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 8 

Preface 9 

The supply of lithium to industry and its impact on the environment is a matter of growing 10 

public concern. Here, we propose a simple colour code to capture the diversity and 11 

characteristics of lithium resources in order to raise public awareness. 12 

 13 

A common tool for public debate 14 

Colour codes are used, for example, to refer to different water and hydrogen resources and 15 

carbon sinks (Rost et al., 2008; Macreadie et al., 2021; Osselin et al., 2022). These colour codes 16 

have different uses in the scientific community, and are essentially a practical tool for 17 

categorising, communicating and disseminating knowledge to the public.  18 

The global development of electric vehicles powered by Li-ion batteries will put 19 

considerable pressure on raw material resources, including lithium, for decades to come 20 

(Bibienne et al., 2020; Habib et al., 2020; Maisel et al., 2023; Balaram et al., 2024; Lawley et 21 

al., 2024). As with many other metals, the extraction of lithium is the subject of intense debate. 22 

Indeed, its impact on the environment sometimes appear to be at odds with the ecological 23 

transition of which it is considered one of the pillars (Kaunda 2020; Lèbre et al., 2020; Sonter 24 

et al., 2023). In this context, it is important to find ways of developing public awareness and 25 

facilitating the communication between stakeholders in the public debate (citizens, scientists, 26 

companies, media, policy-makers, NGOs etc.).  27 

Here, we propose a simple colour code for the main types of lithium resources. As far 28 

as possible, the colours assigned to the different lithium resources reflect the environment in 29 

which they are found. Combined with non-technical keywords, the colours are a simple 30 

mnemonic to help capture the specific characteristics and highlight the diversity of lithium 31 

resources (Fig. 1). Along with the colour code, we provide a brief overview of their origin, 32 

geographical distribution, environmental impact and rank in current global production. By 33 



using this colour code, the stakeholders in the public debate would share a simple common 34 

lexicon and basic knowledge, without having to master all the technical vocabulary when 35 

discussing the issues at stake. 36 

 37 

"White" lithium 38 

"White" lithium is dissolved (up to several thousand mg/L) in the water beneath salt lakes (also 39 

referred to as "salars"). "White" here refers to the colour of the salt and salt lake landscapes. 40 

"White" lithium has accounted for >30% of the lithium mined worldwide in 2022-2023 (USGS, 41 

2024). However, "white" lithium is predominantly found in two major geographical areas 42 

(Argentina-Chile-Bolivia and China), often at a distance from the many battery factories being 43 

developed around the world (Bowell et al., 2021). Technologies for extracting lithium from 44 

aqueous solutions are developing rapidly, and processes that no longer require the lithium to be 45 

concentrated by evaporation over large surfaces will become widespread (i.e. "direct lithium 46 

extraction" or DLE). However, the extraction of "white" lithium puts critical pressure on land 47 

use and water resources for the populations living around the salars, which are subjected to a 48 

very arid climate (Vera et al., 2023; Halkes et al., 2024; Mousavinezhad et al., 2024). It is 49 

estimated that the production of one tonne of lithium carbonate equivalent using solar 50 

evaporation process results in the emission of 3 to 4 tonnes of CO2 equivalent and a freshwater 51 

consumption for the process of 25 to 56 m³ (Kelly et al., 2021; Mas-Fons et al., 2024), not 52 

including the water evaporated during the solar evaporation process (100-300 m³) 53 

(Mousavinezhad et al., 2024). DLE requires industrial operations for extraction, purification, 54 

and conversion that emit the equivalent of 20 tonnes of CO2 and consume 20 to 150 m³ of water 55 

to produce one tonne of lithium carbonate equivalent, although fresh water can be recovered 56 

through the processing of Li-rich brines (Baspineiro et al., 2020; Mousavinezhad et al., 2024). 57 

Energy consumption is variable, as most processes plan to generate the required electricity on-58 

site using photovoltaic panels due to the high levels of sunlight in the regions concerned.  59 

 60 

"Grey" lithium 61 

This is lithium extracted from rocks in conventional open pit or underground mines. By 62 

extension, "grey" lithium could also refer to lithium extracted from mining and processing 63 

residues (Bradley et al., 2017; Chernoburova & Chagnes, 2023). "Grey" here refers to the light 64 

hue of most lithium-enriched ores (e.g. pegmatites, granites, clays), which typically contain 65 

around 0.6-1.1 wt% Li (Bowell et al., 2021). "Grey" lithium has accounted for >55% of the 66 

lithium mined worldwide in 2022-2023 (USGS, 2024). Unlike white lithium, grey lithium 67 



resources are found in varying amounts on all continents, although current production is limited 68 

to a few countries (mainly Australia) (Bowell et al., 2021; USGS, 2024). This means that the 69 

"grey" lithium mines could be relatively close to the battery factories, allowing producing 70 

countries to have a better control on the value chain. However, the quantities of water and 71 

energy required to extract "grey" lithium from lithium-enriched pegmatites can be very large, 72 

due to the mining, milling and refining operations. It is estimated that the production of one 73 

tonne of lithium carbonate emits the equivalent of 15-22 tonnes of CO2 and consumes 77 m³ of 74 

water (Kelly et al., 2021; Mas-Fons et al., 2024). Furthermore, the preservation of water 75 

resources, landscapes, ecosystems, and the management of mining wastes are additional 76 

challenges for the social acceptance and further development of "grey" lithium (Kaunda 2020; 77 

