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A B S T R A C T

Composite materials are vital in aerospace for their exceptional strength-to-weight ratio. This study delves into
reliability-based optimisation of composite plates within aeroelastic constraints, employing an efficient global
optimisation method and genetic algorithms. Initial analysis focuses on aeroelastic responses such as limit
flutter speed, gust response, and static loads, emphasising maximum strain assessment. To tackle optimisation
challenges of composite stacking sequences, a homogenisation technique with lamination parameters is applied.
We then formulate a constrained optimisation problem to minimise gust response while meeting flutter and
maximum strain constraints. Surrogate models based on conditioned Gaussian Processes are developed for
each aeroelastic response, facilitating optimisation within the composite design space. These models, with
potential for local refinement, expedite optimal solution identification. Further, we integrate reliability-based
optimisation into the framework to determine a robust stacking sequence using genetic algorithms, accounting
for random fibre orientation variations. This holistic approach integrates aeroelastic analysis, constrained
optimisation, surrogate modelling, and reliability-based optimisation, proving effective in designing reliable,
efficient composite structures for aerospace, thus enhancing performance and safety.
1. Introduction

Composite materials have become a cornerstone in engineering
fields, particularly in the aerospace sector. Characterised by their ex-
ceptional specific strength and stiffness, these materials stand out for
their ability to be tailored anisotropically, providing unmatched bene-
fits. This capacity for customisation causes a revolution in structural
engineering, enabling ongoing innovations in aerospace design. At
the heart of this shift is the principle of aeroelastic tailoring, which
plays a pivotal role in leveraging the unique properties of composite
materials to optimise the aeroelastic behaviour of an aircraft and, thus,
its performance and efficiency. The aeroelastic tailoring has its roots
in the middle part of the 20th century with the seminal work by
Munk, who adeptly leveraged the natural anisotropy of wood for more
efficient propeller designs [1]. Fast forward to the present day, this
concept has been further expanded and refined through the use of ad-
vanced composite materials, enabling precise control and optimisation
of aeroelastic deformations with structures such as the forward-swept
wing [2]. These advancements significantly enhance aerodynamic per-
formance and structural integrity, shaping a new paradigm in aerospace
design [3].

∗ Corresponding author at: DAAA, ONERA, Institut Polytechnique de Paris, Châtillon, 92320, France.
E-mail address: roger.ballester_claret@onera.fr (R. Ballester Claret).

However, optimal integration of composite materials into intricate
aerospace structures requires sophisticated optimsiation techniques,
given the high dimensionality of the design space for composite lami-
nates . Numerous methods have been proposed for these optimisation
strategies, for instance by introducing genetic algorithms (GA) [4,5]
which cope very well with the discrete nature of the fibre orientations
in a composite laminate. However, GAs need numerous evaluations of
the cost functions which can rapidly augment the computational cost
expenses. Another classical class of approaches has been homogeni-
sation techniques [6,7] which allow for the use of a gradient-based
optimiser by introducing a convex design space. In this case, the
computational cost may be reduced, however the navigation between
the different scales can be of high complexity. For instance, the op-
timisation problems solved within the homogenised space require a
stiffness matching problem to retrieve the final optimised laminate [8–
10] . Notwithstanding their advantages and disadvantages, both GA and
multi-scale optimisation methods for composite materials have tradi-
tionally relied on deterministic techniques. Another important aspect is
that, given the complex manufacturing processes of layered materials,
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it is crucial to account for the inherent uncertainties [11] as in the final
laminate structures when designing critical components [12]. More-
over, those composite components are often subjected to a series of
constraints that must be accounted for within the optimisation process.
Within the industry, a common approach has been the application
of safety factors after a deterministic approach, though this might
not always lead to the most efficient solution. An alternative method
is Reliability-Based Design optimisation (RBDO), which, despite its
higher computational demand, can result in less conservative outcomes.
Significant research has been carried out on applying RBDO to compos-
ite materials, considering both manufacturing uncertainties [13] and
material properties [14].

Given the significant increase in computational cost associated with
classical RBDO with direct approaches [15], there is a compelling need
to develop optimisation strategies that mitigate these expenses [16–
18]. Extensive research has been undertaken to decrease the compu-
tational burden [19,20], along with notable advances in the domain
of robust design optimisation. A gradient-based approach was intro-
duced by Coelho et al. [21], focusing on the optimisation of composite
plates under buckling constraints and using surrogate modelling tech-
niques for uncertainty propagation. Moreover, as seen in Coelho et al.’s
work, due to the nature of composite stacking sequences the gradients
of reliability-based constraints are not immediately available, making
traditional optimisation methods such as gradient descent extremely
challenging to apply. However, the surrogate modelling techniques
have proven immensely valuable, both in uncertainty propagation,
and in deterministic optimisation approaches. Particularly through the
Efficient Global optimisation (EGO) method [22] which allows for
cheaper uncertainty propagation. For instance, Sabater et al. [23]
proposed a two-step strategy leveraging surrogate models for robust
design optimisation. Sabater et al. successfully implemented the EGO
method as an initial step prior to undertaking robust design, specifically
in the optimisation of aircraft airfoils. The EGO approach is an iterative
technique which significantly reduces the global optimisation costs
of expensive ’black box’ functions. Moreover, the EGO process yields
a surrogate model which is especially refined near the deterministic
solution. Moreover, moving towards constrained optimisation, notable
modifications have been made to the EGO algorithm to better ac-
commodate constrained optimisation scenarios [24,25]. This approach
illustrates the potential for integrating EGO-based strategies within
broader design methodologies, notably with RBDO as proposed in this
work.

Building upon these advanced optimisation strategies, the field of
aeroelasticity becomes a critical focus, especially when integrating
RBDO and surrogate modelling techniques. The complexity of aeroelas-
tic phenomena, such as flutter and divergence, demands rigorous anal-
ysis due to their significant sensitivity to the geometric and material
properties of aerospace structures. Moreover, aeroelastic phenomena
exhibit notable non-linearities which must be accounted for within the
optimisation strategies. Following the work of Scarth et al. [26] we
aim to extend his RBDO framework to a study case where composite
material uncertainties are directly impacting aeroelastic performance.
Moreover, similarly to the work by Fabbiane et al. [27], we aim to
integrate tailored design strategies that mitigate both static and dy-
namic aeroelastic loads, thereby improving overall structural resilience
and efficiency. By fusing these methodologies within our optimisation
framework, we not only aim to advance the precision of aeroelastic
assessments but also facilitate a more streamlined and informed design
process.

In this study, we present a two-step optimisation strategy tailored
for a multi-scale design space, specifically addressing the challenges as-
sociated with composite materials. This innovative approach integrates
surrogate modelling techniques to manage the high computational
demands of RBDO aeroelastic problems. We demonstrate this technique
through the optimisation of a composite plate, which serves as a
proxy for an aircraft wing, thus subjecting it to aeroelastic phenomena
2

Fig. 1. Composite plate immersed in airflow.

Table 1
Dimensions and material properties.

Parameters Values

𝑠∕2 (m) 0.3048
𝑐 (m) 0.0762
𝐸11 (GPa) 140
𝐸22 (GPa) 10
𝐺12 (GPa) 5
𝑣12 0.3
𝜌 (kg/m3) 1600
Ply thickness (mm) 0.125

such as divergence, flutter, and wind gust response. The optimisation
process begins with the construction of surrogate models using Kriging
(KRG) [28], which are then optimised using a modified EGO method.
These surrogate models form the basis for executing an RBDO algorithm
driven by GA. This approach not only identifies the optimal composite
laminate configuration but also incorporates adjustments to handle
uncertainties—both from the manufacturing of the composite laminate
and from the inherent inaccuracies of the surrogate model itself.

