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PERSPECTIVE

The endolysosomal system in conventional and
unconventional protein secretion
Elöıse Néel1*, Marioara Chiritoiu-Butnaru2*, William Fargues1, Morgane Denus1, Maëlle Colladant1, Aurore Filaquier1, Sarah E. Stewart3,
Sylvain Lehmann4, Chiara Zurzolo5, David C. Rubinsztein6,7, Philippe Marin1, Marie-Laure Parmentier1, and Julien Villeneuve1

Most secreted proteins are transported through the “conventional” endoplasmic reticulum–Golgi apparatus exocytic route for
their delivery to the cell surface and release into the extracellular space. Nonetheless, formative discoveries have underscored
the existence of alternative or “unconventional” secretory routes, which play a crucial role in exporting a diverse array
of cytosolic proteins outside the cell in response to intrinsic demands, external cues, and environmental changes. In this
context, lysosomes emerge as dynamic organelles positioned at the crossroads of multiple intracellular trafficking
pathways, endowed with the capacity to fuse with the plasma membrane and recognized for their key role in both
conventional and unconventional protein secretion. The recent recognition of lysosomal transport and exocytosis in the
unconventional secretion of cargo proteins provides new and promising insights into our understanding of numerous
physiological processes.

Introduction
Our understanding of the basic machinery governing intra-
cellular transport via the conventional endoplasmic reticulum
(ER)–Golgi secretory pathway has recently been expanded by
discoveries highlighting alternative mechanisms that drive
secretion. These unconventional secretory routes involve
multiple cellular processes facilitating the active and selective
release of cytosolic proteins lacking an N-terminal signal
sequence for ER entry (Filaquier et al., 2022; Zhang and
Schekman, 2013). Unexpectedly, lysosomes have emerged as
multifaceted intracellular compartments where specific cargo
proteins, with or without N-terminal signal sequence, can
converge before being released into the extracellular space by
lysosomal exocytosis (Tancini et al., 2020; Filaquier et al.,
2022).

The diverse array of lysosomal functions relies on the coop-
eration of an extensive repertoire of molecular factors, including
luminal hydrolases, integral lysosomal membrane proteins
(LMPs), and lysosome-associated proteins. Approximately 60
acid hydrolases are actively involved in the degradation and
recycling of macromolecules delivered to lysosomes, and ∼120
LMPs sustain other lysosome properties, such as acidification,

nutrient and ion transport, protein import from the cytosol, and
lysosome fusion and interactions with other intracellular com-
partments. In addition, lysosome-associated proteins are dy-
namically recruited from the cytosol to the lysosomal surface,
making lysosomes central hubs for nutrient and nucleic acid
sensing and platforms for multiple trafficking and signaling
pathways critical for regulating energy metabolism and adapt-
ing to cellular stress (Chapel et al., 2013; Ballabio and Bonifacino,
2020; Perera and Zoncu, 2016). Thus, lysosomes are no longer
only considered as terminal degradative organelles but as ver-
satile compartments with diverse functions essential for the
maintenance of cellular homeostasis (Hämälistö et al., 2024;
Roney et al., 2022). Furthermore, lysosomes are highly dy-
namic organelles that can fuse with the plasma membrane
(PM) and thereby release their contents into the extracellular
milieu, contributing for instance to PM integrity, extracellu-
lar matrix (ECM) remodeling, and defense against pathogens
(Tancini et al., 2020; Blott and Griffiths, 2002; Andrews,
2000; Villeneuve et al., 2018).

A notable feature of lysosomes is their unique position at the
intersection of various intracellular trafficking pathways, in-
cluding autophagic, endocytic, and biosynthetic secretory routes
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France; 6Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; 7UK Dementia Research Institute,
Cambridge, UK.

Correspondence to Julien Villeneuve: julien.villeneuve@igf.cnrs.fr
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(Fig. 1). These intricate interconnections, coupled with the dy-
namic nature of lysosomes and their exocytic capabilities, en-
dow this organelle with essential roles in the secretion of cargo
proteins transported by both conventional and unconventional
secretory routes. In this review, we will explore emerging evi-
dence establishing lysosomes as central trafficking stations in
various secretory pathways and examine how lysosomal prop-
erties can be modulated converting lysosomes into secretory
compartments.

Lysosomes as transport carriers for both conventional and
unconventional protein secretion
Lysosomes are transport carriers for the secretion of signal
sequence–containing cargo proteins
In eukaryotes, most secreted and PM proteins follow the con-
ventional secretory pathway in which they are first targeted and
inserted into the ER membrane via their N-terminal hydro-
phobic signal sequences or transmembrane domains (Rapoport,
2007). Then, proteins progress through the Golgi apparatus and

Figure 1. Lysosomes are at the crossroad of several intracellular trafficking pathways. Newly synthesized lysosomal hydrolases and LMPs contain an
N-terminal hydrophobic signal sequence or transmembrane domains that allow their targeting and insertion into the ER. Once transported through the Golgi
apparatus, lysosomal proteins are then subjected to post-translational modifications including the addition of mannose-6-phosphate (M6P) residues. M6P
residues are essential for protein sorting at the TGN, where lysosomal proteins are packaged into clathrin-coated intermediates and diverted from the bio-
synthetic secretory pathway to the endocytic pathway for delivery to lysosomes. Post-Golgi clathrin-coated carriers are mainly targeted directly to the en-
dolysosomal pathway (Polishchuk et al., 2006). This pathway relies on coordinated membrane fluxes involving organelle maturation and membrane fission/
fusion events (Huotari and Helenius, 2011). In addition to the well-characterized direct transport to lysosomes, several newly synthesized LMPs follow an
indirect pathway. This pathway entails the transport of LMPs to the PM, their subsequent internalization into early endosomes, and delivery to LEs and
lysosomes (Braun et al., 1989). By combining innovative methods like the “retention using selective hooks” system with high-resolution live-cell imaging,
studies revealed the spatiotemporal dynamics of these distinct pathways (Chen et al., 2017). The development of pooled genome-wide CRISPR screens
designed to identify factors involved in protein transport and secretion holds promise for addressing these crucial issues (Bassaganyas et al., 2019; Popa et al.,
2019). In addition to functional factors and extracellular substrates transported to lysosomes via the secretory and endocytic pathways, cytoplasmic material is
targeted to lysosomes through sequestration by macroautophagy. In the autophagic process, cytoplasmic substrates are initially sequestered within a cup-
shaped double membrane structure known as the phagophore, which upon expansion and complete closure forms the autophagosome. Autophagosomes are
then transported along the microtubules and ultimately fuse with lysosomes (Bento et al., 2016). Along the endocytic and autophagic pathways, the fusion of
lysosomes with LE/MVBs and autophagosomes forms endolysosomes and autolysosomes, respectively. From these hybrid compartments, lysosomes or
terminal/storage lysosomes are reformed via lysosomal regeneration cycles, through processes of tubulation, maturation, and content condensation (Yang and
Wang, 2021). In this review, the terms “lysosomes,” “endolysosomes,” or “LE/lysosomes” are used alternatively due to uncertainty in the cited references
regarding the exact nature of the described organelles. Illustration created with Biorender.
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are subsequently transported from the trans-Golgi network
(TGN) to the PM (Schekman, 2008). A distinction is commonly
made between constitutive and regulated secretion. Constitutive
secretion relies on transport carriers that continuously shuttle
from the TGN to the PM, yet their diversity and biogenesis
mechanisms remain insufficiently understood (Chen et al., 2017;
De Matteis and Luini, 2008; Stalder and Gershlick, 2020). This
process occurs in most cell types and contributes to the release
of enzymes, growth factors, and ECM components, among oth-
ers (Parchure and von Blume, 2023; Holcomb et al., 1988;
Bossard et al., 2007). In regulated secretion, cargo proteins are
sorted at the TGN into specialized secretory granules that fuse
with the PM in a controlled manner upon stimulation by ex-
ternal factors. This process is characteristic of specialized cell
types such as pancreatic β cells, endothelial cells, intestinal
goblet cells, and neuroendocrine cells, to rapidly mobilize and
export insulin, von Willebrand factor, mucin, and chromogra-
nin, respectively (Burgoyne and Morgan, 2003; Davis and
Dickey, 2008; Bauerfeind and Huttner, 1993).

