitrarily small value. We have,
for all 𝑥 − 𝑐∗

𝑅
𝑡 ≥ 𝜉0:

𝜔𝑒−𝜆
∗ (𝑥−𝑐∗

𝑅
𝑡 )𝜑𝜆

∗ (𝑥) ≤ 3(𝑥 − 𝑐∗𝑅𝑡)𝑒−𝜆
∗ (𝑥−𝑐∗

𝑅
𝑡 )𝜑𝜆

∗ (𝑥),

therefore, by developing the square of (3.34), we obtain

𝑢∗ (𝑡, 𝑥)2 ≤ 3𝑈 (𝑡, 𝑥)2 + 3𝑒−2𝜈 (𝑥−𝑐∗
𝑅
𝑡 )𝜑𝜈 (𝑥)2 + 3𝜔2𝑒−2𝜆∗ (𝑥−𝑐∗

𝑅
𝑡 )𝜑𝜆

∗ (𝑥)2

≤
(
12(sup 𝜑𝜆

∗ )2 + 3(sup 𝜑𝜈)2 + 3 × (3 sup 𝜑𝜆
∗ )2) (𝑥 − 𝑐∗𝑅𝑡)2𝑒−2𝜆∗ (𝑥−𝑐∗

𝑅
𝑡 )

≤ 42 max(sup 𝜑𝜈 , sup 𝜑𝜆
∗ )2 (𝑥 − 𝑐∗𝑅𝑡)2𝑒−2𝜆∗ (𝑥−𝑐∗

𝑅
𝑡 ) ;

and similarly

𝑣∗ (𝑡, 𝑥)2 ≤ 42 max(sup𝜓𝜈 , sup𝜓𝜆
∗ )2 (𝑥 − 𝑐∗𝑅𝑡)2𝑒−2𝜆∗ (𝑥−𝑐∗

𝑅
𝑡 ) .

Thus

𝜅𝑢 (𝑥)
(
𝑢∗ + 𝑣∗)𝑢∗ + 𝛽(𝑢∗)2 ≤

(
3
2

sup 𝜅𝑢 + 𝛽
)
(𝑢∗)2 + 1

2
sup 𝜅𝑢 (𝑣∗)2

≤ 𝐶0 (𝑥 − 𝑐∗𝑅𝑡)2𝑒−2𝜆∗ (𝑥−𝑐∗
𝑅
𝑡 )

≤
𝐶0 (𝑥 − 𝑐∗𝑅𝑡)2𝑒−(2𝜆∗−𝜈) (𝑥−𝑐∗

𝑅
𝑡 )

min(inf 𝜑𝜈 , inf 𝜓𝜈)
(
𝑘 (𝜈) − 𝜈𝑐∗

𝑅

) (
𝑘 (𝜈) − 𝜈𝑐∗𝑅

)
𝑒−𝜈 (𝑥−𝑐

∗
𝑅
𝑡 )𝜑𝜈 (𝑥)
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= 𝐶1 (𝑥 − 𝑐∗𝑅𝑡)2𝑒−(2𝜆∗−𝜈) (𝑥−𝑐∗
𝑅
𝑡 ) (𝑘 (𝜈) − 𝜈𝑐∗𝑅 )𝑒−𝜈 (𝑥−𝑐∗𝑅𝑡 )𝜑𝜈 (𝑥),

where 𝐶0 and 𝐶1 are positive constant independent of 𝜉0. For 𝜉0 sufficiently large we have
𝜉2𝑒−(2𝜆∗−𝜈) 𝜉 ≤ 1

𝐶1
for all 𝜉 ≥ 𝜉0 and therefore

𝜅𝑢 (𝑥)
(
𝑢∗ + 𝑣∗)𝑢∗ + 𝛽(𝑢∗)2 ≤

(
𝑘 (𝜈) − 𝜈𝑐∗𝑅

)
𝑒−𝜈 (𝑥−𝑐

∗
𝑅
𝑡 )𝜑𝜈 (𝑥) for all 𝑥 − 𝑐∗𝑅𝑡 ≥ 𝜉0.

By a similar argument we find that, if 𝜉0 is sufficiently large, we have

𝜅𝑣 (𝑥)
(
𝑢∗ + 𝑣∗)𝑣∗ + 𝛽(𝑣∗)2 ≤

(
𝑘 (𝜈) − 𝜈𝑐∗𝑅

)
𝑒−𝜈 (𝑥−𝑐

∗
𝑅
𝑡 )𝜓𝜈 (𝑥) for all 𝑥 − 𝑐∗𝑅𝑡 ≥ 𝜉0.

Hence (𝑢∗, 𝑣∗) is a subsolution to (3.24). This, together with (3.38) and (3.35c), shows that
(𝑢∗, 𝑣∗) is a lower barrier for (𝑢, 𝑣) for sufficiently large 𝜉0. The Lemma is proved for 𝑛 = 0.

Precisely the same argument holds for (𝑢∗ (𝑡, 𝑥 + 𝑛𝐿), 𝑣∗ (𝑡, 𝑥 + 𝑛𝐿)
)

with 𝜉0 replaced
by 𝜉0 − 𝑛𝐿, since it satisfies the same differential inequalities as the case 𝑛 = 0 and since
𝑢∗ (𝑡, 𝑥 + 𝑛𝐿) < 0 and 𝑣∗ (𝑡, 𝑥 + 𝑛𝐿) < 0 at the boundary 𝑥 = 𝜉0 − 𝑛𝐿 + 𝑐∗

𝑅
𝑡 for all 𝑛 =

1, . . . ,
⌊
𝑀
𝐿

⌋
. This latter claim holds because, by our choice of𝜔 =𝜔(𝜉0), we have 𝑢(𝑡, 𝑥) < 0

and 𝑣(𝑡, 𝑥) < 0 whenever 𝑥 − 𝑐∗
𝑅
𝑡 = 𝜉0; moreover 𝜉0 > 0, therefore 𝜉0 − 𝑛𝐿 ≥ −𝑛𝐿 ≥ −𝑀 .

This completes the proof of Lemma 3.7.

Proof of Theorem 2.10. The fact that there exists no traveling wave for 𝑐 < 𝑐∗
𝑅

is a direct
consequence of the spreading property (Theorem 2.6). The existence of a traveling wave for
𝑐 ≥ 𝑐∗

𝑅
will be shown by using the Schauder fixed-point Theorem and a limiting argument.

We begin with the case 𝑐 > 𝑐∗
𝑅

. Fix 𝑐 > 𝑐∗
𝑅

, and let 𝜆 be the smallest positive solution
to 𝜆𝑐 = 𝑘 (𝜆). We let 𝑢(𝑡, 𝑥) and 𝑣(𝑡, 𝑥) be the functions defined in Lemma 3.5 by (3.27)
and 𝑢(𝑡, 𝑥) and 𝑣(𝑡, 𝑥) be the function defined in Lemma 3.6 by (3.29).

For 𝑀 > 0, we let 𝑁𝑀 := ⌊𝑀
𝐿
⌋, i.e., the largest integer below 𝑀 , and let 𝐸𝑀 be the

(convex) set of all vector functions (𝑢0, 𝑣0) ∈ 𝐵𝑈𝐶
(
[−𝑀, +∞)

)2 satisfying the following
constraints:

𝑢0 (𝑥) ≥ 0, max
𝑛∈{0,1,...,𝑁𝑀 }

𝑢(0, 𝑥 + 𝑛𝐿) ≤ 𝑢0 (𝑥) ≤ 𝑢(0, 𝑥),

𝑣0 (𝑥) ≥ 0, max
𝑛∈{0,1,...,𝑁𝑀 }

𝑣(0, 𝑥 + 𝑛𝐿) ≤ 𝑣0 (𝑥) ≤ 𝑣(0, 𝑥),

𝑢0 (𝑥) + 𝑣0 (𝑥) ≤ 𝐾,


∀𝑥 ≥ −𝑀,

where 𝐾 is as in (2.10). Note that 𝐸𝑀 is not empty. Indeed, since 𝑢(0, 𝑥) > 𝑢(0, 𝑥) and
since 𝑢(0, 𝑥 + 𝑛𝐿) is monotone decreasing with respect to 𝑛 ∈ N, we clearly have 𝑢(𝑥, 0) >
𝑢(𝑥 + 𝑛𝐿) for all 𝑛 ≥ 0, and the same holds between 𝑣 and 𝑣. Next we define an operator
𝑄𝑀 : 𝐸𝑀 → 𝐵𝑈𝐶

(
[−𝑀, +∞)

)2 by

𝑄𝑀 (𝑢0, 𝑣0) (𝑥) =
(
𝑢

(
𝐿

𝑐
, 𝑥 + 𝐿

)
, 𝑣

(
𝐿

𝑐
, 𝑥 + 𝐿

))
, (3.39)

where
(
𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥)

)
is the solution of the system (3.23) starting from the initial data

(𝑢0, 𝑣0).
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Then, it follows from Lemmas 3.5 and 3.6 that𝑄𝑀 (𝐸𝑀 ) ⊂ 𝐸𝑀 . Moreover the parabolic
operator𝑄𝑀 is compact. Thus, the Schauder fixed-point Theorem implies the existence of
a fixed-point

(
𝑢𝑀 , 𝑣𝑀

)
∈ 𝐸𝑀 such that 𝑄𝑀 (𝑢𝑀 , 𝑣𝑀 ) = (𝑢𝑀 , 𝑣𝑀 ). Again by the parabolic

regularity, there exists a sequence 𝑀𝑛 → +∞ such that 𝑢𝑀𝑛 converges locally uniformly to
a solution 𝑢∞ to𝑄∞ (𝑢∞, 𝑣∞) = (𝑢∞, 𝑣∞), which belongs to the set 𝐸∞ ⊂ 𝐵𝑈𝐶 (R)2 defined
by the constraints

𝑢0 (𝑥) ≥ 0, sup
𝑛∈N

𝑢(0, 𝑥 + 𝑛𝐿) ≤ 𝑢0 (𝑥) ≤ 𝑢(0, 𝑥),

𝑣0 (𝑥) ≥ 0, sup
𝑛∈N

𝑣(0, 𝑥 + 𝑛𝐿) ≤ 𝑣0 (𝑥) ≤ 𝑣(0, 𝑥),

𝑢0 (𝑥) + 𝑣0 (𝑥) ≤ 𝐾,


∀𝑥 ∈ R.

Note first that the equality 𝑄∞ (𝑢∞, 𝑣∞) = (𝑢∞, 𝑣∞) is equivalent to (2.23). Next, since
𝑢(𝑡, 𝑥) → 0 and 𝑣(𝑡, 𝑥) → 0 as 𝑥 → +∞, we have 𝑢∞ (𝑡, 𝑥) → 0, 𝑣∞ (𝑡, 𝑥) → 0 as 𝑥 →
+∞, which proves (2.24a). The condition (2.24b) is satisfied since sup𝑛∈N 𝑢(𝑡, 𝑥 + 𝑛𝐿) and
sup𝑛∈N 𝑣(𝑡, 𝑥 + 𝑛𝐿) are uniformly bounded below by positive constants as 𝑥 → −∞. Thus
(𝑢∞, 𝑣∞) is the expected traveling wave.

Next we consider the case 𝑐 = 𝑐∗
𝑅

. In this case we can repeat basically the same proce-
dure, replacing 𝐸𝑀 by the set 𝐸∗

𝑀
⊂ 𝐵𝑈𝐶

(
[−𝑀, +∞)

)2 defined by the constraints

𝑢0 (𝑥) ≥ 0, 𝑣0 (𝑥) ≥ 0, 𝑢0 (𝑥) + 𝑣0 (𝑥) ≤ 𝐾, ∀𝑥 ≥ −𝑀;

𝑢0 (𝑥) ≤ 𝑢∗ (0, 𝑥), 𝑣0 (𝑥) ≤ 𝑢∗ (0, 𝑥), ∀𝑥 ≥ 𝜉0;

𝑢∗
𝑀
(𝑥) ≤ 𝑢0 (𝑥), 𝑣∗

𝑀
(𝑥) ≤ 𝑣0 (𝑥), ∀𝑥 ≥ 𝜉0 − 𝑁𝑀𝐿,

where

𝑢∗
𝑀
(𝑥) := max

𝑛∈{0,1,...,𝑁𝑀 }
𝑢∗ (0, 𝑥 + 𝑛𝐿), 𝑣∗

𝑀
(𝑥) := max

𝑛∈{0,1,...,𝑁𝑀 }
𝑣∗ (0, 𝑥 + 𝑛𝐿).

Note that 𝐸∗
𝑀

≠ ∅ since 𝑢∗ (0, 𝑥) > 𝑢∗ (0, 𝑥) and 𝑢∗ (0, 𝑥 + 𝑛𝐿) is monotone decreasing with
respect to 𝑛 ∈ N. The operator 𝑄𝑀 : 𝐸∗

𝑀
→ 𝐸∗

𝑀
is defined by (3.39). Thus 𝑄𝑀 possesses

a fixed point in 𝐸∗
𝑀

and its limit (𝑢∞, 𝑣∞) as 𝑀 → ∞ belongs to the set 𝐸∗
∞ defined by the

following constraints:

𝑢0 (𝑥) ≥ 0, 𝑣0 (𝑥) ≥ 0, 𝑢0 (𝑥) + 𝑣0 (𝑥) ≤ 𝐾, ∀𝑥 ∈ R;

𝑢0 (𝑥) ≤ 𝑢∗ (0, 𝑥), 𝑣0 (𝑥) ≤ 𝑢∗ (0, 𝑥), ∀𝑥 ≥ 𝜉0;

sup
𝑛∈N

𝑢∗ (0, 𝑥 + 𝑛𝐿) ≤ 𝑢0 (𝑥), sup
𝑛∈N

𝑣∗ (0, 𝑥 + 𝑛𝐿) ≤ 𝑣0 (𝑥), ∀𝑥 ∈ R.