2. Aeroelastic dynamics and composite materials

In this study, we employ a simplified model of a rectangular com-
posite plate to analyse its aeroelastic behaviour. This approach has
been used extensively in works like [29,30]. This model, based on
the Kirchhoff plate theory and Doublet Lattice Method (DLM) fluid
mechanics representation, evaluates the aeroelastic responses while
neglecting transverse shear effects. Such a model serves as an initial
approximation to understand the aeroelastic behaviour of a wing and
is commonly used in aerospace engineering. The plate will be clamped
on one edge and free on all the others and submerged into an airflow,
as illustrated in Fig. 1. The plate will be constructed from a number
of plies 𝑁 with each ply having a 𝜃𝑖 orientation. The dimensions of
the plate and the material properties of the composite plies can be
found in Table 1. We will refer to the sequence of plies orientations
𝜽 = [𝜃1, 𝜃2,… , 𝜃𝑁 ] as stacking sequence. Moreover, within each ply, an
orientation error will be considered [31], so the orientation of each ply
will be defined as a random variable

𝜃𝑖 = 𝜃𝑖 + 𝜎𝜃𝑖𝑋 (1)

where 𝜃𝑖 represents the mean objective value of the 𝑖th ply orientation,
𝜎𝜃𝑖 the standard deviation of 𝑖th ply and 𝑋 represents a random variable
with a normal distribution with zero mean and unit variance. We note
that the random value 𝑋 will be independent in each of the plies of 𝜽.

The aeroelastic response of the composite plate is analysed using
the DLM [32], a computational aerodynamic model widely employed
in the study of unsteady aerodynamic flows. DLM is particularly adept
at handling problems related to subsonic and supersonic flows around
complex configurations. By discretising the surface of the structure into
a lattice of doublet panels, DLM approximates the potential flow field,
enabling the efficient calculation of aerodynamic pressure distributions.
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This method is important for the understanding the interaction between
aerodynamic forces and structural deformations, a critical aspect in
predicting aeroelastic phenomena such as flutter and response to gusts.
The main aeroelastic phenomena studied within this case are now
presented.

2.1. Aeroelastic response

Aeroelasticity plays a pivotal role in the structural integrity and
performance of aircraft components subjected to aerodynamic forces.
This study advances the understanding of aeroelastic behaviour by
considering a composite wing structure, represented through a sim-
plified plate model. The aerodynamic load prediction employs the
DLM, leveraging the capabilities of the MSC NASTRAN software for
comprehensive aeroelastic analysis.

2.1.1. Static aeroelastic analysis
The first step in aeroelastic assessment involves evaluating the static

integrity of the composite structure, which is the ability of the plate to
sustain and revert to its initial configuration under standard operational
load conditions. The equilibrium between aerodynamic and structural
forces is the basis of static aeroelastic stability [2], captured by the
equation:

𝐊𝐪 = 𝐅𝑎(𝐪; 𝜌, 𝑈 ), (2)

where 𝐊 is the stiffness matrix that characterises the rigidity of the
plate, 𝐪 denotes the generalised displacement vector, and 𝐅𝑎 symbolises
the aerodynamic force vector, which is a function of the wing deformed
geometry and prevailing flight conditions, defined by air density (𝜌) and
light speed (𝑈 ).

.1.2. Flutter analysis
Flutter is a destructive instability that can result from the interaction

f aerodynamic, elastic and inertial forces. It is critical to predict and
itigate this phenomenon to ensure flight safety. The investigation

nto flutter involves calculating the aeroelastic stability of the fluid–
tructure coupled system and identifying the flutter boundary, which
s demarcated by the critical flutter speed. The governing equation for
lutter analysis in the time domain is as follows:

𝐪̈ +𝐊𝐪 = 𝐅𝑎(𝐪, 𝐪̇; 𝜌, 𝑈 ), (3)

here 𝐌 is the mass matrice of the structural system.
Transitioning to the frequency domain for detailed flutter analysis,

he aeroelastic equations transform to:

𝐊 + 𝜌𝑈2𝐊𝑎(𝜔) − 𝜆2𝐌)𝐪̂ + 𝑖𝜆𝜌𝑈𝐂𝑎(𝜔)𝐪̂ = 𝟎, (4)

nd

= 𝜎 + 𝑖𝜔, (5)

ith 𝜆 representing the complex eigenvalue of the system, consisting
f the growth rate (𝜎) and frequency (𝜔), 𝐊𝑎 and 𝐂𝑎 indicating aerody-
amic stiffness and damping matrices, and 𝐪̂ denoting the mode shapes
mplitude [33].

.1.3. Wind gust response analysis
The structural response to transient wind gusts is primordial to

eroelastic studies as shown in the works [27,30], as gust loads can
nduce immediate and potentially severe stress on the aircraft structure.
he dynamic response of the composite plate to gusts is characterised
y transient analysis, which accounts for the time-dependent nature of
he unsteady aerodynamic forces:

𝐪̈ + 𝐂𝐪̇ +𝐊𝐪 = 𝐅𝑎(𝐪; 𝜌, 𝑈 ) + 𝐅𝑔𝑢𝑠𝑡(𝑡), (6)

where 𝐅𝑔𝑢𝑠𝑡(𝑡) denotes the time-varying force vector due to gust impact,
which is superimposed on the steady aerodynamic forces 𝐅𝑎. The gust
oading is typically modelled as a step function or a more complex
unction representing the gust profile affecting the aircraft velocity
ield.
3

The approach outlined here integrates static and dynamic aeroelas-
ic analyses to provide a thorough evaluation of the composite struc-
ure’s performance under varied flight scenarios. Ensuring static sta-
ility under standard conditions, quantifying the critical flutter speed,
nd evaluating the gust response are essential components of the design
rocess, contributing to the resilience and reliability of the composite
ing structure.

.2. Composite material multi-scale approach

The optimisation process is centred around the search for the opti-
um stacking sequence, defined as a series of ply angles 𝜽𝑜𝑝𝑡. However,

he stacking sequence design space presents certain challenges. No-
ably, the degrees of freedom within this design space are not constant,
s they depend on the number of plies, which is one of the optimisation
arameters. Additionally, this design space exhibits numerous local
inima, complicating the task of finding the globally optimal solution.
oreover, the angles are usually not part of a continuous space and

re set as a list of discrete values (0◦,±15◦,±30◦,±45◦,±60◦,±75◦, 90◦),
o take into account manufacturing constraints [34]. Furthermore, the
echanical response to variations in the stacking sequence is notably

rregular, which complicates the creation of a surrogate model capable
f accurately replicating these responses. To address these complexities,
e introduce a multi-scale technique where the mesoscale (stacking se-
uence) is transformed via homogenisation to the macroscale (lamina-
ion parameters). This transformation simplifies the entry variables for
he surrogates and reduces the complexity of the mechanical response
redicted by the surrogate models.

.2.1. Composite material homogenisation
Beginning with the classical laminate plate theory [7], we can

efine the behaviour of composite materials using the matrices 𝐴,
, and 𝐷. Matrix 𝐴 pertains to membrane rigidity, while matrix 𝐷
orresponds to flexure rigidity. Notably, matrix 𝐵 captures the complex

interplay of Membrane/Bending/Torsion coupling inherent in the com-
posite structure. Concurrently, vectors 𝐍 and 𝐌 denote the resultant
stress and moment to which the plate is exposed, giving rise to strain
(𝜖) and curvature (𝜅).