In addition to post-Golgi carriers involved in constitutive and
regulated secretion, it is now established that lysosomes derived
from the endocytic system (Fig. 1) can also fuse with the PM and
release their contents into the extracellular milieu (Andrews,
2000; Tancini et al., 2020). Lysosomal exocytosis triggered by
external cues was initially thought to be restricted to cell
type–specific organelles known as specialized lysosomes or
lysosome-related organelles (LROs). These were identified on
the basis of compositional and physiological features shared
with standard degradative lysosomes. LROs include lytic gran-
ules in cytotoxic T lymphocytes and natural killer cells (Blott
and Griffiths, 2002), major histocompatibility complex class II
compartments in macrophages, dendritic cells, and B lympho-
cytes (Harding, 1996); basophil granules in basophils and mast
cells (Schwartz and Austen, 1980); azurophil granules in neu-
trophils (Kjeldsen et al., 1993); dense granules in blood platelets
(Van Oost et al., 1985); andmelanosomes inmelanocytes (Orlow,
1995). Reminiscent of standard degradative lysosomes, these
organelles are acidic compartments with membranes derived
primarily from the endocytic system. Most LROs contain en-
zymes and LMPs essential for substrate degradation and re-
cycling. They also package newly synthesized secreted proteins
based on their specialized biological function. Similar to stan-
dard lysosomes, structural and functional factors delivered to
specialized lysosomes are transported through the ER–Golgi
secretory pathway, either directly or indirectly after recogniz-
ing a tyrosine or dileucine-based signal in the amino acid se-
quence of cargoes or cargo receptors (Dell’Angelica et al., 2000).
While both standard and specialized lysosomes coexist in some
cell types, such as in melanocytes and blood platelets, lytic
granules are the major lysosomal structures in cytotoxic T
lymphocytes (Luzio et al., 2014). In this context, it is important
to distinguish lysosomes and specialized lysosomes from other
structures containing electron-dense proteins, often referred to
as LROs. One example is Weibel-Palade bodies in endothelial
cells, which directly originate from the TGN but not from the
endocytic pathway, in contrast with standard and specialized
lysosomes (Raposo et al., 2007). The close relationship between

standard and specialized lysosomes is underscored by ob-
servations in some human autosomal recessive disorders, such
as Chediak-Higashi, Hermansky-Pudlak, and Griscelli’s syn-
dromes, which share common clinical features, including varying
degrees of hypopigmentation due to impaired melanosome se-
cretion, prolonged bleeding due to defects in dense granule se-
cretion by blood platelets, and immunologic deficiencies due to
impaired secretion of various granules by immune cells (Bowman
et al., 2019; Bonifacino, 2004). At the cellular level, patients with
Chediak-Higashi syndrome exhibit abnormal morphology and
numbers of lysosomes and LROs (De Chadarévian, 2011; Durchfort
et al., 2012). These genetic disorders, characterized by defects in
the biogenesis of both standard and specialized lysosomes and
governed by numerous common molecular determinants, further
support the common organellar lineage of these structures.

In addition to LROs, the presence of lysosomes, which exhibit
exocytosis, was then recognized not only in lower eukaryotes,
such as Dictyostelium discoideum, Leishmania donovani, and Tet-
rahymena pyriformis (Dimond et al., 1981; Gottlieb and Dwyer,
1981; Müller, 1972), but also in various cell types from higher
eukaryotes and humans, including hepatocytes and pancreatic
acinar cells, which release lysosomal hydrolases to promote di-
gestion, and osteoclasts to promote bone resorption (LeSage
et al., 1993; Mostov and Werb, 1997; Gross et al., 1985). In can-
cer cells, the release of lysosomal hydrolases promotes tumori-
genesis, invasion, and metastasis (Bian et al., 2016; Sevenich and
Joyce, 2014).

Subsequently, regulated exocytosis of lysosomes has been
observed in most cell types. In particular, studies indicate that
an increase in intracellular Ca2+ concentration triggers lyso-
somal exocytosis in a temperature- and ATP-dependent manner
in fibroblasts, epithelial cells, and myoblasts. In these experi-
ments, lysosomal exocytosis was monitored by the release of
fluid phase tracers previously loaded into lysosomes, the in-
creased expression of cell surface LMPs, and the release of ly-
sosomal enzymes, such as the processed form of cathepsin D
(Rodŕıguez et al., 1997; Andrews, 2000). Similar to the Ca2+-
regulated exocytosis of post-Golgi secretory granules in special-
ized secretory cells, lysosomal exocytosis represents a ubiquitous
form of Ca2+-regulated exocytosis. Further studies have revealed
that sequential Ca2+-regulated lysosomal exocytosis and massive
endocytosis cooperate to maintain PM integrity in wounded cells
(Reddy et al., 2001; Jaiswal et al., 2002; Hilgemann et al., 2013). In
addition to providing the endomembrane necessary for PM re-
sealing, lysosomal exocytosis also mobilizes lysosomal hydrolases
to the cell surface, playing a critical role in PM repair. For ex-
ample, acid sphingomyelinase, released by lysosomal exocytosis,
can convert sphingomyelin to ceramide on the outer leaflet of the
PM. These ceramide-enriched domains on the cell surface pro-
mote lipid bilayer invagination and rapid endosome formation,
contributing to the removal of PM lesions (Tam et al., 2010;
Schuchman, 2010). Other secreted lysosomal cysteine proteases
have been implicated in this process by facilitating acid sphingo-
myelinase access to the PM through ECM degradation (Castro-
Gomes et al., 2016).

