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Saddle points on high-dimensional potential energy surfaces (PES) play a determining role in the activated
dynamics of molecules and materials. Building on approaches dating back more than 50 years, many open-
ended transition-state search methods have been developed to follow the direction of negative curvature from a
local minimum to an adjacent first-order saddle point. Despite the mathematical justification, these methods
can display a high failure rate: using small deformation steps, up to 80% of the explorations can end up
in a convex region of the PES, where all directions of negative curvature vanish; while if the deformation
is aggressive, a similar fraction of attempts lead to saddle points that are not directly connected to the
initial minimum. In high-dimension PES, these reproducible failures were thought to only increase the overall
computational cost, without having any effect on the methods’ capacity to find all saddle points surrounding
a minimum. Using the Activation-Relaxation Technique nouveau (ARTn), we characterize the nature of the
PES around minima, considerably expanding on previous knowledge. We show that convex regions can lie on
activation pathways, and that not exploring beyond them can introduce significant bias in the saddle-point
search. We introduce an efficient approach for traversing the convex regions, almost eliminating exploration
failures, while multiplying by almost 10 the number of identified unique and connected saddle points as
compared with the standard ARTn, thus underlining the importance of correctly handling convex regions for

completeness of saddle point explorations.

PACS numbers: 02.70.-c

I. INTRODUCTION

Saddle points (SP) on potential energy surfaces (PES)
are of crucial importance in modern chemistry and ma-
terials science. These specific points correspond to the
atomic structures that have the highest energy along the
minimum energy paths (MEP) connecting two states.
Within transition state theory', they represent transition
states that provide the mandatory information needed to
access the kinetics of an atomic system, including the en-
ergy barriers required to displace atoms. Consequently,
they grant knowledge of the diffusion and reaction rates,
which is crucial to comprehending the temporal evolution
of an atomic system.

The PES is generally a complicated function of the
configuration space: for 3D systems, it spans 3 X Ny di-
mensions, where Ng; is the number of atoms. Evaluating
the PES for a given set of atomic positions is compu-
tationally demanding, as it requires knowledge of both
the total energy and its first derivative (forces) that need
to be computed in some way, generally using empirical
potentials or quantum mechanics.

The algorithmic approach used to find SPs on a PES

depends largely on how much one already knows about
the PES. The challenge can be categorized into: (%)
Single-ended, or open-ended problems, for which only
the initial structure is known; the PES must be explored
all around the initial structure to find the adjacent SPs.
(i) Double-ended problems, for which both the initial
and final structures are known; the PES exploration can
then be limited to finding a continuous MEP between
the two known structures, which are generally local min-
ima of the PES. The most common algorithms used to
solve double-ended problems are variations on the string
method?®. Although open-ended algorithms are used
primarily to identify unexpected reaction mechanisms,
they can also address double-ended problems by using a
starting structure that is linearly interpolated between
the initial and final ones®, or any other improved inter-
polation”. Today, the dominant open-ended SP search
algorithms include the activation relaxation technique
(ARTn)58 10 the eigenvector-following method!'!, the
dimer method'?'? and the reduced gradient!*. A review
of algorithms that solve open-ended problems is given in
Ref.!5. All of them have initially been developed more
than a quarter of a century ago.
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The low-energy first-order SPs are the most relevant
for the dynamical evolution of the system (first-order SPs
are referred to simply as SPs in the rest of the paper).
In fact, due to the Boltzmann factor determining their
relative probability of occurrence, they are exponentially
favored in thermodynamics. The regular critique of SP
searching methods is that it is never certain that they are
able to find all relevant SPs in a region of a PES, and that
there is no straight-forward way of (dis)-proving that.
Partially as an answer to that critique, it is often assumed
that the regions of PES potentially inaccessible to the ex-
ploration mainly contain the high-energy SPs, which are
not of much interest, and thus the ability of finding them
is irrelevant. In addition, a sufficiently broad exploration
should always find the low-energy SPs, assumed to reside
in areas of the PES that can be described with relatively
simple reaction coordinates, which the algorithm can eas-
ily explore. The hypothesis that low-energy SPs can be
located in regions of the PES that are hardly or not ac-
cessible at all was therefore believed to be unlikely and
was not really tested.

Within this context, the efficiency of open-ended al-
gorithms for SP-search can be gauged based on two pri-
mary metrics: (i) the count of unique SPs found that
are connected to the starting minimum, knowing that no
mathematical theory provides the upper bound for that
number in a generic system'%; and (i) the average num-
ber of force evaluations needed to reach a SP. As the
paths to different SPs can take drastically different num-
bers of steps, a combination of these two metrics can also
be used, to measure the total efficiency of an algorithm by
counting the total number of force evaluations needed to
find all the relevant SPs, i.e. the ones below a given en-
ergy threshold. However, such count is more dependent
on the specific method selected to generate the initial
displacements than on the SP search algorithm itself.

These two metrics are obviously influenced by the de-
tailed implementation and parametrization of each al-
gorithm, but more importantly, by the structure of the
energy landscape itself. The open-ended method ARTn
stops the search when, on the path to the SP, all di-
rections that display a negative curvature of the PES
vanish, because there is no promising direction to follow
anymore. Mathematically, this happens when the sys-
tem finds itself on a convex region (CR) of the PES. As
shown in this paper, CRs can be located: (i) around the
starting minimum, which can sometimes be reached when
the algorithm relaxes back into the starting basin, or (i)
above the first inflection of the PES, and it is impossi-
ble to predict when they will be encountered using only
local information. In some other algorithms such as the
dimer method!'?!?  the CRs are escaped by continuing
to follow the direction of minimum curvature uphill until
a negative eigenvalue reappears. In Section V, we show
that this can lead to new SPs, but that better choices for
exiting CRs are possible.

The problem (i) was identified a while ago!'?, and an el-

egant solution was implemented to limit its occurrence®.

The issue (i) was long considered computationally costly
to resolve and without any real impact on the SP search.
In fact, it was assumed that in a high-dimensional space,
it is always possible to find another path on the PES that
goes around the CRs, and thus finding all SPs connected
to the initial minimum would always be possible in some
way.

In this article, the latter issue is critically revisited with
a demonstration that these previous assumptions are in-
correct. Building upon a generic analysis, we offer a de-
tailed characterization of the features of a 2D PES, and
how they affect pathways between a local minimum and
the connected saddle point. We then show that this un-
derstanding is fully generalizable to higher-dimensional
system; this allows us to explore various fundamental
modifications to correct the major under-sampling of cur-
rent open-ended methods.