Considering the matrices A, B, and D, the behaviour of a composite
stack is characterised by a total of 18 variables. These variables are
contingent on both the stacking sequence and the material properties.
As all these variables are contingent on material properties, optimising
them becomes challenging, particularly when the material properties
are held constant.

At this point, we explore the lamination parameter design approach,
which aims to decouple the geometric factors from the mechanical
properties of the material considered. Considering 𝜃 as the orientation
of different plies, 𝑡 as the total thickness of the composite, and 𝜁
as the through-thickness coordinate, the definition of the lamination
parameters (LPs) is as follows:

𝐯𝐀[𝟏,𝟐,𝟑,𝟒] =
1
𝑡

𝑁
∑

𝑘
𝑧𝑘 − 𝑧𝑘−1

[

cos(2𝜃𝑘), sin(2𝜃𝑘), cos(4𝜃𝑘), sin(4𝜃𝑘)
]

,

𝐯𝐁[𝟏,𝟐,𝟑,𝟒] =
4
𝑡2

𝑁
∑

𝑘

𝑧2𝑘 − 𝑧2𝑘−1
2

[

cos(2𝜃𝑘), sin(2𝜃𝑘), cos(4𝜃𝑘), sin(4𝜃𝑘)
]

,

𝐯𝐃[𝟏,𝟐,𝟑,𝟒] =
12
𝑡3

𝑁
∑

𝑘

𝑧3𝑘 − 𝑧3𝑘−1
3

[

cos(2𝜃𝑘), sin(2𝜃𝑘), cos(4𝜃𝑘), sin(4𝜃𝑘)
]

.

(7)

After establishing the LPs, the total number of unknowns for the
optimisation problem concerning the composite stack is reduced to
12 LPs and 5 fixed material invariants, determined by the mechanical
properties of the material. Subsequently, by employing the LPs and
material invariants, we can compute the matrices A, B, and D as
described in the works of Tsai et al. [7],

𝐀 = 𝑡 𝐀̃
(

𝐯𝐀
)

, 𝐁 = 𝑡2 𝐁̃
(

𝐯𝐁
)

, and 𝐃 = 𝑡3 𝐃̃
(

𝐯𝐃
)

. (8)

4 12
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The 12 LPs describing the composite behaviour will be denoted
as 𝐯. These parameters, together with the material properties of the
laminate, represent the composite’s 𝐴, 𝐵, and 𝐷 matrices. In the context
f our study, the number of plies, 𝑁 , also plays a crucial role in the final
utcome, thus extending our homogenised design space to 13 variables
n the form of (𝐯, 𝑁).

However, the specific case of the aeroelastic plate under investiga-
ion is one of pure bending, which allows us to focus solely on the 𝐷
atrix. For simplicity’s sake, we have imposed a design condition on

he composite plies which simplifies the problem allowing us to only
onsider 𝐯𝐷1 and 𝐯𝐷3 within the LPs, simplifying our homogenised space
ven further. Therefore, in order to sum up the homogenisation process,
he result is the transformation of the detailed stacking sequence 𝜽
nto a more manageable form by representing it as a set of three
omogenised variables, (𝐯𝐷1 , 𝐯

𝐷
3 , 𝑁).

.3. Maximum strain constraint

Incorporating strength constraints into the lamination parameter
ptimisation process for composite laminates, typically defined at the
ly scale, presents unique challenges. Drawing upon the work of [35–
7], we leverage conservative first-ply failure envelopes based on fail-
re criteria such as Tsaï-Wu and the modified Tsaï-Hill. These envelopes
re defined in terms of macroscopic in-plane strains and are inde-
endent of ply angle, facilitating their application to a homogenised
aminate description.

A new approach proposed by [10] involves sampling ply orien-
ations to compute in-plane failure envelopes, with the conservative
ailure envelope emerging as the intersection of all individual safe
egions. This aggregate envelope can be efficiently approximated by an
llipsoid, characterised by a matrix 𝛷 and centre 𝑐, and incorporated
nto the optimisation as a constraint:

𝜀 − 𝐜)𝑇𝛷(𝜀 − 𝐜) ≤ 1 (9)

here 𝜖 denotes the macroscopic strains. This method accounts for
tructural bending by evaluating failure criteria at the laminate’s outer
urfaces.

The strain constraint imposed throughout this work will utilise a
onservative failure envelope based on the modified Tsaï-Hill criterion,
xpressed for ply-scale stresses as:
𝜎11
𝑋∗

)2
−

𝜎11𝜎22
𝑋𝑡𝑋𝑐

+
(𝜎22
𝑌 ∗

)2
+
( 𝜏12
𝑆∗

)2
≤ 1, (10)

where 𝑋∗ and 𝑌 ∗ represent tensile or compressive strengths based on
stress sign, and 𝑆∗ is the shear strength. The conservative envelopes
for both Tsaï-Wu and modified Tsaï-Hill criteria, alongside their ellip-
soidal approximations, highlight the optimisation’s strength constraint
definition.

2.4. Formulation of the probabilistic optimisation problem

Our objective in the optimisation of composite wing structures is
to minimise the expected gust response while also minimising overall
mass, all of this under uncertainties in the composite ply fabrication.
The optimisation accounts for variations in manufacturing imperfec-
tions that affect the aeroelastic response and structural integrity.

Objective Function: The goal is to find the stacking sequence 𝜽̄ =
[𝜃̄1, 𝜃̄2,… , 𝜃̄𝑁 ] which minimises the expected value of the gust-induced
maximum bending moment, denoted by 𝑀𝑥, together with the number
of plies 𝑁 , representing the material usage and proportional to the
weight. The optimisation function under a probabilistic framework is
expressed as:

E[𝑓 (𝜽)] = 𝑁 +𝑤gust ⋅ E[𝑀𝑥(𝜽)], (11)

where E[⋅] denotes the expected value operator, indicating that our
optimisation considers the average performance over the variability in
4

t

the input ply angles 𝜽 ∼  (𝜽̄,
∑

) and 𝑁 corresponding to the dimension
of (𝜽). The coefficient 𝑤𝑔𝑢𝑠𝑡 is a weighting factor that scales the impact
of the gust effect.

Constraints: The design is subjected to probabilistic constraints, en-
suring that the likelihood of exceeding critical performance thresholds
remains within acceptable bounds:

1. Flutter Speed Constraint: The probability of the flutter speed
alling below a critical value should be minimised to ensure aeroelastic
tability:

(𝑉flutter(𝜽) < 𝑉min) ≤ P𝑉
limit, (12)

2. Maximum Equivalent Strain Constraint: The probability of the
equivalent strain surpassing a maximum allowable level must be con-
trolled to avoid structural failure:

P(𝜖equivalent(𝜽) > 𝜖max) ≤ P𝜖
limit, (13)

In these expressions, P(⋅) represents the probability of the event oc-
curring, which should be kept below the limit P ⋅

limit, defined based on
safety and performance requirements.

Probabilistic Optimisation Problem: The reformulated optimisa-
tion problem, now cast in a probabilistic setting, aims to find a design
that minimises the expected objective function while satisfying the
constraints with high confidence:

minimise
(𝜽)

E[𝑓 (𝜽)]

ubject to P(𝑉flutter(𝜽) < 𝑉min) ≤ P𝑉
limit,

P(𝜖equivalent(𝜽) > 𝜖max) ≤ P𝜖
limit.

