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LANGEVIN DYNAMICS FOR HIGH-DIMENSIONAL OPTIMIZATION: THE
CASE OF MULTI-SPIKED TENSOR PCA

GÉRARD BEN AROUS1, CÉDRIC GERBELOT1,2, AND VANESSA PICCOLO2

Abstract. We study nonconvex optimization in high dimensions through Langevin dynamics, fo-
cusing on the multi-spiked tensor PCA problem. This tensor estimation problem involves recovering
r hidden signal vectors (spikes) from noisy Gaussian tensor observations using maximum likelihood
estimation. We study the number of samples required for Langevin dynamics to efficiently recover
the spikes and determine the necessary separation condition on the signal-to-noise ratios (SNRs) for
exact recovery, distinguishing the cases p ≥ 3 and p = 2, where p denotes the order of the tensor.
In particular, we show that the sample complexity required for recovering the spike associated with
the largest SNR matches the well-known algorithmic threshold for the single-spike case, while this
threshold degrades when recovering all r spikes. As a key step, we provide a detailed characterization
of the trajectory and interactions of low-dimensional projections that capture the high-dimensional
dynamics.
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1. Introduction

Understanding optimization and sampling in high dimensions is a central question across applied
mathematics, theoretical physics, and computer science. The recent empirical success of deep learning
methods in data science [39, 17] has challenged our understanding of the efficiency of gradient-based
algorithms in navigating nonconvex landscapes. Such landscapes are often random functions composed
of a signal component and a noise component. The noise typically introduces an exponential number of
critical points (see, e.g., [2, 13, 48, 46]), potentially trapping gradient-based algorithms on exponential
time scales. However, when the signal is sufficiently strong, a topology trivialization transition occurs,
allowing optimization algorithms to efficiently converge within short time frames. One compelling reason
for the surprising effectiveness of gradient-based optimization methods in high-dimensional, nonconvex
problems stems from the inherent structure of many real-world data: the relevant information often lies
on a manifold of much lower dimension than the ambient space. This underlying structure reduces the
effective complexity of the problem, allowing models to sidestep the curse of dimensionality – the chal-
lenges that arise when dealing with high-dimensional data. Quantitatively describing how optimization
dynamics exploit these properties to reach optimal regions of the landscape within polynomial time is
therefore of fundamental importance.

In this context, tensor principal component analysis (PCA) emerges as a paradigmatic example to
address these challenges. Tensor PCA involves estimating an unknown vector on the N -dimensional
sphere from noisy Gaussian observations of a corresponding tensor. The problem was first introduced for
matrices by Johnstone [36] and later extended to tensors by Richard and Montanari [47], where tensors
of order 2 correspond to matrices. Recent work by the first author, in collaboration with Gheissari
and Jagannath [10, 11], showed that for a broad class of problems, the high-dimensional dynamics of
stochastic gradient descent (SGD) can be effectively reduced to low-dimensional, autonomous effective
dynamics governed by a set of summary statistics. This builds on earlier work by the same authors [7,
8], where they studied Langevin dynamics for the single-spike tensor PCA problem and showed that the
high-dimensional dynamics reduce to a one-dimensional dynamical system.

Building on these advances, our work extends the analysis to the multi-spike setting, providing deeper
insights into the interactions between multiple summary statistics. Specifically, we consider the task of
recovering r hidden orthogonal signal vectors lying on the sphere SN−1(

√
N) from noisy Gaussian tensor

observations. We focus on recovering these vectors by computing the maximum likelihood estimator
(MLE) and analyzing the sample complexity required for Langevin dynamics to achieve successful
recovery, i.e., reaching the global minimizer of the loss landscape. To simplify the analysis, we assume
the hidden vectors are orthogonal, reducing the MLE optimization problem to the Stiefel manifold,
the set of N × r matrices whose columns vectors are orthogonal with norm

√
N . To study Langevin

dynamics in this context, we employ stochastic analysis techniques originally developed for spin glass
models. In particular, we extend the bounding flows method introduced in [7], which was used for
the single-spike case [8]. Here, we extend this approach to include diffusions on the Stiefel manifold,
providing a complete characterization of the resulting r2-dimensional dynamical systems. In particular,
we observe a richer phenomenology in the multi-spike case compared to the single-spike scenario, largely
due to the interaction of the trajectories of the correlations between the estimators and the spikes during
recovery. These interactions introduce complex dynamical behavior, as the estimators compete to align
with the hidden signal directions, influencing the recovery process.

Finally, tensor PCA is a prototypical example of statistical-to-computational gaps in high-dimensional
estimation. These gaps arise when the statistical threshold for solving a problem is significantly lower
than the computational threshold. The statistical properties of MLE are well understood [35, 20, 21]:
beyond an order-one critical threshold, the MLE can effectively distinguish the signal from noise. How-
ever, computing the MLE is computationally challenging in practice. To address this challenge, various
algorithmic approaches have been extensively studied to determine the sample complexity required for
efficient recovery. Spectral and Sum-of-Squares methods have been shown to recover the hidden vector
with sample complexity scaling as N

p−2
2 [31, 30, 38, 54, 12]. In contrast, local methods – such as

gradient flow, Langevin dynamics [8], stochastic gradient descent (SGD) [9], tensor power iteration [34],
and approximate message passing [47] – achieve recovery at the threshold of Np−2.

We formalize the multi-rank spiked covariance and tensor model as follows. Let p ≥ 2 and r ≥ 1 be
fixed integers. Suppose that we are given M i.i.d. observations Y ` of a rank-r p-tensor on RN of the
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form

Y ` = N−
p−1

2

(
r∑
i=1

λiv
⊗p
i + W `

)
, (1.1)

where each W ` is an independent sample of a Gaussian p-tensor with i.i.d. entries W `
i1,...,ip

∼ N (0, 1).
The parameters λ1 ≥ . . . ≥ λr ≥ 0 are the signal-to-noise ratios (SNRs) and v1, . . . ,vr are unknown,
orthogonal vectors lying on the N -dimensional unit sphere of radius

√
N , denoted by SN−1(

√
N). The

task is to estimate the unknown signal vectors v1, . . . ,vr ∈ SN−1(
√
N) via empirical risk minimization.

In particular, we choose the most common method for Gaussian variables, namely maximum likelihood
estimation. This involves minimizing the empirical risk R̂N,r(X) defined by

R̂N,r(X) = 1
M

M∑
`=1
LN,r(X; Y `), (1.2)

over the constraint setMN,r := {X ∈ RN×r : X>X = NIr}, known as the normalized Stiefel manifold.
The loss function LN,r : St(N, r)× (RN )⊗p → R is chosen as the log-likelihood function and results in

LN,r(X; Y `) = −
r∑
i=1

λi〈Y `,x⊗pi 〉 = −N−
p−1

2

r∑
i=1

λi〈W `,x⊗pi 〉 −
∑

1≤i,j≤r
Nλiλj

(
m

(N)
ij (X)

)p
, (1.3)

where m(N)
ij (X) = N−

1
2 〈vi,xj〉 denotes the correlation between vi and xj .

1.1. Our contributions

This article is part of a series of three companion papers that study high-dimensional optimization in
the context of multi-spiked tensor PCA. In this work, we focus on Langevin dynamics, providing crucial
results on which the other two papers, which address gradient flow [5] and online SGD [6], rely.

For p ≥ 3, we determine the sample complexity and the conditions that the SNRs must satisfy for
Langevin dynamics to achieve exact recovery of the r spikes. Specifically, we establish the conditions
under which 〈vi,xi〉 = 1 − o(1) with high probability in the large-N limit (see Definition 1.2). In our
companion papers [6, 5], we extend this analysis to online SGD and gradient flow in the more general
case where no assumptions are made about the separation of SNRs. In that case, we determine the
number of samples required to recover a permutation of the spikes, as exact recovery is not always
guaranteed. Recovering a permutation of the spikes means achieving 〈vσ(i),xi〉 = 1 − o(1), for some
permutation σ ∈ Sr that we characterize, with high probability in the large-N limit. A key challenge
in analyzing Langevin dynamics stems from controlling the Brownian motion, which complicates the
analysis when the SNRs are not sufficiently separated. We remark that the same separation condition
on the SNRs is also required to ensure exact recovery (i.e. the identity permutation) in the cases of
gradient flow and online SGD. For p = 2, we consider two distinct cases: one where the SNRs are
sufficiently separated, and another where all SNRs are equal.