Three different methods are proposed, implemented
in ARTn, and compared, with the objective of properly
overcoming convex regions during saddle-point searches.
We find that the best solution of all three is to continue
pushing the system by following a direction prescribed
by a "double" random vector. The proposed method
is general and can consequently be implemented in any
minimum eigenmode following algorithm.

We show on a real example of solid-state physics that
the features found on the 2D example, which could be
regarded merely as toy model, are not only present in
higher dimensions, but also of high importance for navi-
gating the PES. We demonstrate explicitly that ignoring
the CRs can result in the inability to explore a poten-
tially significant portion of the PES, resulting in the fail-
ure to identify up to 90 per cent of truly connected saddle
points.

Computationally, the proposed modifications reduce
the fraction of failed attempts, which can reach 25 to
80 percent with the standard algorithms, to less than 1
per cent, considerably reducing the net number of force
evaluations per successful saddle search, while multiply-
ing by up to 10 the number of different connected saddle
points found. Importantly, and contrary to previous as-
sumptions, a significant fraction of low-energy SPs, that
dominate kinetics, can be located in regions of the PES
that have previously been inaccessible because of declar-
ing the exploration as a failure once it encountered a CR.

This paper is structured as follows. Some definitions
are first recalled in Section II. A 2D toy PES is analyzed
to establish notions about its features in Section III. The
current situation of the ARTn algorithm and its main
issue are described in Section IV. The proposed improve-
ments and the test case are detailed in section V. The
results of the test case are presented in Section VI with
discussions in Section VII.



Il. DEFINITIONS

Throughout the paper, we use the following definitions,
unless explicitly specified.

The local curvature of the PES is obtained from the
Hessian matrix. It corresponds to the spectrum of eigen-
values A;. The eigenvector Vi corresponds to the low-
est eigenvalue \; = A\jin-

The parallel and perpendicular forces are defined, re-
spectively, as: F|| = (F - Viin)Vmin and F; = F — F.

A specific point of the PES can be classified as either
on a "valley" or "ridge", or "perpendicular hyperplane",
depending on the direction of the gradient (force F), and
the local curvature of the PES, as follows. (i) The valleys
are defined as the lines where the forces F are parallel
t0 Vmin, %.¢ F1 = 0, and where there is at most one
negative eigenvalue A\; < 0. This negative curvature is
along the direction of the valley. Therefore, when one
moves from the valley line in any perpendicular direc-
tion, the potential energy increases. (ii) The ridges are
defined similarly, as lines where the forces F are parallel
t0 Vmin, however, there are at least two negative eigen-
values \; < 0. The first negative curvature is along the
ridge line and the second perpendicular to it. Therefore,
when one moves from the ridge line along the second neg-
ative curvature, the potential energy decreases. Similar
definitions of valleys and ridges can be found in Hoff-
man'?.  (iii) The perpendicular hyperplanes (PH) are
defined as hyperplanes where the forces F are orthogonal
to Vmin, @€ FH =0.

Any region of the PES where the lowest curvature is
positive Apin > 0 is called a convex region (CR). If a CR
contains the initial minimum, we call it the starting CR.

Any point where the lowest curvature is zero (Apin =
0) is called an inflection point. The inflection points to-
gether form inflection hyperplanes that are the bound-
aries of CRs.

Regions of the PES can be referred to as "below", or
"beyond" /"above" a certain CR, with respect to the en-
ergy. The regions "below" are regions which can lead the
system into a CR, while the regions "beyond" are the
ones reached by starting from the boundary of a CR.

Many dynamics functions can be used to explore the
PES, the ones used in this paper are the "minimization"
and the "eigenmode following" SP exploration. FEach
of them exhibits some fixed points in the phase space,
to which the dynamical evolution tends, or converges.
These fixed points are called the attractors, for the mini-
mization, they are minima points, and for SP exploration,
they are the SPs. Any set of points on the PES where
all the points evolve to the same attractor forms a region
called the attracted region.

In higher dimensions, the valleys and ridges are still
of dimension 1, whereas the perpendicular hyperplanes
are of dimension 3N, — 1. The convex regions are hy-
pervolumes of 3N,; dimensions, which are delimited by
3Ny — 1 dimensional inflection hyperplanes, where the
lowest eigenvalue is zero.

Ill.  ANALYSIS OF THE PROBLEM

A 2D toy-model PES is analyzed in Fig. 1, in order to
understand its characteristics, which are important from
the point of view of SP search algorithms.

The region in black on Fig. 1a indicates all the points
where a minimization function started from there, will
end up in the minimum indicated by a larger black point,
i.e. the black minimum is the fixed attractor point for
the minimization function, and the black region is its at-
tracted region. Throughout the paper, they are simply
referred to as the minimum and its basin, respectively.
This figure is generated by launching a minimization from
62 500 equally distributed points on a 250 x 250 2D grid
and coloring the ones that relax to the black minimum.
Starting the minimization from any point outside of this
region will end up in a different minimum. The SPs are
by definition located on the boundary of the basin (col-
ored points on Fig. 1a), and a steepest-descent minimiza-
tion from the SPs towards the minimum is a unique path
connecting the SP and the minimum (colored lines in
Fig. 1a), which is also called the intrinsic reaction coor-
dinate (IRC). These SPs are defined as "connected" to
the minimum.

In Fig. 1b, we change the function from minimization
to a SP search algorithm that always follows V,in. The
fixed attractor points are then the SPs indicated by col-
ored points. The colored regions are the regions attracted
to the corresponding SP, meaning that an exploration
started from any point in a given region will end up at the
SP of the same color. Notice that not all SPs are reach-
able by following the Vi, starting from the minimum.
In order to reach SPs other than yellow and magenta, the
algorithm first has to move the starting position away
from the minimum until it enters a given attracted re-
gion, and only then begins following the Vpip.

