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A B S T R A C T

Electrical Resistivity Imaging (ERI) is one of the most used techniques in geophysics. As for many imaging
methods, Digital Elevation Models (DEMs) are required to consider complex topography conditions. In this
paper, we present some developments implemented into a new 3D-ERI software optimized in this context.
The article focuses on the forward problem and discusses (i) the meshing methodology that directly consider
DEMs in the processing and several profiles where electrodes are not necessarily aligned and (ii) new aspects
for taking into account the unbounded domain. Indeed, defining boundary conditions of a numerical modelling
problem arises as one of the most important issues into solving Partial Differential Equations (PDE). In order
to solve the 3D-ERI forward problem, we propose an original implementation of the infinite elements, together
with conventional finite elements. This methodology is first validated on synthetic case reproducing cliffs and,
then, on a real case study presenting Badlands-like cliffs. Our results show that both the meshing procedure
as well as the use of infinite elements enhance the efficiency of the forward problem as well as the accuracy
of the inverse problem. In particular, this allows to reproduce more closely the local geology in complex
environments than with a conventional 2D approach.
1. Introduction

Electric Resistivity Imaging has become increasingly important
these last fifteen years (Loke et al., 2019) to provide useful subsur-
face information in civil-engineering (Dezert et al., 2019), archaeol-
ogy (Fauchard et al., 2018) or Earth Sciences (Portal et al., 2019),
due to its complementarity with other methods. ERI requires efficient
modelling tools able to invert thousands of parameters in order to assess
the distribution of electrical resistivity. To avoid artifacts and therefore
misinterpretations, 3D informations such as surface topography have
to be properly taken into account within the inversion process (Penz,
2012; Marescot, 2004; Rücker et al., 2017; Fargier et al., 2021).
Nevertheless, such procedure may be particularly fastidious (1) due to
the difficulties of meshing for complex structures and (2) due to the
important cost of time and memory during the numerical inversion
itself (Günther et al., 2006). Therefore, this challenge motivates the
development of open source softwares for interdisciplinary and flexible
modelling and inversion approaches.

Modelling ERI requires an accurate description of ground topogra-
phy, especially around electrodes, where current injection and potential
measurements are carried out (Rücker et al., 2006; Marescot et al.,
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2006). In particular, taking into account several electrodes profiles
together, where electrodes are not necessarily located on a straight
line, is not classical and requires to consider the full 3D geometry of
the domain of interest, as explained in the work of Udphuay et al.
(2011). Also, modelling methods need consistent boundary conditions
(BC) to formulate a well-posed problem (Hadamard, 1902). While the
surrounding medium of a survey can be considered infinite, artifi-
cial boundaries for the numerical model, by definition, have to be
set (Wood, 1976). To limit artifacts due to boundary conditions, a
classical technique in ERI consists in putting homogeneous Dirichlet
conditions far enough from the source injections (since the electric
field decreases to infinity (Marescot, 2004)). This technique implies
a large distance extension of the domain (and very stretched tetrahe-
dron) increasing the computational cost of the forward problem. Other
techniques also exist in the literature. Let us mention the so-called
transparent boundary conditions (Bayliss et al., 1982) or absorbing
boundary conditions (ABC), see Dey and Morrison (1979) for classical
mixed boundary conditions or Meeker (2014) and Sugahara (2017) for
more recent ABC. These methods are usually based on an analytical
resolution of the problem in the exterior domain using polar (or el-
lipsoidal) coordinates. Yet, the analytical solution cannot be obtained
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when considering complex geometry. Finally, let us mention the infinite
element method, see Wood (1976), Bettess (1977, 1980), Gerdes (1998,
2000) and Blome et al. (2009) for a more recent implementation of the
method. This method consists in enriching the classical finite element
basis with functions with infinite support (that decay at infinity). We
expect these additional functions to catch the behaviour of the solution
at infinity. Finally, this method is the most versatile and does not
require strong assumptions on the DEM.

In this paper, we present a new Python based code called PyLGRIM,
which stands for Python Language-based for Geoelectrical Resistivity
Imaging and the methodology implemented for solving ERI problems.
This work originates in the many measurements we have made in
complex topography environment, such as vertical cliffs (Junique et al.,
2024; Letortu et al., 2022), Badlands formations (Fauchard et al., 2023)
or underground quarries (Fargier et al., 2017). It is also motivated by
the desire to master and to freely share the entire process of modelling
the direct problem as well as solving the inverse problem. The main
features of the code are the following:

• We propose a quite simple procedure based on the use of GMSH
(Geuzaine and Remacle, 2009) to integrate any digital elevation
modelling (DEM) into the model calculated from photogrammet-
ric or Lidar methods.

• PyLGRIM can handle several electrodes profiles to generate a
mesh that exactly take into account the 3D position of the profiles.
Also, we can invert together the data of several electrodes profiles
at once.

• Finally, we propose a new infinite elements approach to bound
the computational domain. In particular, the proposed method is
cheap/efficient and robust to complex topography.

In a first section, we recall (i) the basic mathematical modelling of
ERI methods, (ii) the procedure to take into account steep topography
and several electrodes profiles, (iii) the discretization of the problem
with infinite elements approach as well as (iv) the inverse problem.
The second section focuses on (i) numerical examples and results (direct
model and inversion) on flat case and a synthetic cliff, followed by (ii) a
real case study located in France, on Badlands-like cliffs. In conclusion,
we review the main results of this work and indicate the challenges that
still need to be met in order to improve PyLGRIM. Finally, we specify
the tools available for reproducing the work presented and using the
software freely.

2. Mathematical modelling of ERI experiments/geoelectrical sur-
veys

2.1. Mathematical formulation of the direct problem

The classical mathematical model for the simulation of ERI ex-
periments/geoelectrical surveys is here described and shows how the
equations are obtained (Zhdanov and Keller, 1994). ERI is based on
the study of the circulation of an electric current inside the subsoil.
The fundamental equation is then the Ohm’s law:

𝐽 = 𝜎𝐸⃗, (1)

where 𝐽 represents the density of the current (with unit in A m−2), 𝜎 is
the electrical conductivity (S/m) and 𝐸⃗ is the electric field (V m−1). It is
common to introduce also 𝜌 = 𝜎−1 which corresponds to the resistivity
(Ω m).