Lèbre et al., 2020; Sonter et al., 2023). 78 

 79 

"Pink" lithium 80 

"Pink" lithium comes from recycling, mainly from Li-ion batteries used in electric vehicles. 81 

Despite significant R&D and regulatory efforts in eco-design, life cycle assessment and battery 82 

recycling routes, current production of "pink" lithium is still very limited (Swain, 2017; 83 

Neumann et al., 2022; Ali et al., 2024; Zhou et al., 2024a). Various scenarios suggest that "pink" 84 

lithium has the potential to supply about 10-60% of the raw material demand for Li-ion batteries 85 

by 2035-2040 (Qiao et al., 2021; Maisel et al., 2023; Zhou et al., 2024b). Therefore, even in the 86 

most optimistic scenarios, sustained primary lithium production will still be required. While the 87 

main advantage of recycling is that it preserves part of the resource, it should also be 88 

remembered that recycling is an energy-intensive process that also requires the use of many 89 

chemicals. However, it is currently difficult to estimate the amount of CO2 emissions, energy 90 

consumption, and water consumption per tonne of lithium carbonate produced by Li-ion battery 91 

recycling processes that will be industrialised in the coming years (Chagnes & Forsberg, 2023; 92 

Zanoletti et al., 2024). This is because many hydrometallurgical and pyrometallurgical 93 

recycling routes are conceivable, and the chemistry of Li-ion batteries is very diverse. 94 

Furthermore, the recycling of Li-ion batteries does not only lead to the production of lithium 95 

carbonate or lithium hydroxide but also to the production of other metal salts (Ni, Co and Mn 96 

sulphates) prior to the production of lithium carbonate/hydroxide, which contribute to the 97 

environmental impact of the process. 98 

 99 

 100 

 101 



"Black" lithium 102 

This is lithium dissolved (up to a few hundred mg/L) in deep, non-potable waters that occur 103 

naturally in hydrocarbon reservoirs. "Black" here refers to the colour traditionally associated 104 

with oil ("black gold"). "Black" lithium could therefore be extracted from these groundwaters 105 

by DLE, with or without co-extraction of hydrocarbons. Recent studies have highlighted 106 

resources of comparable size to "white" and "grey" lithium (Kumar et al., 2019; Dugamin et 107 

al., 2021, 2023; Mackey et al., 2024). "Black" lithium production could benefit from the 108 

infrastructure and investment capacity of oil and gas companies, and could develop strongly in 109 

the near future. By extension, "black" lithium could also refer to lithium that could be extracted 110 

from coal fly ash (Qin et al., 2015; Talan and Huang, 2022). The paradox of extracting both 111 

hydrocarbons/coal and lithium for use in electric vehicles, which are expected to replace 112 

internal combustion vehicles, is striking. A potentially more environmentally friendly way to 113 

extract "black" lithium could be to co-produce low-enthalpy geothermal energy (like "yellow" 114 

lithium, see below), or to recover "black" lithium during carbon capture, utilisation and storage 115 

operations. Several "black" lithium projects are currently under development around the world 116 

(Knapik et al., 2023). 117 

 118 

"Yellow" lithium  119 

"Yellow" lithium is that which is dissolved (up to a few hundred mg/L) in warm water used for 120 

geothermal energy. "Yellow" here refers to the landscape of one of the world's most famous 121 

geothermal areas (Yellowstone, USA). Potential resources are substantial and well distributed 122 

around the world (Sanjuan et al., 2022; Gourcerol et al., 2024). Production of "yellow" lithium 123 

hasn’t yet reached the large-scale industrial stage, although several projects are being 124 

developed, for example in the Rhine Graben (France, Germany) (Sanjuan et al., 2022; Dugamin 125 

et al., 2024) and the Salton Sea (California) (Dobson et al., 2023). The principle of combining 126 

low-carbon geothermal energy with DLE may seem attractive from an environmental and 127 

economic perspective (Schenker et al., 2024; Weinand et al., 2023). However, control of 128 

induced seismicity and groundwater quality during geothermal operations will be key to social 129 

acceptance of "yellow" lithium (Renoth et al., 2023). 130 

 131 

"Blue" lithium 132 

"Blue" lithium refers to lithium dissolved in ocean and seawater, whose average concentration 133 

is 0.1-0.2  mg/L. Seawater would represent a tremendous reservoir of lithium (ca. 230 billon 134 

tons) (Yang et al., 2018). However, combined with the abundance of interfering ions (e.g., 135 



magnesium), the extraction of "blue" lithium at such low concentrations is technically and 136 

economically highly challenging. This is especially true because no selective materials exist 137 

today to recover lithium from seawater, and the low concentration of lithium in seawater implies 138 

that an energy-intensive process is needed to extract and concentrate the lithium (Li et al., 2021; 139 

Mends and Chu 2023). Alternatively, "blue" lithium could be recovered from the Dead Sea and 140 

seawater desalinization waste brines (Alsabbagh et al., 2021; Zhang et al., 2021; Lee et al., 141 

2023). At present, there is no operational plan for industrial extraction of "blue" lithium.  142 

 143 

Concluding remarks 144 

Resource inventories, extraction and recycling technologies, environmental impacts and 145 

regulations are evolving very rapidly so the background information provided here will be 146 

subject to significant change in the near future. Although a generic colour code may facilitate 147 

communication and awareness in the public debate, it remains essential to consider the pros and 148 

cons of each mining or recycling project on a case-by-case basis. Given that any industrial 149 

extraction or recycling of natural resources has direct environmental impacts to varying 150 

degrees, we recommend not using the potentially misleading term "green lithium". 151 

 152 
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