The estimates derived here for Langevin dynamics play a crucial role in the results of our companion
papers [6, 5]. Specifically, the proofs presented in this work provide a complete description of the
continuous-time population dynamics. In [6, 5], the analysis is carried out up to a point where it relies
directly on our findings for Langevin dynamics.

Finally, we rigorously characterize the sequential elimination phenomenon (see Definition 1.8), which
governs the recovery process. This interesting phenomenon provides new insights into how the hidden
signal vectors are progressively recovered.

1.2. Model and dynamics

To enable the application of Langevin dynamics, we introduce the Hamiltonian by scaling the empirical
risk by

√
M . Let H : MN,r → R denote the Hamiltonian given by

H(X) = H0(X)−
∑

1≤i,j≤r
N
√
Mλiλj

(
m

(N)
ij (X)

)p
, (1.4)

where

H0(X) = N−
p−1

2

r∑
i=1

λi〈W ,x⊗pi 〉. (1.5)
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The noise Hamiltonian H0 is a centered Gaussian process with covariance of the form

E [H0(X)H0(Y )] = 1
N

∑
1≤i,j≤r

λiλj

( 〈xi,yj〉
N

)p
.

Note that minimizing the empirical risk (1.2) is equivalent, in law, to minimizing the Hamiltonian (1.4),
while reducing the running time by a factor of

√
M .

We define Langevin dynamics with Hamiltonian H as follows. For β ∈ (0,∞) and an initial point
X0 ∈MN,r, we let Xβ

t ∈MN,r solve the stochastic differential equation given by

dXβ
t =
√

2dBt − β∇H(Xβ
t )dt, (1.6)

where Bt ∈ RN×r stands for the Brownian motion on MN,r and ∇ denotes the Riemannian gradient
onMN,r. Specifically, for any function f : MN,r → R, the Riemannian gradient is given by

∇f(X) = ∇̂f(X)− 1
2NX

(
X>∇̂f(X) + ∇̂f(X)>X

)
, (1.7)

where ∇̂ denotes the Euclidean gradient. The generator Lβ of this process is given by

Lβ = ∆− β〈∇H, ∇̂·〉, (1.8)

where ∆ denotes the Laplace-Beltrami operator onMN,r (endowed with the Euclidean metric) and is
given according to [55] by

∆f(X) = ∆̂f(X)− N − 1
N

Tr(X>∇̂f(X))− 1
N

r∑
i,k=1

N∑
j,`=1

(xi)j(xk)`
∂2

∂(xi)j∂(xk)`
f(X), (1.9)

for any function f : MN,r → R. Here, ∆̂ denotes the Euclidean Laplace operator. Similarly, we denote
by L0,β the generator of Langevin dynamics related to the noise Hamiltonian H0, i.e.,

L0,β = ∆− β〈∇H0, ∇̂·〉. (1.10)

Remark 1.1. Langevin dynamics reduces to gradient flow when β =∞. Accordingly, the results under
Langevin dynamics presented in this article also hold under gradient flow dynamics.

1.3. Main results

Our main results address the sample complexity required to efficiently recover the unknown orthogonal
vectors v1, . . . ,vr ∈ SN−1(

√
N). We assume the SNRs satisy λ1 ≥ · · · ≥ λr ≥ 0 and are constants

of order-1. In this subsection, we present the results in their asymptotic form. A nonasymptotic
formulation with explicit constants and convergence rates is provided later in Section 3.

We consider the Langevin dynamics process (Xβ
t )t≥0, initialized from the uniform distribution µN×r

on the normalized Stiefel manifold MN,r. The probability measure µN×r is the unique probability
measure onMN,r that is invariant under both the left- and right- orthogonal transformations. Sampling
from this distribution is straightforward: if Z ∈ RN×r is a Gaussian random matrix filled with i.i.d.

standard normal entries, then the matrix Z
(

1
NZ>Z

)−1/2
is uniformly distributed onMN,r [22]. Let

(Ω,F ,P) denote the probability space on which the noise p-tensor W is defined and let QX0 denote the
law of the Langevin dynamics Xβ

t , initialized at X0.
More precisely, our results determine both the sample complexity and the separation condition on the

SNRs required to ensure exact recovery of the spikes. We formally define exact recovery in the context
of Langevin dynamics as follows.

Definition 1.2 (Exact recovery). We say that Langevin dynamics exactly recovers the r unknown
signal vectors with rate ξ if, for every ε > 0 and every 1 ≤ i ≤ r, there exists T0 such that for every
T ≥ T0,

lim
N→∞

∫
MN,r

QX0

(
min

t∈[T0,T ]
m

(N)
ii (Xβ

t ) ≥ 1− ε
)
dµN×r = ξ, P-a.s.

In contrast, when focusing only on the recovery of the leading spike, we introduce the following
definition.
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Definition 1.3 (Strong recovery of the leading spike). We say that Langevin dynamics strongly recovers
the leading spike v1 with rate ξ if, for every ε > 0, there exists T0 such that for every T ≥ T0,

lim
N→∞

∫
MN,r

QX0

(
min

t∈[T0,T ]
m

(N)
11 (Xβ

t ) ≥ 1− ε
)
dµN×r = ξ, P-a.s.

We are now in a position to present our main results, starting with the case p ≥ 3. Our first result
concerns the strong recovery of the leading spike.

Theorem 1.4 (Recovery of the leading spike for p ≥ 3). Fix any p ≥ 3 and β ∈ (0,∞). If for every
η > 1,

λ1 > c(η)λ2

for c(η) = C(η
√

log(η))p−2 > 0 and C and absolute constant, and if M = Nα with α > p − 2, then
Langevin dynamics strongly recovers the spike v1 with rate ξ = 1− 1

η .

More detail on the separation condition c(η) is provided in Proposition 3.5. In particular, to ensure
the recovery of the leading spike with probability close to 1, the SNR λ1 needs to be separated from
λ2 by a large but N -independent factor. The sample complexity required for recovering the leading
spike v1 is of order Np−2+δ for any δ > 0, consistent with the well-known result for the single-spike
case [8]. While it is conceivable to reduce the factor Nδ to a polylogarithmic factor by improving our
proof estimates, this would require substantial additional effort and is left as an open question.

Our second result concerns the exact recovery of all spikes.

Theorem 1.5 (Exact recovery for p ≥ 3). Fix any p ≥ 3 and β ∈ (0,∞). If for every η > 1 and every
1 ≤ i ≤ r − 1,

λi > c(η)λi+1,

with c(η) as in the previous Theorem, and if M & Np−1, then Langevin dynamics exactly recovers all r
spikes with rate ξ = 1− 1

η .

To achieve exact recovery of all spikes, the total number of samples M must scale as Np−1, and the
SNRs must satisfy the separation condition c(η) previously introduced in Theorem 1.4. The discrepancy
in sample complexity between the recovery of the first spike and subsequent spikes can be explained
as follows. At initialization, the estimator X0 and the noise tensor W are independent. Under this
independence, the typical scale of the noise generator L0,βm

(N)
ij (X) is of order 1√

N
, compared to an upper

bound of order 1 without this independence. This reduces the required sample complexity for estimating
the signal component of the generator from Np−1 to Np−2, provided this initialization property can be
effectively leveraged over an extended time frame for recovering the first direction. However, once the
first spike is recovered, this advantageous scaling of the noise generator can no longer be exploited by
our proof method. As a result, the sample complexity for subsequent spike recovery aligns with the
order-one bound of the noise generator. Further details and a formal discussion of this phenomenon are
provided in Section 2.