The electric field satisfies the static Maxwell–Faraday equation so
that ∇⃗×𝐸⃗ = 0⃗, where ∇⃗ denotes the gradient and × is the cross product.
Since ∇⃗ × 𝐸⃗ = 0⃗, 𝐸⃗ derives from a scalar potential 𝑉 (by Helmholtz
decomposition theorem) and 𝐸⃗ = ∇⃗𝑉 . Moreover, without source term
in any volume 𝐷, the conservation of charge is written as follow:

− 𝐽 .𝑛 𝑑𝛤 = 0, (2)
∫𝜕𝐷

2 
Fig. 1. Representation of the subsoil  and the ground topography . 𝑏 shows the
volume of interest that contains the profile of electrodes at positions  .

where 𝑛 is the outward unit normal, meaning that the intensity flux
over the boundary of 𝐷 is null, and 𝛤 is the boundary of the volume
𝐷. By flux-divergence theorem and since the above result is true for
any volume 𝐷, we deduce that:

− ∇⃗ ⋅ 𝐽 = 0. (3)

Finally, with (1) and 𝐸⃗ = ∇⃗𝑉 , the equation satisfied by the potential
𝑉 is given by:

− ∇⃗ ⋅
(

𝜎∇⃗𝑉
)

= 0. (4)

This equation is set in an open domain  corresponding to the
subsoil (see Fig. 1). To formulate a well-posed problem, it must be
equipped with boundary conditions. First, at infinity, we impose the
potential to vanish. Second, on the boundary corresponding to the floor,
we impose the intensity flux to be zero, that is to say 𝜎∇⃗𝑉 ⋅𝑛 = 0, which
amounts to consider that the air is a perfect insulator. It remains to
model the source term which corresponds to the current injection with
an electrode. Classically, this is represented by a Dirac point source
located on the surface. To sum up, the problem to solve is the following:
Find the potential 𝑉 satisfying the following PDE system:

⎧

⎪

⎨

⎪

⎩

−∇⃗ ⋅
(

𝜎∇⃗𝑉
)

= 𝑐𝛿𝑥 ,𝑦 ,𝑧 in 
𝜎∇⃗𝑉 ⋅ 𝑛 = 0 on 
lim∞ 𝑉 = 0

, (5)

where 𝛿𝑥 ,𝑦 ,𝑧 is the Dirac distribution located at the electrode position
(𝑥 , 𝑦 , 𝑧 ) and 𝑐 is a constant that represents the current density
injected on the electrode  . It is known that this problem has a unique
solution 𝑉 (Hadamard, 1902).

Since the computational domain must be bounded, we denote by 𝑏
the domain of interest (see Fig. 1). More precisely, we have:

𝑏 =
{

(𝑥, 𝑦) ∈ [−𝐿𝑥 − 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 + 𝐿𝑥] × [−𝐿𝑦 − 𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥 + 𝐿𝑦]
and 𝑧 ∈ [𝑧𝑚𝑖𝑛 − 𝐿𝑧,(𝑥, 𝑦)]

} (6)

where (𝑥, 𝑦) is the function that describes the topography of the
ground, 𝐿𝑥 > 0, 𝐿𝑦 > 0 𝐿𝑧 > 0 are three parameters that give the
position of the artificial boundary of 𝑏 (in particular 𝐿𝑧 describes
the depth to model). The parameters 𝑥𝑚𝑖𝑛 < 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑖𝑛 < 𝑦𝑚𝑎𝑥 and
𝑧𝑚𝑖𝑛 < 𝑧𝑚𝑎𝑥 represent the bounds of the domain of interest and will be
clarify in the next section. In the following, we denote by ∞ =  ⧵ 𝑏
the (infinite) exterior domain.

2.2. Mesh topography

Complex environment DEMs can be obtained by Lidar (Brodu and
Lague, 2012; Hobbs et al., 2019; Milan et al., 2007; Roulland et al.,
2021) technique or by photogrammetry (Stocker et al., 2015; Medjkane
et al., 2018; Fauchard et al., 2023). Typically, this leads to get a *.xyz
file listing the 𝑥𝑦𝑧-coordinates of a point cloud representing the 3D
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Fig. 2. Example of mesh generated by script generateMsh.py of PyLGRIM / GMSH in the case of 3 electrodes profiles (P2, P4, P5, see Table 1). In Figures (𝑎) and (𝑏), the scale
in 𝑥, 𝑦 and 𝑧 are not the same. The line separating the two colours of the mesh in Figure (𝑐) corresponds to the recursively computed path linking all the electrodes.
geometry of the ground. The next step consists in building from this
DEM a volume mesh representing the subsoil in depth. This operation
is not classical in standard photogrammetry softwares and we will
explain here the procedure implemented in PyLGRIM. This procedure,
based on mesh deformation as in Loke (2000), Rücker et al. (2006),
Udphuay et al. (2011) and Blanchy et al. (2020) is detailed here. Given
an *.xyz file representing the topography, i.e. a list of 3D coordinates
(𝑥𝑖, 𝑦𝑖, 𝑧𝑖 = (𝑥𝑖, 𝑦𝑖)𝑖=1,…,𝑁 ) (𝑁 being the number of points), we proceed
in two steps:

1. Denoting by (𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥), (𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥) and (𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥) the minima
and maxima of the coordinates (𝑥𝑖, 𝑦𝑖, 𝑧𝑖), we build a rectangular
cube of dimension [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] × [𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥] × [𝑧𝑚𝑖𝑛 − 𝐿𝑧, 𝑧𝑚𝑖𝑛],
where the parameter 𝐿𝑧 > 0 describes the depth of the basement
one wishes to consider. Using GMSH (Geuzaine and Remacle,
2009), it is straightforward to create and mesh this cube. The
integration of the electrode profiles positions is yet less obvious
and it is discussed hereafter.

2. This mesh is then deformed by changing the 𝑧𝑝 coordinate of
each point into 𝑧𝑝 thanks to the following transformation:

𝑧𝑝 = 𝑧𝑝 +
𝑧𝑝 − (𝑧𝑚𝑖𝑛 − 𝐿𝑧)

𝐿𝑧
× (𝑧𝑀 − 𝑧𝑚𝑖𝑛), (7)

where 𝑧𝑀 is the 𝑧 coordinate of the nearest point in the list of
points of the DEM. With this transformation, all points of the
cube with 𝑧-coordinate 𝑧𝑝 = 𝑧𝑚𝑖𝑛 get as new coordinate 𝑧𝑀 , so
that the top of the cube is deformed to become the DEM.

To take into account the exact electrodes positions (𝑥𝑙𝑗 , 𝑦
𝑙
𝑗 , 𝑧

𝑙
𝑗 )𝑗=1,…,𝑁𝑙

(where 𝑁𝑙 is the number of electrodes on electrode profile 𝑙), the coor-
dinates (𝑥𝑙𝑗 , 𝑦

𝑙
𝑗 , 𝑧

𝑙
𝑗 )𝑗=1,…,𝑁𝑙

are added to the list of the DEM coordinates.
Also, we must add the positions (𝑥𝑙𝑗 , 𝑦

𝑙
𝑗 , 𝑧𝑚𝑖𝑛)𝑗=1,…,𝑁𝑙

to the mesh of the
cube. In GMSH, this requires to construct a path linking the electrodes.
In particular, if two electrodes profiles intersect, we must split each
profiles of electrodes into two profiles so that no new electrodes pro-
files intersect. The computation of this path is automatically done in
PyLGRIM and it is implemented through a recursive algorithm, which
works efficiently up to 5 possibly intersecting electrodes profiles (for
more profiles of 64 electrodes the computation times can become very
long). This also enables to build a mesh which is refined around the
electrodes and under the electrodes profiles and therefore in better
adequacy with the sensitivity of a 2D profile. This enables also a
better comparison between 3D inversion results and independent 2D
inversion results since the slice of the 3D mesh under the electrode
profile corresponds directly to a 2D mesh (if the electrodes line is
straight). For more than 5 electrodes profiles, a simpler (but faster)
algorithm is implemented which leads to a mesh which is not refined
under electrodes profiles.
3 
Fig. 3. Representation of the support of an infinite element test function lying on the
boundary {𝑥 = 𝑥𝑚𝑎𝑥 + 𝐿𝑥}. In the interior domain 𝑏, the tetrahedron is represented.