In Fig. 1c, the features of the PES, namely the valleys,
ridges, perpendicular hyperplanes, and CRs as defined in
Sect. I1, are shown in black, green, gray, and blue, respec-
tively. Note several things from this figure as follows.

a. Reach SP by ascending a valley: Since a SP is
a local maximum along a valley line, it can be reached
by ascending the valley. Thus, reaching a SP by follow-
ing Vmin requires to have found that valley. Therefore,
reaching all the SPs connected to a given minimum re-
quires finding all the valleys present in the basin region
of that minimum.

b. More SPs than eigenmodes — valleys must branch:
In a two-dimensional system, as presented in Fig. 1,
the minimum has only two eigenmodes. Following each
eigenmode from the minimum in either + direction can
thus potentially lead to 2x2 valleys in total and their
corresponding four SPs (assuming that each eigenmode,
even if it is not the lowest mode V in, becomes a valley
at some point, for which there is generally absolutely no
guarantee). However, the number of SPs around the min-
imum in Fig. 1 is five, which means that at least one val-
ley must necessarily "branch" into multiple valleys some-



(a) Basin for minimization (black) and IRC
from each SP (colored lines).

(d) PES features of Fig. la.

FIG. 1.

(b) Regions attracted to SPs by following
Vmin (colored).

(e) PES features of Fig. 1b.

=
(c¢) Convex regions (blue) and the PES
features.

(f) CRs and regions that lead into CRs in
dashed blue.

Analysis of a 2D example PES where typical features can be found. The big points represent stable structures where

F = 0: minimum (black) and saddle points (colored). The regions of the PES colored in a certain way represent the set of points
having the same characteristics: (la, 1d): (black) basin for minimization, (colored lines) IRC. (1b, le, 1f): regions attracted
to SPs of the same color. (1c, 1d, le, 1f): PES features, valleys (black), ridges (green), perpendicular hyperplanes (gray) and
inflection hyperplanes (blue), as described in Sect. II. (1f): (dashed blue) the regions that lead to a CR by following Vmin.

The analytical value of the PES is E(z,y) = Lcos(%)cos(32)cos(4) + cos(z)cos(3L) + exp(—%) for x € [13;18]

and y € [14.7;18.6].

where within the basin. In a realistic system with N
atoms, the PES has 3N ;-dimensions and a minimum has
3N, eigenmodes. Hence, a maximum of 2 x 3N,; valleys
and their SP can be reached when following + each of
the eigenmodes from the minimum (limited to two SPs
if following only Vyin), while none of the "emergent"

SPs can be reached. The total number of SPs in a real-
istic system depends on the unknown number of valley
branchings.

c. CRs other than starting CR: The minimum is lo-
cated within a CR called the starting CR, but that is
not the only CR present on the PES. We can observe



other CRs, where different things can happen, like a val-
ley (black) that transforms into a perpendicular hyper-
plane (white) or vice versa. The point where this happens
is noted by VtoPH. It corresponds to the "birth/death"
of the valley.

d. Valleys branching: There are places where two
valleys dissociate, which are generally called reaction
path branching!®, or valley bifurcations!?. In the most
general case where the PES is not symmetric, the two
(or more) valleys of a branching do not cross by touching
each other at a single point, but by only approaching each
other, thus forming a forbidden crossing®’, also known as
diabolic or exceptional points?'. In this 2D example, a
valley branching is located in the CR.

While most of the literature cited above generally
speaks of bifurcation/branch points, we show with the
simple 2D PES examples of Fig. 1c, that they possibly
occur in regions larger than a single point. The crossings
are indeed reduced to a single point in highly symmet-
ric molecular systems, such as the ones studied in most
associated literature. A particular example of a highly
symmetric PES that exhibits a single point branching of
valleys is presented in Appendix B.

e. Other significant points and regions: Valley-ridge
inflection points (VRI)??, located at the contact between
the black (valleys) and green (ridges) lines in Fig. 1c are
important regions of the PES. Algorithms do not use
infinitesimal, but finite-sized steps, which implies that
ridges can sometimes be reached and also crossed. How-
ever, since the ridges are defined with at least two neg-
ative eigenvalues, they cannot be located within CRs,
where all the eigenvalues are positive. As these struc-
tures are not hindering the SP search procedure, VRI
are not discussed further in this article.

By definition, the boundaries of the basin can be ob-
tained from each SP by following the hyperplanes or-
thogonal to the isoenergy hyperplanes (hyperplanes on
which the energy is constant). As shown in Fig. 1d, in
the vicinity of the SPs, this is equivalent to following the
perpendicular hyperplane. In Fig. 1le, these PES features
are superposed above the regions attracted to the SPs.
One can observe that the boundaries of these regions are
mainly perpendicular hyperplanes that act like uncross-
able barriers if the size of the displacement used by the
algorithm is small enough.

f- Implications for SP search algorithms: The main
goal of SP exploration algorithms is to find as many SPs
as possible for a given basin. Thus, it can be concluded
from the preceding observations that the main focus is
to find all the valleys present in the basin, no matter
where they originate. This implies first moving away
from the initial minimum. The choice of the algorithm is
then to specify when it is "far enough" to start following
Vmin- The algorithm must be able to reach the regions
where valley branchings occur, in the form of a forbidden
crossing or otherwise. Cases where a branching occurs
below a CR should not be problematic, since consecutive
searches with different initial directions can easily access

all its branches. However, branching can occur within
CRs, or above. Therefore, to reach these new valleys,
it should be important to pass through a CR when it is
encountered and explore the regions beyond it.

These observations are not specific to the particular
region of the example 2D PES analyzed above. A differ-
ent region of the PES with similar features is shown in
Appendix A.

It might not be obvious or straightforward that obser-
vations made on a 2D example PES can be generalized
to a realistic system with 3N,; dimensions. However, as
shown in Sections V and VI, realistic systems actually do
exhibit the described properties of the PES, and some
notions from the 2D example can be applied in higher
dimensions.

IV. THE SITUATION IN ARTN

The original ARTn method is discussed in more detail
elsewhere, for instance, in Refs.6:1023:25  In the present
section, we highlight its features with respect to the in-
sights from Sec. III. A schematic is given in Fig. 2, where
the improvements present in this paper are highlighted
in blue and detailed in Section V A.

A. Original algorithm

The ARTn algorithm can start the PES exploration
from any structure (point on the PES), not only strictly
from a minimum structure®. However, most applications
require starting in a minimum, therefore we specify the
description to that case. The overall algorithm does not
change when the starting structure is not in a minimum.