(14)

he optimisation formulation leverages the statistical characterisation
f uncertainties to deliver a stacking sequence that ensures performance
obustness and maintains structural safety under probabilistic material
ehaviour considerations.

. Methodology

The methodology proposed within this work consists of a two-
tep process comparable to the works proposed on [23]. The first
tep proposes a Surrogate Model Based Design Optimisation (SMBDO),
s described in [38], which involves the construction of surrogate
odels within a deterministic framework and an iterative algorithm to

meliorate said models. The second step utilises these models for RBDO.
his methodology will help in dealing with the multi-scale nature of
he original design spaces, where the stacking sequence of angles 𝜽
epresents a non-convex design space with many local minima, and the
Ps (𝐯, N) represent the continuous and convex transformed space.

Within this study, a different surrogate model will be created for
ach aeroelastic response (static, gust and flutter) with three design
ariables (𝐯𝐷1 , 𝐯

𝐷
3 , 𝑁), the two LPs being continuous and the number of

lies being a discrete variable. The initial surrogate models are created
s KRG surrogate models which are chosen for their precision in pre-
iction and ability to provide uncertainty estimates, making them ideal
or optimising complex systems where direct sampling is expensive.
he KRG surrogate models are created using the SMT library [39]
hich allows for a straightforward Python environment and permits

he mixed use of discrete and continuous variables. The KRG surrogate
odels are optimised via an EGO approach [22], which facilitates the

fficient exploration of the design space. All of the EGO process will be
onducted within a deterministic framework simplifying the previously
resented formulation of the optimisation problem.

The RBDO phase introduces variability in the angles, representing
he uncertainties in manufacturing and material properties, and uses
As to find the optimum stacking sequences. Each evaluation of the

itness of the stacking sequences proposed throughout the evolutionary
lgorithm execution will make use of the surrogate models created
reviously within the first step. The fitness will be the evaluation of
he reliability-based optimisation problem presented previously.
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3.1. Surrogate model refinement

The implementation of EGO in this study is tailored to operate
within the homogenised design space defined by the LPs (𝐯) and the
number of plies 𝑁 . This space is a transformation of the original,
highly non-convex stacking sequence problem into a convex, semi-
continuous domain that is amenable to gradient-based optimisation
techniques. Moreover, by adopting this homogenisation approach, we
effectively reduce the complexity inherent to the discrete nature of
the stacking sequences design space and the non-constant number of
inputs, facilitating a more efficient and cheaper generation of surrogate
models.

EGO is a sequential approach for global optimisation problems, par-
ticularly useful when dealing with expensive objective function evalu-
ations. In this first step of the proposed methodology a simplification
of the probabilistic problem’s constraints is introduced. Specifically, we
convert the probabilistic constraint, originally formulated as shown in
Eqs. (12) and (13), into a deterministic constraint. This modification
entails replacing the probabilistic condition with a deterministic equiv-
alent, thereby reducing the computational complexity and facilitating
a more straightforward optimisation process.

minimise
(𝐯,𝑵)

𝑓 (𝐯,𝑵)

ubject to 𝑉flutter(𝐯,𝑵) < 𝑉min,

𝜖equivalent(𝐯,𝑵) > 𝜖max

(15)

.1.1. Efficient global optimisation
In the development of an EGO strategy, the selection of an ap-

ropriate initial Design of Experiments (DOE) is critical for ensuring
comprehensive initial exploration of the design space. Latin Hyper-

ube Sampling (LHS) [40] is chosen for this purpose due to its supe-
ior efficiency and coverage compared to traditional random sampling
ethods. LHS ensures that the entire range of each design variable is

xplored by dividing it into intervals of equal probability. This method
uarantees that each interval is sampled only once, thereby minimising
he risk of clustering and maximising the diversity of the sample points.
onsequently, LHS provides a more uniform spread of initial points in
he design space, which is particularly advantageous for constructing
RG surrogate models. By facilitating a better initial approximation
f the objective function landscape, LHS enhances the efficiency of
he optimisation process, leading to more reliable and robust design
olutions in the context of composite materials optimisation under
eroelastic constraints.

The initial points defined by the LHS method are evaluated in the
bjective and constraint functions to establish a performance baseline.
his initial evaluation is critical as it grounds the surrogate models

n actual observed data, providing a reliable starting point for the
ptimisation process.

The KRG surrogate models, which are Gaussian Processes (GPs),
se this data to predict the behaviour of the objective function and
onstraints. Functions that are approximated using a surrogate model
re indicated with a hat symbol. This notation is consistently used to
ifferentiate between the original functions and their surrogate model
pproximations.

The EGO algorithm iteratively adds points to these models by
ptimising an acquisition function, which is key to identifying new,
nformative data points. This process is crucial for refining the sur-
ogate model’s predictions over successive iterations. The surrogate
odels are dynamically updated as new data points are incorporated,

his continuous integration of new data points leads to a progressive
mprovement in the model’s accuracy. The core of this iterative process
ies in the optimisation of an acquisition function, known as Expected
mprovement Constrained Optimisation (𝐸𝐼𝐶𝑂) [25]. The EICO infill
unction is initially solved using a differential evolution [41] technique
o broadly scan the design space. Following this, an L-BFGS-B optimiser
5

ine-tunes the solution, pinpointing the optimum of the infill function. t
his hybrid approach to solving mixed functions can be found in
he works of [42,43]. This two-step optimisation approach, starting
ith differential evolution for a global search followed by refinement
sing L-BFGS-B, ensures a comprehensive exploration of the design
pace within the infill function optimisation. This methodology used for
olving the optimisation of the infill function can be compared to the
lassical approach of AK-MCS [44]. This optimisation has been adapted
o solve the optimisation of the 𝐸𝐼𝐶𝑂 function within a non-continuous
esign space such as the one defined within the modified KRG surrogate
odels used. Once the EGO iterative methodology is defined, we now
roceed to introduce the constrained EGO acquisition function.

.1.2. Expected improvement
The standard form of 𝐸𝐼 [22] is defined as the expected increase

n objective function value over the current best observation 𝑓 (𝐯∗, 𝑁∗),
nd is given by:

𝐼(𝐯, 𝑁) = E[max(𝑓 (𝐯∗, 𝑁∗) − 𝑓 (𝐯, 𝑁), 0)]. (16)

Assuming a Gaussian Process model for the objective function with
ean 𝜇(𝐯, 𝑁) and standard deviation 𝜎(𝐯, 𝑁), the 𝐸𝐼 at any point (𝐯, 𝑁)

n the design space can be expanded using the properties of the normal
istribution as follows:

𝐼(𝐯, 𝑁) =(𝑓 (𝐯∗, 𝑁∗) − 𝜇(𝐯, 𝑁))𝛷 (𝑍(𝐯, 𝑁))

+ 𝜎(𝐯, 𝑁)𝜙 (𝑍(𝐯, 𝑁)) , (17)

here 𝑍(𝐯, 𝑁) is the improvement potential standardised,

(𝐯, 𝑁) =
𝑓 (𝐯∗, 𝑁∗) − 𝜇(𝑓 (𝐯, 𝑁))

𝜎(𝑓 (𝐯, 𝑁))
, (18)

and 𝛷 and 𝜙 are the cumulative and probability density functions of
the standard normal distribution, respectively.