Remark 1.6. At present, we do not have any refutation results to rule out a sample complexity between
Np−2 and Np−1 for exact recovery of all spikes. Therefore, it remains an open question whether the
Np−1 complexity is optimal. In our companion paper on the online SGD algorithm [6], we achieve
the sharper Np−2 complexity threshold for the recovery of all directions. The key difference lies in
the sampling dynamics: in the online SGD setting, a different sample W ` is used at each step, and
this sample is independent of the estimator from the previous iteration. This independence allows the
beneficial scaling of the noise generator to be exploited at every time step, thereby achieving the sharp
threshold for the sample complexity required to recover directions beyond the first.

Remark 1.7. When the order p ≥ 3 of the tensor is even, each estimator recovers sgn(m(N)
ii (X0))vi.

This implies that if the correlation at initialization is positive, then xi recovers vi; otherwise, xi recovers
−vi. In contrast, when p is odd, each estimator xi recovers vi for all correlations that are positive at
initialization. Correlations that are negative at initialization are trapped at the equator and do not
grow.
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The phenomenology of spike recovery is richer than described in Theorem 1.5. Specifically, the cor-
relations {m(N)

ii (Xβ
t )}ri=1 reach a macroscopic threshold one by one. Once a correlation m(N)

ii reaches a
sufficiently large threshold, all correlations m(N)

ij and m(N)
ji for j 6= i begin to decrease and reach a very

low level. The fact that the off-diagonal correlations become negligible allows the next diagonal corre-
lation m(N)

i+1 i+1 to grow to a macroscopic level. We refer to this phenomenon as sequential elimination,
which we define as follows.

Definition 1.8 (Sequential elimination). We say that the correlations {m(N)
ii }ri=1 follow a sequential

elimination if there exist r stopping times T1 ≤ · · · ≤ Tr such that for every i ∈ [r], every ε, ε′ > 0, and
T ≥ Ti,

|m(N)
ii (Xβ

T )| ≥ 1− ε and |m(N)
ij (Xβ

T )| ≤ ε′, |m(N)
ji (Xβ

T )| ≤ ε′ for every j 6= i.

We have the following result, which serves as a foundation for Theorem 1.5.

Theorem 1.9 (Sequential recovery of the spikes). If M & Np−1, then the correlations {m(N)
ii (Xβ

t )}ri=1
follow a sequential elimination with P-probability 1 in the large-N limit.

We now consider the case p = 2. In this setting, we obtain similar results to those for p ≥ 3; however,
the separation condition among the SNRs is significantly less restrictive, as an order-1 factor suffices
for exact recovery. Our first main result for p = 2 shows that Langevin dynamics strongly recovers the
leading spike with a sample complexity of order Nδ for any δ > 0.
Theorem 1.10 (Recovery of the leading spike for p = 2). Fix p = 2 and any β ∈ (0,∞). Let
λ1 = λ2(1 + κ1) for an order-1 constant κ1 > 0. If M = Nδ for any δ > 0, then Langevin dynamics
strongly recovers the spike v1 with rate ξ = 1.

Compared to Theorem 1.4 for p ≥ 3, Theorem 1.10 shows that the separation condition required for
the SNRs to ensure strong recovery of the leading spike is an order-1 factor. Exact recovery of all spikes
is possible, as soon as the SNRs are separated by order-1 factors and the number of samples scales as
Nξ, where ξ ∈ (0, 1) depends on the ratio between the signal sizes.

Theorem 1.11 (Exact recovery for p = 2). Fix p = 2 and any β ∈ (0,∞). Let λi = λi+1(1 + κi) for

every 1 ≤ i ≤ r − 1 and order-1 constants κi > 0. If M ≥ N
1−λ

2
r
λ2

1
+δ

for any δ > 0, then Langevin
dynamics exactly recovers all r spikes with rate ξ = 1.

As with p ≥ 3, for p = 2, we also observe a difference in sample complexity between recovering the
first spike and the subsequent ones. However, unlike the results for p ≥ 3, once the first direction is
recovered, the subsequent correlations m(N)

ij scale up to N
δij

2 , where δij ∈ (0, 1) depends on the ratio
between the SNRs. This scaling can then be exploited to show that the sample complexity required to
recover the directions beyond the first one degrades only by a factor δij rather than by a factor 1. For
a more detailed explanation, we direct the reader to Section 2. Unlike Theorem 1.5, for p = 2, exact
recovery of all spikes is possible as soon as the SNRs differ by order-1 factors.

For p = 2, we also study the Langevin dynamics in the special case where the signal sizes are all
equal. In this scenario, the Hamiltonian H becomes invariant under both right and left rotations. As a
result, the problem shifts from recovering each individual spike to recovering the subspace spanned by
v1, . . . ,vr. In particular, we study the evolution of the eigenvalues θ1, . . . , θr of the matrix G = M>M ,
where M = (m(N)

ij (X))1≤i,j≤r. This is due to the fact that

‖XX> − V V >‖F = 2(r − Tr(G)),
meaning that finding an estimator X ∈ MN,r such that ‖XX> − V V >‖F = o(1) is equivalent to
ensuring that the eigenvalues of G converge to 1− o(1) with high probability.

The following result provides the number of samples required for recovery of the correct subspace.

Theorem 1.12 (Subspace recovery). Fix any β ∈ (0,∞). Let p = 2 and λ1 = · · · = λr. If M = Nδ

for any δ > 0, then Langevin dynamics recovers the subspace spanned by the r spikes, that is, for every
ε > 0, there exists T0 such that for every T ≥ T0,

lim
N→∞

∫
MN,r

QX0

(
min

t∈[T0,T ]
θmin(Xβ

t ) ≥ 1− ε
)
dµN×r = 1, P-a.s..
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There is a third regime of SNRs that remains unexplored in this paper as well as in our companion
article [6] on online SGD. This regime concerns SNRs that are separated by a sufficiently small ε-factor,
where ε may depend on N . The study of this regime is left for future work.

1.4. Related works

The multi-spiked tensor PCA problem belongs to a broader class of models where maximum likelihood
estimation leads to a loss function that comprises both a noise term and a signal term. In many problems
of statistical inference and learning, the deterministic high-dimensional dynamics of the signal part can
be studied through the evolution of the sufficient statistics of the problem, which evolve autonomously.
The simplest example of this fact is the single-spiked spherical tensor PCA model. In this case, the
sufficient statistic is the correlation m = 1

N 〈v,x〉, whose evolution under population gradient flow re-
duces to the one-dimensional ODE ṁ ∝ mp−1(1 −m2) [8]. The notion of dimensionality reduction in
certain random dynamical systems arising from gradient-based optimization has been recently formal-
ized under generic conditions in [10, 11]. This framework introduces autonomous quantities known as
summary statistics, of which sufficient statistics are a subset. The evolution of summary statistics under
gradient-based dynamics poses several challenges. First, the effects of Gaussian noise (and Brownian
motion in the case of Langevin dynamics) must be controlled over sufficiently long timescales to ensure
that the events of interest, such as achieving a nontrivial correlation with the hidden signal, can occur.
Second, the system of autonomous equations governing the evolution of the summary statistics must be
simple enough to allow for precise quantitative analysis. Finally, the projection of the dynamics onto
the space of summary statistics should retain as much of the regularity and structure of the original
high-dimensional system as possible. In statistical physics, low-dimensional quantities that facilitate
the study of a random high-dimensional system in closed form are commonly referred to as order pa-
rameters, and we will use this terminology for the following discussion.

In statistical physics of disordered systems, classical examples of signal-plus-noise Hamiltonians are
planted versions of spin glass Hamiltonians [44, 56]. In this context, the out-of-equilibrium dynamics of
the order parameters are typically studied using low-dimensional integro-differential equations involving
two-time autocorrelation functions. This approach, originally proposed in [52, 53, 23, 24, 18] to model
aging phenomena in spin glasses, is commonly referred to as dynamical mean-field theory (DMFT).
Recently, DMFT has been adapted in the statistical physics of learning to analyze Langevin dynamics
in high-dimensional estimation problems. Examples include perceptron models [1], mixed matrix-tensor
estimation [50, 51, 49], Gaussian mixture classification [42], and phase retrieval [43]. In these works, the
resulting integro-differential equations are solved numerically to obtain phase diagrams for the order
parameters over order-one timescales. However, a key challenge of this approach lies in the complexity
of the integro-differential equations, which often hinders a complete analytical study.