A saddle point is a maximum along one dimension (its
valley) and a minimum along all other dimensions (its
perpendicular hyperplane defined in Section II). There-
fore, to reach a SP, the ARTn algorithm is based on the
following three-step procedure:

1. Compute Apin, and the corresponding Vi, at the
current position. If A < 0, set Vpush = Vmin.

2. Push the system uphill along Vpyush-
3. Relax F |, the forces perpendicular to Vpyush.

At first, the starting structure is deformed away from
the minimum in a random (or constructed) direction
Vpush = Vrinit until a negative eigenvalue A, is found,
indicating that the boundary of the starting CR has been
passed, beyond which Vpysh = Vmin is followed. This
initial random deformation already avoids biasing the
search to the valleys directly connected to the initial min-
imum. Note, however, that despite this initial random
deformation, the white SPs is still unreachable in Fig. le.

In the starting CR, the perpendicular relaxations only
serve to avoid atomic collisions and non-physical config-
urations that can arise from the random deformation.



Input X Push

1 Relax
Vpush = Vrinit, a = Cst X =X+ aVpush until F; < FH

Lanczos if [[F|| <e Output
Aminy Vmin and Ain <0 Saddle=X

if Amin <0

if ||F|| > e
or )\min >0

= Vpush S Vmin: o = ||FH ||/)\m1n
if Amin >0 AND Apin,pres <0
= Vpush = Vcr, @ = Cst

FIG. 2. The 3 steps of the ARTn algorithm (red) taken from Refs.?*?*. The new part that allows to escape the CRs is in blue.
Vcr is the vector used to push the system when it is in a CR: it can be Vrinit, Vrnew, VTinit + Vnew O Vmin, depending on
the method. € is the user-defined force threshold that defines the saddle point.

The number of relaxation steps is then reduced to 1 or 2.
Above the inflection, it serves to fall down into the valley
and a higher number of relaxation steps must be per-
formed. To avoid perpendicular relaxation that brings
the system back to the starting CR, the switch of the
Vpush direction from Vrinis t0 Vimin can be smoothed in
a small number of steps®, which helps steer the structure
away from the starting CR. The number of perpendicular
relaxation steps can also be reduced in the vicinity of the
starting CR and progressively increased.

It has been observed that the convergence of ARTn
to an SP is faster when the rate of convergence in the
parallel and perpendicular directions is approximately
equal. Therefore, each ARTn step outside of any CR per-
forms the perpendicular relaxation for a desired number
of steps, or until F; <F.

ARTn steps are repeated until an SP is reached, which
is characterized by a negative curvature \,,;, < 0 and a
total force of the system F = 0, or operationally lower
than a given threshold. At a first-order SP, A,,i, is the
unique negative eigenvalue and its corresponding eigen-
vector Vpin lies along the valley direction.

Because only the minimum eigenvalue \,,;, and the
eigenvector Vin are sought, the full Hessian matrix is
never constructed or diagonalized, but only a subset of
the space is generated using the Lanczos algorithm?2®.
The direction of Vpyusn is always opposite to F)|. Due to
this, a structure that is pushed slightly through a bound-
ary of the basin can still find its way to the nearby SP. In
fact, as seen by comparing Figs. 1la and 1b, the regions
attracted by the SPs extend beyond the boundary of the
basin.

Finally, to confirm that the SP found is on the hy-
perplane marking the boundary between two basins, the
initial and the other one, an energy minimization is per-
formed from the SP after a slight displacement away from
it in both the =+ directions of Vin. If one of the two
end points of this minimization corresponds to the initial
structure, the SP is considered connected.

B. The main issue

The main issue with the current ARTn algorithm is
that it considers any CR other than the starting CR as
a dead end. As a result, any exploration directed to a
region of the PES where ARTn leads the structure into a
CR is useless, since the algorithm will stop and no SP will
be found going there. For the 2D toy-model, such regions
are marked by dashed blue in Fig. 1f. It means that
all the Vrjni¢ directions emerging from the starting CR
toward the indicated area will end up in the second CR
and result in a failed SP search attempt. This situation is
not anecdotal: for the 2D model, failed searches represent
about 35% of the possible initial directions.

The historical decision to stop the exploration when
losing the negative curvature was due to two false hy-
potheses. It was assumed that (7) the fact that some SPs
could not be reached by following V i, from the edge of
the starting CR is limited to low-dimensional PES, and
(i) it is always possible to find another path on the PES
that goes around the CRs. However, contrary to what
was expected, we show in Section VI that, in higher di-
mensions, the lost SP searches associated with such fea-
tures of the PES can represent up to more than 80% of
the explorations. High dimensions can bring more com-
plexity: for some systems, a significant number of CRs
must be crossed before reaching an SP, which implies
that, depending on the systems, a sizable fraction of the
PES and its SPs are not reachable by the current ARTn
algorithm. Therefore, simply bringing the system beyond
the starting CR before following V pin is not sufficient to
reach the SPs located above further CRs, such as the
cyan and white SPs shown in Fig. 1f. To mitigate the
issue and ensure the complete sampling of SPs, further
changes of the algorithm are required.

In the following, to facilitate reading, we qualify SPs as
"direct" when they can be reached from the starting CR
without crossing any additional CR, and as "indirect"
when at least one other CR has to be crossed.



(a) Vcr=Vmin-

FIG. 3.

(b) Ver=Vrinit.

(¢) Ver=(1 — &) Vrjpit + & Vrnew-.

SPs reached with ARTn starting from the same minimum, as a function of the vector Vcr used to escape the CRs

encountered. Starting from the minimum, 200 searches are launched in uniformly distributed Vrinst directions, forming a circle
in 2D. Each of the 200 slices of the circle around the initial minimum is colored according to the color of the SP reached, with
red indicating directions leading to failed explorations (no SP reached due to trajectory cycling in a loop). The Vcr=Vrnew
case is not shown, as it gives the same kind of results as Fig. 3c, but with a larger number of force evaluations. A video showing
the complete exploration leading to these results is given in the Supplementary Material with its gnuplot script.

V. METHODS AND PROCEDURES

As has been described in the previous sections, CRs
should not be simply discarded as a “failed search", be-
cause this failure blocks the access to the portions of the
PES that are above them and consequently to its SPs.
Ideally, every time a CR is encountered, the PES should
be explored to find all the merging valleys. Each val-
ley should then be followed, as they all lead to an SP
or to a valley-ridge inflection point??. As it is a priori
not possible to distinguish the location of the branchings
by simply looking at the local eigenvalue spectrum, a
method to find all of them could be to start a number of
new fully random explorations in multiple independent
directions. However, such a method would be compu-
tationally demanding and potentially inefficient. In the
following, we propose and explore some lower-cost alter-
native procedures to continue the ARTn SP search when
encountering a CR. Such a procedure must avoid termi-
nating ARTn exploration in cases where Vriy;¢ is directed
from the initial minimum toward the dashed blue area in
Fig. 1f. It must be able to reach the white and cyan
attracted regions, and to reach the SPs that are above

CRs.