In summary, similar to post-Golgi carriers, lysosomes also
behave as secretory vesicles that fuse with the PM and release
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their contents into the extracellular milieu in a regulated man-
ner (Fig. 2 A). This underscores the critical role of lysosomes
as organelles that regulate diverse cellular and physiological
functions, including metabolism, innate and adaptive immunity,
thrombosis and hemostasis, ECM remodeling, maintenance of
PM integrity, and cell survival.

Lysosomes are transport carriers for the unconventional secretion
of cargo proteins lacking a signal sequence
An increasing number of cytosolic proteins lacking a signal se-
quence for ER entry have been shown to be actively and selec-
tively exported from eukaryotic cells. Remarkably, this process
is independent of the highly conserved ER–Golgi secretory
pathway. Protein families transported via unconventional se-
cretory pathways include inflammatory cytokines, annexins,

heat shock proteins, lipid chaperones, antioxidant enzymes, and
misfolded proteins, among others (Rabouille, 2017; Zhang and
Schekman, 2013; Filaquier et al., 2022). In recent years, there
has been extensive documentation of the extracellular functions
of these proteins and the impact of disrupting their secretion in
various diseases (Cao et al., 2013; Radisky et al., 2009; Sitia and
Rubartelli, 2020). Despite the identification of numerous alter-
native routes for the export of cytosolic proteins, the molecular
trafficking machinery remains poorly understood in most cases
(Fig. 2 B). In type I unconventional protein secretion (UcPS),
cargo proteins are directly translocated across the PM. Proposed
mechanisms include the formation of pores by gasdermin D for
the release of interleukin-1β (IL-1β) in macrophages (Evavold
et al., 2018), or the formation of pores through the oligomeri-
zation of fibroblast growth factor-2 (FGF-2), followed by its

Figure 2. Conventional and unconventional protein secretion. (A) Proteins with a signal peptide reach their final destination (the extracellular space, the
PM, or lysosomes) after transport along the conventional or biosynthetic secretory pathway. Briefly, cargo proteins are inserted into the ER via the
SEC61 channel-forming translocon complex and then sorted by the use of COPII-coated vesicles to reach the Golgi apparatus. At the level of the trans-Golgi
network, constitutive secretory proteins such as growth factors and ECM components are packaged into constitutive vesicles, whereas specific proteins such
as insulin and mucin are packaged into secretory granules according to cell type. Structural and functional lysosomal proteins are packaged into clathrin-coated
vesicles and transported to the endolysosomal system. Specialized lysosomes or LROs and standard lysosomes can then behave as secretory vesicles, releasing
cargo proteins containing a signal sequence as post-Golgi carriers. (B) Proteins without a signal peptide can be secreted via unconventional protein secretion
(UcPS), independent of the conventional secretory pathway. In type I and II UcPS, cytosolic proteins are secreted by direct translocation across the PM through
protein channels and ABC transporters, respectively. In type III UcPS, cargo proteins are incorporated into membrane intermediates through protein channels
(orange) or membrane remodeling (yellow) that define multiple entry gates along the biosynthetic secretory, endocytic, or autophagic pathways. In type IV
UcPS, integral membrane proteins located in the ER are transported to the PM independently of the Golgi apparatus. CMA: Chaperone-mediated autophagy;
EE: Early endosome; ERGIC: Endoplasmic reticulum–Golgi intermediate compartment; LE: Late endosome; MAPS: Misfolded-associated protein secretion;
MVB: Multivesicular body; THU: TMED10-channeled UcPS. The figure was created with Biorender.
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insertion into the PM, a necessary step for its secretion (Steringer
et al., 2017). As with FGF-2 secretion, self-translocation has been
reported for HIV-Tat secretion (Zeitler et al., 2015). Lipidated
proteins, such as the farnesylated pheromone m- and α-factors in
yeast, are also directly translocated across the PM. In this case,
translocation is facilitated by ATP-binding cassette (ABC) trans-
porters, and they are referred to as type II UcPS cargoes (Rabouille
et al., 2012). In addition to type I and II UcPS, cytosolic proteins can
be secreted into the extracellular milieu after transport through
intermediate compartments derived from autophagic membranes,
endosomes, multivesicular bodies (MVBs), or lysosomes that re-
lease their contents after exocytosis. This form of transport,
termed type III UcPS, involves multiple membranes and protein
trafficking pathways (Rabouille, 2017; Zhang and Schekman, 2013;
Filaquier et al., 2022). Given the unique position of lysosomes at
the intersection of multiple intracellular trafficking pathways, as
discussed below, cytosolic cargo proteins trafficked by type III
UcPS may converge to lysosomes before their release into the
extracellular space (Fig. 2 B). In type IV UcPS or Golgi bypass,
observed under conditions such as ER stress or after inhibition of
the conventional secretory pathway, integral membrane proteins
located in the ER are transported to the PM independently of the
Golgi apparatus (Gee et al., 2018) (Fig. 2 B).

Membrane remodeling for type III UcPS. In type III UcPS, cy-
tosolic material and cargo proteins can be incorporated into
intermediate compartments through membrane remodeling.
Autophagy allows the engulfment and sequestration of cytosolic
material via autophagosome biogenesis. Genetic studies, initially
performed in yeast and subsequently extended to mammalian
cells, have shown that evolutionarily conserved autophagy-related
genes (ATG) are required for the secretion of cytoplasmic sub-
strates. These include the acyl-CoA-binding protein Acb1, inflam-
matory mediators, toxic protein aggregates or aggregation-prone
proteins, and bacterial and viral pathogens (Duran et al., 2010;
Dupont et al., 2011; Ejlerskov et al., 2013; Gerstenmaier et al., 2015).
While the concept of secretory autophagy has recently gained at-
tention, the direct involvement of autophagosomes in UcPS has not
been clearly established. Autophagosomes have been proposed to
deviate from their usual fusionwith lysosomes and instead directly
fuse with the PM in response to lysosomal damage. This rerouting
was hypothesized to occur through the mobilization of dedicated
soluble N-ethylmaleimide-sensitive-factor attachment protein re-
ceptors (SNAREs), in combination with a specialized tripartite
motif containing (TRIM) cargo receptor (Kimura et al., 2017). Al-
though several studies indicate that the ATG gene-dependent UcPS
involves cytosolic cargo surrounded by an LC3-positive double
membrane structure, a hallmark of autophagosomes, there is no
conclusive evidence for direct fusion of autophagosomes with the
PM (Dupont et al., 2011; Zhang et al., 2015; Ejlerskov et al., 2013).
Instead, it is conceivable that autophagosomes might fuse with
downstreammembrane intermediates such asMVBs or lysosomes,
which subsequently release their contents into the extracellular
milieu after exocytosis (Ejlerskov et al., 2013; Baixauli et al., 2014;
Takenouchi et al., 2009; Jeppesen et al., 2019). Alternatively, the
autophagy machinery may intersect and influence other protein
trafficking pathways and secretion events, as recently reviewed
(Deretic et al., 2012; Levine and Kroemer, 2019; New and Thomas,