The Fig. 2 presents an example of application of this procedure with
PyLGRIM on a case of study: the ‘‘Vaches Noires’’ cliffs (VNCs) (Villers-
sur-Mer, Normandy, France). On this example, the required data to
build the mesh are the DEM points cloud describing the ground topog-
raphy, and three ∗ .𝑥𝑦𝑧 files corresponding to electrodes positions for
each profiles (see the documentation in https://github.com/atonnoir/
PyLGRIM.git). PyLGRIM then generates three files: 𝑚𝑒𝑠ℎ𝐷𝐸𝑀𝐹𝑙𝑎𝑡.𝑔𝑒𝑜
describing the geometrical positions of the electrodes on the cube,
𝑚𝑒𝑠ℎ𝐷𝐸𝑀𝐹𝑙𝑎𝑡.𝑚𝑠ℎ corresponding to the 3D mesh of the cube (without
the ground topography), and 𝑚𝑒𝑠ℎ𝐷𝐸𝑀.𝑚𝑠ℎ corresponding to the 3D
deformed mesh (taking into account the 3D ground topography).

2.3. Discretization aspects

Let us now discuss the discretization aspects. Formally, the varia-
tional formulation of problem (5) is given by: For any test function 𝛹
we seek for 𝑉 solution to:

𝑎(𝑉 , 𝛹 ) = 𝑐𝛹 (𝑥 , 𝑦 , 𝑧 ), where 𝑎(𝑉 , 𝛹 ) = ∫
𝜎∇𝑉 ⋅ ∇𝛹 𝑑 . (8)

To numerically solve this problem, a finite element space V is consid-
ered to discretize the unknown 𝑉 . In the bounded domain 𝑏, based on
classical mesh, usual Lagrange finite elements discretization are used.

In the unbounded domain ∞, the test functions are defined as
the tensor product of classical Lagrange finite elements on triangle,
representing the faces of the tetrahedron on artificial boundaries of 𝑏,
and a decay function with infinite support (see Fig. 3).

More precisely, we consider 𝛹 a Lagrange test function in 𝑏 such
that 𝛹 is not null on the boundary {𝑥 = 𝑥 +𝐿 } for instance, and let
𝑚𝑎𝑥 𝑥

https://github.com/atonnoir/PyLGRIM.git
https://github.com/atonnoir/PyLGRIM.git
https://github.com/atonnoir/PyLGRIM.git
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Fig. 4. Representation of the support of an infinite element test function on the edge {𝑥 = 𝑥𝑚𝑎𝑥 + 𝐿𝑥} × {𝑦 = 𝑦𝑚𝑖𝑛 − 𝐿𝑦} (on the left) and on the corner {𝑥 = 𝑥𝑚𝑎𝑥 + 𝐿𝑥} × {𝑦 =
𝑦𝑚𝑖𝑛 − 𝐿𝑦} × {𝑧 = 𝑧𝑚𝑖𝑛 − 𝐿𝑧} (on the right).
𝑃 (𝑦, 𝑧) = 𝛹 (𝑥𝑚𝑎𝑥 + 𝐿𝑥, 𝑦, 𝑧). Then, we define the associated function as
follows:

𝑁(𝑥, 𝑦, 𝑧) = 𝑃 (𝑦, 𝑧)𝐷(|𝑥 − 𝑥𝑚𝑎𝑥 − 𝐿𝑥|), with
{

𝐷(0) = 1
𝐷(𝑥) ⟶

𝑥→+∞
0 . (9)

Note that we impose 𝐷(0) = 1 to ensure the continuity of the
test function. Similarly, we can defined the infinite elements on the
boundaries {𝑥 = 𝑥𝑚𝑖𝑛 − 𝐿𝑥}, {𝑦 = 𝑦𝑚𝑖𝑛 − 𝐿𝑦}, {𝑦 = 𝑦𝑚𝑎𝑥 + 𝐿𝑦} and
{𝑧 = 𝑧𝑚𝑖𝑛 − 𝐿𝑧} of 𝑏. We must also handle carefully the element on
the edges and on the corners of the artificial boundary of 𝑏. Indeed,
to define continuous functions, we need to construct element on the
edge and on the corner as a tensor product. For instance, on the line
{𝑥 = 𝑥𝑚𝑎𝑥 + 𝐿𝑥} × {𝑦 = 𝑦𝑚𝑖𝑛 − 𝐿𝑦}, we have:

𝑁𝑒(𝑥, 𝑦, 𝑧) =𝑃 (𝑧)
(

𝐷(|𝑥 − 𝑥𝑚𝑎𝑥 − 𝐿𝑥|)𝐷(|𝑦 − 𝑦𝑚𝑖𝑛 + 𝐿𝑦|)

+ 𝐷𝑒(|𝑥 − 𝑥𝑚𝑎𝑥 − 𝐿𝑥|, |𝑦 − 𝑦𝑚𝑖𝑛 + 𝐿𝑦|)
)

,
(10)

where 𝑃 is the (trace of the) Lagrange function on a vertical segment,
see Fig. 4, and 𝐷𝑒 is a chosen function s.t. 𝐷𝑒(0, ⋅) = 𝐷𝑒(⋅, 0) = 0.
This last condition ensures the continuity of the test function 𝑁𝑒 (for
instance, 𝑁𝑒(𝑥, 𝑦𝑚𝑖𝑛−𝐿𝑦, 𝑧) = 𝑃 (𝑧)𝐷(|𝑥 − 𝑥𝑚𝑎𝑥 − 𝐿𝑥|) which corresponds
to the test function (9) on the same boundary 𝑥 = 𝑥𝑚𝑎𝑥 + 𝐿𝑥). In the
same way, we have, for instance, on the corner {𝑥 = 𝑥𝑚𝑎𝑥 + 𝐿𝑥} × {𝑦 =
𝑦𝑚𝑖𝑛 − 𝐿𝑦} × {𝑧 = 𝑧𝑚𝑖𝑛 − 𝐿𝑧}:

𝑁𝑐 (𝑥, 𝑦, 𝑧) =𝐷(|𝑥 − 𝑥𝑚𝑎𝑥 − 𝐿𝑥|)𝐷(|𝑦 − 𝑦𝑚𝑖𝑛 + 𝐿𝑦|)𝐷(|𝑧 − 𝑧𝑚𝑖𝑛 + 𝐿𝑧|)

+ 𝐷𝑐 (|𝑥 − 𝑥𝑚𝑎𝑥 − 𝐿𝑥|, |𝑦 − 𝑦𝑚𝑖𝑛 + 𝐿𝑦|, |𝑧 − 𝑧𝑚𝑖𝑛 + 𝐿𝑧|),
(11)

where 𝐷𝑐 is a chosen function ensuring once again the continuity of the
test function, i.e. 𝐷𝑐 (0, ⋅, ⋅) = 𝐷𝑐 (⋅, 0, ⋅) = 𝐷𝑐 (⋅, ⋅, 0) = 0. As we will see
below, the precise choice of the functions 𝐷, 𝐷𝑒 and 𝐷𝑐 is not essential
(the main point will be their integrals) as soon as they are integrable.