As above, one easily sees that the vector function (𝑢∞, 𝑣∞) satisfies (2.23) and (2.24),
therefore it is the desired traveling wave. This completes the proof of Theorem 2.10

Proof of Theorem 2.12. Let us first prove (2.26). We fix 𝑐 > 𝑐∗
𝑅

. Let 𝜆 > 0 be the smallest
solution of 𝑘 (𝜆) = 𝜆𝑐 and

(
𝑢𝑐 (𝑡, 𝑥), 𝑣𝑐 (𝑡, 𝑥)

)
the traveling wave constructed in the proof
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of Theorem 2.10. By the construction, we have 𝑢(𝑡, 𝑥) ≤ 𝑢𝑐 (𝑡, 𝑥) ≤ 𝑢(𝑡, 𝑥) and 𝑣(𝑡, 𝑥) ≤
𝑣𝑐 (𝑡, 𝑥) ≤ 𝑣(𝑡, 𝑥), where 𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥) are given by (3.27) and 𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥) by (3.29) with
𝜈 > 𝜆. Let 𝜀 := 𝜆 − 𝜈 > 0, then

𝑢(𝑡, 𝑥) = 𝑒−𝜆(𝑥−𝑐𝑡 )𝜑𝜆 (𝑥) − 𝜔𝑒−𝜈 (𝑥−𝑐𝑡 )𝜑𝜈 (𝑥) = 𝑢(𝑡, 𝑥) + O
(
𝑒−(𝜆+𝜀) (𝑥−𝑐𝑡 ) ) ,

and similarly 𝑣(𝑡, 𝑥) = 𝑣(𝑡, 𝑥) + O
(
𝑒−(𝜆+𝜀) (𝑥−𝑐𝑡 ) ) . This proves (2.26).

Next we prove (2.27). Let 𝜆∗ > 0 be the smallest solution of 𝑘 (𝜆∗) = 𝜆∗𝑐∗
𝑅

; let also(
𝑢∗ (𝑡, 𝑥), 𝑣∗ (𝑡, 𝑥)

)
be the traveling wave constructed in the proof of Theorem 2.10 with

𝑐 = 𝑐∗
𝑅

. As before we have 𝑢∗ (𝑡, 𝑥) ≤ 𝑢∗ (𝑡, 𝑥) ≤ 𝑢∗ (𝑡, 𝑥), with 𝑢∗ (𝑡, 𝑥) given by (3.33) and
𝑢∗ (𝑡, 𝑥) given by (3.34). Recalling the definition of𝑈 (𝑡, 𝑥) in (3.32), we have

𝑢∗ (𝑡, 𝑥) = 𝑈 (𝑡, 𝑥) + O
(
𝑒−𝜆

∗ (𝑥−𝑐∗
𝑅
𝑡 )
)
, 𝑢∗ (𝑡, 𝑥) = 𝑈 (𝑡, 𝑥) + O

(
𝑒−𝜆

∗ (𝑥−𝑐∗
𝑅
𝑡 )
)
.

We find that𝑈 (𝑡, 𝑥) = (𝑥 − 𝑐∗
𝑅
𝑡)𝑒−𝜆∗ (𝑥−𝑐∗𝑅𝑡 ) + O

(
𝑒−𝜆

∗ (𝑥−𝑐∗
𝑅
𝑡 )
)

by developing the𝜆-derivative
in (3.32). The estimate for 𝑣∗ (𝑡, 𝑥) can be shown by a similar argument. This proves (2.27)
and completes the proof of Theorem 2.12.

3.4. Proof of global asymptotic stability of the positive equilibrium

In this section we focus on the case where the coefficients of (1.1) are spatially homoge-
neous. In Section 3.4.1 we study the corresponding ODE problem and prove local asymp-
totic stability and uniqueness of stationary solutions. Then, in Section 3.4.2, we extend
those results to the system (1.1) with spatially homogeneous coefficients and prove Theo-
rem 2.14.

3.4.1. Global dynamics of the ODE problem. Here we prove Proposition 2.13 on the
dynamics of the ODE system. We rewrite the system (2.32):{

𝑢𝑡 = (𝑟𝑢 − 𝜅𝑢 (𝑢 + 𝑣))𝑢 + 𝜇𝑣𝑣 − 𝜇𝑢𝑢 =: 𝑓 𝑢 (𝑢, 𝑣),
𝑣𝑡 = (𝑟𝑣 − 𝜅𝑣 (𝑢 + 𝑣))𝑣 + 𝜇𝑢𝑢 − 𝜇𝑣𝑣 =: 𝑓 𝑣 (𝑢, 𝑣).

Here the coefficients 𝑟𝑢, 𝑟𝑣 need not be positive, but the other coefficients are all assumed
to be positive. We first prove statement (ii) (for 𝜆𝐴 ≤ 0), which can be done by simply
comparing the solutions with those of the linearized system. The proof of statement (i) (for
𝜆𝐴 > 0), on the other hand, requires much more involved arguments, and a large part of this
section is devoted to the proof of statement (ii). To achieve this goal, two different methods
are to be employed, depending on the sign of 𝑟𝑢 − 𝜇𝑢 and 𝑟𝑣 − 𝜇𝑣. If one is positive, the
system admits a Lyapunov function which simplifies the convergence proof significantly;
whereas in the case where both are nonpositive, the system is ultimately cooperative and
the long-time behavior can be handled by monotonicity arguments. (using super- and sub-
solutions). Note that both arguments are inspired by [9]. We still include the proofs for the
sake of completeness.
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Proof of Proposition 2.13 (ii). The linearized system of (2.32) is given in the following
form: {

𝑢𝑡 = (𝑟𝑢 − 𝜇𝑢)𝑢 + 𝜇𝑣𝑣,
𝑣𝑡 = (𝑟𝑣 − 𝜇𝑣)𝑣 + 𝜇𝑢𝑢,

𝑡 > 0, 𝑥 ∈ R. (3.40)

This is a cooperative system, and since the nonlinearities of (2.32) is sublinear, solutions
of (2.32) are subsolutions of the system (3.40). Consequently, if

(
𝑢, 𝑣

)
and

(
�̄�, �̄�

)
denote

the solutions of (2.32) and (3.40), respectively, we have(
𝑢(0), 𝑣(0)

)
≤

(
�̄�(0), �̄�(0)

)
⇒

(
𝑢(𝑡), 𝑣(𝑡)

)
≤

(
�̄�(𝑡), �̄�(𝑡)

)
for 𝑡 ≥ 0. (3.41)

We first consider the case where 𝜆𝐴 < 0. Let (𝜑𝑢
𝐴
, 𝜑𝑣
𝐴
)𝑇 denote the positive eigenvector

of the matrix 𝐴 corresponding to 𝜆𝐴. Then for all 𝑀 > 0, (�̄�(𝑡), �̄�(𝑡)) := 𝑀𝑒𝜆𝐴𝑡 (𝜑𝑢
𝐴
, 𝜑𝑣

𝐴
)

is a solution of (3.40) that converges to (0, 0) as 𝑡 → +∞. Consequently, by (3.41), any
nonnegative solution of (2.32) converges to (0, 0).

Next we consider the case where 𝜆𝐴 = 0. In this case, the system possesses a one-
dimensional family of equilibrium points (𝑀𝜑𝑢

𝐴
, 𝑀𝜑𝑣

𝐴
) (𝑀 ≥ 0). For each 𝑢, 𝑣 ≥ 0, define

𝑀 (𝑢, 𝑣) := min
{
𝑀 ≥ 0 : 𝑢 ≤ 𝑀𝜑𝑢𝐴, 𝑣 ≤ 𝑀𝜑𝑣𝐴

}
Then, by applying (3.41) to the case (�̄�, �̄�) is an equilibrium, we see that 𝑀 (𝑢(𝑡), 𝑣(𝑡)) is
non-increasing in 𝑡 for any nonnegative solutions (𝑢(𝑡), 𝑣(𝑡)) of (2.32). Furthermore, it is
easily seen that 𝑀 (𝑢(𝑡), 𝑣(𝑡)) is strictly decreasing in 𝑡 except when 𝑀 = 𝑢(0) = 𝑣(0) =
0. Therefore, 𝑀 (𝑢, 𝑣) is a Lyapunov function for the system (3.41) whose unique local
minimum is achieved at (𝑢, 𝑣) = (0, 0). This proves that (𝑢(𝑡), 𝑣(𝑡)) → (0, 0) as 𝑡 → +∞.
The proof of statement (ii) is complete.

Remark 3.8. The non-existence of a positive stationary solution when 𝜆𝐴 = 0 was treated
in [16, Theorem 1.4 (ii)] by using a different method and it also follows from [8, Theorem
13.1 (c)].

Now we turn to the proof of statement (ii). We prepare several lemmas.

Lemma 3.9 (Existence and uniqueness of stationary state). Let 𝑟𝑢, 𝑟𝑣 ∈ R, 𝜅𝑢 > 0, 𝜅𝑣 > 0,
and 𝜇𝑢, 𝜇𝑣 > 0. Suppose that 𝜆𝐴 > 0. Then, there exists a unique nonnegative nontrivial
equilibrium (𝑢∗, 𝑣∗) for (2.32), that satisfies:

(i) if 𝑟𝑢 − 𝜇𝑢 > 0 (resp. 𝑟𝑣 − 𝜇𝑣 > 0), then

0 <
min (𝜇𝑣, 𝑟𝑢 − 𝜇𝑢)

𝜅𝑢
≤ 𝑢∗ ≤ max (𝜇𝑣, 𝑟𝑢 − 𝜇𝑢)

𝜅𝑢

resp. 0 <
min (𝜇𝑢, 𝑟𝑣 − 𝜇𝑣)

𝜅𝑣
≤ 𝑣∗ ≤ max (𝜇𝑢, 𝑟𝑣 − 𝜇𝑣)

𝜅𝑣
.

Equality holds in the above inequalities if, and only if 𝜇𝑣 = 𝑟𝑢 − 𝜇𝑢 (resp. 𝑟𝑣 − 𝜇𝑣 =
𝜇𝑢).
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(ii) if 𝑟𝑢 − 𝜇𝑢 ≤ 0 (resp. 𝑟𝑣 − 𝜇𝑣 ≤ 0), then 0 < 𝑢∗ < 𝜇𝑣
𝜅𝑢

(resp. 0 < 𝑣∗ < 𝜇𝑢
𝜅𝑣

)
In particular,

(
𝑢∗, 𝑣∗

)
belongs to the interior of the cooperative zone defined in

(2.1) if 𝑟𝑢 − 𝜇𝑢 ≤ 0 and 𝑟𝑣 − 𝜇𝑣 ≤ 0.

Proof. Let (𝑢, 𝑣) be a nonnegative nontrivial stationary state for (2.32). Then (𝑢, 𝑣) satisfies{
𝑢(𝑟𝑢 − 𝜅𝑢 (𝑢 + 𝑣)) + 𝜇𝑣𝑣 − 𝜇𝑢𝑢 = 0,
𝑣(𝑟𝑣 − 𝜅𝑣 (𝑢 + 𝑣)) + 𝜇𝑢𝑢 − 𝜇𝑣𝑣 = 0.

Since (𝑢, 𝑣) is nonnegative and nontrivial, and since 𝜇𝑢 > 0, 𝜇𝑣 > 0, we have in fact 𝑢 > 0
and 𝑣 > 0. We introduce the new variables 𝑆 = 𝑢 + 𝑣 and 𝑄 = 𝑢

𝑣
, which satisfy the system:{

𝑄(𝑟𝑢 − 𝜅𝑢𝑆) + 𝜇𝑣 − 𝜇𝑢𝑄 = 0,
𝑟𝑣 − 𝜅𝑣𝑆 + 𝜇𝑢𝑄 − 𝜇𝑣 = 0,

⇐⇒

𝑄(𝑟𝑢 − 𝜅𝑢𝑆) + 𝜇𝑣 − 𝜇𝑢𝑄 = 0,

𝑆 =
𝑟𝑣 + 𝜇𝑢𝑄 − 𝜇𝑣

𝜅𝑣
,

⇐⇒


− 𝜇𝑢

𝜅𝑢

𝜅𝑣
𝑄2 +

(
𝑟𝑢 − 𝜇𝑢

𝜅𝑢

𝜅𝑣
(𝑟𝑣 − 𝜇𝑣)

)
𝑄 + 𝜇𝑣 = 0,

𝑆 =
𝑟𝑣 + 𝜇𝑢𝑄 − 𝜇𝑣

𝜅𝑣
.

The first line of the latter system has a unique positive solution:

𝑄 =
𝜅𝑣

2𝜇𝑢𝜅𝑢
©«𝑟𝑢 − 𝜇𝑢 − 𝜅𝑢

𝜅𝑣
(𝑟𝑣 − 𝜇𝑣) +

√︄(
𝑟𝑢 − 𝜇𝑢 −

𝜅𝑢

𝜅𝑣
(𝑟𝑣 − 𝜇𝑣)

)2
+ 4

𝜅𝑢

𝜅𝑣
𝜇𝑢𝜇𝑣

ª®¬ .
Since the change of variables is reversible, we have proved the uniqueness of the solution.
To prove the existence of an equilibrium for (2.32), we first observe that 𝑆(𝑡) = 𝑢(𝑡) + 𝑣(𝑡)
satisfies

𝑆𝑡 ≤ max(𝑟𝑢, 𝑟𝑣)𝑆 − min(𝜅𝑢, 𝜅𝑣)𝑆2,

which follows by adding up the two equations in (2.32). Consequently, the interior of the
triangle delimited by the axes and the line {𝑢 + 𝑣 = max(𝑟𝑢.𝑟𝑣)/min(𝜅𝑢, 𝜅𝑣)} is positively
invariant for the flow, and (0, 0) is an ejective equilibrium point whenever 𝜆𝐴 > 0. By
an extension of the ejective fixed point theorem to flows [21, Theorem 19], there exists a
nonejective equilibrium for (2.32), which proves the existence.

Next we focus on the estimates on statement (i). Since the statement is symmetric with
respect to the variables 𝑢 and 𝑣, we only prove the result for 𝑢∗. Assume first that 𝑟𝑢 − 𝜇𝑢 >
𝜇𝑣 > 0. Then 𝑢∗ satisfies:

0 = 𝑢∗ (𝑟𝑢 − 𝜇𝑢 − 𝜅𝑢𝑢∗) + 𝑣∗ (𝜇𝑣 − 𝜅𝑢𝑢∗). (3.42)

If 𝑢∗ < 𝜇𝑣
𝜅𝑢

, then both terms in the right-hand side of (3.42) are positive, which is a contra-
diction. Similarly, if 𝑢∗ > 𝑟𝑢−𝜇𝑢

𝜅𝑢
, then both terms are negative, which is also a contradiction.
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We conclude that 𝜇𝑣
𝜅𝑢

≤ 𝑢∗ ≤ 𝑟𝑢−𝜇𝑢
𝜅𝑢

. Finally, if equality is achieved in the latter inequality,
then one of the terms in (3.42) is 0 and the other is positive, which is a contradiction. Thus

𝜇𝑣

𝜅𝑢
< 𝑢∗ <

𝑟𝑢 − 𝜇𝑢
𝜅𝑢

.

In the case 0 < 𝑟𝑢 − 𝜇𝑢 < 𝜇𝑣, a similar argument shows that

𝑟𝑢 − 𝜇𝑢
𝜅𝑢

< 𝑢∗ <
𝜇𝑣

𝜅𝑢
.