2019). For example, autophagy-deficient osteoclasts and mast cells
exhibit altered secretion of lysosomal contents, leading to impaired
bone resorption and compromised immune responses, respectively
(DeSelm et al., 2011; Ushio et al., 2011). Also, while ATG-related
proteins may be required for the early stages of the biogenesis of
compartments for unconventional secretion (CUPS) in yeast, it is
crucial to note that CUPS, which are critical for Acb1 secretion, are
distinct from autophagosomes (Cruz-Garcia et al., 2014; Curwin
et al., 2016). Whether autophagosomes can fuse directly with the
PM or whether they act as vesicular intermediates that fuse with
downstream vesicular compartments (e.g., MVBs or lysosomes)
remains to be elucidated.

Another known membrane remodeling pathway for type III
UcPS is via extracellular vesicles. These vesicles can be shed
from the PM (known as microvesicles or ectosomes) or gener-
ated within the endolysosomal system (known as exosomes)
(Meldolesi, 2022). Within the endolysosomal system, cytosolic
proteins are sequestered by inward invagination of the mem-
brane in late endosome (LE), followed by the budding and release
of small vesicles into the lumen of the organelle, to ultimately form
MVBs (Klumperman and Raposo, 2014; Frankel and Audhya,
2018). The endosomal sorting complex required for transport
proteins plays a key role in this process (Remec Pavlin andHurley,
2020). The resulting MVBs can then fuse with the PM, leading to
the release of exosomes into the extracellular milieu. A critical
process appears to be the conversion of phosphatidylinositol-3-
phosphate (PI(3)P) to PI(4)P on the membrane of MVBs, which
promotes the recruitment of the exocyst that directs MVBs for
fusion with the PM (Liu et al., 2023). Alternatively, in adipocytes
and B cells, exosomes formed along the endolysosomal pathway
can also be released by lysosomal exocytosis and contribute to
adipogenesis (Kim et al., 2019) and adaptive immune responses
(Hämälistö et al., 2024), respectively.

Protein translocation for type III UcPS. In addition to pathways
involving membrane remodeling to engulf cytosolic material, in
type III UcPS, cargo proteins can also be translocated from the
cytosol into intermediate compartments by dedicated trans-
porters or channels.

A well-recognized mechanism for the selective degradation
of intracellular components is chaperone-mediated autophagy
(CMA), which enables the delivery of cytosolic proteins to the
lysosomal surface and their subsequent translocation into the
lysosomal lumen. In CMA, substrate recognition selectivity is
mediated by a canonical KFERQ-like motif found in ∼40% of
proteins in the mammalian proteome (Dice, 1990). In addition,
posttranslational modifications, including phosphorylation or
acetylation, modify the properties of alternative residues that
contribute to the generation of this signal recognition motif or
facilitate conformational changes that expose or mask this pen-
tapeptide motif (Kaushik and Cuervo, 2016, 2018; Quintavalle
et al., 2014). In CMA, the cytosolic chaperone HSC70 directly
binds to the KFERQ-like motif and targets the protein to lyso-
somes (Chiang et al., 1989). It has been proposed that substrate
translocation into lysosomes is mediated by the multimerization
of LAMP2A, forming a 700 kDa translocation protein complex
(Bandyopadhyay et al., 2010). However, whether LAMP2A forms
a conducting channel for translocation remains to be confirmed
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by means of structural analysis and in vitro reconstitution ap-
proaches. Initially characterized as a selective degradation path-
way critical for protein quality control, CMA has also been
implicated in the presentation of cytoplasmic autoantigens at the
cell surface (Zhou et al., 2005). In addition, studies suggest that
IL-1β, which has three KFERQ-like motifs in its amino acid se-
quence, may be released from cells after translocation into lyso-
somes by a mechanism similar to CMA (Andrei et al., 1999; Zhang
et al., 2015; Semino et al., 2018; Sitia and Rubartelli, 2020).

Unlike CMA, a process known as misfolded-associated pro-
tein secretion (MAPS) facilitates the translocation of misfolded
cytosolic proteins into LE/lysosomes, followed by their exocy-
tosis, when other protein quality control pathways, such as
proteasomal degradation, fail to prevent excessive accumulation
of aberrant polypeptides. Notable substrates for MAPS include
cytosolic proteins associated with neurodegenerative diseases,
such as Tau, ataxin-3, TDP43, and α-synuclein (Fontaine et al.,
2016; Ye, 2018; Lee et al., 2016, 2018; Xu et al., 2018). When
expressed in HEK293T cells, these misfolded-prone proteins are
recognized by the ER-associated deubiquitinase USP19 and
subsequently transferred to a complex formed by the chaperone
HSC70 and its co-chaperone DnaJ heat shock proteinmember C5
(DNAJC5), which is anchored to endolysosomal compartments
after palmitoylation (Xu et al., 2018; Wu et al., 2023; Lee et al.,
2018). The function of DNAJC5 in α-synuclein UcPS was recently
reconstituted in a variety of cells, including neurons, demon-
strating the critical role of palmitoylated DNAJC5 in high-order
oligomeric forms in α-synuclein UcPS (Wu et al., 2023). This
study also reported that DNAJC5, together with α-synuclein, lo-
calizes and is translocated into the endolysosomal compartments,
which presumably represent intermediates in α-synuclein se-
cretion. In line with these observations, the authors also showed
that bafilomycin A1, a lysosomal ATPase inhibitor known to
promote secretion of MVBs and lysosomal contents (Cashikar and
Hanson, 2019; Tapper and Sundler, 1995), promotes α-synuclein
secretion. Of particular interest, the secreted α-synuclein medi-
ated by palmitoylated DNAJC5 oligomers is mainly released into
the extracellular space as soluble monomeric forms not enclosed
within extracellular vesicles, whereas DNAJC5 is present in both
soluble and extracellular vesicle-bound forms. The translocation
machinery responsible for the transfer of misfolded proteins
during MAPS has not been identified but does not appear to
involve LAMP2A, as seen in CMA. The subsequent fusion of
vesicular intermediates with the PM has been shown to be pro-
moted by the SNAREs VAMP7, VAMP8, and SNAP-23, leading to
the release of misfolded proteins from the cell (Ye, 2018; Fontaine
et al., 2016; Lee et al., 2016, 2018). A recent study suggested that
instead of using mainly endolysosomal compartments as vesic-
ular intermediates, substrates exported from cells through
the MAPS pathway and in a DNAJC5-dependent manner may be
trafficked through an alternative vesicular intermediate (Lee
et al., 2023). This compartment, located in the perinuclear area,
near the Golgi apparatus, would be the equivalent of CUPS,
identified in yeast as a critical compartment for UcPS (Lee et al.,
2022). However, its exact nature and whether it is formed from
Golgi and endosomalmembranes like CUPS in yeast remains to be
elucidated. It will also be important to establish whether these