On a rigorous level, DMFT equations have been proven for mean-field spin glasses using large devia-
tions techniques [29, 3, 4] and more recently for inference problems using iterative Gaussian condition-
ing [19, 28] and random matrix theory in [16, 15, 41] for instances of spiked matrix models. In these
works, quantitative statements (e.g. recovery thresholds) are only obtained due to simplifications specific
to quadratic models, and extending these results to a multi-spike tensor model appears challenging. Fur-
thermore, DMFT approaches for statistical estimation problems are always proven in the proportional
limit of dimension and number of samples one order one timescales, making it difficult to study problems
that require polynomial sample complexity or running time. Finally, these proofs also require an O(1)
(akin to a warm start, see the discussion in [41]) initial correlation between the estimator and the hid-
den signal, whereas this correlation is typically of order O( 1√

N
) when using uninformative initializations.

In statistical learning, the traditional approach to controlling noisy dynamics involves establishing
a single uniform convergence bound (over the input space) for the empirical risk, or gradient thereof,
and then directly analyzing the population dynamics under this control. Recently, this approach has
been applied to problems involving low-dimensional population dynamics [25, 14]. Its main advantages
include simplicity, robustness across different time horizons, sample complexity regimes, and initializa-
tion scales, as well as the tractability of the systems of ordinary differential equations (ODEs) derived
from the noiseless problem. However, this method has significant limitations, particularly its inability
to achieve sharp bounds. Specifically, it fails to leverage the independence between the initial condition



gérard ben arous, cédric gerbelot, and vanessa piccolo8

and the noise tensor discussed earlier, resulting in a loss of a factor N1(2 in the recovery threshold.

To address these shortcomings, we adopt an alternative approach, first introduced in [7] for Langevin
dynamics in spin glasses and subsequently applied to the single-spiked tensor PCA problem in [8], where
it was used to prove the conjectured recovery threshold for first-order methods proposed in [47]. In this
work, we extend this method to the multi-spiked tensor PCA problem, showing that it overcomes the
deficiencies of traditional approaches outlined above. It is worth noting, however, that while results
obtained using DMFT are asymptotically exact, the bounding flows method provides inequalities rather
than exact characterizations of the studied trajectories. The main difference between our work and [8]
lies in the increased complexity of the resulting dynamical system, which involves the summary statistics{
m

(N)
ij

}
1≤i,j≤r

as well as the time-dependent bounds for the quantities
{
‖L0,βm

(N)
ij ‖∞

}
1≤i,j≤r

.

We conclude this section by noting that the multi-spiked tensor PCA problem also serves as a bench-
mark for studying nonconvex optimization in high dimensions, a topic of significant importance in
machine learning theory. For a detailed discussion of the relevance of our work in this context and
additional references on this subject, we refer the reader to the related works section of our companion
paper [6].

1.5. Overview

An overview of the paper is given as follows. In Section 2, we outline the proofs of our main results, pro-
viding a roadmap for the key arguments. The nonasymptotic formulation of our main results, including
explicit constants and convergence rates, is presented in Section 3. Preliminary results necessary for
the proofs are discussed in Section 4. The detailed proofs of our main results are provided in Sections 5
through 7. These sections address the cases p ≥ 3, p = 2 with distinct SNRs, and p = 2 with equal
SNRs, respectively. Finally, Appendix A provides concentration properties of the uniform measure on
the normalized Stiefel manifoldMN,r.

Acknowledgements. G.B. and C.G. acknowledge the support of NSF grant DMS-2134216. V.P.
acknowledges the support of the ERC Advanced Grant LDRaM No. 884584.

2. Outline of proofs

In this section, we outline our proofs, focusing on the rank-2 spiked tensor model for simplicity. We
first address the recovery of all spikes and then focus on subspace recovery, by assuming p = 2 and
λ1 = λ2. The core of the proof revolves around the simultaneous control of the noise and signal part
of the dynamics. Once the noise is controlled, we describe the population dynamics, which is similar to
the discrete time dynamical system obtained in our companion paper [6]. The main difference between
these two works lies in the control of the noise : in the case of Langevin dynamics, the drift induced by
the Gaussian noise in the Hamiltonian is predictable (as opposed to a martingale noise in SGD), and
more involved tools are needed to control the resulting correlations. Moreover, the effect of Brownian
motion must be considered, which leads to a condition on the separation of the SNRs.

2.1. Full recovery of spikes

We focus on the evolution of the correlations m(N)
ij (Xβ

t ) under Langevin dynamics. We assume an
initial random start with a completely uninformative prior, specifically the uniform distribution on the
normalized Stiefel manifoldMN,r. As a consequence, all correlationsm(N)

ij (X0) have the typical scale of
order N−

1
2 at initialization. For simplicity, we assume that all correlations are positive at initialization

in the following discussion. Moreover, we write mij(t) := m
(N)
ij (Xβ

t ) to simplify notation slightly.
According to (1.6), the evolution equation for mij(t) under Langevin dynamics is given by

dmij(t) = Lβmij(t)dt+ dM
mij
t , (2.1)

where Mmij
t =

√
2
∫ t

0 〈∇mij(s), dBs〉 denotes the martingale part of the evolution. The generator Lβ is
given according to (1.8):

Lβmij(t)dt = ∆mij(t)− β〈∇H, ∇̂mij〉.



Langevin dynamics for high-dimensional optimization 9

Recall that
H(X) = H0(X)−

∑
1≤i,j≤r

N
√
Mλiλj (mij(X))p ,

where H0 is given by (1.5). A straightforward computation shows that

Lβmij = L0,βmij + β
√
Mpλiλjm

p−1
ij − β

√
M
p

2
∑

1≤k,`≤r
λkmkjmk`mi`

(
λjm

p−2
kj + λ`m

p−2
k`

)
,

where L0,β is the generator induced by the noise part (see (1.10)). The population generator consists of
two terms: the first term pλiλjm

p−1
ij represents the drift and dominates the dynamics, particularly near

initialization, while the second term p
2
∑

1≤k,`≤r λkmkjmk`mi`

(
λjm

p−2
kj + λ`m

p−2
k`

)
is the “correction”

term due to the constraint of the estimator X being on the orthogonal manifold. Analogous to the
analysis for online SGD, the main challenge lies in balancing the noise and signal terms. At small scales,
such as near initialization, the population drift predominates over the correction term and the generator
Lβmij can be approximated by

Lβmij(t) ≈ ∆mij(t)− β〈∇H0, ∇̂mij(t)〉+ β
√
Mpλiλjm

p−1
ij (t).

For the correlations mij to increase, the drift pλiλjm
p−1
ij at initialization needs to be larger than the

noise part. At initialization, the correlations mij typically scale as N−
1
2 , so that mp−1

ij typically scales
as N

p−1
2 . The noise generator L0,βmij = ∆mij(t) − β〈∇H0, ∇̂mij(t)〉 with ∆mij(t) = −N−1

N mij(t)
according to (1.9). The term −β〈∇H0, ∇̂mij(t)〉 is also of order N−

1
2 at initialization, thus a sample

complexity of order Np−2 is sufficient for the population drift to dominate over the noise influence.
Under this sample complexity, the dynamics during this first phase can described by the following
simple stochastic differential equation:

dmij(t) ≈
(
β
√
Mpλiλjm

p−1
ij − N − 1

N
mij(t)

)
dt+ dM

mij
t . (2.2)

At this point, we need to show that the drift term in the population dynamics keeps dominating the
noise generator L0,βmij over a sufficiently large time scale, allowing mij to escape mediocrity. This is
exactly what is achieved by the bounding flows method of [7, 8], providing a time dependent bound for
the noise processes based on estimates of a Sobolev-type norm of H0(X), while retaining the regularity
of the initial condition. Once the first correlation reaches a critical threshold, the correction term in the
population generator, which was negligible during the initial phase of dynamics, becomes relevant and
the correlations begin to interact with each other. As explained below in the description of the popula-
tion dynamics, the values of the SNRs and of the correlations at initialization lead to an ordering of the
correlations at the microscopic scale that is crucial for the analysis of the recovery process. However,
in the presence of Brownian motion, the fluctuations due to the martingale part Mmij

t of the dynamics
are comparable to the values of the correlations near initialization. In particular, unless the SNRs are
sufficiently separated, we are unable to guarantee that this ordering is stable.