Finally, if 𝑟𝑢 − 𝜇𝑢 = 𝜇𝑣, then both terms in the right-hand side of (3.42) have the same sign
independently of 𝑢∗, hence the only possibility is

𝑢∗ =
𝑟𝑢 − 𝜇𝑢
𝜅𝑢

=
𝜇𝑣

𝜅𝑢
.

Statement (i) is proved. To show Statement (ii), since 𝑟𝑢 − 𝜇𝑢 ≤ 0, we simply rewrite (3.42)
as:

𝑢∗ =
𝜇𝑣

𝜅𝑢
+ 𝑢∗

𝜅𝑢𝑣
∗ (𝑟𝑢 − 𝜇𝑢 − 𝜅𝑢𝑢

∗) < 𝜇𝑣

𝜅𝑢
.

This proves Statement (ii) and the proof of Lemma 3.9 is complete.

We have seen above that the unique nontrivial nonnegative equilibrium point (𝑢∗, 𝑣∗)
of (2.32) is automatically positive. Now we discuss its linear stability. The Jacobian matrix
of the nonlinearity 𝑓 := ( 𝑓 𝑢, 𝑓 𝑣) at (𝑢∗, 𝑣∗) is given in the form

𝐷 (𝑢∗ ,𝑣∗ ) 𝑓 =

(
𝑟𝑢 − 𝜇𝑢 − 𝜅𝑢 (2𝑢 + 𝑣) 𝜇𝑣 − 𝜅𝑢𝑢

𝜇𝑢 − 𝜅𝑣𝑣 𝑟𝑣 − 𝜇𝑣 − 𝜅𝑣 (𝑢 + 2𝑣)

)
=:

(
𝑎 𝑏

𝑐 𝑑

)
(3.43)

The eigenvalues of this matrix determines the linear stability of (𝑢∗, 𝑣∗).

Lemma 3.10 (Linear stability of the positive equilibrium). Let 𝑟𝑢, 𝑟𝑣 ∈ R, 𝜅𝑢 > 0, 𝜅𝑣 > 0,
and 𝜇𝑢 > 0, 𝜇𝑣 > 0. Assume that 𝜆𝐴 > 0 and let (𝑢∗, 𝑣∗) be the positive equilibrium point
of (2.32). Then (𝑢∗, 𝑣∗) is linearly stable. More precisely, the constants 𝑎, 𝑏, 𝑐, 𝑑 in (3.43)
satisfy:

𝑎 = −
(
𝜅𝑢𝑢

∗ + 𝜇𝑣
𝑣∗

𝑢∗

)
< 0, 𝑑 = −

(
𝜅𝑣𝑣

∗ + 𝜇𝑢
𝑢∗

𝑣∗

)
< 0

as well as:

tr(𝐷 (𝑢∗ ,𝑣∗ ) 𝑓 ) = 𝑎 + 𝑑 < 0, det(𝐷 (𝑢∗ ,𝑣∗ ) 𝑓 ) = 𝑎𝑑 − 𝑏𝑐 > 0.

Proof. Let us first remark that the equation satisfied by the equilibrium (𝑢∗, 𝑣∗) of (2.32)
can be written as 

𝑟𝑢 − 𝜇𝑢 − 𝜅𝑢 (𝑢∗ + 𝑣∗) = −𝜇𝑣
𝑣∗

𝑢∗
,

𝑟𝑣 − 𝜇𝑣 − 𝜅𝑣 (𝑢∗ + 𝑣∗) = −𝜇𝑢
𝑢∗

𝑣∗
.
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Using the above relation, we have

𝑎 + 𝑑 = 𝑟𝑢 − 𝜇𝑢 − 𝜅𝑢 (2𝑢∗ + 𝑣∗) + 𝑟𝑣 − 𝜇𝑣 − 𝜅𝑣 (𝑢∗ + 2𝑣∗) =−𝜇𝑣
𝑣∗

𝑢∗
− 𝜇𝑢

𝑢∗

𝑣∗
− 𝜅𝑢𝑢∗ − 𝜅𝑣𝑣∗ < 0.

Computing further, we obtain

𝑎𝑑 − 𝑏𝑐 = (𝑟𝑢 − 𝜇𝑢 − 𝜅𝑢 (2𝑢∗ + 𝑣∗)) (𝑟𝑣 − 𝜇𝑣 − 𝜅𝑣 (𝑢∗ + 2𝑣∗)) − (𝜇𝑣 − 𝜅𝑢𝑢∗) (𝜇𝑢 − 𝜅𝑣𝑣∗)

=

(
𝜇𝑣
𝑣∗

𝑢∗
+ 𝜅𝑢𝑢∗

) (
𝜇𝑢
𝑢∗

𝑣∗
+ 𝜅𝑣𝑣∗

)
− (𝜇𝑣 − 𝜅𝑢𝑢∗) (𝜇𝑢 − 𝜅𝑣𝑣∗)

= 𝜇𝑣𝜅𝑣
(𝑣∗)2

𝑢∗
+ 𝜇𝑢𝜅𝑢

(𝑢∗)2

𝑣∗
+ 𝜇𝑣𝜅𝑢𝑢∗ + 𝜇𝑢𝜅𝑣𝑣∗ > 0.

The lemma is proved.

Remark 3.11 (Stability of (0, 0)). The principal eigenvalue 𝜆𝐴 can be computed explicitly
as

𝜆𝐴 =
𝑟𝑢 − 𝜇𝑢 + 𝑟𝑣 − 𝜇𝑣 +

√︃(
𝑟𝑢 − 𝜇𝑢 − (𝑟𝑣 − 𝜇𝑣)

)2 + 4𝜇𝑢𝜇𝑣
2

.

By a direct computation, one sees the following:
(i) 𝜆𝐴 is monotone increasing in both 𝑟𝑢, 𝑟𝑣 and 𝜆𝐴 = 0 if 𝑟𝑢 = 𝑟𝑣 = 0;
(ii) If we fix the ratio between 𝜇𝑢 and 𝜇𝑣 as 𝜇𝑢 = 𝜇, 𝜇𝑣 = 𝛼𝜇, then 𝜆𝐴 is monotone

decreasing in 𝜇 and 𝜆𝐴 → max(𝑟𝑢, 𝑟𝑣) as 𝜇 → 0, while 𝜆𝐴 → 𝜇𝑣
𝜇𝑢+𝜇𝑣 𝑟𝑢 +

𝜇𝑢
𝜇𝑢+𝜇𝑣 𝑟𝑣 as

𝜇 → ∞.
From (i) above, we see that 𝜆𝐴 > 0 if 𝑟𝑢, 𝑟𝑣 are both positive (hence (0, 0) is unstable), and
𝜆𝐴 < 0 if 𝑟𝑢, 𝑟𝑣 are both negative (hence (0,0) is stable). When max(𝑟𝑢, 𝑟𝑣) > 0 but 𝑟𝑢 < 0 or
𝑟𝑣 < 0, then from (ii) above, we see that (0, 0) is always unstable if 𝜇𝑣

𝜇𝑢+𝜇𝑣 𝑟𝑢 +
𝜇𝑢

𝜇𝑢+𝜇𝑣 𝑟𝑣 ≥ 0,
whereas if 𝜇𝑣

𝜇𝑢+𝜇𝑣 𝑟𝑢 +
𝜇𝑢

𝜇𝑢+𝜇𝑣 𝑟𝑣 < 0, the stability of (0,0) depends on the size of the mutation
rate; roughly speaking, (0, 0) is unstable if 𝜇𝑢, 𝜇𝑣 are sufficiently small, and stable if 𝜇𝑢, 𝜇𝑣
are sufficiently large.

We are now in a position to give our key arguments for the long-time behavior of the
ODE problem. We begin with the case where a Lyapunov function exists for the system.
We define:

F𝑢 (𝑢) := 𝑢 − 𝑢∗ − 𝑢∗ ln
( 𝑢
𝑢∗

)
, F𝑣 (𝑣) := 𝑣 − 𝑣∗ − 𝑣∗ ln

( 𝑣
𝑣∗

)
. (3.44)

Note that this Lyapunov function is rather classical and has been used for instance by [22]
for competitive Lotka-Volterra systems. The present argument was inspired by [9].

Lemma 3.12 (Lyapunov function). Let Assumption 2 hold true, and assume that 𝜆𝐴 > 0
and that max(𝑟𝑢 − 𝜇𝑢, 𝑟𝑣 − 𝜇𝑣) > 0. Then there is 𝐾 > 0 such that the function F 𝐾 (𝑢, 𝑣) :=
F𝑢 (𝑢) +𝐾F𝑣 (𝑣) is a Lyapunov function for (2.32), that is, for any positive solution (𝑢(𝑡), 𝑣(𝑡))
of (2.32),

d
d𝑡
F 𝐾 (𝑢(𝑡), 𝑣(𝑡)) ≤ 0 for 𝑡 ≥ 0.
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Moreover the inequality is strict unless (𝑢(𝑡), 𝑣(𝑡)) = (𝑢∗, 𝑣∗).

Proof. Since it is clear that F (𝑢∗, 𝑣∗) = 0, we will focus on the case of a solution orbit(
𝑢(𝑡), 𝑣(𝑡)

)
starting from a positive initial condition (𝑢0, 𝑣0). We first compute:

d
d𝑡
F𝑢 (𝑢(𝑡)) = 𝑢𝑡

(
1 − 𝑢∗

𝑢

)
= (𝑢 − 𝑢∗) 𝑢𝑡

𝑢

= (𝑢 − 𝑢∗)
(
𝑟𝑢 − 𝜇𝑢 − 𝜅𝑢 (𝑢 + 𝑣) + 𝜇𝑣

𝑣

𝑢

)
= (𝑢 − 𝑢∗)

(
𝜅𝑢 (𝑢∗ + 𝑣∗) − 𝜇𝑣

𝑣∗

𝑢∗
− 𝜅𝑢 (𝑢 + 𝑣) + 𝜇𝑣

𝑣

𝑢

)
= −𝜅𝑢 (𝑢 − 𝑢∗)2 − 𝜅𝑢 (𝑢 − 𝑢∗) (𝑣 − 𝑣∗) + 𝜇𝑣 (𝑢 − 𝑢∗)

(
𝑢∗𝑣 − 𝑢𝑣∗
𝑢𝑢∗

)
= −

(
𝜅𝑢 + 𝜇𝑣

𝑣∗

𝑢𝑢∗

)
(𝑢 − 𝑢∗)2 −

(
𝜅𝑢 −

𝜇𝑣

𝑢∗

)
(𝑢 − 𝑢∗) (𝑣 − 𝑣∗)

≤ −𝜅𝑢 (𝑢 − 𝑢∗)2 −
(
𝜅𝑢 −

𝜇𝑣

𝑢∗

)
(𝑢 − 𝑢∗) (𝑣 − 𝑣∗),

and the inequality is strict unless 𝑢 = 𝑢∗. Similarly,

d
d𝑡
F𝑣 (𝑦) ≤ −𝜅𝑣 (𝑣 − 𝑣∗)2 −

(
𝜅𝑣 −

𝜇𝑢

𝑣∗

)
(𝑢 − 𝑢∗) (𝑣 − 𝑣∗),

and the inequality is strict unless 𝑣 = 𝑣∗. Since (𝑢, 𝑣) ≠ (𝑢∗, 𝑣∗), we have for all 𝐾 > 0:

d
d𝑡
F 𝐾 (𝑢, 𝑣) <−𝜅𝑢 (𝑢 − 𝑢∗)2 −

(
𝜅𝑢 −

𝜇𝑣

𝑢∗
+ 𝐾

(
𝜅𝑣 −

𝜇𝑢

𝑢∗

))
(𝑢 − 𝑢∗) (𝑣− 𝑣∗) −𝐾𝜅𝑣 (𝑣− 𝑣∗)2.

Next we prove that the right-hand side can be made nonpositive for all (𝑢, 𝑣) > (0, 0)
for a well-chosen value of 𝐾 . We remark that the right-hand side is a quadratic form in
(𝑈 := 𝑢 − 𝑢∗, 𝑉 := 𝑣 − 𝑣∗), which can be written as −𝑄(𝑈,𝑉) where:

𝑄(𝑈,𝑉) := 𝐴𝑈2 + (𝐵 + 𝐾𝐶)𝑈𝑉 + 𝐾𝐷𝑉2, (3.45)

and 𝑈 = 𝑢 − 𝑢∗, 𝑉 = 𝑣 − 𝑣∗, 𝐴 = 𝜅𝑢, 𝐵 = 𝜅𝑢 − 𝜇𝑣
𝑢∗ , 𝐶 = 𝜅𝑣 − 𝜇𝑢

𝑣∗ and 𝐷 = 𝜅𝑣. We claim
that 𝑄(𝑈,𝑉) can be made positive definite by a proper choice of 𝐾 > 0. Indeed, algebraic
computations lead to

𝑄(𝑈,𝑉) = 𝐴
(
𝑈 + 𝐵 + 𝐾𝐶

2𝐴
𝑉

)2
+

(
𝐾𝐷 − (𝐵 + 𝐾𝐶)2

4𝐴

)
𝑉2,

and therefore it suffices to find 𝐾 > 0 such that

0 < 𝐾𝐷 − (𝐵 + 𝐾𝐶)2

4𝐴
=
−𝐶2𝐾2 + (4𝐴𝐷 − 2𝐵𝐶)𝐾 − 𝐵2

4𝐴
=:
𝑃(𝐾)
4𝐴

.

Here 𝑃(𝐾) is a quadratic polynomial and the number of its real roots is determined by the
sign of the quantity

Δ = (4𝐴𝐷 − 2𝐵𝐶)2 − 4𝐵2𝐶2 = 16𝐴𝐷 (𝐴𝐷 − 𝐵𝐶) > 0.
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If 𝐵𝐶 < 𝐴𝐷, the polynomial 𝑃 has two real roots, and those roots have to be nonnegative
since 𝑃(𝐾) < 0 for all 𝐾 < 0. This implies that there exists 𝐾 > 0 with 𝑃(𝐾) > 0, which
will prove our claim and consequently will complete the proof of Lemma 3.12.

Our last task is therefore to check that 𝐵𝐶 < 𝐴𝐷. Assume first that 𝑟𝑢 − 𝜇𝑢 > 0 and
𝑟𝑣 − 𝜇𝑣 > 0, then 𝐵 = 𝜅𝑢 − 𝜇𝑣

𝑢∗ > 0 and 𝐶 = 𝜅𝑣 − 𝜇𝑢
𝑣∗ > 0 are both positive by Lemma 3.9.