Let us now detail the computation of the integral terms in the varia-
tional formulation for infinite element test functions. For simplicity, we
focus on a particular triangle  on boundary {𝑥 = 𝑥𝑚𝑎𝑥+𝐿𝑥}. We denote
by 𝑃𝑖(𝑦, 𝑧), 𝑖 ∈ {1,… , 𝑚}, the set of Lagrange polynomial functions in
this triangle, such that:
{

𝑃𝑖(𝑦, 𝑧) = 𝑎𝑖 + 𝑏𝑖𝑦 + 𝑐𝑖𝑧 +⋯ + 𝑑𝑖𝑦𝑝 + 𝑒𝑖𝑧𝑝; 𝑖 = 1...𝑚
𝑃𝑖(𝑦𝑗 , 𝑧𝑗 ) = 𝛿𝑖𝑗

,

with 𝑚 the degree of freedom (DOF) in the triangle. We also denote by
𝑁𝑖 = 𝑃𝑖𝐷(|𝑥 − 𝑥𝑚𝑎𝑥 − 𝐿𝑥|) the associated infinite test functions defined

as in (9). To compute the integral term of the variational formulation

4 
associated to this function, we need to compute:

∫

+∞

𝑥max+𝐿𝑥
∫

∇⃗𝑁𝑖(𝑥, 𝑦, 𝑧) ⋅ (𝜎∇⃗𝑁𝑗 (𝑥, 𝑦, 𝑧)) 𝑑𝑥𝑑𝑦𝑑𝑧

=∫

+∞

0
𝐷2(𝑥)𝑑𝑥 ∫

∇⃗𝑃𝑖(𝑦, 𝑧) ⋅ ∇⃗𝑃𝑗 (𝑦, 𝑧)𝑑𝑦𝑑𝑧

+ ∫

+∞

0
(𝐷′(𝑥))2𝑑𝑥 ∫

𝑃𝑖(𝑦, 𝑧)𝑃𝑗 (𝑦, 𝑧)𝑑𝑦𝑑𝑧

=𝛼 K2𝐷
𝑖,𝑗 + 𝛼′ M2𝐷

𝑖,𝑗

(12)

where 𝛼 > 0 and 𝛼′ > 0 are the integrals of 𝐷2 and (𝐷′)2 on the semi-
line [0,+∞[ respectively, and K2𝐷 and M2𝐷 are the classical rigidity
and mass Lagrange finite element matrices in 2𝐷. In the same way, we
get for the functions (10):

∫

+∞

𝑥max+𝐿𝑥
∫

𝑦min−𝐿𝑦

−∞ ∫
∇⃗𝑁𝑒

𝑖 (𝑥, 𝑦, 𝑧) ⋅ (𝜎∇⃗𝑁
𝑒
𝑗 (𝑥, 𝑦, 𝑧)) 𝑑𝑥𝑑𝑦𝑑𝑧

=𝛼𝑒 K1𝐷
𝑖,𝑗 + 𝛼′𝑒 M

1𝐷
𝑖,𝑗

where 𝛼𝑒 and 𝛼′𝑒 are the integrals of (𝐷(⋅)𝐷(⋅)+𝐷𝑒(⋅, ⋅))2 and (𝐷′(⋅)𝐷′(⋅)+
(𝐷𝑒)′(⋅, ⋅))2, and for the functions (11):

∫

+∞

𝑥max+𝐿𝑥
∫

𝑦min−𝐿𝑦

−∞ ∫

𝑧min−𝐿𝑧

−∞
∇⃗𝑁𝑐 (𝑥, 𝑦, 𝑧) ⋅ (𝜎∇⃗𝑁𝑐 (𝑥, 𝑦, 𝑧)) 𝑑𝑥𝑑𝑦𝑑𝑧

= 𝛼′𝑐 .

In other words, to compute the integral terms with these infinite
elements, we simply need to compute classical finite element matrices,
and to add it to the global rigidity matrix multiplied by the coefficients
𝛼, 𝛼𝑒,𝑐 or 𝛼′, 𝛼′𝑒,𝑐 . These coefficients are the parameters we shall choose.
In fact, we can also notice that it corresponds to consider ABC with
compatibility relations at the edges and the corners, in the same spirit
as in Modave et al. (2020) for wave equation.

2.4. Recall on the inverse problem

The discretization of the direct problem (8) with infinite elements
leads to solve a linear system of the form:

K(𝜎⃗)𝑉 = 𝐹 , (13)

where 𝑉 ∈ R𝑛 represents the potential solution on each nodes of the
mesh, 𝐹 the source term and 𝜎⃗ ∈ R𝑝 the conductivity in each cell of
the mesh, supposed to be constant (𝑝 being the number of cells).

Let us define now the inverse problem we are interested in. The
purpose is to reconstruct the conductivity 𝜎⃗ in each cell given apparent
resistivity measurements on the surface, that we will denote by a vector
𝑑𝑒𝑥𝑝 ∈ R𝑚, where 𝑚 is the number of data. Let us also introduce the
observation operator O represented by an 𝑚 × 𝑛 matrix that maps the
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solution 𝑉 of the (discretized) direct problem (13) to the observations.
Then, the data 𝑑𝑒𝑥𝑝 can be expressed as follows:

𝑑𝑒𝑥𝑝 = O𝑉 + 𝜂,

= O
[

K(𝜎⃗𝑒𝑥)
]−1 𝐹 + 𝜂,

(14)

where 𝜂 represents the noise and 𝜎⃗𝑒𝑥 is the exact parameter we are
looking for. Classically, the idea is to formulate the inverse problem as
a minimization problem: Find the conductivity 𝜎⃗, that minimizes

𝐽 (𝜎) = 1
2
‖𝑑𝑒𝑥𝑝 −O

[

K(𝜎⃗)
]−1 𝐹‖

2
2 +

𝜀
2
(𝜎⃗), (15)

where the first term above corresponds to the discrepancy to the data,
and the second term (𝜎⃗) to the regularization term (which accounts
for our a priori knowledge on the medium). The parameter 𝜀 > 0
corresponds to the weight given to the regularization part. In our case,
we consider as regularization term a smoothing matrix L so that

(𝜎⃗) = ‖ L 𝜎⃗ ‖

2
2,

where

L𝑖,𝑗 =

⎧

⎪

⎨

⎪

⎩

−1 if 𝑗 ∈ N𝑖,
#N𝑖 if 𝑖 = 𝑗,
0 elsewhere

,

and N𝑖 is the set of neighbouring cells to cell 𝑖. A second smoothing
matrix is also implemented in the code to enforced stratified media:

L𝑠𝑡𝑟𝑎𝑡
𝑖,𝑗 =

⎧

⎪

⎨

⎪

⎩

−𝜃𝑖,𝑗 if 𝑗 ∈ N𝑖,
∑

𝑗∈𝑁 𝑖 𝜃𝑖,𝑗 if 𝑖 = 𝑗
0 elsewhere

where 𝜃𝑖,𝑗 is a parameter that gradually varies between 0, if the barycen-
ters of cells 𝑖 and 𝑗 have the same positions (𝑥, 𝑦), and 1, if the
barycenters of cells 𝑖 and 𝑗 have the same altitudes 𝑧. Thought this is
only empirical, this smoothing matrix penalizes variations in direction
𝑥 and 𝑦, and not in direction 𝑧.