Analysis of the population dynamics. The evolution of correlations under the population dy-
namics of gradient flow is close to the behavior described for online SGD in [6, Section 2]. For the
sake of completeness and the reader’s understanding, we provide a brief explanation of this population
analysis below.

Assume first p ≥ 3. The solution to the ODE (2.2) shows that the correlations mij are well approxi-
mated by

mij(t) ≈ mij(0)
(

1− β
√
Mλiλjp(p− 2)mij(0)p−2t

)− 1
p−2

, (2.3)

where mij(0) = γij√
N

for some order-1 constant γij > 0. From (2.3), it follows that the typical time for
mij to reach a macroscopic threshold ε > 0 is given by

T (ij)
ε ≈

1−
(

γij

ε
√
N

)p−2

β
√
Mλiλjp(p− 2)γp−2

ij

N
p−2

2 .
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In particular, the first correlation to become macroscopic is the one associated with the largest value of
λiλjγ

p−2
ij , where (γij)1≤i,j≤2 approximately follow independent standard normal distributions. Recall

that the true evolution of mij(t) corresponds to a perturbation of 2.3, whose sensitivity to the initial
condition crucially determines the ordering of the correlations near initialization. We show that, using
the sample complexity M , the perturbation due to L0,β becomes negligible as soon as M & Np−2

for some constant that is made explicit in the proof. To obtain a uniform control of the martingale
part Mmij

t over the time interval required to use the bounding flow method, we use Doob’s maximal
inequality to compare it with the initialization, which perturbes the ordering of the quantities λiλjγ

p−2
ij .

To compensate this perturbation, we impose a separation condition on the {λi}ri=1. In our companion
paper on gradient flow, we show that, due to the absence of the Brownian motion, a sharper analysis
can be carried out without any separation assumption on the SNRs. We leave the elaboration of a more
refined argument at finite temperature for future work.

Once the first correlation mij reaches some macroscopic value ε > 0, we can show that the other
correlations are still of order 1√

N
. Next, we describe the evolution of m12,m21 and m22 during this time

interval. We first note that the correction part of the population generator, i.e.,∑
1≤k,`≤2

λkmkjmk`mi`(λjmp−2
kj + λ`m

p−2
k` ),

becomes dominant in the evolution of the correlations m12,m21, as soon as m11 reaches the microscopic
threshold N−

p−2
2p . Therefore, until m11 reaches this threshold value, m12 and m21 are non-decreasing

and they begin to decrease from this point onward. On the other hand, the correction part of the
population generator may become dominant in the evolution of m22, as soon as m11 reaches another
microscopic threshold of order N−

p−3
2(p−1) , leading to a potential decrease of m22. Through a careful

analysis, we show that this potential decrease is at most of order log(N)
N , so that m22 remains stable at

the scale 1√
N

during the ascending phase of m11. Once m12,m21 become sufficiently small, we show that
the evolution of m22 can still be described by (2.3), thus ensuring the recovery of the second direction.
The phenomenon we observe here is referred to as sequential elimination phenomenon, as introduced
in Definition 1.8. The correlations increase sequentially, one after another. When the first correlation
m11 exceeds a certain threshold, the correlations sharing a row and column index, i.e., m12 and m21)
start decreasing until they become sufficiently small to be negligible, thereby enabling the subsequent
correlation m22 to increase and reach a macroscopic value. We refer to Figure 9 in our companion
paper [6] to an illustration of this phenomenon.

We now consider p = 2. In this case, the solution to (2.2) is given by

mij ≈ mij(0) exp (2λiλjt) , (2.4)

with mij(0) = γijN
− 1

2 . This implies that the typical time for mij to reach a macroscopic threshold
ε > 0 is given by

T (ij)
ε ≈

1
2 log(N)− log

(γij
ε

)
2λiλj

.

Compared to the case where p ≥ 3, where the quantity λiλjγ
p−2
ij determines the correlation that first

escapes mediocrity, we observe here that the initialization γij has less influence and the differences in time
for the correlations to reach a macroscopic threshold are dominated by the separation between the SNRs,
which is less pronounced as the γij ’s are not in the denominator. When λ1 > λ2, a sequential elimination
phenomenon akin to the one observed for p ≥ 3 occurs. However, there is an important difference
compared to the tensor case: once m11 reaches the macroscopic threshold ε > 0, the correlations
m12,m21 and m22 scale as N−δ1/2, N−δ1/2 and N−δ2/2, respectively, where δ1 = 1− λ2

λ1
and δ2 = 1− λ2

2
λ2

1
.

We then show that m11 must reach approximately the critical value (λ2
λ1

)1/2 for m12,m21 to decrease.
This value is achieved in an order one time once m11 has reached ε, while m12,m21 still require a time
of order log(N) to escape their scale of N−

δ1
2 . In addition, we show the stability of m22 during this

first phase by controlling that it remains increasing throughout the ascending phase of m11 and until
m12,m21 begin to decrease. Note that, since m22 is of order N−δ2/2 as m11 reaches ε, the sample
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complexity for the recovery of the second direction degrades by a factor N
1−λ

2
r
λ2

1 , as opposed to
√
N in

the tensor case.

2.2. Subspace recovery

As explained in our companion paper on SGD, the multi-spike matrix model becomes isotropic when
the SNRs are equal, since any rotation of the hidden directions is a global minimizer. Thus, rather
than focusing on the correlations mij individually, we apply our bounding flow directly at the level of
the eigenvalues of the matrix G = M>M . In particular, fluctuations of the initial condition (at the
microscopic scale) have little effect in this case, so that the martingale part can be easily controlled. We
then show that, when the noisy dynamics is sufficiently close to the population dynamics, the matrix
G follows a constant coefficient algebraic Ricatti equation, i.e.,

Ġ(t) ≈ λ2G(t)(Ir −G(t)),
where its eigenvalues θ1, . . . , θr evolve according to

θ̇i(t) ≈ λ2θi(t) (1− θi(t)) .
Since these equations are coordinate-wise autonomous and have monotone solutions, it is easy to prove
efficient recovery once the estimator has exited the maximum entropy region of the landscape.

3. Main results

Here, we present our main results of Subsection 1.3 in nonasymptotic form. We first introduce natural
conditions that the initial data must satisfy in order to efficiently recover the spikes. This conditions
are then shown to be satisfied by the uniform measure µN×r onMN,r.

The first condition is on the regularity of the noise generator L0,β .

Definition 3.1 (Condition 0 at level n). For every γ0 > 0, n ≥ 1, we let C0(n, γ0) denote the sequence
of events given by

C0(n, γ0) =
n−1⋂
k=0

{
X ∈MN,r : |Lk0,βm

(N)
ij (X)| ≤ γ0√

N
for every 1 ≤ i, j ≤ r

}
.

We then say that a sequence of random probability measures µ ∈ P(MN,r) satisfies Condition 0 at level
n if for every γ0 > 0,

µ (C0(n, γ0)c) ≤ Ce−cγ
2
0 ,

for absolute constants C, c.

Definition 3.2 (Condition 0 at level ∞). For every γ0 > 0 and T > 0, we let C0(T, γ0) denote the
sequence of events given by

C∞0 (T, γ0) =
{

X ∈MN,r : sup
t≤T
|etL0,βL0,βm

(N)
ij (X)| ≤ γ0√

N
for every 1 ≤ i, j ≤ r

}
,

where etL0 denotes the semigroup induced by L0. We then say that a sequence of random probability
measures µ ∈ P(MN,r) weakly satisfies Condition 0 at level ∞ if for every γ0, T > 0,

µ (C∞0 (T, γ0)c) ≤ C
√
NTe−cγ

2
0 ,

for absolute constants C, c.

The second condition ensures that the initial correlation is on the typical scale Θ(N− 1
2 ).