Thus,
𝐵𝐶 =

(
𝜅𝑢 −

𝜇𝑣

𝑢∗

) (
𝜅𝑣 −

𝜇𝑢

𝑣∗

)
≤ 𝜅𝑢𝜅𝑣 = 𝐴𝐷.

Next assume that 𝑟𝑢 − 𝜇𝑢 ≤ 0 and 𝑟𝑣 − 𝜇𝑣 > 0 (the case 𝑟𝑣 − 𝜇𝑣 ≤ 0 and 𝑟𝑢 − 𝜇𝑢 > 0 can
be treated similarly). In this case, 𝜅𝑢 − 𝜇𝑣

𝑢∗ ≤ 0 and 𝜅𝑣 − 𝜇𝑢
𝑣∗ > 0 and thus

𝐵𝐶 =

(
𝜅𝑢 −

𝜇𝑣

𝑢∗

) (
𝜅𝑣 −

𝜇𝑢

𝑣∗

)
≤ 0 < 𝜅𝑢𝜅𝑣 = 𝐴𝐷.

Hence 𝐵𝐶 < 𝐴𝐷 always holds under our hypotheses. Lemma 3.12 is proved.

Notice in particular that Proposition 2.13 (i) follows directly from Lemma 3.12 in the
case max(𝑟𝑢 − 𝜇𝑢, 𝑟𝑣 − 𝜇𝑣) > 0. Next we consider the case max(𝑟𝑢 − 𝜇𝑢, 𝑟𝑣 − 𝜇𝑣) ≤ 0. In this
case, we show that the dynamics is eventually cooperative and we deduce the conclusion
by comparison arguments.

Lemma 3.13 (Ultimately cooperative dynamics). Let Assumption 2 hold, and assume that
𝜆𝐴 > 0 and that max(𝑟𝑢 − 𝜇𝑢, 𝑟𝑣 − 𝜇𝑣) ≤ 0. Then any positive solution (𝑢(𝑡), 𝑣(𝑡)) of (2.32)
satisfies

lim
𝑡→+∞

(𝑢(𝑡), 𝑣(𝑡)) = (𝑢∗, 𝑣∗). (3.46)

Proof. Let (𝑢(𝑡), 𝑣(𝑡)) be a positive solution to (2.32). Then (𝑢(𝑡), 𝑣(𝑡)) is a subsolution
to the cooperative system:{

�̄�𝑡 = �̄�(𝑟𝑢 − 𝜇𝑢 − 𝜅𝑢�̄�) + �̄�max(𝜇𝑣 − 𝜅𝑢�̄�, 0),
�̄�𝑡 = �̄�(𝑟𝑣 − 𝜇𝑣 − 𝜅𝑣 �̄�) + �̄�max(𝜇𝑢 − 𝜅𝑣 �̄�, 0).

(3.47)

Let (�̄�(𝑡), �̄�(𝑡)) be a solution of (3.47) with the following initial data:

�̄�(0) = max
(
𝑢(0), 𝜇𝑣

𝜅𝑢

)
, �̄�(0) = max

(
𝑣(0), 𝜇𝑢

𝜅𝑣

)
.

Since max(𝑟𝑢 − 𝜇𝑢, 𝑟𝑣 − 𝜇𝑣) ≤ 0, we have �̄�𝑡 (0) < 0, �̄�𝑡 (0) < 0. And since (3.47) is a coop-
erative system, the comparison principle implies that (�̄�(𝑡), �̄�(𝑡)) is monotone decreasing
in 𝑡 ≥ 0. Therefore (�̄�(𝑡), �̄�(𝑡)) eventually enters the cooperative zone defined in (2.1),
i.e., 0 < �̄� < 𝜇𝑣

𝜅𝑢
, 0 < �̄� < 𝜇𝑢

𝜅𝑣
, and converges to an equilibrium point (�̄�∗, �̄�∗) of (3.47) as

𝑡 → +∞. Since the systems (3.47) and (2.32) are identical in the cooperative zone, (�̄�∗, �̄�∗)
is also an equilibrium point of (2.32). In view of this and the fact that �̄�(0) ≥ 𝜇𝑣

𝜅𝑢
> 𝑢∗,

�̄�(0) ≥ 𝜇𝑢
𝜅𝑣
> 𝑣∗, and recalling the uniqueness of the positive equilibrium point, we see that
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(�̄�∗, �̄�∗) = (𝑢∗, 𝑣∗). Since (𝑢(𝑡), 𝑣(𝑡)) is a subsolution of (3.47) such that 𝑢(0) ≤ �̄�(0) and
𝑣(0) ≤ �̄�(0), we have 𝑢(𝑡) ≤ �̄�(𝑡), 𝑣(𝑡) ≤ �̄�(𝑡) for all 𝑡 ≥ 0. Hence

lim sup
𝑡→∞

𝑢(𝑡) ≤ lim
𝑡→∞

�̄�(𝑡) = 𝑢∗, lim sup
𝑡→∞

𝑣(𝑡) ≤ lim
𝑡→∞

�̄�(𝑡) = 𝑣∗. (3.48)

Next let (𝜑𝑢
𝐴
, 𝜑𝑣
𝐴
)𝑇 denote the positive eigenvector of the matrix 𝐴 corresponding to 𝜆𝐴,

and let (𝑢𝜀 (𝑡), 𝑣𝜀 (𝑡)) be the solution of (2.32) with initial data (𝑢𝜀 (0), 𝑣𝜀 (0)) = 𝜀(𝜑𝑢
𝐴
, 𝜑𝑣
𝐴
).

Since 𝜆𝐴 > 0, the following inequalities hold if 𝜀 > 0 is chosen sufficiently small:

𝑢𝜀𝑡 (0) = 𝜆𝐴𝜀𝜑𝑢𝐴 + 𝑜(𝜀) > 0, 𝑣𝜀𝑡 (0) = 𝜆𝐴𝜀𝜑𝑣𝐴 + 𝑜(𝜀) > 0.

Consequently, (𝑢𝜀 (𝑡), 𝑣𝜀 (𝑡)) is monotone increasing 𝑡 so long as it stays in the cooperative
zone.

By (3.48), there exists 𝑡1 ≥ 0 such that (𝑢(𝑡), 𝑣(𝑡)) lies in the cooperative zone for all
𝑡 ≥ 𝑡1. Replacing 𝜀 > 0 by a smaller constant if necessary, we may assume that 0 < 𝑢𝜀 (0) <
𝑢(𝑡1), 0 < 𝑣𝜀 (0) < 𝑣(𝑡1). Then (𝑢𝜀 (𝑡), 𝑣𝜀 (𝑡)) remains in the cooperative zone and satisfies

𝑢𝜀 (𝑡) < 𝑢(𝑡 + 𝑡1), 𝑣𝜀 (𝑡) < 𝑣(𝑡 + 𝑡1) for all 𝑡 ≥ 0. (3.49)

Hence (𝑢𝜀 (𝑡), 𝑣𝜀 (𝑡)) converges monotonically to an equilibrium point of (2.32), which
coincides with (𝑢∗, 𝑣∗) by the uniqueness of the positive equilibrium point. This and (3.49)
imply

lim inf
𝑡→∞

𝑢(𝑡) ≥ lim
𝑡→∞

𝑢𝜀 (𝑡) = 𝑢∗, lim inf
𝑡→∞

𝑣(𝑡) ≥ lim
𝑡→∞

𝑣𝜀 (𝑡) = 𝑣∗.

Combining this with (3.48), we obtain (3.46). The lemma is proved.

We are now in a position to prove Proposition 2.13 (i) and conclude this section:

Proof of Proposition 2.13 (i). If 𝜆𝐴 > 0, the existence and uniqueness of a stationary solu-
tion (𝑢∗, 𝑣∗) has been shown in Lemma 3.9. The convergence of (𝑢(𝑡), 𝑣(𝑡)) when 𝑡 → +∞
has been shown in Lemma 3.12 for the case max(𝑟𝑢 − 𝜇𝑢, 𝑟𝑣 − 𝜇𝑣) > 0 using a Lyapunov
function, and in Lemma 3.13 for the case max(𝑟𝑢 − 𝜇𝑢, 𝑟𝑣 − 𝜇𝑣) ≤ 0 by means of compar-
ison arguments. This covers all the cases therefore completes the proof of the statement (i)
of Proposition 2.13.

3.4.2. Asymptotic behavior of the homogeneous RD problem. In this section we prove
Theorem 2.14 on the convergence of solutions of (2.28) to the positive equilibrium point
(𝑢∗, 𝑣∗). For that purpose, we first prove the following Liouville type result which states
that any entire solution of (2.28) that is uniformly positive is identically equal to (𝑢∗, 𝑣∗).

Theorem 3.14 (Liouville type resut). Let Assumption 2 hold and assume that 𝜆𝐴 > 0. Let
(𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥)) be a nonnegative bounded entire solution to (2.28). Assume that (𝑢, 𝑣) is
uniformly positive, that is, there exists 𝛿 > 0 such that

𝑢(𝑡, 𝑥) ≥ 𝛿, 𝑣(𝑡, 𝑥) ≥ 𝛿 for all 𝑡 ∈ R, 𝑥 ∈ R.

then (𝑢, 𝑣) ≡ (𝑢∗, 𝑣∗).
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Proof. We divide the proof in three steps.
Step 1: The ultimately cooperative case: max(𝑟𝑢 − 𝜇𝑢, 𝑟𝑣 − 𝜇𝑣) ≤ 0.
In this case, our argument is partly similar to the proof of Lemma 3.13. Define

𝑀 := sup
(𝑡 ,𝑥 ) ∈R2

max
(
𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥)

)
and let (�̄�(𝑡), �̄�(𝑡)) be the solution of the ODE system (3.47) for the following initial data:

�̄�(0) = max
(
𝑀,

𝜇𝑣

𝜅𝑢

)
, �̄�(0) = max

(
𝑀,

𝜇𝑢

𝜅𝑣

)
.

As we have seen in the proof of Lemma 3.13, (�̄�(𝑡), �̄�(𝑡)) → (𝑢∗, 𝑣∗) as 𝑡 → +∞. Note
also that (�̄�(𝑡), �̄�(𝑡)) can be identified with a spatially uniform solution of the following
reaction-diffusion system:{

𝑢𝑡 − 𝜎𝑢𝑥𝑥 = (𝑟𝑢 − 𝜇𝑢 − 𝜅𝑢�̄�)�̄� + �̄�max(𝜇𝑣 − 𝜅𝑢�̄�, 0),
𝑣𝑡 − 𝜎𝑣𝑥𝑥 = (𝑟𝑣 − 𝜇𝑣 − 𝜅𝑣 �̄�) �̄� + �̄�max(𝜇𝑢 − 𝜅𝑣 �̄�, 0).

(3.50)

Let 𝑡0 ∈ R be an arbitrary real number. What we have to show is that(
𝑢(𝑡0, 𝑥), 𝑣(𝑡0, 𝑥)

)
=

(
𝑢∗, 𝑣∗

)
for all 𝑥 ∈ R. (3.51)

Choose 𝑇 > 0 arbitrarily and define 𝑈 (𝑡, 𝑥) = 𝑢(𝑡 + 𝑡0 − 𝑇, 𝑥), 𝑉 (𝑡, 𝑥) = 𝑣(𝑡 + 𝑡0 − 𝑇, 𝑥).
Then (𝑈 (𝑡, 𝑥), 𝑉 (𝑡, 𝑥)) is a solution of (2.28) and satisfies𝑈 (0, 𝑥) ≤ 𝑀 ≤ �̄�(0), 𝑉 (0, 𝑥) ≤
𝑀 ≤ �̄�(0) for all 𝑥 ∈ R. Since any solution of (2.28) is a subsolution to the cooperative
system (3.50), we have𝑈 (𝑡, 𝑥) ≤ �̄�(𝑡), 𝑉 (𝑡, 𝑥) ≤ �̄�(𝑡) for all 𝑡 ≥ 0, 𝑥 ∈ R. Setting 𝑡 = 𝑇 , we
obtain

𝑢(𝑡0, 𝑥) = 𝑈 (𝑇, 𝑥) ≤ �̄�(𝑇, 𝑥), 𝑣(𝑡0, 𝑥) = 𝑉 (𝑇, 𝑥) ≤ �̄�(𝑇, 𝑥) for all 𝑥 ∈ R.

Now we let 𝑇 → ∞. Then (�̄�(𝑇), �̄�(𝑇)) → (𝑢∗, 𝑣∗), hence

sup
𝑥∈R

𝑢(𝑡0, 𝑥) ≤ 𝑢∗, sup
𝑥∈R

𝑣(𝑡0, 𝑥) ≤ 𝑣∗. (3.52)

In order to obtain a lower estimate, let (𝑢𝜀 (𝑡), 𝑣𝜀 (𝑡)) be the solution of (2.32) with
initial data (𝑢𝜀 (0), 𝑣𝜀 (0)) = 𝜀(𝜑𝑢

𝐴
, 𝜑𝑣

𝐴
), as in the proof of Lemma 3.13, and let 𝑡1 ≥ 0 be

such that (𝑈 (𝑡, 𝑥),𝑉 (𝑡, 𝑥)) lies in the cooperative zone for all 𝑡 ≥ 𝑡1. Then, choosing 𝜀 > 0
sufficiently small and arguing as in the proof of Lemma 3.13, we obtain 𝑢𝜀 (𝑡) <𝑈 (𝑡 + 𝑡1, 𝑥)
and 𝑣𝜀 (𝑡) < 𝑉 (𝑡 + 𝑡1, 𝑥) for all 𝑡 ≥ 0, 𝑥 ∈ R. Now we set 𝑡 = 𝑇 − 𝑡1. Then we have

𝑢𝜀 (𝑇 − 𝑡1) < 𝑈 (𝑇, 𝑥) = 𝑢(𝑡0, 𝑥), 𝑣𝜀 (𝑇 − 𝑡1) < 𝑉 (𝑇, 𝑥) = 𝑣(𝑡0, 𝑥) for all 𝑥 ∈ R.

Now we let 𝑇 → ∞. Then (𝑢𝜀 (𝑇 − 𝑡1), 𝑣𝜀 (𝑇 − 𝑡1)) → (𝑢∗, 𝑣∗), hence

inf
𝑥∈R

𝑢(𝑡0, 𝑥) ≥ 𝑢∗, inf
𝑥∈R

𝑣(𝑡0, 𝑥) ≥ 𝑣∗.
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Combining this with (3.52), we obtain (3.51), as desired.