To solve the minimization problem (15), we have implemented a
Gauss–Newton algorithm where the regularization parameter 𝜀 varies
during the iterations. The main difficulty then is to compute efficiently
the sensitivity matrix (or Jacobian matrix) of O

[

K(𝜎⃗)
]−1 𝐹 . This is

done through the adjoint state method which amounts to solve direct
problems. For the seek of completeness, let us recall the method. We
start from the fact that K(𝜎⃗ + 𝛿𝜎) = K(𝜎⃗) + K(𝛿𝜎), so that using first
order Taylor expansion we get

𝑉 (𝜎⃗ + 𝛿𝜎) =
[

K(𝜎⃗ + 𝛿𝜎)
]−1

𝐹 ,

=
[

I +
[

K(𝜎⃗)
]−1 K(𝛿𝜎)

]−1
[

K(𝜎⃗)
]−1 𝐹

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
=𝑉

,

= 𝑉 (𝜎⃗) −
[

K(𝜎⃗)
]−1 K(𝛿𝜎)𝑉 (𝜎⃗) + 𝑂⃗(‖𝛿𝜎‖2).

In other words, the variation of the potential ⃗𝛿𝑉 considering a variation
of the conductivity 𝛿𝜎 is given by

⃗𝛿𝑉 = −
[

K(𝜎⃗)
]−1 K(𝛿𝜎)𝑉 (𝜎⃗) + 𝑂⃗(‖𝛿𝜎‖2).

Taking the scalar product with O𝑡𝑒𝑖, where 𝑒𝑖 is the 𝑖th canonical vector
of R𝑚, and using the fact that

[

K(𝜎⃗)
]−1 is symmetric, we get

(O ⃗𝛿𝑉 , 𝑒𝑖) = −(K(𝛿𝜎)𝑉 ,
[

K(𝜎⃗)
]−1 O𝑡𝑒𝑖

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
∶=𝑃𝑖

) + 𝑂(‖𝛿𝜎‖22)

= −(K(𝛿𝜎)𝑉 , 𝑃𝑖) + 𝑂(‖𝛿𝜎‖22)

where 𝑃𝑖 is the adjoint variable that we need to compute by solving the
direct problem

[

K(𝜎⃗)
]−1 O𝑡𝑒𝑖. To conclude, we simply need to recall that

the conductivity 𝜎 is constant on each cell, so that the sensitivity with
respect to cell 𝑘 of the 𝑖th observation is given by:

𝜕(O𝑉 , 𝑒𝑖) = −(K(1⃗𝑘)𝑉 , 𝑃𝑖) (16)

𝜕𝜎𝑘

5 
Fig. 5. Mesh used for the flat case study (containing 106 453 nodes and 82 182
tetrahedra). The electrodes are located on the straight line on the top surface in the
middle (at the interface between the two coloured meshes in green and orange). The
dimension of the cube are 𝑏 = [−0.5, 0.5] × [−0.5, 0.5] × [−1, 0].

where 1⃗𝑘 is the vector of R𝑝 equal to 0 except at position 𝑘 where it is
equal to 1.

In the implementation in the code, to reduce the computational cost,
a storage in a compact form (i.e. storing only non zero values) of all
the local matrix K(1⃗𝑘) is used. Doing so, at each step of the Gauss–
Newton algorithm, only the adjoint states and the scalar product (16)
must be computed. Finally, the Gauss–Newton iterative algorithm of
minimization is stopped when we reach an admissible error, i.e. when
the functional 𝐽 is lesser than a given tolerance.

3. Numerical examples & results

In this last section, numerical results obtained with PyLGRIM are
presented as well as some examples of use of the codes. The whole
codes are written in Python and are decomposed into three main
scripts (see the documentation and the codes in https://github.com/
atonnoir/PyLGRIM.git):

1. DEM : This script aims at constructing the 3D mesh of the domain
of study. The methodology has been described in Section 2.2.

2. Simu ERI : This script aims at solving the direct problem using in-
finite elements described previously. Also, other boundary con-
ditions can be used: simple homogeneous Dirichlet conditions or
mixed boundary conditions.

3. Inv ERI : This script aims at solving the inverse problem of
resistivity reconstruction based on electrode measurements. At
the moment, the data must be formatted as apparent resistivity.

The following numerical examples can be reproduced thanks to the
tutorial given with the software. In the next examples, the first purpose
will be to demonstrate the interest of the proposed BC in the case of
a cliff topography. To do so, we will first focus on the direct problem.
Then, we will show some inversion results taking into account several
profiles of electrodes.

3.1. Synthetic flat case (Direct problem)

We consider first the situation of a half space  = R2 × {𝑧 ≤
0} perfectly homogeneous and isotropic with resistivity 𝜌 = 1 Ω m
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Fig. 6. Comparison of the matrices 𝐸 defined by (18) corresponding to the error percentage between the approximate solution and the analytical one using IE (left) and MBC
(right). The colours represent the value of the entries of the matrix 𝐸𝑖,𝑗 at row 𝑖 and column 𝑗.
(we consider for simplicity adimensional quantity for the synthetic
examples) and a profile of 64 electrodes equally spaced on the segment
{(−0.4, 0, 0), (0.4, 0, 0)} on the floor, with an inter electrode spacing 𝑑 =
0.0125 (see Fig. 1). In that case, considering a current injection on one
electrode 𝑖, we know that the analytical solution 𝑉𝑒𝑥 is given by:

𝑉 𝑖
𝑒𝑥(𝑥⃗) =

1
2𝜋‖𝑥⃗ − 𝑥⃗𝑖‖

where 𝑥⃗𝑖 is the location of electrode 𝑖. Then, we can construct the ma-
trix 𝑃𝑎 which entry [𝑃𝑎]𝑖𝑗 corresponds to the measurement of electrical
potential 𝑉 𝑖

𝑒𝑥 at electrode 𝑖 ≠ 𝑗 due to a current injection at electrode
𝑗 ≠ 𝑖 (by convention, we will set [𝑃𝑎]𝑖𝑖 = 0), or in other words:

[𝑃𝑎]𝑖𝑗 =
1

2𝜋𝑑𝑖𝑗
(17)

where 𝑑𝑖𝑗 = ‖𝑥⃗𝑖 − 𝑥⃗𝑗‖ is the distance between the two electrodes 𝑖
and 𝑗. This analytical solution will allow us to evaluate in this simple
configuration the effect of the boundary conditions.

For the numerical computations, we have considered the cube 𝑏 =
[−0.4 − 𝐿𝑥, 0.4 + 𝐿𝑥] × [−𝐿𝑦, 𝐿𝑦] × [−𝐿𝑧, 0]. The mesh, see Fig. 5, has
been generated with the first script (DEM) and the generated mesh is
refined around electrodes so that we have approximately 5 tetrahedrons
between two electrodes. The numerical results were obtained using
second order tetrahedral finite elements. Let us note that in the code
first order elements are also available. Also, the conversion from linear
to quadratic finite element is implemented in the first script (see the
Tutorial with the code for more details). The electrical current injected
on each electrode  is 𝑐 = 1 A.