different vesicular intermediates, e.g., endolysosomes or CUPS,
can be differentially mobilized for secretion of MAPS substrates,
depending on cellular stress or experimental culture conditions.
Although MAPS and CMA share common features, such as the
involvement of chaperones that target cytosolic proteins to the
LE-lysosomal compartment for translocation, these two pathways
also exhibit important differences. In contrast to CMA, cargo
recognition in MAPS is not mediated by a specific pentapeptide
motif, but rather relies on exposed hydrophobic segments that
characterize the misfolded state of protein substrates. Further-
more, as mentioned above, protein translocation into LE/lyso-
somes in MAPS does not require LAMP2 or cargo unfolding, in
contrast to CMA (Lee et al., 2018; Ye, 2018). By exporting mis-
folded cytosolic proteins to the extracellular milieu using LE ly-
sosomes as transport carriers, the MAPS pathway provides an
additional protein quality control essential for maintaining ho-
meostasis during proteotoxic stress.

It is likely that additional transporters or protein channels
that facilitate cargo translocation, present at various membrane
intermediates converging toward secretory compartments, re-
main to be uncovered and fully characterized. A recent study
identified a novel protein translocation pathway called THU
(TMED10-channeled UcPS) and demonstrated its ability to allow
the entry of multiple cytosolic cargos into vesicular inter-
mediates for UcPS (Zhang et al., 2020). The proposed model
relies on the oligomerization of the transmembrane emp24
domain-containing protein 10 (TMED10) to form a channel that
facilitates the translocation of cargo proteins into a specialized
subcompartment of the ER–Golgi intermediate compartment
(ERGIC) under the control of the small GTPases Rab1A, Rab1B,
and Rab2A (Sun et al., 2024). The ERGIC has been proposed to
play a role in autophagosome biogenesis through a non-classical
type of COPII vesicle (Ge et al., 2013, 2017, 2014; Li et al., 2022).
The THU pathway might thus cooperate with the autophago-
some/endolysosomal compartments to achieve secretion. The
THU pathway appears to be dependent on cytosolic cargo un-
folding and is promoted by HSP90 chaperones (Zhang et al.,
2020). More recently, studies have also demonstrated the in-
volvement of TMED10-mediated UcPS in the secretion of IL-33,
which plays a role in regulating intestinal epithelial differenti-
ation and central nervous system homeostasis (Wang et al.,
2024; Jiao et al., 2024). Another study reported that the UcPS
of mutant huntingtin (Htt) is a multistep process including (1)
the incorporation of Htt into the ERGIC by TMED10; (2) the
transport of Htt through the autophagic pathway; and (3) its
targeting to lysosomes, which then undergo exocytosis, leading
to the release of Htt into the extracellular space (Ahat et al.,
2022). In this series of events, GRASP55, a critical factor in-
volved in various UcPS pathways (Bruns et al., 2011; Chiritoiu
et al., 2019), appears to be essential in stabilizing the TMED10
channel and facilitating the autophagosome–lysosome fusion
(Ahat et al., 2022).While TMED10 appears to play a critical role in
the transport of cytosolic proteins into membrane intermediates
during UcPS, structural analyses and cell-free reconstitution ap-
proaches are required to unambiguously consider TMED10 as a
translocation channel. In addition to cargo proteins trafficked
through the THU pathway, fatty acid binding protein-4 (FABP4)

Néel et al. Journal of Cell Biology 6 of 16

Role of endolysosomes in protein secretion https://doi.org/10.1083/jcb.202404152

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/223/9/e202404152/1931430/jcb_202404152.pdf by C

nrs Insb user on 14 August 2024

https://doi.org/10.1083/jcb.202404152


has recently been added to the growing list of cytosolic proteins
that undergo UcPS. FABP4 secretion by adipocytes is independent
of autophagosome and exosome biogenesis but requires sequen-
tial trafficking through endosomes and lysosomes (Villeneuve
et al., 2018). However, the mechanisms and machinery involved
in FABP4 translocation from the cytosol to the endosomal lumen
remain to be characterized. Lastly, studies have reported that cy-
tosolic HSP70, aldo-keto reductase family-1-member B8 (AKR1B8),
and AKR1B10 can be released into the extracellular milieu after
their translocation from the cytosol to LE/lysosomes via ABC
transporters. Pharmacological inhibition of these transporters us-
ing glibenclamide, a non-specific ABC transporter inhibitor, or
more selective inhibitors such as 4,49-diisothiocyanostilbene-2,29-
disulfonic acid and bromosulfalein, resulted in a reduction of
HSP70, AKR1B8, and AKR1B10 secretion, and of the release of
markers of lysosomal exocytosis (Andrei et al., 1999; Mambula and
Calderwood, 2006; Luo et al., 2011; Tang et al., 2014).

Collectively, these studies support the concept that in type III
UcPS, cargo proteins can be incorporated into different intra-
cellular compartments either by membrane remodeling and
engulfment of the cytosol, as observed in autophagy and during
the formation of intraluminal vesicles, or by protein channel-
mediated translocation, as exemplified by pathways such as
CMA, MAPS, or THU (Chiritoiu-Butnaru et al., 2022; Filaquier
et al., 2022). Although several membrane-bound compartments
appear to fulfill the role of vesicular intermediates capable of
fusingwith the PM in UcPS, a predominant point of convergence
for the diverse routes recruiting cytosolic cargo proteins appears
to be the LE/lysosomes (Fig. 2 B), highly dynamic organelles
with exocytosis properties.

Mechanisms and regulatory elements that control lysosome
dynamics and exocytosis
Lysosomes, which range from 50 to 200 per cell, exhibit a non-
uniform distribution throughout the cytosol. They also display
significant heterogeneity in terms of dynamics, size, shape, intra-
luminal pH, and interactions with other intracellular compart-
ments (Ballabio and Bonifacino, 2020). Furthermore, lysosomes
are positioned at the crossroads of various trafficking pathways
responsible for the transport of diverse substrates/cargoes, as well
as specific structural and functional factors. Taken together, this
implies that distinct lysosomal subpopulations may be specialized
for specific functions, with their proportions dynamically adjusted
in response to metabolic status, stress conditions, or external sig-
nals. In this context, a critical question arises: how can a degra-
dative organelle be redirected for fusion with the PM for
exocytosis? In other words, what makes a lysosome a secretory
compartment? To answer succinctly, lysosomes must first relo-
cate to the cell periphery, where they subsequently dock and fuse
with the PM. This sequence of events involves numerous factors
that induce profound changes in lysosomal properties.