3.1.3. Probability of feasibility
In order to consider the constraints within the acquisition functions

of the EGO algorithm, the probability of feasibility (𝑃𝑜𝐹 ) is intro-
duced [45]. The probability of feasibility for each constraint, modelled
separately by individual Gaussian Processes, estimates how likely a
point is to respect the constraint of the optimisation problem taking
into account the variability of the surrogate model. The 𝑃𝑜𝐹 can be
calculated as follows:

𝑃𝑜𝐹 (𝐯, 𝑁) =
𝑚
∏

𝑖=1
𝛷

(

−𝜇con𝑖 (𝑔̂(𝐯, 𝑁))
𝜎con𝑖 (𝑔̂(𝐯, 𝑁))

)

, (19)

3.1.4. Expected improvement in constrained optimisation
The EGO algorithm iterates by selecting the point (𝐯next, 𝑁next) that

aximises the Expected Improvement multiplied by the Probability of
easibility, which incorporates both the desire for improvement and the
eed to satisfy constraints [46]:

𝐯next, 𝑁next) = arg max
(𝐯,𝑁)

(𝐸𝐼(𝐯, 𝑁) × 𝑃𝑜𝐹 (𝐯, 𝑁)). (20)

Having established a refined approach to surrogate model optimisa-
ion through EGO, we now transition to the next step: RBDO. This shift
epresents a move from the theoretical and procedural enhancement
f models to their practical application in addressing variability and
ncertainties in composite structures.

.2. Reliability-based design optimisation with genetic algorithms

The RBDO process is initiated in a design space defined by a
onstant number of plies. This number is determined based on the
ly count of the deterministic solution obtained from the previous
ptimisation stages 𝑁𝑜𝑝𝑡. If the RBDO process within this fixed ply count
oes not yield a viable solution, the optimisation is then extended to
he space of 𝑁𝑜𝑝𝑡 + 1 plies. The RBDO is solved via a GA given that

his approach ensures a simplified exploration of the stacking sequence
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Fig. 2. Flowchart of the standard Genetic Algorithm process including the generation
of stacking sequences using Monte Carlo (MC) simulation and homogenisation of 𝜽.

design space. The key challenge addressed is the inherent variability in
material properties and manufacturing processes, which is represented
by introducing a statistical error into the angle of each ply as mentioned
in Section 2.

The proposed workflow for the GA is shown in Fig. 2. This vi-
sualisation serves as a comprehensive guide to the sequential steps
and processes integral to our GA’s operation. In the following section,
we will examine each component within the workflow. The step-by-
step breakdown will provide insight into the algorithm’s structure,
from the initialisation of the population to the final evaluation stages,
highlighting the role of processes such as MC sampling, homogenisation
and surrogate model evaluation.

1. Initial Population Generation: The GA begins by generat-
ing a random initial population of stacking sequences 𝐺 =
{𝜽1,𝜽2,… ,𝜽𝑁}. This initial step ensures a diverse foundation
for the evolutionary optimisation process and the size of this
population will determine the initial exploration of the design
space.

2. MC Sampling: Upon establishing a population 𝐺, a MC anal-
ysis is conducted for each individual 𝜽𝑛. For an individual 𝜽𝑖,
6

we perform 𝑀 MC simulations, yielding a set of outcomes
𝑆(𝜽𝑖) = {𝑠𝑖1, 𝑠𝑖2,… , 𝑠𝑖𝑀}. We can also define the overall com-
putation of the MC sampling of the entire generation as (𝐺) =
{𝑆(𝜽1), 𝑆(𝜽2),… , 𝑆(𝜽𝑁 )}

3. Homogenisation 𝜽 → 𝑣: Being each outcome 𝑠𝑖𝑗 from the
MC sampling an individual stacking sequence 𝜽, each 𝑠𝑖𝑗 un-
dergoes the homogenisation process in order to transform the
𝜽 values into 𝑣, by using the homogenisation techniques pre-
sented earlier. This homogenisation step will facilitate the use
of the surrogate models previously computed for the objective
function and constraints as the surrogate models are functions
defined as 𝑓 (𝑣,𝑁). The output from the homogenisation prob-
lem can be noted as (𝑣𝑖1, 𝑁𝑖1) for each MC sample, 𝐻(𝜽𝑖) =
{(𝑣𝑖1, 𝑁𝑖1), (𝑣𝑖2, 𝑁𝑖2),… , (𝑣𝑖𝑀 , 𝑁𝑖𝑀 )} and (𝐺) = {𝐻(𝜽1),𝐻(𝜽2),
… ,𝐻(𝜽𝑁 )} for the entire generation.

4. Surrogate Model evaluations: The homogenised outcomes are
now evaluated through the different surrogate models. Those
models assess each individual’s performance with respect to our
aeroelastic criteria: static maximum equivalent strain, flutter
speed, and gust response. The surrogate model offers a compu-
tationally efficient mechanism to approximate these responses,
enabling rapid evaluation of the extensive number of individuals
and scenarios generated through the MC simulations. The output
of this block can be denoted as  (𝐺) = {𝑇 (𝜽1), 𝑇 (𝜽2),… , 𝑇 (𝜽𝑁 )}
for the entire generation and 𝑇 (𝜽𝑖) = {𝑡𝑖1, 𝑡𝑖2,… , 𝑡𝑖𝑀} for each of
the individuals containing the aeroelastic response of each ply
generated during the MC sampling.

5. Fitness and reliability computation: The results obtained from
the Surrogate Model evaluation of all the MC samples,  (𝐺),
are now used to compute the fitness and failure probability of
each of the individuals. For the fitness function, we can recall
function (11), where the MC sampling will allow for a com-
putation of E[𝑓 (𝜽)]. Moreover, using a modified MC algorithm
which is described later in this chapter, we can also compute
the values of P(𝑉flutter(𝜽) < 𝑉min) and P(𝜖equivalent(𝜽) > 𝜖max)
taking into account the variability of our constraints surrogate
models. This part of the algorithm can be denoted as  (𝐺) =
{𝐹 (𝜽1), 𝐹 (𝜽2),… , 𝐹 (𝜽𝑁 )} and it will give for each individual as:

𝐹 (𝜽𝑖) = (E[𝑓 (𝜽𝑖)],P(𝜖equivalent(𝜽𝑖) > 𝜖max),

P(𝑉flutter(𝜽𝑖) < 𝑉min))
(21)

6. Ranking and selection: This step involves ranking the individ-
uals from the current generation to be the parents of the next
generation. Within the developed GA algorithm the individuals
are first classed into three subgroups:

• Group one contains the individuals who satisfy both con-
straints, defined in Eqs. (12) and (13). Ranking within
this group is based solely on fitness function defined in
Eq. (11). With fitter individuals having a higher probability
of being chosen. This process ensures that traits from the
best performers are passed on to the new Generations.

• Group two contains the individuals who only satisfy one
of the imposed constraints. Within this group we class
the individuals by the average value of the violated con-
straint and rank them from highest to lowest in the case of
the strain constraint and lowest to highest for the flutter
constraint.

• Group three contains the individuals who do not satisfy
any of the constraints. Those are ranked randomly and are
the most likely to not be included in the next generation

The lists of ranked individuals are now joined so that group
one is the highest class and group three is the lowest. A certain
percentage of the top of this list of individuals is now taken and

used within the next steps.
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7. Elitism: Elitism is a strategy where the best performing individu-
als from the current generation, quantified by their fitness 𝐹𝑖, are
automatically passed to the next generation. This ensures that
the GA does not lose the best solutions found so far, maintaining
and potentially improving the overall quality of the popula-
tion. Specifically, 𝐸𝑛 top-performing individuals are preserved,
fostering the retention of advantageous genetic information.