Step 2: The Lyapunov case: max(𝑟𝑢 − 𝜇𝑢, 𝑟𝑣 − 𝜇𝑣) ≥ 0.
In this case we use a generalisation of the Lyapunov argument used in the proof of

Lemma 3.12. Let F𝑢, F𝑣 be the functions defined in (3.44) and 𝐾 be the constant given by
Lemma 3.12, so that F 𝐾 (𝑢, 𝑣) := F𝑢 (𝑢) + 𝐾F𝑣 (𝑣) is a Lyapunov function for the flow of
the ODE (2.32). Define 𝑤(𝑡, 𝑥) = F 𝐾 (𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥)). Then, since F ′′

𝑢 (𝑢) ≥ 0, F ′′
𝑣 (𝑣) ≥ 0

for all 𝑢, 𝑣, 𝑤 satisfies:

𝑤𝑡 − 𝜎𝑤𝑥𝑥 = (𝑢𝑡 − 𝜎𝑢𝑥𝑥)F ′
𝑢 (𝑢) + 𝐾 (𝑣𝑡 − 𝜎𝑣𝑥𝑥)F ′

𝑣 (𝑣) − 𝜎(𝑢2
𝑥F ′′
𝑢 (𝑢) + 𝐾𝑣2

𝑥F ′′
𝑣 (𝑣))

≤ −𝜅𝑢 (𝑢 − 𝑢∗)2 −
(
𝜅𝑢 −

𝜇𝑣

𝑢∗
+ 𝐾

(
𝜅𝑣 −

𝜇𝑢

𝑣∗

))
− 𝐾𝜅𝑣 (𝑣 − 𝑣∗)2

= −𝑄(𝑢 − 𝑢∗, 𝑣 − 𝑣∗),

where𝑄 is the quadratic form defined in (3.45). As we have shown in the proof of Lemma 3.12,
𝑄(𝑢 − 𝑢∗, 𝑣 − 𝑣∗) > 0 whenever (𝑢, 𝑣) ≠ (𝑢∗, 𝑣∗). Since −𝑄(𝑢, 𝑣) ≤ 0, 𝑤 is a bounded entire
subsolution to the heat equation, therefore it has to be a constant. And since −𝑄(𝑢, 𝑣) < 0
whenever (𝑢, 𝑣) ≠ (𝑢∗, 𝑣∗), the only possibility is𝑤(𝑡, 𝑥) ≡ 0, which implies (𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥)) ≡
(𝑢∗, 𝑣∗). This establishes the claim of the theorem for the case max(𝑟𝑢 − 𝜇𝑢, 𝑟𝑣 − 𝜇𝑣) ≥ 0.

Combining Step 1 and Step 2 completes the proof of Theorem 3.14.

Proof of Theorem 2.14. As the formula 𝑐∗
𝑅
= 𝑐∗

𝐿
= 2

√
𝜎𝜆𝐴 is already given in (2.36), in

what follows we focus on the assertion (2.37).
We argue by contradiction. Suppose that (2.37) does not hold for (𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥)). Then

there exists 𝜀 > 0 and sequences 𝑡𝑛 → +∞ and 𝑥𝑛 ∈ R such that |𝑥𝑛 | ≤ 𝑐𝑡𝑛 and that

max
(
|𝑢(𝑡𝑛, 𝑥𝑛) − 𝑢∗ |, |𝑣(𝑡𝑛, 𝑥𝑛) − 𝑣∗

)
≥ 𝜀 > 0 for 𝑛 = 1, 2, 3, . . . .

By the classical parabolic estimates, the sequence (𝑢(𝑡 + 𝑡𝑛, 𝑥), 𝑣(𝑡 + 𝑡𝑛, 𝑥) has a subse-
quence that converges locally uniformly to an entire solution (𝑢∞ (𝑡, 𝑥), 𝑣∞ (𝑡, 𝑥)) which
satisfies

max
(
|𝑢∞ (0, 0) − 𝑢∗ |, |𝑣∞ (0, 0) − 𝑣∗ |

)
≥ 𝜀. (3.53)

Now choose 𝑐′ such that 0 < 𝑐 < 𝑐′ < 𝑐∗
𝑅

. Then by Theorem 2.9, there exists 𝜂 > 0 such
that

lim inf
𝑡→∞

[
inf

|𝑥 | ≤𝑐′𝑡
min

(
𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥)

) ]
≥ 𝜂.

Since |𝑥𝑛 | ≤ 𝑐𝑡𝑛 and 𝑐′ > 𝑐, we see from the above inequality that 𝑢∞ (𝑡, 𝑥) ≥ 𝜂, 𝑣∞ (𝑡, 𝑥) ≥ 𝜂
for all 𝑡 ∈ R, 𝑥 ∈ R. Hence, by Theorem 3.14, we have (𝑢∞ (𝑡, 𝑥), 𝑣∞ (𝑡, 𝑥)) ≡ (𝑢∗, 𝑣∗), but
this contradicts (3.53). This contradiction proves (2.37). The proof of Theorem 2.14 is
complete.
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3.5. Proof of homogenization

In this section we prove Theorem 2.15 on the homogenization of the system (2.40). We
start with a lemma concerning the homogenization of associated eigenproblems.

Lemma 3.15 (Homogenization of the eigenproblems). For each𝜆 ∈R, let
(
𝑘 𝜀 (𝜆), (𝜑𝜀 ,𝜓𝜀)

)
be the principal eigenpair of (2.4) for the coefficients (2.38) under the following normal-
ization condition:(

∥
(
𝜑𝜀 , 𝜓𝜀)∥𝐿2 (0, 𝜀)2

)2
=

∫ 𝜀

0

(
𝜑𝜀 (𝑥)

)2 +
(
𝜓𝜀 (𝑥)

)2d𝑥 = 𝜀 (0 < 𝜀 < 1). (3.54)

Then 𝑘 𝜀 (𝜆) → 𝑘0 (𝜆) as 𝜀→ 0 and the vector function
(
𝜑𝜀 , 𝜓𝜀

)
converges to the constant

function (𝜑0, 𝜓0) uniformly on R, where
(
𝑘0 (𝜆), (𝜑0, 𝜓0)

)
denotes the principal eigenpair

of (2.33) with the homogenized coefficients given in (2.39) and under the normalization
condition (𝜑0)2 + (𝜓0)2 = 1:{(

𝜆2𝜎𝐻 + 𝑟𝑢
)
𝜑0 + 𝜇𝑣𝜓0 − 𝜇𝑢𝜑0 = 𝑘0 (𝜆)𝜑0,(

𝜆2𝜎𝐻 + 𝑟𝑣
)
𝜓0 + 𝜇𝑢𝜑0 − 𝜇𝑣𝜓0 = 𝑘0 (𝜆)𝜓0.

(3.55)

Proof. We first note that, since the coefficients in (2.38) are 𝜀-periodic, the uniqueness of
the principal eigenpair of (2.4) implies that

(
𝜑𝜀 , 𝜓𝜀

)
are also 𝜀-periodic.

Fix 𝜆 ∈ R arbitrarily. Then 𝑘 𝜀 (𝜆) is uniformly bounded as 𝜀 varies. This follows from
the inequalities (2.7), since the maxima and minima of 𝜎𝜀 (𝑥), 𝑟 𝜀𝑢 (𝑥), 𝑟 𝜀𝑣 (𝑥) do not depend
on 𝜀. For notational simplicity, we denote these bounds (for a fixed 𝜆) by 𝐶1, 𝐶2, that is,

𝐶1 ≤ 𝑘 𝜀 (𝜆) ≤ 𝐶2. (3.56)

Next we show that, given any 𝑅 > 0, the family (𝜑𝜀 , 𝜓𝜀) is uniformly bounded in
𝐻1 (−𝑅, 𝑅)2 as 𝜀 varies. Indeed, multiplying the first line of (2.4′) by 𝜑𝜀 and integrating
by parts, we have∫ 𝜀

0
𝜎𝜀 (𝑥)

(
𝜑𝜀𝑥

)2 d𝑥 =
∫ 𝜀

0

(
𝜆2𝜎𝜀 (𝑥) + 𝑟 𝜀𝑢 (𝑥) − 𝜇𝜀𝑢 (𝑥) − 𝑘 𝜀 (𝜆)

)
(𝜑𝜀)2 d𝑥

+
∫ 𝜀

0
𝜇𝜀𝑣 (𝑥)𝜑𝜀𝜓𝜀d𝑥.

Since the coefficients 𝜎𝜀 , 𝑟 𝜀𝑢 , 𝜇𝜀𝑢 , 𝜇𝜀𝑣 , as well as 𝑘 𝜀 (𝜆), are uniformly bounded, and since
𝜎𝜀 (𝑥) ≥ 𝜎min := min𝑦∈[0,1] 𝜎(𝑦), the above identity and the normalization condition (3.54)
imply ∫ 𝜀

0

(
𝜑𝜀𝑥

)2 d𝑥 = O(𝜀).

The same estimate holds for 𝜓𝜀 . Thus, recalling again the normalization condition (3.54),
we have (

∥
(
𝜑𝜀 , 𝜓𝜀

)
∥𝐻1 (0, 𝜀)2

)2
= O(𝜀).
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In view of this and the 𝜀-periodicity of (𝜑𝜀 , 𝜓𝜀), we see that there exists a constant 𝐶3 > 0
that is independent of 𝜀 such that(

∥
(
𝜑𝜀 , 𝜓𝜀

)
∥𝐻1 (−𝑅,𝑅)2

)2
≤ 𝐶3𝑅 (0 < 𝜀 < 1). (3.57)

Next we prove that the auxiliary functions 𝜉 𝜀 (𝑥) :=𝜎𝜀 (𝑥)
(
𝜑𝜀𝑥 (𝑥) −𝜆𝜑𝜀 (𝑥)

)
and 𝜁 𝜀 (𝑥) :=

𝜎𝜀 (𝑥)
(
𝜓𝜀𝑥 (𝑥) − 𝜆𝜓𝜀 (𝑥)

)
are also uniformly bounded in 𝐻1 (−𝑅, 𝑅). Indeed (2.4′) can be

rewritten as:
−𝜉 𝜀𝑥 = −

(
𝜎𝜀

(
𝜑𝜀𝑥 − 𝜆𝜑𝜀)

)
𝑥
= −𝜆𝜎𝜀 (𝜑𝜀𝑥 − 𝜆𝜑𝜀) +

(
𝑟 𝜀𝑢 (𝑥) − 𝜇𝜀𝑢 (𝑥)

)
𝜑𝜀 (𝑥) + 𝜇𝜀𝑣 𝜓𝜀 (𝑥)

− 𝑘 𝜀 (𝜆)𝜑𝜀 ,
−𝜁 𝜀𝑥 = −

(
𝜎𝜀

(
𝜓𝜀𝑥 − 𝜆𝜓𝜀)

)
𝑥
= −𝜆𝜎𝜀 (𝜓𝜀𝑥 − 𝜆𝜓𝜀) +

(
𝑟 𝜀𝑣 (𝑥) − 𝜇𝜀𝑣 (𝑥)

)
𝜓𝜀 (𝑥) + 𝜇𝜀𝑢𝜑𝜀 (𝑥)

− 𝑘 𝜀 (𝜆)𝜓𝜀 .
(3.58)

This and (3.57) imply that ∥𝜉 𝜀𝑥 ∥𝐿2 (−𝑅,𝑅) and ∥𝜁 𝜀𝑥 ∥𝐿2 (−𝑅,𝑅) are uniformly bounded, hence(
∥
(
𝜉 𝜀 , 𝜁 𝜀

)
∥𝐻1 (−𝑅,𝑅)2

)2
≤ 𝐶4𝑅 (0 < 𝜀 < 1) (3.59)

for some constant 𝐶4 > 0 that is independent of 𝜀.
Let (𝜀𝑛) be any sequence with 𝜀𝑛 → 0. By (3.56), (3.57) and (3.59), we can extract a

subsequence, again denoted by (𝜀𝑛), such that 𝑘 𝜀𝑛 (𝜆) → 𝑘0 (𝜆) and that

(𝜑𝜀𝑛 , 𝜓𝜀𝑛 )⇀ (𝜑0, 𝜓0), (𝜉 𝜀𝑛 , 𝜁 𝜀𝑛 )⇀ (𝜉0, 𝜁0) as 𝑛→∞ weakly in 𝐻1
𝑙𝑜𝑐 (R)

2 (3.60)

for some real number 𝑘0 (𝜆) and (𝜑0, 𝜓0), (𝜉0, 𝜁0) ∈ 𝐻1
𝑙𝑜𝑐

(R)2.
Since 𝐻1 (−𝑅, 𝑅) is compactly embedded in 𝐶 ( [−𝑅, 𝑅]), the convergence in (3.60) is

uniform on any interval [−𝑅, 𝑅]. Furthermore, by the embedding𝐻1 ↩→𝐶1/2, the functions
𝜑𝜀𝑛 are uniformly 1/2-H¥older continuous. In view of this and the 𝜀-periodicity of 𝜑𝜀 , we
see that max 𝜑𝜀 (𝑥) − min 𝜑𝜀 (𝑥) = O(𝜀1/2), hence 𝜑0 is a constant function. The same
holds for 𝜓0, 𝜉0, 𝜁0.

Since 𝜑𝜀𝑛 → 𝜑0 uniformly and since 𝑟 𝜀𝑢 (𝑥) := 𝑟𝑢 ( 𝑥𝜀 ) is bounded and 𝜀-periodic,

𝑟 𝜀𝑛𝑢 (𝑥)𝜑𝜀𝑛 − 𝑟𝑢𝜑0 = 𝑟 𝜀𝑛𝑢 (𝑥)
(
𝜑𝜀𝑛 − 𝜑0

)
+

(
𝑟 𝜀𝑛𝑢 (𝑥) − 𝑟𝑢

)
𝜑0 ⇀ 0 as 𝑛→ ∞

weakly in 𝐿2
𝑙𝑜𝑐

(R). Repeating the same argument and recalling that (𝜉 𝜀𝑛 , 𝜁 𝜀𝑛 ) ⇀ (𝜉0, 𝜁0)
weakly in 𝐻1

𝑙𝑜𝑐
(R)2, we see that (3.58) converges to the following system as 𝑛→∞weakly

in 𝐿2
𝑙𝑜𝑐

(R)2: {
0 = −𝜉0

𝑥 = −𝜆𝜉0 +
(
𝑟𝑢 − 𝜇𝑢

)
𝜑0 + 𝜇𝑣𝜓0 − 𝑘0 (𝜆)𝜑0,

0 = −𝜁0
𝑥 = −𝜆𝜁0 +

(
𝑟𝑣 − 𝜇𝑣

)
𝜓0 + 𝜇𝑢𝜑0 − 𝑘0 (𝜆)𝜓0,

(3.61)

Here we used that fact that 𝜉0, 𝜁0 are constant functions. Observe also that

𝜑𝜀𝑛𝑥 − 𝜆𝜑𝜀𝑛 =
1

𝜎𝜀𝑛 (𝑥) 𝜉
𝜀 ⇀

∫ 1

0

d𝑦
𝜎(𝑦) 𝜉

0
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weakly in 𝐿2
𝑙𝑜𝑐

(R). Thus 𝜉0 = 𝜎𝐻
(
𝜑0
𝑥 − 𝜆𝜑0) , but since 𝜑0

𝑥 = 0, we have 𝜉0 = −𝜎𝐻𝜆𝜑0,
and similarly 𝜁0 = −𝜎𝐻𝜆𝜓0. Substituting these into (3.61), we obtain (3.55). The condition
(𝜑0)2 + (𝜓0)2 = 1 follows from (3.54). Since the principal eigenpair of (3.55) is unique,
the limit

(
𝑘0 (𝜆), (𝜑0, 𝜓0)

)
does not depend on the choice of the sequence (𝜀𝑛). Hence(

𝑘 𝜀 (𝜆), (𝜑𝜀 , 𝜓𝜀)
)

converges to
(
𝑘0 (𝜆), (𝜑0, 𝜓0)

)
as 𝜀 → 0. This completes the proof of

Lemma 3.15.