Lysosome positioning and motility
In most cell types, lysosomes are predominantly concentrated in
the perinuclear region, near the Golgi apparatus, and around the
microtube-organizing center. This positioning is orchestrated
by retrograde lysosomal transport along microtubules, a process

mediated by dynein motor proteins associated with dynactin
(Burkhardt et al., 1997). The recruitment of dynein–dynactin to
lysosomes involves the small GTPase Rab7, under the control of
the GTPase-activating proteins TBC1D15 and TBC1D2, along
with the guanine-nucleotide-exchange factor complex Mon1–
Ccz1 (Frasa et al., 2010; Zhang et al., 2005; Nordmann et al.,
2010). The Rab7-interacting lysosomal protein (RILP) and the
cholesterol sensor OSBP-related protein 1L (ORP1L) have also
been implicated in lysosome coupling to dynein–dynactin
(Johansson et al., 2007; Progida et al., 2007). Conversely, the
relocation of lysosomes to the cell periphery, a prerequisite for
their exocytosis, is facilitated by anterograde lysosomal trans-
port along microtubules via kinesin motor proteins (Hirokawa
and Noda, 2008). Several kinesins, including the kinesin-1 pro-
teins KIF5A, KIF5B, and KIF5C; the kinesin-2 protein KIF3; the
kinesin-3 proteins KIF1A and KIF1B; and the kinesin-13 protein
KIF2, participate in the anterograde transport of lysosomes (Pu
et al., 2016). Kinesins interact directly with microtubules via a
globular motor domain and with specific adaptors and cargos via
a tail domain, facilitating their lysosomal binding and tracking.
The mechanisms that couple kinesins to lysosomes are well
characterized for specific kinesins. For example, kinesin-1 are
recruited to lysosomes by the cooperative interaction of the
multisubunit BLOC-1–related complex, the small GTPase Arl8 and
its effectors Sif1, and the kinesin-interacting protein PLEKHM2
(Balderhaar and Ungermann, 2013; Pu et al., 2015). In addition, a
variety of regulatory factors, including several Rab proteins,
transmembrane lysosomal proteins such as LAMP1, LAMP2, or
TMEM106B, intricately control the spatial distribution and bidi-
rectional movement of lysosomes in conjunction with various
factors or processes such as Ca2+ efflux from lysosomes, lipid
composition of their membrane, intraluminal pH, organelle
contact, and the actin cytoskeleton (Pu et al., 2016; Tancini et al.,
2020; Buratta et al., 2020). Lysosome positioning and mobility
within the cytoplasm are finely regulated in response to various
perturbations, including changes in the metabolic status of the
cell. Under conditions of nutrient depletion, lysosomes tend to
cluster near the nucleus, facilitating fusion with autophagosomes,
whereas nutrient availability promotes lysosomal movement to-
ward the cell periphery (Korolchuk et al., 2011; Pu et al., 2016). In
addition, in the context of proteotoxic stress, such as the accu-
mulation of aggregation-prone proteins like α-synuclein, lyso-
somes containing these proteins relocate to the cell periphery,
thereby becoming less acidic and losing their degradative prop-
erties (Dilsizoglu Senol et al., 2021).

Lysosomal intraluminal pH
Lysosomal intraluminal pH is a critical parameter that pro-
foundly affects lysosomal properties and exocytosis. Lysosomes
are characterized by a highly acidic pH (4.5–5.0), which is optimal
for the activity of most luminal lysosomal hydrolases involved in
the degradation of various macromolecules. Interestingly, the
cellular location of lysosomes has been shown to determine their
intraluminal pH, with peripheral lysosomes exhibiting lower
acidity and reduced degradative capacity (Johnson et al., 2016),
potentially facilitating exocytosis (Andrei et al., 1999; Tapper and
Sundler, 1995; Miao et al., 2015), compared with those located in
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the perinuclear region, which are more acidic and have higher
degradative activity (Johnson et al., 2016). A possible explanation
for this heterogeneity in intraluminal pH may reflect the stabili-
zation of the vacuolar H+ ATPase (V-ATPase) by RILP, the Rab7-
interacting lysosomal protein, which promotes lysosome location
in the perinuclear region. Consequently, RILP contributes to the
maintenance of acidic pH in juxtanuclear lysosomes compared
with peripheral lysosomes (Johnson et al., 2016). Accordingly,
inhibition of lysosomal acidification by pharmacological agents
such as bafilomycin A1, a lysosomal V-ATPase inhibitor, stim-
ulates lysosome fusion with the PM and the subsequent release of
their contents into the extracellular milieu (Tapper and Sundler,
1995). Likewise, disruption of the lysosomal pH by lysosomotropic
drugs such as ammonium chloride or chloroquine also increases
the exocytosis of LE/lysosomes (Brown et al., 1985; Alvarez-Erviti
et al., 2011). Collectively, these studies support the notion that a
less acidic endolysosomal environment with compromised deg-
radative activity is important for redirecting these organelles to-
ward secretory function.

Lysosome contacts with other intracellular compartments
In addition to their fusion with endosomes, autophagosomes,
and the PM, lysosomes establish physical interactions through
membrane contact sites (MCS) with various intracellular com-
partments, including the Golgi apparatus, the ER, mitochondria,
and peroxisomes. These contacts/interactions play a pivotal role
in sustaining interorganellar communication and profoundly
influence lysosome properties, such as their intraluminal pH,
motility, and positioning. For example, during nutrient starva-
tion, the protein RILP bridges the lysosome-associated protein
folliculin with the Golgi-associated small GTPase Rab34, pro-
moting the perinuclear clustering of lysosomes (Starling et al.,
2016), where lysosome–autophagosome fusion is facilitated
(Korolchuk et al., 2011). The maintenance of the perinuclear
population of endolysosomes is also facilitated by MCS between
endolysosomes and the ER, mediated by the sorting nexin-19
(SNX19). SNX19, a transmembrane protein localized in the ER,
tethers endolysosomes by interacting with the phosphoinositide
PI(3)P on the endolysosomal membrane (Saric et al., 2021). In
addition, PI(3)P associated with Rab7 on the endolysosomal
membrane interacts with the ER-anchored protein protrudin
(Raiborg et al., 2015). Other factors involved in ER–endolysosome
interactions include RNF26, an ER-anchored ubiquitin ligase that
facilitates the recruitment and ubiquitination of the cytosolic
protein SQSTM1. Ubiquitinated SQSTM1 can then bind to the
ubiquitin-binding domain of the adaptor proteins EPS15 and
TAX1BP1, which are localized to the endolysosomal surface
(Jongsma et al., 2016). VAMP-associated protein (VAP) is another
ER-tethering factor, which interacts with the endolysosomal
cholesterol-sensing protein ORP1L (Rocha et al., 2009). In addi-
tion to regulating lysosome motility and positioning, these in-
teractions with ERmembranes allow Ca2+ delivery from the ER to
lysosomes, a process mediated by the clustering of inositol 1,4,5-
triphosphate receptors at the ER–lysosome MCS (Atakpa et al.,
2018). They also facilitate the non-vesicular transfer of lipids,
such as phospholipids and cholesterol, between these organelles
(Luo et al., 2017; Kumar et al., 2018). Lysosome–mitochondria and