8. Crossover and Mutation: During crossover, pairs of parent in-
dividuals are combined to form offspring for the next generation,
with a crossover rate of 𝐶𝑟. This step simulates genetic re-
combination, creating diversity within the population. Mutation
introduces random changes to the offspring’s traits at a mutation
rate of 𝑀𝑟, mimicking natural genetic mutations. This step is
crucial for maintaining genetic diversity within the population,
allowing the algorithm to explore a wider search space and
potentially find better solutions by escaping local optima. The
crossover and mutation techniques used in this work are based
on the works of [4,47].

9. New population: The new generation is formed by selecting the
next generation’s individuals through the processes of selection,
elitism, crossover, and mutation. This new population, consisting
of 𝑁 individuals, then undergoes the entire process described,
going through the MC sampling, the homogenisation, surrogate
model evaluation, and fitness/reliability computation. Each step
is designed to refine and evaluate the population based on
specific performance criteria, ensuring that each new generation
𝐺𝑚𝑎𝑥 progressively moves towards optimal solutions.

10. Convergence: The algorithm is considered to converge when
there is no significant improvement in the population’s fitness
over a set number of generations, or when it reaches the pre-
defined maximum number of generations, 𝐺𝑚𝑎𝑥. Convergence
indicates that the GA has potentially found an optimal or near-
optimal solution within the search space. The fitness threshold
for convergence and the criteria for significant improvement are
defined based on the specific objectives and constraints of the
problem at hand.

This methodological framework, from initial population generation
to detailed surrogate model evaluation, encapsulates the essence of
our GA approach. By integrating stochastic analysis with advanced ho-
mogenisation techniques and surrogate modelling, we robustly identify
optimal stacking sequences that fulfil or surpass our performance and
reliability criteria under uncertain conditions.

The optimisation process continues through these steps, iteratively
refining the population until a convergence criterion is met. This cri-
terion signifies the attainment of an optimal stacking sequence that
balances the objective function’s requirements with the reliability con-
straints, achieving a robust and high-performance design.

3.2.1. Modified Monte Carlo analysis
The MC simulation used to compute the probability of failure of

the composite structure is modified to also incorporate the probability
of feasibility of the surrogate model’s predictive uncertainty [48]. This
way it is assured that the final failure probability also accounts for the
predictability errors of the surrogate model. For each sampled design,
the probability that the design satisfies the constraints is calculated and
used as a continuous measure within the MC simulation:

P𝑓 (𝐯, 𝑁) = 1 −
𝑚
∑

𝑖=1
𝛱𝑖(𝐯𝑖, 𝑁)𝑃𝑜𝐹𝑖(𝐯𝑖, 𝑁) (22)

where 𝛱𝑖 is the binary indicator function of the constraint violation,
𝑃𝑜𝐹𝑖 is the probability of feasibility (Eq. (19)) for the 𝑖th constraint, 𝐯𝑖
is the vector of LPs of one sample, and 𝑁 the number of plies.

The optimisation process iterates through genetic operations, se-
lection, crossover, and mutation, to evolve the population towards
sequences with better fitness values. The RBDO loop concludes when a
pre-defined convergence criterion is satisfied, signifying the attainment
of an optimal design with the desired reliability and performance
characteristics.
7

Fig. 3. Convergence plot of the EGO process (blue dots) and 𝑁 value of the newly
computed points (green squares). The red dashed line indicates the stopping criteria
for the EGO.

4. Results

The results, derived from applying the methodology described in
Section 3 to the aeroelastic challenge outlined in Section 2, are now
presented. This segment highlights the effectiveness of our approach,
combining EGO and GAs to optimise composite plates under aeroelas-
tic constraints. Our findings demonstrate significant improvements in
both material reliability and aeroelastic performance, showcasing the
potential of the proposed optimisation framework in composite design.
The results obtained from the surrogate model construction have been
validated and compared with other surrogate model construction ap-
proaches found in the literature. Moreover, the final GA results have
also been validated at both a quality level and a computational cost
level.

4.1. Adaptive construction of the surrogate models for the aeroelastic re-
sponses

EGO process is employed to develop surrogate models for the objec-
tive function (gust response) and for the constraints (equivalent strain
and the limit flutter speed), those KRG surrogate models depending
on the continuous variables 𝐯𝐷1 , 𝐯𝐷3 , and the discrete variable 𝑁 . The
process involves an interplay of exploring and exploiting the design
space to form a reliable and accurate model. For this particular study
case, we have set the limit flutter speed at 𝑉min = 175.1 m∕s and the
limit equivalent strain at 𝜖max = 1.6 × 10−3.

The EGO process starts with the initial DoE, setting the stage for
subsequent exploration. The scatter plot shown in Fig. 4 illustrates with
circles the starting points in the LPs design space spanned by 𝐯𝐷1 , 𝐯𝐷3 ,
and 𝑁 . For the initial phase of this study, the DoE was strategically
established with 20 initial design points, leveraging the LHS method
for their distribution. This approach facilitated the exploration of the
design variables 𝐯𝐷1 and 𝐯𝐷3 as continuous factors within the range of
−1 to 1, while the variable 𝑁 was treated as a discrete factor, varying
between 10 and 30.

To evaluate the efficiency and effectiveness of the proposed EGO
process, the convergence plot is examined. The convergence plot, Fig. 3,
illustrates the trajectory of the optimisation process across iterations.
This plot remarks the model’s ability to refine its predictions and
approach an optimal solution iteratively. The reduction in the objective
function’s value is indicative of the model’s maturing understanding of
the underlying physical phenomena. In the evolution of the EGO algo-
rithm’s convergence, an unexpected increment in the 𝐸𝐼 × 𝑃𝑜𝐹 metric
is observed at iteration 7, subsequent to the addition of the design point
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Fig. 4. DoE scatter plot showing the simulations added throughout the EGO process
in the (𝐯𝐷1 , 𝐯

𝐷
3 ) space (top view with 𝑁-axis perpendicular to the view plane).

Fig. 5. Sliced 3D plot showing the feasible design regions when the constrains are
imposed within the design space, together with the points computed via the Efficient
Global Optimisation.

at iteration 6. This anomaly can be attributed to the newly added point
exhibiting significantly low variability, which inadvertently introduces
a minor distortion in the surrogate model due to an ill-conditioning of
the KRG surrogate model [49]. However, this perturbation is transient
and is systematically rectified in the ensuing iteration, reinstating the
surrogate model’s fidelity and continuing the convergence process. This
incident underscores the dynamic adaptability of the EGO framework
in responding to and correcting for deviations in the surrogate model,
ensuring robust optimisation progress.

Fig. 4 illustrates the final points computed throughout the design
space, with triangle shapes, and the initial DoE with circles. The
gradual addition of points reflects the EGO’s ability to navigate and
sample the design space, seeking regions of high potential based on
the current understanding and definition of the model. It is worth re-
marking how most of the points have been added at 𝑁 = 20 indicating
that the EGO algorithm has efficiently explored the design space and
has finally converged at a number of plies. Furthermore, the Probability
8

Fig. 6. Isocontours of the gust response showing all used computed simulations
projected onto the N = 20 ply space. Constraints are also indicated (black for flutter
and red for strain).

of Feasibility factor has been also important, given that the algorithm
has clearly explored non-feasible solutions such as the point at 𝑁 = 14.
This exploration of both feasible and non-feasible regions contributes
to a more comprehensive understanding of the design space, ensuring
that the final solution is not only optimal but also robust against the
existence of local minima.