Lemma 3.16 (Convergence of the spreading speeds). Let the assumptions of Theorem 2.15
hold and 𝑘 𝜀 (𝜆) be as in Lemma 3.15. Then min𝜆∈R 𝑘 𝜀 (𝜆) > 0 for all sufficiently small 𝜀 > 0.
Furthermore, (2.42) holds.

Proof. Let 𝑘0 (𝜆) be as in Lemma 3.15. Then, by (2.34), 𝑘0 (𝜆) = 𝜎𝐻𝜆2 + 𝜆𝐴. Since we
are assuming 𝜆𝐴 > 0, we have 𝑘0 (𝜆) > 0 for all 𝜆 ∈ R. Next we note that the convergence
𝑘 𝜀 (𝜆) → 𝑘0 (𝜆) in Lemma 3.15 is locally uniform in 𝜆 ∈ R. This is because pointwise con-
vergence of a sequence of convex functions is uniform on bounded sets (see [32, Theorem
10.8]). Moreover, by (2.7), there exists𝑀 > 0 such that 𝑘 𝜀 (𝜆) > 0 for |𝜆 | > 𝑀 for any 𝜀 > 0.
Thus it suffices to show 𝑘 𝜀 (𝜆) > 0 for |𝜆 | ≤ 𝑀 . The uniform convergence 𝑘 𝜀 (𝜆) → 𝑘0 (𝜆)
on −𝑀 ≤ 𝜆 ≤ 𝑀 proves this claim.

Next we prove (2.42). Let 𝜀 be small enough so that min𝜆∈R 𝑘 𝜀 (𝜆) > 0. By (2.7), there
exists 𝑀1 > 0 independent of 𝜀 such that inf𝜆>0 𝑘

𝜀 (𝜆)/𝜆 and inf𝜆<0 𝑘
𝜀 (𝜆)/|𝜆 | are both

attained on the interval |𝜆 | ≤ 𝑀1. Since 𝑘 𝜀 (𝜆) → 𝑘0 (𝜆) uniformly on |𝜆 | ≤ 𝑀1, the claim
(2.42) follows.

Lemma 3.17 (Homogenization limit of entire solutions). Let the assumptions of The-
orem 2.15 hold. For each small 𝜀 > 0, let (𝑢𝜀 (𝑡, 𝑥), 𝑣𝜀 (𝑡, 𝑥)) be an entire solution to
(2.40) that is bounded from above and from below by positive constants, that is, 𝑚𝜀 ≤
𝑢𝜀 (𝑥, 𝑡) + 𝑣𝜀 (𝑥, 𝑡) ≤ 𝑀 𝜀 for all 𝑡 ∈ R, 𝑡 ∈ R for some constants 𝑀 𝜀 , 𝑚𝜀 > 0. Then, as
𝜀 → 0, (𝑢𝜀 (𝑡, 𝑥), 𝑣𝜀 (𝑡, 𝑥)) converges locally uniformly to the unique positive stationary
state (𝑢∗, 𝑣∗) of the homogenized problem (2.28) with 𝜎, 𝑟𝑢, 𝑟𝑣, 𝜅𝑢, 𝜅𝑣, 𝜇𝑢, 𝜇𝑣 replaced by
𝜎𝐻 , 𝑟𝑢, 𝑟𝑣, 𝜅𝑢, 𝜅𝑣, 𝜇𝑢, 𝜇𝑣.

Proof. We divide the proof in three steps.
Step 1: Uniform upper bound.
We first derive uniform upper bound for (𝑢𝜀 (𝑡, 𝑥), 𝑣𝜀 (𝑡, 𝑥)) that is independent of 𝜀 > 0.

This is done by slightly modifying the proof of Proposition 2.5. Let 𝑟max, 𝜅min and 𝐾 :=
𝑟max/𝜅min be the constants defined in (2.10) for the coefficients of the system (2.40). Then
these constants do not depend on 𝜀. As in (3.2), 𝑤𝜀 (𝑥, 𝑡) := 𝑢𝜀 (𝑥, 𝑡) + 𝑣𝜀 (𝑥, 𝑡) satisfies the
inequality

𝑤𝜀𝑡 ≤
(
𝜎𝜀 (𝑥)𝑤𝜀𝑥

)
𝑥
+

(
𝑟max − 𝜅min𝑤

𝜀
)
𝑤𝜀 . (3.62)

Next let𝑊 (𝑡) be a solution of the following ODE problem:

𝑊𝑡 =
(
𝑟max − 𝜅min𝑊

)
𝑊, 𝑊 (0) = 𝑀 𝜀 .



48 Q. Griette and H. Matano

Fix 𝑡0 ∈R arbitrarily, and let𝑇 > 0. Then, since𝑤𝜀 (𝑡0 −𝑇, 𝑥) ≤ 𝑀 𝜀 =𝑊 (0), the comparison
principle implies 𝑤𝜀 (𝑡 + 𝑡0 − 𝑇, 𝑥) ≤ 𝑊 (𝑡) for all 𝑡 ≥ 0 and 𝑥 ∈ R. Setting 𝑡 = 𝑇 , we obtain

𝑤𝜀 (𝑡0, 𝑥) ≤ 𝑊 (𝑇) for all 𝑥 ∈ R.

The right-hand side of the above inequality converges to 𝑟max/𝜅min. Since 𝑡0 is arbitrary,
we get

𝑢𝜀 (𝑡, 𝑥) + 𝑣𝜀 (𝑡, 𝑥) = 𝑤𝜀 (𝑡, 𝑥) ≤ 𝑟max
𝜅min

:= 𝐾 for all 𝑡 ∈ R, 𝑥 ∈ R. (3.63)

Step 2: Uniform lower bound.
Here we derive uniform lower bound for (𝑢𝜀 (𝑡, 𝑥), 𝑣𝜀 (𝑡, 𝑥)) that is independent of 𝜀 > 0.

Let
(
𝜆𝜀1 , (𝜑

𝜀 (𝑥) > 0, 𝜓𝜀 (𝑥) > 0)
)

be the principal eigenpair associated with the eigenprob-
lem: {

(𝜎𝜀 (𝑥)𝜑𝜀𝑥 )𝑥 + (𝑟 𝜀𝑢 (𝑥) − 𝜇𝜀𝑢 (𝑥))𝜑𝜀 (𝑥) + 𝜇𝜀𝑣 (𝑥)𝜓𝜀 (𝑥) = 𝜆𝜀1 𝜑
𝜀 (𝑥)

(𝜎𝜀 (𝑥)𝜓𝜀𝑥 )𝑥 + 𝜇𝜀𝑢 (𝑥)𝜑𝜀 (𝑥) + (𝑟 𝜀𝑣 (𝑥) − 𝜇𝜀𝑣 (𝑥))𝜓𝜀 (𝑥) = 𝜆𝜀1𝜓
𝜀 (𝑥),

(3.64)

under the 𝜀-periodic boundary conditions, and normalized as sup𝑥∈R (𝜑𝜀 (𝑥) + 𝜓𝜀 (𝑥)) = 1.
Next let F 𝜀 (𝑢, 𝑣), G𝜀 (𝑢, 𝑣) denote the right-hand side of the system (2.40), namely{

F 𝜀 (𝑢, 𝑣) := (𝜎𝜀 (𝑥)𝑢𝑥)𝑥 + (𝑟 𝜀𝑢 (𝑥) − 𝜅𝜀𝑢 (𝑥) (𝑢 + 𝑣))𝑢 + 𝜇𝜀𝑣 (𝑥)𝑣 − 𝜇𝜀𝑢 (𝑥)𝑢,
G𝜀 (𝑢, 𝑣) := (𝜎𝜀 (𝑥)𝑣𝑥)𝑥 + (𝑟 𝜀𝑣 (𝑥) − 𝜅𝜀𝑣 (𝑥) (𝑢 + 𝑣))𝑣 + 𝜇𝜀𝑢 (𝑥)𝑢 − 𝜇𝜀𝑣 (𝑥)𝑣.

Then it is easily seen that, for any constant 𝛼 > 0,{
F 𝜀 (𝛼𝜑𝜀 , 𝛼𝜓𝜀) =

(
𝜆𝜀1 − 𝛼𝜅𝜀𝑢 (𝑥) (𝜑𝜀 + 𝜓𝜀)

)
𝜑𝜀 ≥

(
𝜆𝜀1 − 𝛼𝜅𝜀𝑢 (𝑥)

)
𝜑𝜀 ,

G𝜀 (𝛼𝜑𝜀 , 𝛼𝜓𝜀) =
(
𝜆𝜀1 − 𝛼𝜅𝜀𝑣 (𝑥)) (𝜑𝜀 + 𝜓𝜀)

)
𝜓𝜀 ≥

(
𝜆𝜀1 − 𝛼𝜅𝜀𝑣 (𝑥)

)
𝜓𝜀 .

(3.65)

Now we claim that the following inequalities hold:

𝑢𝜀 (𝑡, 𝑥) ≥ 𝛼𝜀𝜑𝜀 (𝑥), 𝑣𝜀 (𝑡, 𝑥) ≥ 𝛼𝜀𝜓𝜀 (𝑥) for all 𝑡 ∈ R, 𝑥 ∈ R, (3.66)

where 𝛼𝜀 = min(𝜆𝜀1𝐾1, 𝐾2) and

𝐾1 =
1̧

max
(
max𝑦∈[0,1] 𝜅𝑢 (𝑦),max𝑦∈[0,1] 𝜅𝑣 (𝑦)

) , 𝐾2 =min
(

min
𝑦∈[0,1]

𝜇𝑣 (𝑦)
𝜅𝑢 (𝑦)

, min
𝑦∈[0,1]

𝜇𝑢 (𝑦)
𝜅𝑣 (𝑦)

)
.

In order to prove (3.66), we define

𝛼∗ := sup {𝛼 > 0 : 𝛼𝜑𝜀 (𝑥) ≤ 𝑢𝜀 (𝑡, 𝑥), 𝛼𝜓𝜀 (𝑥) ≤ 𝑣𝜀 (𝑡, 𝑥) (∀(𝑡, 𝑥) ∈ R × R)} .

Since 𝑢𝜀 (𝑡, 𝑥), 𝑣𝜀 (𝑡, 𝑥) are bounded from below, 𝛼𝜑𝜀 (𝑥) ≤ 𝑢𝜀 (𝑡, 𝑥), 𝛼𝜓𝜀 (𝑥) ≤ 𝑣𝜀 (𝑡, 𝑥) if
𝛼 > 0 is sufficiently small, therefore the quantity 𝛼∗ is well-defined. All we have to show
is that 𝛼∗ ≥ 𝛼𝜀 .
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We argue by contradiction. Suppose that 𝛼∗ < 𝛼𝜀 . By the definition of 𝛼∗, we have
𝛼∗𝜑𝜀 (𝑥) ≤ 𝑢𝜀 (𝑡, 𝑥), and 𝛼∗𝜓𝜀 (𝑥) ≤ 𝑣𝜀 (𝑡, 𝑥) for all (𝑥, 𝑡) ∈ R × R, and there exists a
sequence (𝑡𝑛, 𝑥𝑛) ∈R×R such that either𝑢𝜀 (𝑡𝑛, 𝑥𝑛) −𝛼∗𝜑𝜀 (𝑥𝑛) → 0 (𝑛→∞) or 𝑣𝜀 (𝑡𝑛, 𝑥𝑛) −
𝛼∗𝜓𝜀 (𝑥𝑛) → 0 (𝑛 → ∞). Let 𝑚𝑛 (𝑛 ∈ N) be the integers such that 𝑚𝑛𝜀 ≤ 𝑥𝑛 < (𝑚𝑛 +
1)𝜀 (𝑛 = 1, 2, 3, . . .). Replacing by a subsequence if necessary, we may assume that 𝑥𝑛 −
𝑚𝑛𝜀→ 𝑥∗ as 𝑛→∞ for some 𝑥∗ ∈ [0, 𝜀] and that

(
𝑢𝜀 (𝑡 + 𝑡𝑛, 𝑥 +𝑚𝑛𝜀), 𝑣𝜀 (𝑡 + 𝑡𝑛, 𝑥 +𝑚𝑛𝜀)

)
converges locally uniformly to an entire solution

(
𝑈 𝜀 (𝑡, 𝑥), 𝑉 𝜀 (𝑡, 𝑥)

)
of (2.40) as 𝑛→ ∞.

By the construction,
(
𝑈 𝜀 (𝑡, 𝑥), 𝑉 𝜀 (𝑡, 𝑥)

)
satisfies

𝛼∗𝜑𝜀 (𝑥) ≤ 𝑈 𝜀 (𝑡, 𝑥), 𝛼∗𝜓𝜀 (𝑥) ≤ 𝑉 𝜀 (𝑡, 𝑥) for all (𝑥, 𝑡) ∈ R × R,
and 𝛼∗𝜑𝜀 (𝑥∗) = 𝑈 𝜀 (0, 𝑥∗) or 𝛼∗𝜓𝜀 (𝑥∗) ≤ 𝑉 𝜀 (0, 𝑥∗).

This, however, contradicts the strong maximum principle, since𝛼∗ ≤ 𝜆𝜀1𝐾1 and (3.65) imply
that (𝛼∗𝜑𝜀 , 𝛼∗𝜓𝜀) is a subsolution of (2.40), and that 𝛼∗ < 𝐾2 implies that (𝛼∗𝜑𝜀 , 𝛼∗𝜓𝜀)
lies in the interior of the cooperative zone defined in (2.1). This contradiction proves (3.66).