lysosome–peroxisome MCS are also critical in regulating the
transfer of metabolites between these organelles and modulating
lysosome dynamics (Leisten et al., 2023; Cisneros et al., 2022; Jin
et al., 2015).

Lysosome fusion with the PM
Under various stress conditions or in response to specific cel-
lular demands, a subset of lysosomes with reduced acidity and
degradative capacity, located proximal to the PM or translocated
to the cell periphery, or lacking MCS with other intracellular
compartments, can be mobilized for exocytosis. This process,
which relies on the docking and fusion of lysosomes with the
PM, is orchestrated by specific factors and specialized fusion
machinery.

The docking of lysosomes to the outer leaflet of the PM occurs
through the formation of a trans-SNARE complex involving the
vesicle (v)-SNARE VAMP7 located on the lysosomal surface, and
the target (t)-SNARE syntaxin-4 and synaptosome-associated
protein of 23 kDa on the PM (Proux-Gillardeaux et al., 2007;
Rao et al., 2004). Subsequently, lysosome–PM fusion is triggered
by a local increase in intracellular Ca2+ levels, facilitated by the
lysosomes themselves, which serve as Ca2+ reservoirs. Calcium
efflux from lysosomes is mediated by the membrane protein
mucolipin 1 (MCOLN1 or transient receptor potential mucolipin
1), which acts as a lysosomal Ca2+ channel. Calcium release from
lysosomes binds to the Ca2+ sensor synaptotagmin VII (sytVII),
which contains two C2 Ca2+-binding domains. This binding
promotes the association of sytVII with preassembled trans-
SNARE complexes and PM phospholipids, thereby facilitating
lysosome fusion with the PM (Martinez et al., 2000). Interest-
ingly, oxidative stress and reactive oxygen species have been
shown to stimulate MCOLN1 activation, thereby facilitating Ca2+

release from lysosomes and subsequent exocytosis (Funato et al.,
2020). Key regulators of this process include the small GTPases
Rab3a and Rab10, which coordinate lysosomal docking at the PM
for secretion (Vieira, 2018). In an inflammatory context, cyto-
kines such as TNF-α promote lysosomal exocytosis, thereby fa-
cilitating α-synuclein propagation, an effect mediated by the
involvement of the small GTPase Rab27A (Bae et al., 2022).
Additionally, lysosomal structural proteins such as LAMP1 play a
key role in lysosomal exocytosis. Sialylation of the N-terminal
domain of LAMP1 facing the lysosomal lumen is critical.
Knockdown of the sialidase N-acetyl-α-neuraminidase (Neu1) in
mice enhances lysosomal recruitment and docking at the PM.
Silencing LAMP1 reverses this phenotype, underscoring the
importance of Neu1-controlled sialylation of LAMP1 in lysosomal
exocytosis (Yogalingam et al., 2008). A study demonstrating that
glucosylceramide accumulation within lysosomes induced by
β-glucocerebrosidase inhibition enhances lysosomal exocytosis
(Lunghi et al., 2022) also suggests that the lipid composition of
lysosomes is a key determinant of their exocytosis.

Concluding remarks and future perspectives
Located at the crossroads of multiple intracellular trafficking
pathways, lysosomes are emerging as versatile organelles in-
volved in diverse cellular functions that are critical for main-
taining cellular homeostasis and adapting to stress conditions
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(Perera and Zoncu, 2016). In addition to their role as regulatory
hubs for signaling, metabolism, and quality control, lysosomes
exhibit remarkable capabilities in exocytosis, which is essential
for the release of various cargo proteins. Consequently, they also
play essential roles in intercellular communication, PM repair,
ECM remodeling, and clearance of harmful materials indepen-
dent of degradative mechanisms (Tancini et al., 2020; Reddy
et al., 2001; Villeneuve et al., 2018; Filaquier et al., 2022). Re-
cent advances have expanded our understanding of how cargo
proteins converge to lysosomes, underscoring the critical role of
lysosomes as sorting stations for both conventional and uncon-
ventional secretion pathways (Tancini et al., 2020; Filaquier
et al., 2022). Elucidating the intricate pathways and molecular
players involved in these processes, along with the various
cargoes trafficked through lysosomes and subsequently released
via exocytosis, is of paramount importance. An important ob-
jective in the field of UcPS will also be to decipher how cargo
proteins can be differentially targeted to specific or multiples
UcPS pathways depending on the pathophysiological conditions,
cellular stress, and cell types. The establishment of standard
in vitro cell–based assays as well as relevant in vivo models will
be crucial to address this important issue in the near future.

Lysosomal functions rely on coordinated processes involving
the activation, recruitment, and transport of diverse molecular
factors to lysosomes that shape their content, positioning, dy-
namics, interactions, and fusion with other organelles. The
complex interplay between different lysosomal properties de-
lineates their multifaceted roles as degradative, signaling, or
secretory organelles. Importantly, these lysosomal properties
are not mutually exclusive, but exhibit profound inter-
dependencies that orchestrate lysosomal functions toward specific
cellular outcomes. Different cellular demands or stress conditions
can regulate or alter lysosomal functionality. For instance, dis-
ruptions in trafficking along the ER–Golgi secretory axis, as evi-
denced in pathological contexts such as cancer or pathogen
infection (Banerjee et al., 2023; Chen et al., 2022), may affect the
delivery of essential structural and functional components to
lysosomes, including the V-ATPase or degradative enzymes.
Similarly, the accumulation of excessive or deleterious materials
within lysosomes, as observed in lysosomal storage disorders or
neurodegenerative diseases can lead to lysosomal membrane
permeabilization (Walkley and Vanier, 2009; Piovesana et al.,
2023; Rose et al., 2023, Preprint), resulting in stressed lysosomes
and a vicious cycle that compromises their intraluminal pH, cat-
abolic properties, interactions with organelles, dynamics, and
positioning. This can affect lysosomal content and induce lyso-
somal remodeling through the activation of both transcriptional
and post-transcriptional programs (Perera and Zoncu, 2016;
Zoncu and Perera, 2022). Thus, numerous interrelated events
triggered in response to cellular nutritional status, stress con-
ditions, or physiological demands differentially regulate lysosomal
properties, potentially contributing to make a subset of secretion-
competent lysosomes (Fig. 3). Therefore, unravelling the subtle
interplay and functional relationship between lysosome proper-
ties and identifying molecular effectors and regulatory elements
that act as molecular switches to convert lysosomes into secretory
compartments are critical areas of investigation.