Fig. 5 depicts the feasible design surfaces at different 𝑁 values
for the surrogate models. These areas are delimited by the strain and
flutter constraints, shown in red and blue, together with the LP design
limits [7]. We can observe that the first area appears at 𝑁 = 20,
therefore indicating the value of our 𝑁𝑜𝑝𝑡 = 20. Along with the 3D
slices, we plot the points computed via the EGO process to show the
areas that have been more thoroughly explored. The 3D visualisation
of this plot allows for the observation of the overall feasible regions
of the surrogate models in the (𝐯𝐷1 , 𝐯

𝐷
3 , 𝑁) design space. However, the

higher concentration of points at 𝑁 = 20, also depicted in Figs. 3 and
4, leads to a better approximation of the real response on this design
surface. Outside the region with concentrated points, the predictions
might be poorer due to less information availability in the surrogate
model training process. However, these region are not meant to be
explored during the following RBDO step.

The analysis then narrows its focus to a specific number of plies 𝑁 =
20, which, as previously explained, is a region particularly favoured by
the EGO process. The concentration of study points at this number of
plies suggests a higher level of confidence in the model’s predictions.
Given that the objective function actively attempted to reduce the
number of plies, and the first feasible configuration is at 𝑁 = 20, the
deterministic optimum can be easily found by fixing the 𝑁 variable
and using a 𝑆𝐿𝑆𝑄𝑃 [50] optimiser for the (𝐯𝐷1 , 𝐯

𝐷
3 ) variables. The

deterministic optimum found is indicated in Fig. 6 with a green star.
Within Fig. 6, the points computed specifically at 𝑁 = 20 are

distinguished in white, illustrating their direct relevance to this layer. In
contrast, points calculated at other ply counts, which provide valuable
insights for the surrogate model’s accuracy, are projected onto this
plane and are represented in red. This colour coding not only helps
for visual differentiation but it also emphasises the influence of points
computed at 𝑁 ≠ 20 on enhancing the precision of the surrogate model
at 𝑁 = 20.

Fig. 7, shows the evolution of the PoF metric around the constraints.
With green showing the feasible regions and red showing the regions
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Fig. 7. Evolution of the Probability of Feasibility metric near the constraints. Green
regions indicate feasible areas, while red regions denote areas where constraints are
not satisfied.

Fig. 8. Measure of accuracy for strain constraint’s surrogate model, the isocontours
represent the standard deviation of the constructed GPs.

where the constraints are not satisfied. The colour gradient between the
two colours indicates how efficiently the surrogate models are capable
of predicting the constraint value. For instance, the bottom region
which has a higher concentration of study points shows a more abrupt
behaviour than the top region where the computed points are further
away.

An in-depth analysis of the surrogate model’s accuracy at 𝑁 = 20
plies is presented in Fig. 8, which depicts the standard deviation strain
constraint. This plots is instrumental in understanding the constraints
model accuracy in different regions of the design space. The plot is co-
herent with Fig. 7 given that the higher quality of the surrogate model
depicts a more abrupt transition within the PoF metric. The colour
differentiation between the computed points helps highlight the regions
where the surrogate model demonstrates high precision, particularly
around the white points. Remarkably, even the red points contribute
positively to the construction of the surrogate model. The interplay
between points at 𝑁 = 20 and those from other layers underscores the
9

Table 2
Error metrics for different surrogate modelling approaches in percentage of the design
variable.

Surrogate model 𝜖eq 𝜀 (%) 𝑉flutt 𝜀 (%) 𝑀𝑥 𝜀 (%)

20 LHS 23.1 39.9 20.3
30 LHS 5.22 10.2 16.0
AK-MCS-102 1.12 5.49 2.60
AK-MCS-103 1.05 2.58 1.98
AK-MCS-104 0.537 0.174 0.351
EGO 0.0466 0.225 0.228

comprehensive approach taken by the EGO process, ensuring that the
surrogate model is well-defined not just in the immediate vicinity of
the deterministic solution but also in the broader context of the design
space.

The detailed examination of the surrogate model’s performance
under varying conditions in the design space substantiates the effective-
ness of the EGO approach in capturing aeroelastic responses with high
fidelity, particularly in the context of optimising for a reduced number
of plies while adhering to performance constraints. With the surrogate
model now validated and proven to be sufficiently accurate, especially
near the deterministic optimum and critical constraint boundaries, the
research will now proceed to the Reliability-Based Design Optimisation
(RBDO) phase. In this next phase, the established surrogate model
will be instrumental in navigating the design space under probabilistic
conditions.

4.1.1. Validation of the surrogate models
To validate the constructed surrogate models, we employed a MC

approach to assess its accuracy near the optimum. A set of 100 points
was generated within a circle of radius 0.1 in the (𝐯𝐷1 , 𝐯

𝐷
3 ) space centred

around the optimum. For each of these points, the actual values was
computed and compared with the values predicted by the surrogate
models. The differences between these values allowed us to estimate
the error introduced by each surrogate model.

The validation was performed not only for our surrogate modelling
strategy but also for several other ones for comparison:

• surrogate models created using only the initial DoE (20 LHS
points);

• surrogate models created using 30 LHS points;
• three surrogate models created using our initial DoE but solving

10 iterations of the 𝐸𝐼 × 𝑃𝑜𝐹 optimisation via Adaptive Krig-
ing MC Simulation (AK-MCS) [44] with 100, 1000, and 10.000
points.

As a reminder, the proposed surrogate modelling strategy exploits an
initial DoE of 20 LHS points, plus 9 points obtained from the infill
function optimisation, Eq. (20).

Table 2 provides a quantitative summary of the mean error for each
surrogate modelling strategy. The presented approach – 𝐸𝐼 × 𝑃𝑂𝐹
optimised via differential evolution – demonstrated a notable reduction
in prediction errors, underscoring the efficacy of the EGO process in
refining the surrogate model. The surrogate models created with 20
and 30 LHS points exhibited higher errors, reflecting the limitations of
sparse sampling in capturing the complex aeroelastic responses. Mean-
while, the surrogate models optimised via AK-MCS showed varying
degrees of accuracy depending on the number of points used in the
optimisation process.

In conclusion, the validation process confirms that our surrogate
model, developed using the EGO approach optimised via differential
evolution, outperforms those created with traditional LHS methods and
various AK-MCS configurations.
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Table 3
Conditions and parameters of the GA-RBDO.

Parameter Value

Population size 50
Mutation probability 0.5
Elitism group 10
𝑁𝑜𝑝𝑡 20
Standard deviation 𝜎𝜃 2◦

MC samples 100.000
P𝑙𝑖𝑚𝑖𝑡 0.01

Fig. 9. Visualisation of the design space exploration by the GA, emphasising key areas
of exploration and the optimal RBDO solution at 20 plies.

4.2. Reliability-based design optimisation outcomes

This phase focused on minimising gust response and number of
plies, constrained by flutter speed and strain parameters, within a
2D space given a fixed ply count of 20. The RBDO employed a GA,
rigorously designed to handle the inherent uncertainties in the ply
orientation given by the fabrication processes.

To ensure the effectiveness and efficiency of the GA, it is imperative
to fine-tune its parameters and operational conditions. The fine-tuning
process involved iterative testing and validation against a set of bench-
mark problems, with adjustments made based on the performance
metrics such as convergence rate and solution quality. Parameters
such as population size, mutation rate, and crossover probability were
adjusted in small increments, while monitoring the impact on the
GA’s ability to find optimal solutions within a reasonable timeframe.
This iterative approach allowed us to identify the optimal settings
that balance exploration and exploitation within the genetic algorithm
framework. Table 3 summarises the key settings and values used in
the GA, which were fine-tuned as described. All of these parameters
were previously defined in detail in Section 3. Additionally, the table
includes the standard deviation 𝜎𝜃 , representing the variability intro-
duced in the composite materials ply orientation, and the number of
samples used in the MC analysis.