It remains to derive from (3.66) a uniform lower bounded for 𝑢𝜀 (𝑡, 𝑥), 𝑣𝜀 (𝑡, 𝑥) that is
independent of 𝜀 > 0. First we remark that (3.64) is a special case of the eigenproblem
treated in Lemma 3.15 for 𝜆 = 0, so the above eigenvalue 𝜆𝜀1 coincides with 𝑘 𝜀 (0) in
Lemma 3.15. Therefore 𝜆𝜀1 = 𝑘 𝜀 (0) → 𝑘0 (0) as 𝜀→ 0, and, by (2.35), 𝑘0 (0) = 𝜆𝐴, where
𝜆𝐴 denotes the largest eigenvalue of the matrix 𝐴 in (2.30) with the entries 𝑟𝑢, 𝑟𝑣, 𝜇𝑢 and
𝜇𝑣. Consequently

𝛼𝜀 → min (𝜆𝐴𝐾1, 𝐾2) as 𝜀 → 0.

Note also that, since 𝜑𝜀 ,𝜓𝜀 that appear in (3.66) are normalized by the condition max(𝜑𝜀 (𝑥) +
𝜓𝜀 (𝑥)) = 1, it is clear that

𝜑𝜀 (𝑥) → 𝜑0

𝜑0 + 𝜓0 and 𝜓𝜀 (𝑥) → 𝜓0

𝜑0 + 𝜓0 as 𝜀 → 0, uniformly on R.

Combining these, together with (3.66), we see that (𝑢𝜀 , 𝑣𝜀) is uniformly bounded below
by a positive constant that is independent of 𝜀, for all sufficiently small 𝜀 > 0.

Step 3: Convergence of (𝑢𝜀 , 𝑣𝜀).
We first remark that, since (𝑢𝜀 , 𝑣𝜀) is uniformly bounded, the classical estimates for

parabolic equations in divergence form with discontinuous coefficients (see e.g. [25, Chap-
ter III Theorem 10.1]) imply that (𝑢𝜀 , 𝑣𝜀) is locally uniformly bounded in 𝐶𝛼 (R × R), i.e.
for any 𝑇 > 0 an 𝑅 > 0 there exists 𝐶 > 0 (independent of 𝜀) such that

max
(
∥𝑢𝜀 ∥𝐶𝛼 ( [−𝑇,𝑇 ]×[−𝑅,𝑅] ) , ∥𝑣𝜀 ∥𝐶𝛼 ( [−𝑇,𝑇 ]×[−𝑅,𝑅] )

)
≤ 𝐶.

Then the diagonal argument allows us to extract a sequence 𝜀𝑛 → 0 along which (𝑢𝜀 , 𝑣𝜀)
converges locally uniformly in 𝐶𝛼/2 (R2) to a limit (𝑢, 𝑣). It is then classical that (𝑢, 𝑣)
satisfies weakly: {

𝑢𝑡 = 𝜎
𝐻𝑢𝑥𝑥 + (𝑟𝑢 − 𝜅𝑢 (𝑢 + 𝑣))𝑢 + 𝜇𝑣𝑣 − 𝜇𝑢𝑢

𝑣𝑡 = 𝜎
𝐻𝑣𝑥𝑥 + (𝑟𝑣 − 𝜅𝑣 (𝑢 + 𝑣))𝑣 + 𝜇𝑢𝑢 − 𝜇𝑣𝑣.

(3.67)
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Let us explain briefly how to obtain (3.67) rigorously. Since 𝑢𝜀 and 𝑣𝜀 converge locally
uniformly to their limit, it is also the case for 𝑢𝜀 (𝑢𝜀 + 𝑣𝜀) and 𝑣𝜀 (𝑢𝜀 + 𝑣𝜀); therefore, except
for (𝜎𝜀𝑢𝜀𝑥 )𝑥 and (𝜎𝜀𝑣𝜀𝑥 )𝑥 , all the terms on the right-hand side of (2.40) converge weakly
to the corresponding term in the homogenized equation (3.67). To show the convergence
of (𝜎𝜀𝑢𝜀𝑥 )𝑥 to 𝜎𝐻𝑢𝑥𝑥 , let us fix 𝜙 ∈ 𝐶∞

0 (R) and define 𝑢𝜀 (𝜙) :=
∫
R
𝑢𝜀 (𝑡, 𝑥)𝜙(𝑡)d𝑡. Then

−
(
𝜎𝜀

(
𝑢𝜀 (𝜙)

)
𝑥

)
𝑥
= (𝑟 𝜀𝑢 − 𝜇𝜀𝑢 )𝑢𝜀 (𝜙)𝜅𝜀𝑢𝑢(𝜙) − 𝜅𝜀𝑢𝑢𝜀

(
𝜙(𝑢𝜀 + 𝑣𝜀)

)
+ 𝜇𝑣𝑣𝜀 (𝜙) + 𝑢𝜀 (𝜙𝑡 ).

In particular, 𝜉 𝜀 (𝜙) = 𝜎𝜀
(
𝑢𝜀 (𝜙)

)
𝑥

is bounded in 𝐻1
𝑙𝑜𝑐

independently of 𝜀; hence up to the
extraction of a subsequence, 𝜉 𝜀 (𝜙) converges strongly in 𝐿2

𝑙𝑜𝑐
(and weakly in𝐻1

𝑙𝑜𝑐
) to some

𝜉0 (𝜙), and 𝑢𝜀 (𝜙)𝑥 = 1
𝜎𝜀 𝜉

𝜀 (𝜙)⇀ (𝜎𝐻 )−1𝜉0 (𝜙) which shows that 𝜉0 (𝜙) =𝜎𝐻𝑢0 (𝜙)𝑥 . This
establishes the first line of (3.67) rigorously. The second line can be treated similarly. Hence
(𝑢, 𝑣) satisfies (3.67) in a weak sense. Parabolic regularity then implies that (𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥))
is in fact a classical entire solution to (2.28). Since (𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥)) is bounded from below
(by Step 1), Theorem 3.14 shows that 𝑢(𝑡, 𝑥) ≡ 𝑢∗ and 𝑣(𝑡, 𝑥) ≡ 𝑣∗. Finally, since the limit
(𝑢(𝑥), 𝑣(𝑥)) ≡ (𝑢∗, 𝑣∗) does not depend on the choice of the sequence 𝜀𝑛 → 0, we have
(𝑢𝜀 , 𝑣𝜀) → (𝑢∗, 𝑣∗) as 𝜀 → 0. The lemma is proved.

Next we discuss the linearized stability of the equilibrium point (𝑢∗, 𝑣∗) of the homo-
geneous system. The linearized equation of (2.28) around (𝑢∗, 𝑣∗) is given in the following
form:

𝜑𝑡 − 𝜎𝜑𝑥𝑥 = (𝑟𝑢 − 𝜇𝑢)𝜑 + 𝜇𝑣𝜓 − 𝜅𝑢 (2𝑢∗ + 𝑣∗)𝜑 − 𝜅𝑢𝑢∗𝜓, 𝑡 > 0, 𝑥 ∈ R,
𝜓𝑡 − 𝜎𝜓𝑥𝑥 = 𝜇𝑢𝜑 + (𝑟𝑣 − 𝜇𝑣)𝜓 − 𝜅𝑣𝑣∗𝜑 − 𝜅𝑣 (𝑢∗ + 2𝑣∗)𝜓, 𝑡 > 0, 𝑥 ∈ R,
𝜑(𝑡 = 0, 𝑥) = 𝜑0 (𝑥), 𝜓(𝑡 = 0, 𝑥) = 𝜓0 (𝑥), 𝑥 ∈ R,

(3.68)

Lemma 3.18 (Linear stability of the equilibrium). Let the assumptions of Theorem 2.15
hold. Then any solution (𝜑, 𝜓) of the linear parabolic system (3.68) with

(
𝜑0 (𝑥), 𝜓0 (𝑥)

)
∈

𝐵𝑈𝐶 (R)2, converges uniformly to zero as 𝑡 → +∞:

lim
𝑡→+∞

max
(
∥𝜑(𝑡, ·)∥∞, ∥𝜓(𝑡, ·)∥∞

)
= 0.

Proof. We show that the spectrum of the linearized operator is included in the negative
complex plane. The linearized operator around (𝑢∗, 𝑣∗) is given in the following form:

A
(
𝜑

𝜓

)
:=

(
𝜎𝜑𝑥𝑥

𝜎𝜓𝑥𝑥

)
+

(
(𝑟𝑢 − 𝜇𝑢 − 2𝜅𝑢𝑢∗ − 𝜅𝑢𝑣∗)𝜑 + (𝜇𝑣 − 𝜅𝑢𝑣∗)𝜓
(𝜇𝑢 − 𝜅𝑣𝑢∗)𝜑 + (𝑟𝑣 − 𝜇𝑣 − 𝜅𝑣𝑢∗ − 2𝜅𝑣𝑣∗)𝜓

)
.

We regard A as an unbounded operator acting on (𝜑, 𝜓) ∈ 𝐵𝑈𝐶 (R)2. The operator A is
sectorial and generates an analytic semigroup on 𝐵𝑈𝐶 (R)2, as a bounded perturbation of
the unbounded operator (𝜎𝜕𝑥𝑥 , 𝜎𝜕𝑥𝑥)𝑇 (acting on 𝐷 (A) = 𝐶2

𝐵𝑈𝐶
(R)2), which is sectorial

and generates an analytic semigroup on 𝐵𝑈𝐶 (R)2 [29, Corollary 3.1.9 p. 81].
Let 𝜆 ∈ C and (𝑔, ℎ) ∈ 𝐵𝑈𝐶 (R)2 be given, and consider the resolvent equation

(𝜆𝐼 − A)
(
𝜑

𝜓

)
=

(
𝑔

ℎ

)
. (3.69)
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The set of solutions of the equation (3.69) can be computed explicitly by the variation of
constants formula. More precisely, we let 𝑌 (𝑥) = (𝜑, 𝜑𝑥 , 𝜓, 𝜓𝑥)𝑇 and rewrite (3.69) as an
ODE on R4:

d
d𝑥
𝑌 (𝑥) =

©«
0 1 0 0

𝜎−1 (𝜆 − 𝑎) 0 −𝜎−1𝑏 0
0 0 0 1

−𝜎−1𝑐 0 𝜎−1 (𝜆 − 𝑑) 0

ª®®®®¬
𝑌 −

©«
0
𝑔

0
ℎ

ª®®®®¬
=: 𝐵𝜆𝑌 (𝑥) + 𝑍 (𝑥),

where 𝑎, 𝑏, 𝑐, 𝑑 are the constants introduced in Lemma 3.10 to denote the coefficients of
the Jacobian matrix of the nonlinearity at the equilibrium point:

𝑎 := 𝑟𝑢 − 𝜇𝑢 − 2𝜅𝑢𝑢∗ − 𝜅𝑢𝑣∗ = −
(
𝜅𝑢𝑢

∗ + 𝜇𝑣
𝑣∗

𝑢∗

)
< 0, 𝑏 := 𝜇𝑣 − 𝜅𝑢𝑢∗,

𝑑 := 𝑟𝑣 − 𝜇𝑣 − 𝜅𝑣𝑢∗ − 2𝜅𝑣𝑣∗ = −
(
𝜅𝑣𝑣

∗ + 𝜇𝑢
𝑢∗

𝑣∗

)
< 0, 𝑐 := 𝜇𝑢 − 𝜅𝑣𝑣∗.

We first investigate the bounded eigenvectors of the ordinary differential equation𝑌 ′ = 𝐵𝜆𝑌 ,
which constitute the point spectrum of A, 𝜎𝑃 (A). These correspond to the imaginary
eigenvalues of the matrix 𝐵𝜆, i.e. the imaginary roots of the polynomial

𝜒𝜆 (𝑋) := 𝑋4 + 𝜎−1 (𝑎 + 𝑑 − 2𝜆
)
𝑋2 + 𝜎−2 (𝜆2 − (𝑎 + 𝑑)𝜆 + 𝑎𝑑 − 𝑏𝑐

)
.

We show that 𝜎𝑃 (A) is contained in the half-plane ℜ(𝑧) ≤ −𝜔 for 𝑧 ∈ C, where

𝜔 := −𝑎 + 𝑑
2

> 0. (3.70)

Indeed, investigating the values taken by 𝜒𝜆 (𝑖𝑋) for real values of 𝑋 , we find that

𝜒𝜆 (𝑖𝑋) = 𝑋4 − 𝜎−1 ((𝑎 + 𝑑) − 2𝜆
)
𝑋2 + 𝜎−2 (𝜆2 − (𝑎 + 𝑑)𝜆 + 𝑎𝑑 − 𝑏𝑐

)
.

Since 𝑎 < 0, 𝑑 < 0 and 𝑎𝑑 − 𝑏𝑐 > 0 (see Lemma 3.10), we immediately see that 𝜒𝜆 (𝑖𝑋) > 0
if 𝜆 is real and 𝜆 ≥ 𝑎+𝑑

2 . If ℑ(𝜆) ≠ 0, we remark that

ℑ(𝜒𝜆 (𝑖𝑋)) = ℑ(𝜆)
[
2𝜎−1𝑋2 + 𝜎−2 (2ℜ(𝜆) − (𝑎 + 𝑑))

]
,

therefore if ℜ(𝜆) > 𝑎+𝑑
2 the right-hand side is positive and the polynomial 𝜒𝜆 (𝑖𝑋) cannot

have a real root.
When 𝜆 ∈ C\𝜎𝑃 (A) then 𝑌 is uniquely determined and depends continuously on 𝑍 .

Indeed, the set of solutions to the equation𝑌 ′ = 𝐵𝜆𝑌 + 𝑍 can be determined by the variation
of constants formula

𝑌 (𝑥) = 𝑒𝑥𝐵𝜆𝑌0 +
∫ 𝑥

0
𝑒 (𝑥−𝑠)𝐵𝜆𝑍 (𝑠)d𝑧, (3.71)

for arbitrary𝑌0 ∈R4. Then there exists a unique choice of𝑌0 such that𝑌 (𝑥) remains bounded
on R. Indeed, the discriminant of 𝜒𝜆 (𝑋) considered as a second-order polynomial in 𝑋2 is

𝐷 (𝜆) :=𝜎−2 (𝑎 + 𝑑 − 2𝜆
)2 − 4𝜎−2 (𝜆2 − (𝑎 + 𝑑)𝜆 + 𝑎𝑑 − 𝑏𝑐

)
=𝜎−2 ((𝑎 + 𝑑)2 − 𝑎𝑑 + 𝑏𝑐

)
> 0,
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thus is independent of 𝜆 and positive. Hence 𝜒𝜆 (𝑋) has four distinct roots; by reducing 𝐵𝜆
to a diagonal matrix,𝑌0 can be computed explicitly and the resulting𝑌 (𝑥) =

(
𝜆 −A

)−1 (𝑍)
depends continuously on 𝑍 (𝑥). Since the computations are relatively long and classical, we
omit them for the sake of brevity. In particular, the spectrum is equal to the point spectrum
𝜎(A) = 𝜎𝑃 (A) and the spectral bound of A satisfies 𝑠(A) ≤ −𝜔.