An important challenge is also to understand themechanisms
governing lysosomal heterogeneity within individual cells, and
the mobilization of subpopulations of lysosomes for specific
functions. It is worth noting that the lysosomal population in-
cludes autolysosomes, endolysosomes, and terminal/storage ly-
sosomes, which coexist in a dynamic equilibrium intricately
linked to the lysosomal regeneration cycle (Bright et al., 1997,
2016). During this cycle, terminal/storage lysosomes are re-
formed from autolysosomes and endolysosomes through pro-
cesses such as tubulation, maturation, and content condensation
(Yang and Wang, 2021). Remarkably, terminal/storage lyso-
somes exhibit reduced acidity and degradative activity com-
pared with endolysosomes (Bright et al., 2016). Accordingly, the
lysosomal regeneration cycle introduces an additional level of
complexity to the heterogeneity of the lysosomal population,
where nutritional, signaling, and stress cues can modulate ly-
sosome properties to redirect this compartment toward secretion.
Whether lysosomes undergoing secretion are also degradation
competent, or whether the acquisition of secretory properties
is detrimental to other lysosomal functions, remain important
questions that warrant further exploration.

In addition to unraveling fundamental processes that govern
lysosomal biology, the dissection of the molecular mechanisms
that support the conversion of lysosomes into secretory organ-
elles will also provide opportunities for the development of new
therapeutic strategies in several diseases. Indeed, dysfunctional
lysosomal degradation is a pathological hallmark of lysosomal
storage disorders (Walkley and Vanier, 2009; Platt et al., 2018)
and neurodegenerative diseases such as Parkinson’s and Alz-
heimer’s diseases (Fleming et al., 2022), which are characterized
by the accumulation of harmful undigested substrates and
misfolded proteins, respectively. Several studies have demon-
strated that enhancing cellular clearance through lysosomal
exocytosis can mitigate the deleterious accumulation of toxic
material (Tsunemi et al., 2019; Xu et al., 2020; Medina et al.,
2011; Spampanato et al., 2013). In these studies, lysosomal exo-
cytosis was triggered either by a Ca2+ channel agonist (Tsunemi
et al., 2019), or by activation of a specific transcriptional pro-
gram controlled by the transcription factor EB (TFEB) (Xu et al.,
2020; Medina et al., 2011; Spampanato et al., 2013), whose
nuclear-cytoplasmic shuttling is regulated by mechanistic target
of rapamycin complex 1 (mTORC1) (Roczniak-Ferguson et al.,
2012; Settembre et al., 2012; Takla et al., 2023). TFEB orches-
trates the transcriptional expression of numerous genes in-
volved in autophagy and lysosome biogenesis (Martina et al.,
2012; Settembre et al., 2011). It also upregulates the expression
of the lysosomal Ca2+ channel MCOLN1, facilitating lysosome
fusion with the PM and release of lysosomal contents into the
extracellular milieu (Xu et al., 2020; Medina et al., 2011).
However, the concept that the conversion of lysosomes into
secretory compartments represents an alternative to degrada-
tion processes, particularly in neurodegenerative diseases,
warrants careful consideration. Studies suggest that the release
of toxic misfolded proteins such as Tau and α-synuclein, while
beneficial to the cells in which they accumulate, may have
detrimental effects at the organismal level, by promoting the
propagation of toxic protein species and disease progression in
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Figure 3. Functional relationship between lysosomal properties. Lysosomes are multifaceted organelles primarily known for their degradative properties
sustained by structural and functional lysosomal proteins including, among others, LAMP1, LAMP2, and several hydrolases, such as Cathepsin D and L. The
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Alzheimer’s and Parkinson’s diseases (Neupane et al., 2023;
Dujardin et al., 2014; Clavaguera et al., 2009). The adverse
consequences of material clearance via lysosomal exocytosis
are also amplified by the dissemination of toxic misfolded
proteins between neighboring cells through the transport of
lysosomes via tunneling nanotubes (Dilsizoglu Senol et al., 2021;
Abounit et al., 2016). Overall, this suggests that targeting mo-
lecular players involved in lysosome transport and exocytosis
holds promise for the treatment of neurodegenerative diseases,
although the development and validation of such strategies re-
quire in vivo models that faithfully recapitulate the dynamic
spatiotemporal progression of lesions observed in patients.

In conclusion, there is no doubt that research in lysosome
biology will unveil key mechanisms of intercellular communi-
cation and enhance our understanding of various disease
conditions.
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Higashi syndrome: First ultrastructural demonstration in a human bi-
opsy. Ultrastruct. Pathol. 35:172–175. https://doi.org/10.3109/01913123
.2011.584656

De Matteis, M.A., and A. Luini. 2008. Exiting the Golgi complex. Nat. Rev.
Mol. Cell Biol. 9:273–284. https://doi.org/10.1038/nrm2378

Dell’Angelica, E.C., C. Mullins, S. Caplan, and J.S. Bonifacino. 2000. Lysosome-
related organelles. FASEB J. 14:1265–1278. https://doi.org/10.1096/fasebj
.14.10.1265

Deretic, V., S. Jiang, and N. Dupont. 2012. Autophagy intersections with
conventional and unconventional secretion in tissue development,
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tion of lysosomes within the cell determines their luminal pH. J. Cell
Biol. 212:677–692. https://doi.org/10.1083/jcb.201507112

Jongsma, M.L.M., I. Berlin, R.H.M.Wijdeven, L. Janssen, G.M.C. Janssen, M.A.
Garstka, H. Janssen, M. Mensink, P.A. van Veelen, R.M. Spaapen, and J.
Neefjes. 2016. An ER-associated pathway defines endosomal architec-
ture for controlled cargo transport. Cell. 166:152–166. https://doi.org/10
.1016/j.cell.2016.05.078

Kaushik, S., and A.M. Cuervo. 2016. AMPK-dependent phosphorylation of
lipid droplet protein PLIN2 triggers its degradation by CMA. Autophagy.
12:432–438. https://doi.org/10.1080/15548627.2015.1124226
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