Taking 𝐿𝑥 = 0.1, 𝐿𝑦 = 0.5 and 𝐿𝑧 = 1.0, we have compared the
so-called mixed boundary conditions (MBC) with the Infinite Element
(IE). To do so, we computed the error matrix:

𝐸 =
|𝑃𝑎 − 𝑃 |

𝑃𝑎
× 100 (18)

where 𝑃 is the matrix of electrical potential [V] measurement numer-
ically obtained. On Fig. 6, we have represented the error matrix in
the two cases. The problem being commutative the matrix 𝑃 and 𝑃𝑎
are symmetric, and so is the matrix 𝐸. Also, as we can expect, the
error is larger for electrodes located close to the artificial boundaries
(electrode 1 and 64). For the two methods, the results are quite similar.
More precisely, the maximum error max𝑖,𝑗 𝐸𝑖,𝑗 is smaller with IE ( 10, 8%
versus 15, 5%) whereas it is greater in 𝐿2-norm ∑

𝑖≠𝑗 𝐸
2
𝑖,𝑗∕64

2 ( 5.7%
versus 3.5%). As a first conclusion, we can say that, for a similar
computational cost (the two methods involve similar computations
since they both correspond to a Robin type boundary condition), we
get similar performances.
6 
3.2. Synthetic cliff case (Direct problem)

Let us now consider a simple cliff topography and the domain  =
R2 × {𝑧 ≤ 𝑓 (𝑥, 𝑦)} where

𝑓 (𝑥, 𝑦) =
0 if 𝑥 ≤ 0.3
𝑥−0.3
0.3 if 𝑥 ∈ [0.3, 0.6]

0.5 if 𝑥 ≥ 0.6
(19)

is a function that described the ground topography, see Fig. 7. This
time, we supposed the medium to be heterogeneous. More precisely,
we consider that:

𝜌 = 100 if 𝑧 ≤ −0.25 & (𝑥, 𝑦, 𝑧) ∉ 𝐵1 ∪ 𝐵2
40 if 𝑧 > −0.25 & (𝑥, 𝑦, 𝑧) ∉ 𝐵1 ∪ 𝐵2

where 𝐵1 and 𝐵2 are two sphere of centre (0.65,−0.2,−0.0) and
(0.2, 0.35,−0.25) and radii 0.15 and 0.1 respectively. In the two spheres,
we have set 𝜌 = 5 Ω m. The choice of the sphere is a classic
example in geophysics to study the response of methods to an anomaly
for example, see the response of a sphere in the electrical method
presented by Telford et al. (1990), p. 530. Let us mention that the
inhomogeneities are taken into account in PyLGRIM as a simple text file
given in each cell the value of the resistivity, supposed to be constant
inside the element.

In this configuration, we have computed the matrix 𝑃 of potential
measurement (described previously in flat case configuration) using a
profile of 64 electrodes equally spaces between (0.1, 0, 0) and (0.9, 0, 0.5).
The computational domain 𝑏 is given by [0.1−𝐿𝑥, 0.9+𝐿𝑥]×[−𝐿𝑦, 𝐿𝑦]×
[−𝐿𝑧, 𝑓 (𝑥, 𝑦)]. Since no analytical solution is available in this case, to
measure the quality of the results, we have computed the matrix 𝑃
twice: first with a ‘‘small’’ domain, taking 𝐿𝑥 = 0.1, 𝐿𝑦 = 0.5 and 𝐿𝑧 = 1,
and then with a ‘‘large’’ domain, taking 𝐿𝑥 = 0.6, 𝐿𝑦 = 1 and 𝐿𝑧 = 1.5.
The corresponding mesh are presented on Fig. 8.

Denoting by 𝑃𝑠 and 𝑃𝑙 the obtained matrices in each case (’s’ for
small and ‘l’ form large), we have computed the relative error matrix:

𝐸𝑑𝑖𝑓𝑓 =
|

|

|

|

𝑃𝑠 − 𝑃𝑙
𝑃𝑙

|

|

|

|

(20)

where we assume that the matrix 𝑃𝑙 is closer to the true matrix of
potential measurement. One expect of course that if the boundary
condition on the artificial boundary exactly takes into account the
infinite exterior domain, then we would have 𝐸𝑑𝑖𝑓𝑓 = 0 (in other words,
the solution does not depend on the size of the computational domain
if the boundary condition is ‘‘transparent’’). This matrix 𝐸𝑑𝑖𝑓𝑓 has been
computed using IE and using MBC. As we can see on Fig. 9, the error is
smaller when using IE (the maximum error is 12.74% with IE whereas
it is 19.44% with MBC). Let us mention that we have also compared
the computed matrix 𝑃𝑙 (in the large domain) using IE or MBC, and
the maximum relative difference is 3.5%, which means that in both
case, the computation in the large domain gives similar results (and
the impact of the artificial boundary is small at this distance).



A. Tonnoir et al.

Fig. 7. Representation of the synthetic cliff topography and the subsoil  containing the two spheres and the two layers. On the right, we have represented with colours the value
of the resistivity of the heterogeneities.

Fig. 8. Meshes used for the cliff case study (on the left, for the small domain, with 106 453 nodes and 84 182 elements, and on the right, for the large domain, with 185 135 nodes
and 142 692 elements). The dimension of the small domain is [0, 1] × [−0.5, 0.5] × [−1, 𝑓 (𝑥, 𝑦)] and the dimension of the large domain is [−0.5, 1.5] × [−1, 1] × [−1.5, 𝑓 (𝑥, 𝑦)], where the
topography is given by the function 𝑓 defined in (19).

Fig. 9. Comparison of the matrices 𝐸𝑑𝑖𝑓𝑓 defined by (20) corresponding to the error percentage between the solution computed in the small domain and the solution computed
in the large domain using IE (on the left) and MBC (on the right). The colours represent the value of the entries of the matrix 𝐸𝑖,𝑗 at row 𝑖 and column 𝑗.
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Fig. 10. Representation of the mesh for data inversion in the synthetic cliff topography
(259 937 Nodes and 202 249 elements). The dimension of the domain is [−0.35, 1.25] ×
[−0.6, 0.7] × [−1, 𝑓 (𝑥, 𝑦)], where the topography is given by the function 𝑓 defined in
(19).