Definition 3.3 (Condition 1). For every γ1 > γ2 > 0, we let C1(γ1, γ2) denote the sequence of events
given by

C1(γ1, γ2) =
{

X ∈MN,r : γ2√
N
≤ m(N)

ij (X) < γ1√
N

for every 1 ≤ i, j ≤ r
}
.

We say that a sequence of random probability measures µ ∈ P(MN,r) satisfies Condition 1 if for every
γ1 > γ2 > 0,

µ (C1(γ1, γ2)c) ≤ C1e
−c1γ

2
1 + C2e

−c2γ2
√
N + C3γ2,

for absolute constants C1, c1, C2, c2, C3.
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The most natural initialization is the uniform measure µN×r onMN,r. We claim that

Lemma 3.4. The uniform measure µN×r onMN,r weakly satisfies Condition 0 at level ∞ and satisfies
Condition 1.

The proof of Lemma 3.4 is deferred to Appendix A.

We are now in the position to state our main results in nonasymptotic form. Our first result shows
that for p ≥ 3, the critical threshold required to achieve strong recovery of the first spike v1 must scale
as
√
M ∼ N

p−2
2 .

Proposition 3.5 (Recovery of leading spike for p ≥ 3). Fix any β ∈ (0,∞) and p ≥ 3. Consider a
sequence of initializations µ0 ∈ P(MN,r) which satisfies Condition 0 at level n and Condition 1. Then,
the following holds: For every n ≥ 1, γ0 > 0, γ1 > γ2 > 0 and ε > 0, there exists C0 ∈ (0, 1

2 ) such that

if λ1 >
1+C0
1−C0

(
3γ1
γ2

)p−2
λ2 and

√
M & (n+2)γ0

βpλ2
rC0γ

p−1
2

N
p−1

2 −
n

2(n+1) , there exists T0 & 1
(n+2)γ0

N−
1

2(n+1) such
that for every T > T0 and N sufficiently large,∫

MN,r

QX

(
inf

t∈[T0,T ]
m11(Xβ

t ) ≥ 1− ε
)
dµ0(X) ≥ 1− η(n, γ0, γ1, γ2),

with P-probability at least 1− exp(−KN), where η = η(n, γ0, γ1, γ2) is given by

η = C1e
−c1γ

2
0 + C2e

−c2γ
2
1 + C3γ2 + C4e

−c4γ2
√
N +K1e

−γ3
0 (n+2)N

1
2(n+1) /K1

+ r2K2e
−γ2

2γ0(n+2)N
1

2(n+1) /K2 +K3e
−γ0(n+2)N

2p−1
2(p−1)−

n
2(n+1) /K3 +K4e

−Nε2/(K2T ).

Our second main result shows that the critical threshold for achieving exact recovery of all r spikes
v1, . . . ,vr must scale as

√
M ∼ N

p−1
2 .

Proposition 3.6 (Exact recovery of all spikes for p ≥ 3). Let β ∈ (0,∞), p ≥ 3 and λ1 ≥ · · · ≥ λr > 0.
Consider a sequence of initializations µ0 ∈ P(MN,r) which satisfies Condition 1. For every ε > 0, we
let R(ε) denote

R(ε) =
{

X : mii(X) ≥ 1− ε ∀i ∈ [r] and mij(X),mji(X) . log(N)− 1
2N−

p−1
4 ∀j 6= i

}
. (3.1)

Then, the following holds: For every γ1 > 1 > γ2 > 0 and ε > 0, there exist Λ = Λ(n, p, β, {λi}ri=1) >
0 and C0 ∈ (0, 1

2 ) such that if λi > 1+C0
1−C0

(
3γ1
γ2

)p−2
λi+1 for every 1 ≤ i ≤ r − 1 and

√
M &

Λ
βpλ2

rC0γ
p−1
2

N
p−1

2 , there exists T0 & 1√
N

such that for every T > T0 and N sufficiently large,∫
MN,r

QX

(
inf

t∈[T0,T ]
Xβ
t ∈ R(ε)

)
dµ0(X) ≥ 1− η(γ1, γ2),

with P-probability at least 1− exp(−KN), where η = η(γ1, γ2) is given by

η = C1e
−c1γ

2
1 + C2γ2 + C3e

−c3γ2
√
N

+ r3K1e
−γ2

2
√
N/K1 + rK2e

−N
p+1

2(p−1) /K2 + rK3e
−ε2N/(K3T ).

According to the event of strong recovery given by (3.1), it is important to note that after successfully
recovering the first spike, recovery of the subsequent spikes is possible provided the correlations mij

for i 6= j decrease below the initial scale Θ(N− 1
2 ). More precisely, we observe that the off-diagonal

correlations mij must reach at least the threshold log(N)− 1
2N−

p−1
4 to efficiently solve the recovery

problem.
We now present our main results for the matrix PCA problem, i.e., when p = 2. We begin with the

case where the SNRs are separated by constants of order 1. Similar to the previous case, we identify two
different algorithmic thresholds for the sample complexity: one threshold required for efficient recovery
of the first spike and another for recovery of all spikes. Our first main result shows that strong recovery
of v1 is achievable when M is of order 1.
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Proposition 3.7 (Recovery of leading spike for p = 2). Let β ∈ (0,∞), p = 2, and λi = λi+1(1 + κi)
for every 1 ≤ i ≤ r − 1 and κi > 0. Consider a sequence of initializations µ0 ∈ P(MN,r) which
satisfies Condition 0 at level n and Condition 1. Then, the following holds: For every n ≥ 1, γ0 > 0,
γ1 > 1 > γ2 > 0 and ε > 0, there exists C0 ∈ (0, 1

2 ) such that for every
√
M & (n+2)γ0

βλ2
rC0γ2

N
1

2(n+1) and

log(N) & 2κ1+1
κ1−2 log(3γ1/2) + 2 log(ε), there exists T0 & 1

(n+2)γ0
log(N)N−

1
2(n+1) such that for every

T > T0, ∫
MN,r

QX

(
inf

t∈[T0,T ]
m11(Xβ

t ) ≥ 1− ε
)
dµ0(X) ≥ 1− η(n, γ0, γ1, γ2),

with P-probability at least 1− exp(−KN), where η = η(n, γ0, γ1, γ2) is given by

η = C1e
−c1γ

2
0 + C2e

−c2γ
2
1 + C3γ2 + C4e

−c4γ2
√
N

+K1e
−γ2

2 (n+2)γ0N
1

2(n+1) /K1 +K2e
−Nε2/(K2T ).

Our second main result shows that strong recovery of all spikes is possible, provided M is of order
Nδ for some δ ∈ (0, 1) which depends on the ratio between the SNRs..

Proposition 3.8 (Exact recovery of all spikes for p = 2). Let β ∈ (0,∞), p = 2, and λi = λi+1(1 + κi)
for every 1 ≤ i ≤ r − 1 and κi > 0. Let κ denote κ = min1≤i≤r−1 κi. Consider a sequence of
initializations µ0 ∈ P(MN,r) which satisfies Condition 0 at level n and Condition 1. For every ε > 0
and C0 ∈ (0, 1), we let R(ε, C0) denote

R(ε, C0) =
{

X : mii(X) ≥ 1− ε ∀i ∈ [r] and mk`(X) . N
− 1

2

(
1− 1−C0

1+C0
λ2
r
λ2

1

)
∀k, ` ∈ [r], k 6= `

}
. (3.2)

Then, the following holds: For every n ≥ 1 and γ1 > 1 > γ2 > 0, there exist ε0 > 0 and c0 ∈ (0, 1
2 ∧

κ
2+κ )

such that for every ε < ε0, C0 < c0, if
√
M & (n+2)γ0γ1

βλ2
rC0γ2

N
1
2

(
1+C0
1−C0

−λ
2
r
λ2

1

)
and log(N) & 1

1+κ log
( 1
κ

)
, there

exists T0 & 1
(n+2)γ0γ1

log(N)N
− 1

2

(
1+C0
1−C0

−λ
2
r
λ2

1

)
such that for every T > T0,∫

MN,r

QX

(
inf

t∈[T0,T ]
Xβ
t ∈ R(ε, C0)