To complete our first Step we remark that 𝑒𝑡A can be computed by the Dunford-Taylor
integral

𝑒𝑡A =
1

2𝑖𝜋

∫
Γ

𝑒𝜆𝑡 (𝜆𝐼 − A)−1d𝜆,

where Γ is a curve joining a straight line {𝜌𝑒−𝑖 𝜃 , 𝜌 > 0} for some 𝜃 ∈
[
𝜋
2 , 𝜋

)
to the straight

line {𝜌𝑒−𝑖 𝜃 : 𝜌 > 0}, oriented so that ℑ(𝜆) increases on Γ, and such that 𝜎(A) is included
in the left connected component of C\Γ. From the above computations it appears that Γ
can be chosen such that ℜ(𝜆) ≤ − 𝜔

2 (where 𝜔 is given by (3.70)) for all 𝜆 ∈ Γ, in which
case

𝑒𝑡A = 𝑒−
𝜔
2 𝑡 · 1

2𝑖𝜋

∫
Γ

𝑒(𝜆+ 𝜔
2 )𝑡 (𝜆 − A)−1d𝜆,

therefore

∥𝑒𝑡A ∥𝐵𝑈𝐶 (R)2 ≤ 𝑒−
𝜔
2 𝑡 · 1

2𝜋

∫
Γ

𝑒−(ℜ(𝜆)+ 𝜔
2 )𝑡 ∥(𝜆 − A)−1∥L(𝐵𝑈𝐶 (R)2 )d𝜆

≤ 𝐶𝑒− 𝜔
2 𝑡 ,

for all 𝑡 > 0, where 𝐶 depends only on A and 𝜔. This completes the proof of Lemma
3.18.

Lemma 3.19 (Uniqueness of rapidly oscillating entire solution). Let the assumptions of
Theorem 2.15 hold. Then there exists 𝜀 such that for any 0 < 𝜀 ≤ 𝜀, the system (2.40)
possesses an entire solution (𝑢𝜀 (𝑡, 𝑥), 𝑣𝜀 (𝑡, 𝑥)) that is bounded from above and from below
by positive constants. Moreover, such an entire solution is unique. Hence it is a stationary
solution and is 𝜀-periodic.

Proof. We first show the existence. Let (𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥)) be a solution of (2.40) with non-
negative nontrivial initial data

(
𝑢0 (𝑥), 𝑣0 (𝑥)

)
and choose a constant𝑀 > 0 such that 𝑢0 (𝑥) +

𝑣0 (𝑥) ≤ 𝑀 for all 𝑥 ∈ R. Then from the inequality (3.62), we see that

𝑢(𝑡, 𝑥) + 𝑣(𝑡, 𝑥) ≤ max
(
𝑟max
𝜅min

, 𝑀

)
:= 𝑀 ′ for all 𝑡 ≥ 0, 𝑥 ∈ R.

Therefore (𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥)) is bounded from above. Next, by Theorem 2.9, there exists
𝜂 > 0 such that (2.20) holds. Consequently, by choosing a sequence 𝑡𝑛 → +∞ appro-
priately, the family of functions (𝑢(𝑡 + 𝑡𝑛, 𝑥), 𝑣(𝑡 + 𝑡𝑛, 𝑥)) converges to an entire solution(
𝑢∞ (𝑡, 𝑥), 𝑣∞ (𝑡, 𝑥)

)
of (2.40) satisfying 𝜂 ≤ 𝑢∞ (𝑡, 𝑥), 𝑣∞ (𝑡, 𝑥) ≤ 𝑀 ′ for all 𝑡 ∈ R, 𝑥 ∈ R.
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Next we prove the uniqueness. Assume by contradiction that there exists a sequence
𝜀𝑛 > 0 and two sequences of bounded nonnegative nontrivial entire solutions (𝑢𝜀𝑛1 (𝑡, 𝑥), 𝑣𝜀𝑛1 (𝑡, 𝑥)) .
(𝑢𝜀𝑛2 (𝑡, 𝑥), 𝑣𝜀𝑛2 (𝑡, 𝑥)) of (2.40). Define

𝛿𝑛 := max
(
∥𝑢𝜀𝑛2 (𝑡, 𝑥) − 𝑢𝜀𝑛1 (𝑡, 𝑥)∥𝐵𝑈𝐶 (R)2 , ∥𝑣𝜀𝑛2 (𝑡, 𝑥) − 𝑣𝜀𝑛1 (𝑡, 𝑥)∥𝐵𝑈𝐶 (R)2

)
,

𝜑𝜀𝑛 (𝑡, 𝑥) :=
1
𝛿𝑛

(𝑢𝜀𝑛2 (𝑡, 𝑥) − 𝑢𝜀𝑛1 (𝑡, 𝑥)),

𝜓𝜀𝑛 (𝑡, 𝑥) :=
1
𝛿𝑛

(𝑣𝜀𝑛2 (𝑡, 𝑥) − 𝑣𝜀𝑛1 (𝑡, 𝑥)).

With an appropriate shift in time and space, we may assume without loss of generality that

𝛿𝑛

2
≤ sup
𝑥∈ (0,𝐿)

(
max( |𝑢𝜀𝑛2 (0, 𝑥) − 𝑢𝜀𝑛1 (0, 𝑥) |, |𝑣𝜀𝑛2 (0, 𝑥) − 𝑣𝜀𝑛1 (0, 𝑥) |)

)
≤ 𝛿𝑛. (3.72)

Then (𝜑𝜀𝑛 (𝑡, 𝑥), 𝜓𝜀𝑛 (𝑡, 𝑥)) satisfy:{
𝜑
𝜀𝑛
𝑡 −

(
𝜎𝜀𝑛𝜑𝜀𝑛𝑥

)
𝑥
= (𝑟 𝜀𝑛𝑢 − 𝜇𝜀𝑛𝑢 )𝜑𝜀𝑛 + 𝜇𝜀𝑛𝑣 𝜓𝜀𝑛 − 𝜅𝜀𝑛𝑢 (2𝑢𝜀𝑛2 + 𝑣𝜀𝑛2 )𝜑𝜀𝑛 − 𝜅𝜀𝑛𝑢 𝑢

𝜀𝑛
2 𝜓𝜀𝑛 + 𝑜(1),

𝜓
𝜀𝑛
𝑡 −

(
𝜎𝜀𝑛𝜓𝜀𝑛𝑥

)
𝑥
= 𝜇𝜀𝑛𝑢 𝜑

𝜀𝑛 + (𝑟 𝜀𝑛𝑣 − 𝜇𝜀𝑛𝑣 )𝜓𝜀𝑛 − 𝜅𝜀𝑛𝑣 𝑣
𝜀𝑛
2 𝜑𝜀𝑛 − 𝜅𝜀𝑛𝑣 (𝑢𝜀𝑛2 + 2𝑣𝜀𝑛2 )𝜓𝜀𝑛 + 𝑜(1),

where 𝑜(1) denotes a remainder term that tends to 0 as 𝑛 → ∞ locally uniformly with
respect to (𝑡, 𝑥) ∈ R × R. Indeed, by virtue of Lemma 3.17, there holds

(𝑢𝜀𝑛1 , 𝑣
𝜀𝑛
1 ) → (𝑢∗, 𝑣∗) and (𝑢𝜀𝑛2 , 𝑣

𝜀𝑛
2 ) → (𝑢∗, 𝑣∗) locally uniformly as 𝑛→ +∞.

Since 𝜑𝜀𝑛 (𝑡, 𝑥) and 𝜓𝜀𝑛 (𝑡, 𝑥) are bounded, by following the arguments presented in Step 3
of the proof of Lemma 3.17, the classical homogenization theory then leads to the conver-
gence (up to an extraction of a subsequence) of (𝜑𝜀𝑛 (𝑡, 𝑥), 𝜓𝜀𝑛 (𝑡, 𝑥)) to (𝜑(𝑡, 𝑥), 𝜓(𝑡, 𝑥))
solving {

𝜑𝑡 − 𝜎𝐻𝜑𝑥𝑥 = (𝑟𝑢 − 𝜇𝑢)𝜑 + 𝜇𝑣𝜓 − 𝜅𝑢 (2𝑢∗ + 𝑣∗)𝜑 − 𝜅𝑢𝑢∗𝜓
𝜓𝑡 − 𝜎𝐻𝜓𝑥𝑥 = 𝜇𝑢𝜑 + (𝑟𝑣 − 𝜇𝑣)𝜓 − 𝜅𝑣𝑣∗𝜑 − 𝜅𝑣 (𝑢∗ + 2𝑣∗)𝜓,

and the convergence holds locally uniformly in (𝑡, 𝑥) ∈ R×R. Because of our normalization
(3.72), the limit function

(
𝜑(𝑡, 𝑥), 𝜓(𝑡, 𝑥)

)
is nontrivial and bounded on R × R, which is in

contradiction with Lemma 3.18. This establishes the uniqueness.
In order to prove the last claim, note that, for any 𝜏 ∈ R, (𝑢𝜀 (𝑡 + 𝜏, 𝑥), 𝑣𝜀 (𝑡 + 𝜏, 𝑥)) is

also an entire solution of (2.40) with the same upper and lower bounds. The uniqueness then
implies (𝑢𝜀 (𝑡 + 𝜏, 𝑥), 𝑣𝜀 (𝑡 + 𝜏, 𝑥)) ≡ (𝑢𝜀 (𝑡, 𝑥), 𝑣𝜀 (𝑡, 𝑥)), which means that (𝑢𝜀 (𝑡, 𝑥), 𝑣𝜀 (𝑡, 𝑥))
is a stationary solution. Similarly, (𝑢𝜀 (𝑡, 𝑥 + 𝜀), 𝑣𝜀 (𝑡, 𝑥 + 𝜀)) is an entire solution since the
coefficients are 𝜀-periodic. Hence (𝑢𝜀 (𝑡, 𝑥 + 𝜀), 𝑣𝜀 (𝑡, 𝑥 + 𝜀)) ≡ (𝑢𝜀 (𝑡, 𝑥), 𝑣𝜀 (𝑡, 𝑥)). The
proof of Lemma 3.19 is complete.
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Proof of Theorem 2.15. As regards Statement (i), the existence and uniqueness of a positive
stationary solution (𝑢∗𝜀 (𝑥), 𝑣∗𝜀 (𝑥)), as well as its 𝜀-periodicity, are a direct consequence
of Lemma 3.19. The convergence (𝑢∗𝜀 (𝑥), 𝑣∗𝜀 (𝑥)) → (𝑢∗, 𝑣∗) follows from Lemma 3.17.
Statement (ii) is already proved in Lemma 3.16.

Let us prove Statement (iii). Let 𝜀 > 0 be sufficiently small, so that 𝑘 𝜀 (𝜆) > 0 for all
𝜆 ∈ R. Then 𝑐∗

𝜀,𝑅
and 𝑐∗

𝜀,𝐿
are both positive, and (2.21a) and (2.22b) of Theorem 2.9

hold for any solution of (2.40) with nonnegative nontrivial bounded initial data. We argue
by contradiction. Suppose that (2.43) does not hold for some 𝑐1, 𝑐2 with 0 < 𝑐1 < 𝑐

∗
𝜀,𝐿

,
0 < 𝑐2 < 𝑐

∗
𝜀,𝑅

. Then there exist a constant 𝛿 > 0 and sequences 𝑡𝑛 → +∞ and 𝑥𝑛 with
−𝑐1𝑡𝑛 ≤ 𝑥𝑛 ≤ 𝑐2𝑡𝑛 such that

max
(
|𝑢(𝑡𝑛, 𝑥𝑛) − 𝑢∗𝜀 (𝑥𝑛) |, |𝑣(𝑡𝑛, 𝑥𝑛) − 𝑣∗𝜀 (𝑥𝑛) |

)
≥ 𝛿 for 𝑛 = 1, 2, 3, . . . .

Without loss of generality, we may assume that |𝑢(𝑡𝑛, 𝑥𝑛) − 𝑢∗𝜀 (𝑥𝑛) | ≥ 𝛿 for 𝑛 = 1, 2, 3, . . .
Let 𝑚𝑛 (𝑛 ∈ N) be the integers such that 𝑚𝑛𝜀 ≤ 𝑥𝑛 < (𝑚𝑛 + 1)𝜀 (𝑛 = 1, 2, 3, . . .).

Replacing by a subsequence if necessary, we may assume that 𝑥𝑛 − 𝑚𝑛𝜀 → 𝑥∗ as 𝑛 → ∞
for some 𝑥∗ ∈ [0, 𝜀] and that

(
𝑢(𝑡 + 𝑡𝑛, 𝑥 + 𝑚𝑛𝜀), 𝑣(𝑡 + 𝑡𝑛, 𝑥 + 𝑚𝑛𝜀)

)
converges locally

uniformly to an entire solution (𝑈 (𝑡, 𝑥), 𝑉 (𝑡, 𝑥)) of (2.40) as 𝑛→ ∞. By the construction,
we have

|𝑈 (0, 𝑥∗) − 𝑢∗𝜀 (𝑥∗) | ≥ 𝛿. (3.73)
Now we choose constant 𝑐1, 𝑐2 satisfying 0 < 𝑐1 < 𝑐1 < 𝑐

∗
𝜀,𝐿

, 0 < 𝑐2 < 𝑐2 < 𝑐
∗
𝜀,𝑅

. Then,
by Theorem 2.9, we have

lim inf
𝑡→∞

min
−𝑐1𝑡≤𝑥≤𝑐2𝑡

min
(
𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥)

)
≥ 𝜂

for some constant 𝜂 > 0. In view of this and the fact that −𝑐1𝑡 ≤ 𝑥𝑛 ≤ 𝑐2𝑡 (𝑛 ∈ N), we see
that

𝑈 (𝑡, 𝑥) ≥ 𝜂, 𝑉 (𝑡, 𝑥) ≥ 𝜂 for all (𝑡, 𝑥) ∈ R × R.
Then, by Lemma 3.19, (𝑈 (𝑡, 𝑥),𝑉 (𝑡, 𝑥)) coincides with the stationary solution (𝑢∗𝜀 (𝑥), 𝑣∗𝜀 (𝑥)),
but this contradicts (3.73). This proves Statement (iii). The proof of Theorem 2.15 is com-
plete.
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