Exploration of the design space. Fig. 9 illustrates the exploration of the
(𝐯𝐷1 , 𝐯

𝐷
3 ) design space throughout two separate generations of a GA run,

the first and the 22nd. The plot highlights the global initial exploration
as well as areas of focused search and the distribution of solutions
within the 22nd generation, including the optimal stacking sequence
𝜽𝑜𝑝𝑡𝑖𝑚 projection in the (𝐯𝐷1 , 𝐯

𝐷
3 ) space. The images reflect the capability

of the GA on exploring the design space and centring its attention
as generation passes on the exploration of the zones near the fittest
individuals.
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Fig. 10. Visualisation of the optimised stacking sequence determined by the RBDO at
20 plies, showcasing the ply orientations and ordering for a symmetrical 𝜽.

Fig. 11. Compliance of the optimised designs with probabilistic constraints on flutter
speed and strain, achieved through GA optimisation at 20 plies.

Visualisation of the optimal stacking sequence. The optimal stacking
sequence, resulting from the RBDO, is visualised in Fig. 10. This figure
showcases the evolution of ply orientations and their specific order in
the optimal design. It serves as a direct representation of the practical
outcome of the optimisation process, highlighting the successful inte-
gration of material efficiency and structural performance. The plot also
illustrates how the GA has not been capable of bettering the previous
optimum stacking sequence at each iteration of the GA.

Probabilistic constraint compliance. The effectiveness of the RBDO in
adhering to probabilistic constraints is demonstrated in Fig. 11. This
plot shows how the optimised designs comply with the flutter speed
and strain constraints while reducing the gust response shown within
the isocontours. Within this plot we also added the entire MC sampling
for the optimum individual to show how the failure probabilities where
computed and illustrating how the failure probability constrained for
the maximum static equivalent strain is respected.

Genetic algorithm convergence. The GA’s convergence is of major impor-
tance in assessing the optimisation’s reliability and efficiency. Fig. 12
presents the convergence plot of the algorithm, depicting the evolution
of the optimisation over 30 generations. This plot encompasses the
results from five separate runs of the algorithm, ensuring a thorough
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Fig. 12. Convergence plot of the gust response obtained with GA-RBDO, showing the
optimisation progression over 30 generations. Consistency across five separate runs with
different initial conditions underlines the algorithm robustness.

examination of its convergence behaviour. The consistency across these
runs highlights the algorithm’s robustness and reliability in finding an
optimal solution, given that all the GA runs converged after a maximum
of 21 iterations. Within Fig. 12, the value for the fittest individual
which satisfies all probabilistic constraints is plotted. Given that only
feasible individuals are plotted, the convergence lines do not start in
generation 0 but in the first generation where a stacking sequence 𝜽
satisfies all constraints. Run 5 found a feasible solution after only 5
generations, while other runs such as 3 and 4 took as much as 13
generations.

4.2.1. Validation of the final stacking sequence
The final stacking sequence has a probability of failure of only

0.771%, which is lower than the 1% upper limit, indicating a correct
constraint compliance. This failure probability is determined using the
modified MC simulation that accounts for the prediction error of the
surrogate model (PoF), represented in Eq. (22). Without considering the
PoF within the MC simulation, we would obtain a failure probability
of 0.768%, indicating that the error induced by the surrogate model is
only 0.003% and therefore a robust prediction of constraint compliance
by the surrogate model. The small value obtained in surrogate model
error certifies the robustness of the surrogate model construction and
indicates a solid overall prediction of the constraint values, ensuring the
reliability of the final stacking sequence. We note here that when other
methodologies are used for the constraint evaluation, such as FORM or
SORM [51,52], we do not have an indicator of the error of the surrogate
model and we add also an error due to the inherent approximations on
which these methodologies are based.

Moreover, a total of approximately 5.3 × 106 calls were made to
the surrogate model during the optimisation process, for an average
computational time of 35 min. To this computation time we must add
the 29 initial points used to compute the surrogate model, each taking
an average of 2 and a half minutes, giving a final computational time
of approximately two hours for the whole optimisation.

Comparatively, a direct approach using the GA and the MC relia-
bility estimator would require the same number of evaluation of the
function of interests (5.3 × 106), but directly to the full order model.
This would result – considering an average evaluation time of 2 and
a half minutes – in a prohibitive optimisation time. Even if we would
consider using a FORM/SORM estimator for the failure probability, a
direct approach would require to call the full order model to construct
the local approximation of the constraints for each point of the GA,
and therefore a higher computational cost with respect to the proposed
methodology.

These results collectively validate the efficacy of the surrogate
model and the RBDO approach. The data-driven insights obtained
emphasise the successful interplay between material savings and the re-
liability of aeroelastic performance, marking a significant advancement
11

in the understanding and design of composite wing structures.
5. Conclusion

In this study, we presented a framework for the reliability-based op-
timisation of composite plates under aeroelastic constraints, integrating
efficient global optimisation and genetic algorithms. Our methodology
systematically combines surrogate modelling, homogenisation tech-
niques, and probabilistic design to address the complexities inherent
in composite material optimisation for aeroelastic applications.

The results underscore the effectiveness of the proposed approach in
navigating the intricate design space of composite structures, achieving
significant enhancements in performance and reliability. The appli-
cation of surrogate models facilitated a nuanced understanding of
the aeroelastic responses, enabling efficient exploration and optimi-
sation within the lamination parameters design space. The genetic
algorithm’s robustness and adaptability were evident in its convergence
behaviour and its ability to meet probabilistic constraints, yielding opti-
mal stacking sequences that balance material efficiency with structural
performance.

The integration of probabilistic design considerations marks a major
advancement, ensuring that the optimised composite structures not
only meet performance criteria but also adhere to safety and reliability
standards under manufacturing variability. This approach aligns with
the industry’s move towards more sustainable and efficient designs and
paves the way for further advancements in composite material optimi-
sation techniques. While this study is specifically applied to aeroelastic
tailoring, the proposed optimisation framework is versatile and can be
extended to other RBDO problems in composite structures, including
those involving buckling and strength constraints. This flexibility notes
the robustness and efficiency of our methodology in handling diverse
optimisation scenarios with expensive cost functions.

Future work could extend this framework to encompass more com-
plex structures and loading conditions, integrate machine learning
techniques for improved surrogate model accuracy for efficient un-
certainty quantification and data assimilation techniques [53], and
explore alternative optimisation algorithms for enhanced efficiency.
Additionally, while this study focuses on a linear mechanics scenario,
it is important to note that the proposed methodology is fully capa-
ble of incorporating geometrical nonlinearities. The Kriging surrogate
models used in our approach are nonlinear and can effectively capture
the behaviour of structures under large deformations. The continued
development of these methodologies holds great promise for advancing
the state of the art in composite material design, particularly in the
aerospace sector.

In conclusion, this study offers a significant contribution to the field
of composite material optimisation, providing a robust and efficient
framework for designing more reliable and efficient composite struc-
tures. The insights gained from this research not only demonstrate the
potential of integrating advanced optimisation techniques and proba-
bilistic approaches but also lay the groundwork for future innovations
in aerospace composite design.
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