A. Proposed procedures

A CR is considered detected when the lowest eigen-
value A, becomes positive while previously negative
(Amin,prev < 0). When this happens, the current ARTn
algorithm schematized in Fig. 2 aborts its SP search, as
V min in CR does not contain particular information with
respect to a connected SP.

To prevent exploration failure and in the absence of
local information, the push vector in CR, Vpush, is no
longer determined by Vi, and must be assigned a new
direction Vpush = Vcr. This modification is high-
lighted in blue in Fig. 2. The vector Vg is chosen so
that it allows reaching any of the valleys that potentially
emerge from the CR or are located beyond it.

Operationally, when a CR is detected, Vg is defined
as the new push vector until a negative eigenvalue \,in
is detected. Vg is further updated if a new CR is
detected. Inside the CR, the norm of the pushing vec-
tor along VR is set to constant, because the goal is to
rapidly pass the inflection, not to converge somewhere.
This choice is discussed in Section. VIIC). Here, four
definitions for Vg are tested:

® Vcr = Vinin, Where the lowest eigenvector Vmin
is followed regardless of the sign of the convexity
of the PES. This is the simplest and most obvious
choice. However, doing this in a CR containing a
forbidden crossing of two valleys always leads to the



same valley (the one most aligned with the Vyin
calculated when entering the CR), and will conse-
quently always ascend to the same SP. In the 2D
example shown in Fig. 1f, following the valley that
enters the CR containing the branching will always
lead to the cyan SP, while the second valley merging
from the convex region will never be followed. Con-
sequently, the white SP will never be reached. This
problem is illustrated in Fig. 3a, where exploration
of the PES starting from the minimum is performed
in all possible initial directions Vrjuit up to a neg-
ative curvature, from which point the eigenvector
Vmin is followed even if the ARTn algorithm en-
counters a CR. Each Vrjpu;; direction is then colored
with the color of the SP reached. Only four (yellow,
green, magenta, and cyan) of the five saddle points
are reached with this approach (not white). There-
fore, the proposed modification Ver = Vmin can-
not meet the objectives described above.

Ver = Vrinit, where the starting random vector is
reused. This ensures that the system does not move
back towards the direction of the initial minimum.
The 2D example using this vector in Fig. 3b works
well, but it can generate some cycling issues repre-
sented by the red directions (cycling issues are also
observed in higher-dimensional atomistic systems,
see Section VIB).

Ver = Vrpew, where Vryey is a completely new
random vector. As the positions of the valleys
within the CR are unknown, all directions should
be considered with equal probability. With such an
approach, two different ARTn searches that enter
the same CR will leave it following two different di-
rections and potentially reach two different valleys.
To be efficient, an isotropic random vector is first
generated and then multiplied by Vrinit resulting
in a vector Vryew that is specifically localized on
the atoms of interest. Multiplying Vrpew by the
local forces has also been tried in this study; this
approach, however, often leads to SPs that are not
localized around the initial central atom. As sug-
gested in Ref.2%, a force threshold could have been
used to confine the displacement on the atoms that
have the highest force, but this represents an ad-
ditional user-defined parameter to finally get quite
the displacements of Vrinjs.

Ver = (1 — @) Vrinit + @ Vrpew, where a € [0;1] is
a mixing parameter (see the Appendix for its op-
timization). This procedure generates a wide vari-
ety of directions originating from the same initial
Vrinit, while preventing pushing the system back to
the minimum. In 2D, the possible directions that
can be generated are represented by the red area in
Fig. 4. This effectively combines the advantages of
Ver = Vrinit and Ver = Vrpew procedures. An
additional benefit is that this procedure avoids the

looping trajectory discussed in Section VIB. This
approach offers the best results on the 2D model
system, as seen in Fig. 3c, and all SPs are reached
without any failure.

FIG. 4. Black vector Vrinit: starting random vector point-
ing away from the initial minimum. Blue vector Vrpew: new
random vector reinitialized each time a CR is detected; it can
point anywhere. Red vector: Vcr = (1 — @) VTinit+@Vrnew
is the new pushing direction used in CRs. All vectors are nor-
malized. The red area corresponds to the possible directions
for Vcr vector as a function of Vryew orientation for a given
a. a = 0.42 is used in this schematic representation.

B. Applications to complex atomistic systems

The proposed methods have been tested on many dif-
ferent systems to validate their generality. We consider
here an amorphous system that represents the problem
described in Section III and a highly degenerate case is
discussed in the appendix B. The amorphous system is
chosen because the initial minimum is connected to a very
large number of different SPs, and because many CRs
need to be crossed to get them. This is one of the worst
situations for SP exploration algorithms. Explorations of
the PES have been performed with the ARTn code in its
fast plugin version?® coupled with LAMMPS?°.

We start with a simulation box of 1000 silicon atoms
in a highly stable amorphous configuration created as de-
scribed in Ref.?" and stabilized following the procedure of
Ref.3!. Interatomic forces are calculated using a modified
Stillinger-Weber empirical potential®2. For each of the
four Vg procedures proposed in Section V A, 3000 ex-
plorations are performed, all starting from the same sta-
ble structure that represents a local minimum of the PES.
Each exploration begins with a push along a randomly se-
lected vector Vrinit away from the initial minimum. This
random vector is localized on a given atom and all its



neighbors contained within a 3.5 A radius. The central
atom and its four neighbors remain the same through-
out the 3000 explorations, to allow detailed sampling of
the 15-dimensional space of initial random deformations.
The displacement step norm is set to 0.2 A when Amin 18
positive and becomes proportional to the forces above the
inflection (see Fig. 2). To compare the efficiency of the
four Vgor procedures described above, the 3000 differ-
ent starting random vectors Vrinst, the starting Lanczos
vector, and the random seed are identical for each of the
four sets. To limit the computational cost of cycling tra-
jectories, all SP searches are stopped (returns a failure)
when the number of force calculations exceeds 4000 or
when the number of encountered CRs is larger than 30.