)
dµ0(X) ≥ 1− η(n, γ0, γ1, γ2),

with P-probability at least 1− exp(−KN), where η = η(n, γ0, γ1, γ2) is given by

η = C1e
−c1γ

2
0 + C2e

−c2γ
2
1 + C3γ2 + C4e

−c4γ2
√
N

+K1e
−Nε2/(K1T ) +K2e

−N
1
2 (1+δ)/(K2T )

Our final main result in this section concerns strong recovery when p = 2 and all signal strengths are
equal, i.e., λ1 = · · · = λr ≡ λ > 0. In this case, the random landscape H is invariant under rotations.
Therefore, rather than precisely characterizing the recovery of each planted signal by analyzing the
evolution of the correlations as in the previous cases, we focus here on subspace recovery, meaning
recovery of the correct subspace shared by the signal vectors v1, . . . ,vr. Specifically, we can look at
the distance between the orthogonal projections XX> and V V >, where V = [v1, . . . ,vr] ∈MN,r and
X = [x1, . . . ,xr] ∈MN,r. This can be quantified by

1
N2 ‖XX> − V V >‖2F = 2

(
r − Tr

(
M>M

))
,

where M denotes the correlation matrix defined by M = 1
NV >X. To analyze this, we study the

behavior of the eigenvalues θ1, . . . , θr of G = M>M ∈ Rr×r under Langevin dynamics, as stated in the
following theorem. To this end, we need to ensure that the eigenvalues of G at initialization are on the
typical scale Θ(N−1).

Definition 3.9 (Condition 1’). For every γ1 > γ2 > 0, we let C′1(γ1, γ2) denote the sequence of events
given by

C′1(γ1, γ2) =
{

X ∈MN,r : γ2

N
≤ θi(G(X)) < γ1

N
for every i ∈ [r]

}
.
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We say that µ ∈ P(MN,r) satisfies Condition 1′ if for every γ1 > γ2 > 0,

µ (C′1(γ1, γ2)c) ≤ C1e
−c1γ

2
1 + C2γ2 + C3e

−c2γ2
√
N .

Lemma A.1 ensures that the uniform measure µN×r onMN,r satisfies Condition 1′.

Proposition 3.10 (Subspace recovery for p = 2). Let β ∈ (0,∞), p = 2, and λ1 = · · · = λr ≡
λ > 0. Consider a sequence of initializations µ0 ∈ P(MN,r) which satisfies Condition 0 at level n
and Condition 1′. Then, the following holds: For every n ≥ 1 and γ1 > 1 > γ2 > 0, there exist
ε0 > 0 and c0 ∈ (0, 1

3r ) such that for every ε < ε0, C0 < c0,
√
M & (n+2)γ2

0γ1
βλ2C0γ2

Nδ(n,C0), there exists

T0 &
1+C2

0
(n+2)γ2

0γ1
log(N)N−δ(n,C0) such that for every T > T0,∫
MN,r

QX

(
inf

t∈[T0,T ]
θmin

(
Xβ
t

)
≥ 1− ε

)
dµ0(X) ≥ 1− η(n, γ0, γ1, γ2),

with P-probability at least 1 − exp(−KN), where δ(n,C0) = 1
2(n+1) ∨

2C0r
1−C0r

and η = η(n, γ0, γ1, γ2) is
given by

η = C1e
−c1γ

2
0 + C2e

−c2γ
2
1 + C3γ2 + C4e

−c4γ2
√
N +K1e

−γ4
0γ1(n+2)Nδ(n,C0)/(K1 log(N))

+K2e
−γ2

0γ2(n+2)Nδ(n,C0)/K2 +K3e
−γ2

0γ1(n+2)N
1− 4C0r

1+C0r
+δ(n,C0)

/(K3C
2
0 log(N)) +K4e

−Nε2/(K4T ).

Propositions 3.5 and 3.6 are proved in Section 5. Propositions 3.7 and 3.8 are proved in Section 6.
Finally, the proof of Proposition 3.10 is provided in Section 7. Our asymptotic results presented in
Subsection 1.3 follow straightforwardly from the above results and using the definitions of the initial
conditions.

4. Preliminary results

In this section, we present preliminary results necessary for proving the main results in Section 3.
Specifically, we study the regularity of the Hamiltonian H0 : MN,r → R and introduce the bounding
flows method from [7], which plays a crucial role in deriving estimates for ‖L0,βm

(N)
ij ‖∞. Additionally,

we present the evolution equations governing the correlations {m(N)
ij }1≤i,j≤r as well as the equations

satisfied by the entries of M>M , where M = (m(N)
ij )1≤i,j≤r. The results of this section generalize those

presented in [8]. To simplify notation, we will omit explicit reference to N in m
(N)
ij (X) and instead

write mij(X).

4.1. Regularity of noise, ladder relations, and bounding flows method

Recall the Hamiltonian H0 : MN,r → R given by

H0(X) = N−
p−1

2

r∑
i=1

λi〈W ,x⊗pi 〉,

where W ∈ (RN )⊗p is an order-p tensor with i.i.d. entriesWi1,...,ip ∼ N (0, 1) andMN,r is the normalized
Stiefel manifold. Similar to the works [7, 8], we work with the G-norm which is motivated by the
homogeneous Sobolev norm.

Definition 4.1 (G-norm onMN,r). A function F : MN,r → R is in the space Gk(MN,r) if

‖F‖Gk :=
∑

0≤`≤k
N `/2‖|∇`F |op‖L∞(MN,r) <∞,

where |∇`F |op(X) denote the natural operator norm when ∇`F is viewed as an `-form acting on the
`-fold product of the tangent space TXMN,r.

We emphasize that this definition is a generalization of the G-norm defined for functions on SN−1(
√
N)

introduced by [7]. We then have the following important estimate for the G-norm of H0.
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Lemma 4.2 (Regularity of H0). For every n, there exist C1 = C1(p, n), C2 = C2(p, n) > 0 such that

P

(
‖H0‖Gn ≥ C1

(
r∑
i=1

λi

)
N

)
≤ exp

(
−C2

(
∑r
i=1 λi)2∑r
i=1 λ

2
i

N

)
.

Lemma 4.2 reduces to of [7, Theorem 4.3] for the case r = 1. The proof of Lemma 4.2 follows the
same strategy used to prove Theorem 4.3 of [7] and one can therefore mimic the same arguments, and
it is thus left. We next present the ladder relations which will be useful to bound ‖L0,βmij‖∞, where
we recall from (1.10) that the generator L0,β is of the form L0,β = ∆− β〈∇H0, ∇̂·〉.

Lemma 4.3 (Ladder relations). For every linear operator L acting on the space of smooth functions
F : MN,r → R and every integer numbers n ≥ m ≥ 1, we define

‖L‖Gn→Gm = sup
F∈C(MN,r)

‖LF‖Gm
‖F‖Gn

.

Then, for every n ≥ 1 there exists c(n) such that for every N and r,

‖∆‖Gn→Gn−2 ≤ r (4.1)

‖〈∇G,∇·〉‖Gn→Gn−1 ≤ c(n)
N
‖G‖Gn . (4.2)

Proof. We first prove (4.1). Since ∆F = Tr(∇2F ) and ∇Tr(F ) = Tr(∇F ), we have that∣∣∇`∆F ∣∣op =
∣∣∇` Tr(∇2F )

∣∣
op =

∣∣Tr(∇`+2F )
∣∣
op .