3.3. Synthetic cliff case (Inverse problem)

In this section, we still consider the topography and configuration
presented in the previous section, see Fig. 7, but this time for the
inverse problem. Using PyLGRIM, we have generated synthetic data
of resistivity on two profiles as illustrated on Fig. 10. The two pro-
files are composed of 32 electrodes equally spaced between points
(−0.15,−0.2, 0) and (0.85,−0.2, 0.5) for the first profile, and between
(0.1, 0.4, 0) and (0.75,−0.3, 0.5) for the second profile. The data have
been generated on a very large domain (using second order finite
elements) so that IE BC and MBC give very close apparent resistiv-
ity of data resistivity. To get apparent resistivity data, we solve the
direct problem as mentioned in the very large domain and knowing
the heterogeneities. Thus, we get the potential 𝑉 . We compute also
the solution 𝑉 ℎ𝑜𝑚 when considering an homogeneous medium with
resistivity 1. Then, the dimensionless apparent resistivity is given for
a quadripole ABMN by

𝜌𝑎 =
𝑉𝐴𝑀 − 𝑉𝐵𝑀 − 𝑉𝐴𝑁 + 𝑉𝐵𝑁
𝑉 ℎ𝑜𝑚
𝐴𝑀 − 𝑉 ℎ𝑜𝑚

𝐵𝑀 − 𝑉 ℎ𝑜𝑚
𝐴𝑁 + 𝑉 ℎ𝑜𝑚

𝐵𝑁

,

where 𝑉𝑖𝑗 corresponds to the electrical potential at electrode 𝑖 injecting
at electrode 𝑗.

The inversion process yet is carried out on the smaller domain (to
avoid ‘‘inverse crime’’ and to get a reasonable computational time) rep-
resented on Fig. 10 using also second order finite elements. The dataset
used for the inversion is composed of two Wenner acquisition array
about 1110 quadripoles, one for each profile, without cross profiles
quadripoles. Each inversion starts with a prior homogeneous model
whose resistivity equal the mean of measured apparent resistivities. We
have compared the inversion process using either IE BC and MBC. On
Fig. 11, we have represented the convergence curves in each case. As
we can see, both BC give similar RMS error.

On Fig. 12, we have represented the reconstructed solution at
different iterations of the inversion process. As we can see, the choice
of the BC has a non negligible impact on the reconstructed resistivity
distribution. In particular, we can observe on Fig. 13 (representing
slices of the solution under each profile of electrodes) that the two
anomalies are better identified when using IE for the BC, although the
interface between the two layers is more straight when using the MBC.
Let us recall that the inverse problem of conductivity reconstruction
is very ill-posed and usually has not a unique solution (even with a
regularization term). This is why the two reconstructed solutions can
be different although both have a similar RMS error.
8 
Fig. 11. Convergence curves of the RMS error using MBC or IE versus the iteration of
Gauss–Newton algorithm.

3.4. Case study: the ‘‘Vaches Noires Cliffs’’, a Badlands formation

3.4.1. Context and measurements
In order to illustrate the PyLGRIM capabilities in 3D environment,

an electrical survey was carried out on coastal context, a Badlands
formation presenting steep crests and deep valleys made of successive
layers of clays and marls, with a thick layer of weathered limestone.
The Vaches Noires Cliffs (VNCs, in Normandy, France), face the sea
and are 4.5 km long from Villers-sur-Mer to Houlegate. This site has
already been the subject of many publications (Roulland et al., 2021;
Maquaire et al., 2013; Hassen et al., 2021). The locale geology is shown
in Fig. 14. As can be seen, the local geology is tabular. The expected
resistivity images should show alternating highly conductive materials
(marls, clays) and more resistant materials (limestones). Locally we
should also find areas of debris due to the strong erosion caused by
the plateau hydrology. The details of the geophysical results and the
diachronic study of eroded and accumulated volumes of materials over
4 years, carried out by drone and photogrammetry and with help of ERI
methods have been recently presented in Fauchard et al. (2023). One
of the prospects of this previous work was to improve the geophysical
inversion results by taking into account the very rugged topography
of the studied area. Indeed, the inversions made in two dimensions
with commercial software, even if they included the 2D topography
of the profiles with the required parameters (adapted distorted grid
and flatness options), hardly restore the local multilayered geology. The
goal of this example is to show the ability of PyLGRIM to produce more
realistic results than other classical approaches.

We focus on a section of the VNCs, 200 m long, 75 m height and
300 m large. Six ERI profiles were performed using an ABEM Terrameter
LS2 in Wenner and Dipole–dipole configurations for P1, P2, P5 and
P6 profiles and only in Wenner configuration for P3 an P4 profiles:
their technical characteristics are presented in the Table 1. A survey
was performed by drone flying at about 100 m height, taking dozens
of photos in order to generate a point cloud, precisely georeferenced
with twenty Differential GPS targets on the ground (Guilbert et al.,
2020). The obtained DEM has a point density around 555 points/m2.
The ERI profiles location and the drone flight planning are represented
with an aerial view of the studied site in the Fig. 15, as well as the DEM
in Fig. 16, (a).

3.4.2. Results and interpretation
The inverted 3D data block obtained with PyLGRIM is represented

with the Paraview software (Ayachit, 2015) in Fig. 16, (b). The block
is composed of 441 426 tetrahedrons and the inversion is performed
(i) taking into account of all data (Wenner and Dipole–dipole) and (ii)
carried out with a computer composed of a Intel core I9 9900KF at
3.6 GHz and DDR4 RAM 64 Go. The inversion process stopped after



A. Tonnoir et al. Computers and Geosciences 192 (2024) 105685 
Fig. 12. Resistivity reconstruction at iterations {1, 3, 5, 7} using IE BC (left) or MBC (right). The grey sphere and plane represent the position of the two anomalies and the interface
between the two layers in the domain we wish to recover.
Table 1
Characteristics of the ERI profiles. Profiles P1, P2 and P5, P6 have been performed in both Wenner and Dipole–dipole configuration while P3
and P4 in Wenner configuration only.
Name Init. nb. Final nb. Stacking Nb. elec. Length (m) Spacing (m)

of quad. of quad. Err. at 1% (m) (m)
W/DD W/DD

P1 555/888 555/888 2 64 126 2
P2 555/888 555/888 2 64 126 2
P3 555/∅ 555/∅ 2 64 126 2
P4 555/∅ 555/∅ 2 64 126 2
P5 1110/1776 1110/1758 2 80 316 4
P6 555/888 480/798 2 59 232 4
more than 24 h at the fourth iteration (L2-norm) where the root mean
square error 𝜀𝑅𝑀𝑆 is equal to 0.16 for IE and 0.2 for MBC. This is of
course something we need to improve in the future, using intensive
computing methods. From this 3D-block, six vertical slices are extracted
according to the location of the corresponding six ERI profiles. They are
9 
represented into the DEM in Fig. 16, (c). The Fig. 17 shows a special
view of the ERI profiles obtained with PyLGRIM, juxtaposing the DEM
with the inverted profiles. The advantage of the 3D inversion is the
perfect continuity between the profiles parallel to the coastline and
the transverse profiles running from the plateau to the beach, despite



A. Tonnoir et al. Computers and Geosciences 192 (2024) 105685 
Fig. 13. Slices of the resistivity reconstruction at iterations {7} using IE BC (left) or MBC (right) under the two profiles of electrodes.
Fig. 14. Locale geology of the VNCs (Normandy, France), reproduced from Fauchard et al. (2023). Expected ERI results should show alternating layers of conductive (marls, clay)
and resistive (limestone) materials with local deposition of materials (debris) due to the strong erosion caused by the plateau hydrology.
the difference in the electrode spacing (2 m for P1 to P4, 4 m for
P5 and P6). The high resistivity at the bottom of the inverted profile
represents a non significative value (over 300 Ω m) where the sensitivity
is high and is located far from the depth of investigation of ERI profiles,
classically ranging to 1/6 to 1/8 of the profile length (Roy and Apparao,
10 
1971). DOI limit and sensitivity matrix representation are necessary
and form parts of the future priorities to be achieved.