The force threshold used to determine the convergence
to an SP is set to 1077 eV/ A. This very stringent thresh-
old is needed to ensure that new and already visited SPs
are properly identified, as in amorphous materials, atoms
can be easily displaced without necessarily changing the
energy significantly; thus, a precise convergence is essen-
tial for obtaining similar atomic positions in different cal-
culations of the same SP. Two SPs are considered iden-
tical if the absolute differences in their energy and the
distance between structures are less than 1072 eV and
10~ A, respectively.

VI. RESULTS
A. No failures and new saddle points

The first remarkable effect of continuing to push be-
yond the CRs is that regardless of the selected Vgr
method, the number of saddle points found is drastically
increased as new portions of the PES become accessi-
ble to the algorithm. This is shown in Fig. 5: only
23 different direct saddle points (big red squares) are
generated using the previous implementation of ARTn,
whereas hundreds of indirect SPs are found with the mod-
ifications proposed here. Not surprisingly, the SP energy
increases with the number of CRs crossed during the SP
search. However, even if most of the new SPs have a
high energy, some of these energies are relatively low,
comparable to those of the direct SPs. This is the main
message of the article: some thermodynamically impor-
tant SPs are missed without crossing CR. Interestingly,
the SPs that are most often found, with all methods,
are those close, in distance, to the initial structure. As
shown in Fig. 6, these SPs are reached, for the most part,
either directly, without crossing a CR, or quasi-directly,
crossing no more than 2-3 convex regions.

When following only the eigenvector Vecr = Vmin,
the number of different saddle points found is about half
that of the other proposed vectors, regardless of the num-
ber of CRs crossed, as shown by the numbers at the top
of Fig. 6. Most of them are not localized on the five
atoms of interest, those that have been moved by Vrinit
to escape the starting CR.

Vcr Prev Vimin Vrinit Vrinit + Vrfnew Vrnew
Total SP 712 2793 2967 3000 3000
All CSP 708 2095 2591 2652 2711
Unique CSP| 23 127 248 237 225

(a) Total number of SPs found with each method. All CSP:
counting only the connected SP. Unique CSP: counting CSPs
reached several times only once. Prev: previous ARTn
approach that stops in CR.
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(b) As a function of the SPs energy relatively to the starting
minimum: atomic displacement from the initial minimum (top
panel), occurrence of each SP (middle panel) and cumulative
number of unique saddle points (bottom panel). For clarity, only
connected SPs below 5.5 ¢V and 4.5 A are plotted, and Vin
results are not shown.

FIG. 5. SPs connected to the initial minimum (CSP) found
in an amorphous silicon cell after 3000 ARTn searches as a
function of the method used to handle CRs (Vcr). Vmin,
Vrinit, VTinit + Vrnew and Vrupew are described in the text.

The second remarkable effect of pushing through a CR
is that ARTn almost always finds a saddle point, drasti-
cally increasing its efficiency. As shown in Tab. 5a, the
ratio of explorations that lead to a direct saddle point
does not exceed 25%. With the optimal Vg, except
for some cases described in the next section, 100% of the
explorations lead to an SP. Furthermore, 75% of the SPs
found do not need to cross more than 3 CRs. For the
other 25%, it is hard to precisely affirm that all the CRs
encountered are really separated: it is possible that the
algorithm revisits previously encountered large CRs, for
example.
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FIG. 6. Histogram of number of times an eigenvalue switches
from negative to positive (detecting a CR) over 3000 SP
searches for each of the four proposed vectors. "Crash" indi-
cates that the research has not stopped before 30 CRs (cy-
cling), or that the number of force calculations is greater
than 4000. The numbers in the plot indicate how many new
connected SPs have been found due to the increase of CRs
crossed. Note that the 23 direct SPs are found in all simula-
tion sets since Vcr modifies only the treatment of indirect
ones, with pathways that go through a CR.

Interestingly, Vcr = Vrpew results in a larger number
of pathways crossing more than 10 CRs (blue bare Fig. 6):
the fully random direction used here sometimes pushes
the system towards the initial minimum. This implies
that a subsequent push outside the CR (Vpush = Vmin)
will most likely bring the system back into the same CR,
thus increasing the number of encountered CRs without
helping the algorithm to find SPs. This shows the im-
portance of preserving a part of Vriyit in Ver

B. Avoid cycling

In some rare cases, which represent less than 1% to
3% of the search directions, the eigenvalue alternates be-
tween positive and negative a large number of times. As
shown in Fig. 6 (column Crash), this cycling behavior is
only observed when using Vcr = Vrinit. Looking into
the atomic structures visited with ARTn, we see that af-
ter some standard steps, the algorithm becomes trapped
in a looping pattern on the PES, which forces the struc-
ture to escape and relax back into the same CR(s) in-
definitely. This cycling behavior is presented in Fig. 7
where the loop is composed of one CR (green area), but
loops composed of up to three different CRs have been
observed. A video of the cycling behavior on the 2D PES
is available in the Supplementary Materials. Applying a
double random vector Ver = (1 — @) Vrinit + & Vrpew
avoids this problem, since the random part added to
Vrinit each time a CR is detected ensures that the es-
cape direction is never repeated, so infinite cycling is
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prevented.
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(a) Real example

FIG. 7. Cycling behavior observed in 1% to 3% of the ARTn
explorations with Ver = Vrinit. Gray and black dots: older
and last intermediate structures. Blue arrow: Vrini. (7a):
Red arrows indicate the chronological order of the interme-
diate structures. Top panel: global view of the algorithm.
Bottom panel: Zoom around the region where the algorithm
is trapped. Green area: approximate CR. (7b): The green,
cyan and pink arrows show the cycle occurring using the
Vcr = Vrinit each time it enters the CR. The direction be-
tween two black points in CR and that of Vcr are not the
same due to the perpendicular relaxation after each push.



C. Unconnected paths

The ratio of SPs connected to the initial minimum to
the total number of SPs generated is approximately 90%
in all cases (see the top table in Fig. 5). This partic-
ularly good score depends on the PES and the set of
ARTn parameters, mainly the maximum size of the dis-
placements. However, the ratio of unconnected to total
number of SPs increases with the number of crossed CRs
(see Fig. 6). The unconnected SPs are reached because a
boundary of the basin has been crossed, probably due to a
too large push step while emerging from a CR, in which
the step size is fixed. Disconnected SPs are also more
frequent with Ver=Vmin: in physical systems, Vmin
inside the CRs generally corresponds to a highly delo-
calized mode, such as quasi-acoustic modes. Following
that direction then induces highly delocalized displace-
ments, favoring disconnection with the basin. Note that
leaving the basin is obviously a mandatory condition to
reach an unconnected SP, but is not sufficient. In fact,
the regions attracted by the connected SP pass over the
basin’s boundaries (see the difference between Figs. 1a
and 1b), thus connected SPs can be reached from out-
side the basin. The sufficient condition is to pass over
the regions attracted by the connected SPs, which are a
priori unknown.