To better compare the approaches presented in Section 2 using
either MBC or IE, the P5 and P6 profiles are shown in Figs. 18 and 19,
respectively. Both inversions are carried out with a smoothing matrix
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Fig. 15. Location of the six ERI profiles (P1-6) transverse and longitudinal to the shoreline (red dots = position of electrodes) with the flight planning (white line) and the takeoff
point (blue point) of the drone (Normandy, France).
Source: Adapted from Fauchard et al. (2023).
Fig. 16. (a) DEM of the VNCs performed with a drone survey, adapted from Fauchard et al. (2023). (b) DEM in low opacity and 3D-block of inverted data with PyLGRIM obtained
with the six ERI profiles and superimposed. (c) DEM in low opacity and the six inverted ERI profiles, obtained by slicing vertically the 3D-block resistivity at the electrodes position
with the Paraview software (Ayachit, 2015).
L𝑠𝑡𝑟𝑎𝑡 depicted in Section 2.4. The PyLGRIM results are compared with
a famous commercial software which is a reference in the domain.
The objective is not to evaluate both approaches since this well-known
11 
solution offers very complete interpretation and inversion scenarios
in ERI measurements. Our aims is to underline how a complete 3D
approach that takes full account of the topography as well as the entire
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Fig. 17. Six ERI profiles extracted by slicing vertically the 3d-block shown in Fig. 16. The global overview shows a perfect concordance between transverse and parallel profiles
to the shoreline.
ERI measurements of all the profiles (Dipole–dipole and Wenner) can
provide a more accurate representation of the subsurface. P5 (Fig. 18)
and P6 (Fig. 19) profiles were carried out from the plateau and passed
in the valley between crests. Since no DOI or sensitivity matrix is
proposed until now, the contour of the Wenner configuration results
of the commercial software is extracted and superimposed on PyLGRIM
results to discussed comparisons. The P5 profile is 316 m long and stops
at approximately 40 m on the beach from the basal scarp while the
P6 profile Fig. 18 is 232 m long and stops at the limit between the
basal scarp and the beach. In the P5 profile, the limestone formation
(see Fig. 14 for the locale geology) of the top cliffs are described by two
resistive layers separated by a less resistive formation (the brown clay).
This description is not underline with the commercial software, where
this upper part of the cliff is only described by the upper grey marl
formation followed by a more resistive layer corresponding to lime-
stone. Conversely, PyLGRIM offers a less precise description of surface
anomalies after the first escarpment, where are present debris com-
posed of both marls and limestone materials. In the slope after the first
escarpment, only PyLGRIM describes a layered structure corresponding
to the marl of Villers where the commercial software seems to diverge
in function of depth. In the P6 profile (Fig. 19), the same conclusion
can be addressed. The upper formation of limestone and grey marls
are ill-described with commercial software while very near surface
anomalies in the first scarp seems more precisely delineated. In depth,
both Dipole–dipole and Wenner measurements with the commercial
software describe perpendicular formations while PyLGRIM tends to a
more realistic description of the geology.

4. Conclusion

In this paper, we present a new software called PyLGRIM that allows
to process 3D ERI modelling and inversion. PyLGRIM is based on scripts
in Python language that contains all elements shown in the present
paper and integrating the GMSH software for mesh issue. The first
outcome is the capability of PyLGRIM to input any DEM performed
on the field to take into account complex topographies encountered
in geophysical surveys. This approach based on a nearest neighbour
algorithm between a 2D projection of the points cloud of the DEM and
the points of the mesh cube is certainly well known, but it is clearly
explained here. The second main outcome is an algorithm that has been
12 
developed to make the mesh of profiles which may intersect with each
other consistent with the mesh of the DEM. The third main results deals
with a new formulation of infinite elements which offers an original
absorbing boundary condition, whose performances are demonstrated
to be more efficient than the common boundary conditions in particular
for complex topography. In order to present some of the PyLGRIM
performances, an analytical validation illustrates the aforementioned
meshing and boundary discussion. Finally, a real case study in Badlands
context shows how taking into account the complex topography in
geophysical processing and both all the profiles and configurations car-
ried out on the field provides a more relevant description of materials
distribution in the subsurface than simply process measurements with
classical 2D approaches.

In terms of perspectives, many improvements remain to be made.
The use of complementary inversion methods is currently being imple-
mented. Similarly, the need to calculate the DOI index will enable bet-
ter interpretation of the inverted data as well as the sensitivity matrix.
Work is in progress on the inversion of 3D data collected on complex
structures such as quarry pillars, vertical cliffs or parallelepiped labora-
tory samples. Ensuring the utilization of high-performance calculation
methods stands as a paramount objective. Notably, PyLGRIM, a freely
available software, extends an open invitation to users to actively
participate in enhancing and optimizing the software.
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Data availability

The PyLGRIM code is written in Python and is available in the
following GitHub repository: https://github.com/atonnoir/PyLGRIM.
git It contains all the directory and the documentation ‘‘Tuto_basic.pdf’’
and ‘‘PyLGRIM_Link_To_Github_Software_and_Data.pdf’’ required to run
PyLGRIM as well as to reproduce the present work. Furthermore,
all geophysical data (DEM with ERI measurements in VTK files) are
available and can be displayed with the needed Paraview (version 5.9.1
and later) project.
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following GitHub repository:

https://github.com/atonnoir/PyLGRIM.git
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and ‘‘PyLGRIM_Link_To_Github_Software_and_Data.pdf’’ required to run
PyLGRIM as well as to reproduce the present work. Furthermore,
all geophysical data (DEM with ERI measurements in VTK files) are
available and can be displayed with the needed Paraview (version 5.9.1
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Fig. 18. P5 profile (316 m long, 64 electrodes, spacing 4 m, see the Table 1 for further details) with (a) the Wenner (7 iteration (it.), 𝜀𝑅𝑀𝑆 = 2.5%) and (b) Dipole–dipole (it =
5, 𝜀𝑅𝑀𝑆 = 7.3%) configuration inverted with commercial software compared with (c) IE and (d) MBC obtained with PyLGRIM (both it = 4, 𝜀𝑅𝑀𝑆 < 0.2%. The described materials
1 to 5 correspond to the local geology shown in Fig. 14.

https://github.com/atonnoir/PyLGRIM.git
https://github.com/atonnoir/PyLGRIM.git
https://github.com/atonnoir/PyLGRIM.git
https://github.com/atonnoir/PyLGRIM.git
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Fig. 19. P6 profile (236 m long, 64 electrodes, spacing 4 m, see the Table 1 for further details) with (a) the Wenner (6 iteration (it.), 𝜀𝑅𝑀𝑆 = 3.5%) and (b) Dipole–dipole (it =
7, 𝜀𝑅𝑀𝑆 = 5%) configuration inverted with commercial software compared with (c) IE and (d) MBC obtained with PyLGRIM (both it = 4, 𝜀𝑅𝑀𝑆 < 0.2%. The described materials 1
to 5 correspond to the local geology shown in Fig. 14.
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