D. Optimization of the mixing parameter

The best mixing parameter to define Vg is obviously
PES-dependent. As shown in Fig. 8 for the system stud-
ied here, while a very low « leads to a lower number of
SPs reached and a lower fraction of SPs connected to the
initial minimum, a 0.25 < a < 0.4 generates the highest
number of different but connected SPs, a solid measure
of sampling quality. As « increases, the number of lost
SPs falls to zero at the cost of a slight decrease (15%) in
the number of different connected SPs.

The results of Fig. 8 confirm that each Vri,;; repre-
sents overall the correct direction to follow, and the ran-
dom part serves mostly to avoid cycles and provide access
to the merging valleys that have turned towards a direc-
tion drastically different from Vripit.

VII. IMPROVING THE EFFICIENCY OF THE METHOD

Several additional improvements to ARTn are possible,
as discussed in the section.

A. Detecting the basin boundaries

An unconnected SP is reached when one of the hy-
perplanes that binds the basin is crossed during the SP
search. Looking at the regions around the SPs in Fig. 1d,
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FIG. 8. Count of the number of SP reached using different
Vcr in the convex region.

these boundaries correspond to the hyperplanes orthog-
onal to Viin. Crossing them requires the system to be
close enough to one of those and to undergo a sufficient
push along V yin to go over those. However, in the "min-
imum mode following" algorithms, the norm of the push
along Vmin is proportional to the parallel force F |, which
is reduced the closer the system gets to an orthogonal hy-
perplane (where F|| = 0). At a hyperplane, the algorithm
only performs orthogonal relaxations down to the SP (as
the size of the push across the hyperplane is zero, due to
the force parallel to Vi being zero). The hyperplanes
orthogonal to V pin therefore act as uncrossable barriers.
On the contrary, it is possible to observe in Fig. 1d that
far from the SPs, the basin is not bounded everywhere
by the hyperplanes orthogonal to Vnin. There are paths
in which the algorithm can potentially leave the initial
minimum attractor. This behavior can typically occur
when the size of the orthogonal relaxation steps, or of
the pushes along Vin are too large. To avoid crossing
these boundaries, a simple solution is to reduce the maxi-
mumn size of the displacements, but this is at the price of a
higher computational cost for all the other explorations.
Therefore, one of the possible improvements should be a
detection of the minimum attractor boundaries. This de-
tection should automatically reduce the size of the push
and put the algorithm back to its previous position on
the PES, which allows the use of step sizes that do not
limit the other explorations.

B. Smooth switching of push vector

One of the previously implemented improvements of
ARTn consisted of a way to smoothly change the direc-
tion of the push from the random initial Vri,i; to the
eigenvector Vin in a series of a few steps, when escap-
ing the starting basin®. The initial goal of this option
was to avoid driving the system back into the starting
basin at the first perpendicular relaxation step above



the inflection. However, we have observed that apply-
ing the smoothing option whenever exiting any CR helps
to push the system sufficiently far away from the CR, be-
fore recommencing the regular algorithm, i.e. following
the minimum eigenmode. It therefore represents an ex-
cellent option to help navigate the system away from the
CR that has just been crossed. Unfortunately, perform-
ing the smoothing in too many steps can increase the
number of unconnected saddle points. Typically, this oc-
curs when a boundary of the basin is close enough to the
crossed CR, such that this boundary can be crossed by
a smoothed push vector that has a constant size. There-
fore, to use the smoothing option to its full potential,
it is recommended to limit the smoothing procedure to
a single step when leaving the CR, , i.e.,, to perform a
single intermediate step with Vpush = Ver/2+ Vmin/2

C. Choice of Vri,it amplitude

There are two strategies to escape the starting CR in
a random direction: (i) Progressively push the system
along Vrjuit using small amplitudes up to the inflection
hyperplane; each push followed by a few perpendicular
relaxation steps to reduce the forces and avoid atomic
collisions. (4i) Drastically push the system along Vripn;
with a large amplitude with the expectation to immedi-
ately step over the first inflection hyperplane surrounding
the minimum. The step amplitude can also be random-
ized with a Gaussian distribution in order to make some
bigger deformations, which hopefully bring the system
beyond the places where the valleys are "created" (valley
branchings). Even if this second strategy requires fewer
force evaluations to escape the starting CR, it has three
main problems: (i) The step size and its standard de-
viation must be defined by the user, requiring a priori
knowledge of the PES. (i) Steps that are too large can
lead to unconnected paths or miss SPs close to the start-
ing minimum. (ii7) Not doing intermediate relaxations
can lead to non-physical configurations for which the
forces are abnormally high. Although the second strategy
can be applied in ARTn with appropriate preprocessing,
the first is recommended. This discussion concerning the
amplitude of Vrin; in the starting CR can be generalized
to the amplitude of Vcgr used to escape the other CR.

D. Choice of Vrin;; direction

For activated processes in solid-state systems, con-
nected SPs are generally localized in a region of the con-
figuration space in which a small number of atoms (a
dozen or so) are displaced from the initial minimum: the
ones for which the chemical bond is broken or created and
their neighbors. Therefore, the optimal initial random
deformation Vriujt consists of moving one atom of inter-
est and its nearest neighbors (up to the first or second
shell) in a random direction. When too many atoms are

12

displaced, multiple disconnected valleys can arise, repre-
senting competing activated mechanisms. This can result
in an oversampling of a small set of SPs, the ones that
are the easiest to reach, i.e. that have the largest at-
tracted region, or in the generation of unconnected SPs,
as the Hessian spectrum becomes denser, resulting in dis-
connected pathways. An example of such disconnected
pathway would be a simultaneous diffusion of atoms at
two different locations in the material.

It is formally possible to fully sample the PES around
a basin by systemically choosing deformation directions
from a set of equidistant points on the hypersphere of
possible deformations, as performed by a pre-processing
routine of the dimer code®3. Although this results in
a faster sampling of SPs in low dimensions (see adap-
tative_ HSphere results on the OptBench saddle search
benchmark test®?), this approach becomes unmanageable
in higher dimensions, where the number of equidistant
points needed to ensure proper sampling becomes pro-
hibitively large.

VIIl. CONCLUSION

The identification of saddle points on potential energy
surfaces (PES) is crucial for the characterization of the
kinetics of chemical reactions and of the evolution of ma-
terials. Over the last 50 years, multiple algorithms have
been developed to find these saddle points, based on a rel-
atively simplistic view of the features of PES. Building
on a 2D model, we show that these methods underesti-
mated the importance of convex regions (CR) standing
between the local minimum and the connected saddle
point, greatly reducing their ability to find saddle points
of the PES. This causes a general under-sampling of con-
nected saddle points, while increasing the overall compu-
tational costs of the open-ended methods.

The much-improved understanding of the PES features
leads us to explore various solutions to reach the differ-
ent valleys beyond convex regions applying ARTn to an
amorphous silicon model. Pushing the system through
a CR along a modified direction, given by the double
random vector Vripit + VIpew, we show that (i) we can
identify up to 10 times more unique connected saddle
points than with the standard ARTn, while (i) reducing
the proportion of failed explorations to well below one
percent.

These results are of critical importance for the char-
acterization of the PES for complex materials as well as
the use of open-ended methods such as ARTn within ki-
netic algorithms®>3%. Further work will focus on these
directions.

CODE AND DATA AVAILABILITY

The algorithm presented has been implemented in
the pARTn code?® and is freely downloadable from the



GitLab repository3”. It can be plugged into force en-
gines using empirical potentials (LAMMPS?) and den-
sity functional theory (presently Quantum Espresso®®,
soon Siesta??, VASP*’ and abinit*!). The input data
used in the amorphous silicon study is available in the
examples directory of the pARTn GitLab repository.

SUPPLEMENTARY MATERIALS

Supplementary Materials are available for this article.
There are two mp4 video files, one gnuplot script, and
one pdf with detailed description of each.
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Appendix A: Example of saddle points reached by crossing
several convex regions

It has been shown in Fig. 6 that the number of CRs
that need to be crossed to reach a SP can be particu-
larly high. We show here that this observation is also
found in lower dimensions, namely on a 2D toy-model
PES with the same analytical function as in Sec. III, al-
beit in a different region. It is shown on Fig. 9, where
the VtoPH are all inside some CR, and additionally, the
CR contain three forbidden crossings. The first forbid-
den crossing makes the SP marked in white unreachable
without adding a random part to Vcr.

Appendix B: Example of valleys branching without forbidden
crossing

Branching/bifurcation usually occurs far from the ini-
tial minimum, where the structural symmetries (symme-
tries of the PES) are generally broken. This means that
the lowest eigenvalue is generally not degenerate and,
consequently, that there is only one single eigenvector
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c

FIG. 9. Same PES and colors as Figs. 1 and 3, but region
between z € [17.1;20.2] and y € [25.25; 28.45]. Two CRs need
to be crossed to reach the magenta SP from the minimum.

Vimin- This idea becomes obviously false in highly sym-
metric systems, since the lowest eigenvalue in that case
is degenerate, and thus multiple eigenvectors Vi ex-
ist. If the PES keeps its symmetry out of the minima,
which is typically the case during the diffusion of atoms in
crystalline systems, then the valleys are mathematically
allowed to cross each other at a single point.

An example of a symmetric case is shown in Fig. 10
which represents the diffusion of a substitutional Cu atom
in a 128-atom bulk aluminum simulation box. SPs have
been found using ARTn in its plugin version with Quan-
tum Espresso V7.33%. Total energy and forces have been
calculated within density functional theory in the Local
Density Approximation, using pseudo-potentials and a
plane waves approach. The Brillouin zone is sampled at
zone center only and a 37 Ry cutoff energy is used to
restrict the number of plane waves summed to form the
wave functions. This example has been chosen because
one of the valleys (pink balls in Fig. 10a) coming from
the starting minimum is suddenly split into four different
valleys at the branching point (Fig. 10b), each of them
leading to a different saddle point (only one is represented
in Fig. 10c).

Interestingly, the lowest eigenvalue at the branching
point (Fig. 10b) is still negative, as the valley branching
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FIG. 10. Diffusion of a substitutional Cu atom (red ball) in
cubic Aluminium (blue balls) by a pushing mechanism. The
small pink balls represent the positions of the Cu atom in the
valleys linking the starting minimum to the 4 saddle points.
(10a): The starting Cu position is a substitutional site. (10c):
Only one saddle point is represented. At the branching point
(Fig. 10b), which is not a saddle point, the lowest eigenvalue
is negative and four times degenerate. The top and bottom
panels represent the same structure from two different points
of view.

does not necessarily induce a convex region. This means
that this point cannot be detected by a change of inflec-
tion but only by a symmetry analysis. In this case, the
symmetry is a rotation of order 4 around the axis de-
fined by the starting valley. This symmetry induces the
degeneracy of lowest eigenvalues at the branching point,
and that any linear combination of their eigenvector is
an eigenvector. Hopefully, when one eigenvector Vmin
has been chosen by the Lanczos algorithm and the sys-
tem has been pushed along it, the system is no longer
at the branching point, the PES symmetries are broken,
and the lowest eigenvalue is then uniquely defined.
However, during a PES exploration, a problem occurs
when the system reaches such single point branchings.
In fact, after the push along an eigenvector, during the
orthogonal relaxation step, the system can potentially
fall down into one of the 3 other surrounding valleys or
around the branching point where the eigenvectors are
still quite degenerate. Hence, at the next Lanczos step,
the eigenvector Vin will be modified to be in another
valley. This eigenvector modification will occur again
and again at each perpendicular relaxation, such that the
system will oscillate around the branching point by con-
stantly changing the valley it follows. This does not occur
when the branching is a forbidden crossing because the
valleys are far enough from each other, and the perpen-
dicular relaxation cannot be large enough to permit the
system to change the valley. To avoid this phenomenon,
a simple solution is to drastically reduce the number of
orthogonal relaxation iterations that are performed after
the first few pushes following the detection of a symmet-
ric point. With this method, the orthogonal relaxation
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becomes efficient only when the system is far enough from
the branching point. Another solution is to increase the
size of the push along V iy when a symmetry is detected,
with the risk of crossing the basin boundaries.
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