Moreover, since dim(MN,r) = Nr − r(r+1)
2 ≤ Nr, we have that

∣∣Tr(∇`+2F )
∣∣
op ≤ Nr

∣∣∇`+2F
∣∣
op, thus

‖∆F‖Gn−2 =
n−2∑
`=0

N `/2‖|∇`∆F |op‖∞ ≤ r
n−2∑
`=0

N (`+2)/2‖|∇`+2∆F |op‖∞ ≤ r‖F‖Gn ,

as desired. Next, we show (4.2). By the general Leibniz rule and Cauchy-Schwarz, we have that

‖〈∇G,∇F 〉‖Gn−1 =
n−1∑
`=0

N `/2
∑̀
k=0

(
`

k

)
‖|〈∇k+1G,∇`−k+1F 〉|op‖L∞

≤
∑

0≤k≤`≤n−1
N `/2

(
`

k

)
‖|∇k+1G|op‖∞‖|∇`−k+1F |op‖∞

≤ c(n)
N
‖G‖Gn‖F‖Gn ,

where the inequality in the last line follows by definition of the G-norm. �

Using the ladder relations from Lemma 4.3, we can provide an estimate for ‖L0,βmij‖∞ for every
1 ≤ i, j ≤ r. According to Lemma 4.2, for every n ≥ 1, there exist K = K(p, n, {λi}ri=1) and C =
C(p, n, {λi}ri=1) such that ‖H0‖Gn ≤ CN , with P-probability at least 1 − exp(−KN). Moreover, a
simple computation gives ‖mij‖Gn ≤ c(n). Therefore, there exists a constant Λ = Λ(p, n, {λi}ri=1, r, β)
such that

‖L0,βmij‖∞ ≤ ‖∆mij‖∞ + β‖〈∇H0, ∇̂mij〉‖∞ ≤ r‖mij‖G2 + β

N
‖H0‖G1‖mij‖G1 ≤ Λ (4.3)

with P-probability at least 1 − exp(−KN). This estimate turns out to be suboptimal. Therefore, we
next introduce the “bounding flows” method which provides a significantly more precise approach to
estimation. The bounding flows method, originally introduced in [7] and applied in [8], was used to
derive estimates for the evolution of functions under Langevin dynamics on SN−1(

√
N). In this work,

we extend the method to provide more accurate bounds for the evolution of functions under Langevin
dynamics onMN,r. In particular, the following result generalizes Theorem 5.3 of [8].

Lemma 4.4 (Bounding flows method on MN,r). For every γ > 0, we let Iγ denote the interval
Iγ = [− γ√

N
, γ√

N
]. Let D ⊂ MN,r, L be the infinitesimal generator of an Ito process Xt, F : D → R

be smooth, and X0 ∈ D with exit time TDc . Moreover, suppose that the following is satisfied for some
n ≥ 1:
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(1) L is a differential operator of the form L = L0 +
∑

1≤i,j≤r aij(X)Aij, where
(a) Aij = 〈∇ψij , ∇̂·〉 for some function ψij ∈ C∞ with ‖ψij‖G1 ≤ c1N ;
(b) aij ∈ C(MN,r);
(c) L0 = ∆ + 〈∇U, ∇̂·〉 for some U ∈ C∞ with ‖U‖G2n ≤ c2(n)N .

(2) The function F is smooth with ‖F‖G2n ≤ c3(n).
(3) There exists γ > 0 such that X0 satisfies Lk0f(X0) ∈ Iγ for every 0 ≤ k ≤ n− 1.
(4) There exist ε ∈ (0, 1) and T (ij)

0 > 0, possibly depending on ε, such that for any t ≤ TDc ∧ T (ij)
0 ,∫ t

0
|aij(Xs)|ds ≤ ε|aij(Xt)|.

Then, there exists a constant K1 > 0 depending only on c1, c2, c3 and γ such that, for every T0 > 0,

|F (Xt)| ≤ K1

 γ√
N

n−1∑
k=0

tk + tn + 1
1− ε

∑
1≤i,j≤r

∫ t

0
|aij(Xs)|ds

 (4.4)

for every t ≤ TDc ∧min1≤i,j≤r T
(ij)
0 ∧ T0 with QX-probability at least 1−K2 exp

(
− γ2

K2T0

)
.

If instead of item (1)(c), item (1)(c’) is satisfied, where
(c’) L0 = 〈∇U, ∇̂·〉 for some U ∈ C∞ such that ‖U‖G2n ≤ c2N ,

then (4.4) holds deterministically for every t ≤ TDc ∧min1≤i,j≤r T
(ij)
0 ∧ T0.

If instead of item (3), item (3’) is satisfied, where
(3’) There exist T1, γ > 0 such that X0 satisfies etL0F (X0) ∈ Iγ for every t < T1,

then (4.4) holds for every t ≤ TDc ∧ min1≤i,j≤r T
(ij)
0 ∧ T0 ∧ T1 ∧ 1, with QX-probability at least 1 −

K2 exp
(
− γ2

K2T0

)
.

Proof. We mimic the proof of [8, Theorem 5.3]. We claim that the function F can be expanded as

F (t) = F (0) +MF
t +

n−1∑
k=1

∫ t

0
· · ·
∫ tk−1

0

(
Lk0F (0) +M

Lk0F
tk

)
dtk · · · dt1

+
∫ t

0
· · ·
∫ tn−1

0
Ln0F (tn)dtn · · · dt1

+
∑

1≤i,j≤r

n∑
k=1

∫ t

0
· · ·
∫ tk−1

0
aij(tk)AijLk−1

0 F (tk)dtk · · · dt1.

(4.5)

The proof is by induction on n. The claim is verified for n = 1 by Lemma 4.5 since

F (t) = F (0) +MF
t +

∫ t

0
LF (s)ds = F (0) +MF

t +
∫ t

0
L0F (s)ds+

∑
1≤i,j≤r

∫ t

0
aij(s)AijF (s)ds.

Assume that the result holds in the nth case. By definition of MLn0F we find that

Ln0F (tn) = Ln0F (0) +MLn0F +
∫ tn

0
LLn0F (tn+1)dtn+1

= Ln0F (0) +MLn0F +
∫ tn

0
Ln+1

0 F (tn+1)dtn+1 +
∑

1≤i,j≤r

∫ tn

0
aij(tn+1)AijLn0F (tn+1)dtn+1.

Therefore, for the (n+ 1)st case we use the above equality to expand the second-to-last term as∫ t

0
· · ·
∫ tn−1

0
Ln0F (tn)dtn · · · dt1

=
∫ t

0
· · ·
∫ tn−1

0

(
Ln0F (0) +M

Ln0F
tn

)
dtn · · · dt1 +

∫ t

0
· · ·
∫ tn−1

0

∫ tn

0
Ln+1

0 F (tn+1)dtn+1dtn · · · dt1

+
∑

1≤i,j≤r

∫ t

0
· · ·
∫ tn−1

0

∫ tn

0
aij(tn+1)AijLn0F (tn+1)dtn+1dtn · · · dt1.
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Combining the terms yields the desired expression by induction. We next bound the absolute values
in (4.5) term-by-term. We start with the first line of (4.5) and we claim that for every 1 ≤ k ≤ n− 1,

‖Lk0F‖G2n−2k ≤ (r + c(n)c2)k‖F‖G2n ≤ (r + c(n)c2)kc3. (4.6)

The second inequality in (4.6) follows by assumption (2). We next prove the first inequality in (4.6) by
induction on k. The claim is verified for k = 1 by Lemma 4.3 since

‖L0F‖G2n−2 ≤ r‖F‖G2n + 2n − 1
N
‖U‖G2n‖F‖G2n ≤ (r + (2n − 1)c2)‖F‖G2n ,

where we used assumption (1c). Assume that (4.6) holds in the kth case. Then, in the (k + 1)th case
we have that

‖Lk+1
0 F‖G2n−2(k+1) ≤ r‖Lk0F‖G2n−2k + 2n − 1

N
‖U‖G2n−2k‖Lk0F‖G2n−2k

≤ (r + (2n − 1)c2)‖Lk0F‖G2n−2k

≤ (r + (2n − 1)c2)(r + (2n − 1)c2)k‖F‖G2n ,

where the last inequality follows by induction hypothesis. This proves the claim (4.6). It then follows
that

‖|∇MN,r
Lk0F |op‖∞ ≤ N−1/2‖Lk0F‖G2n−2k ≤ CN−1/2,

where the first inequality follows by Definition 4.1 and the second inequality by (4.6). Therefore, by
Lemma 4.7 there exists a universal constant K2 > 0 such that for every γ, T0 > 0 and every N ,

QX

(
sup

t∈[0,T0]
|MLk0F

t | ≤ γ√
N

)
≥ 1−K2 exp(−γ2/(K2T0)).

For every 0 ≤ k ≤ n − 1, we then bound |Lk0F (0)| by γN− 1
2 using assumption (3). We therefore have

that the first line of (4.5) is bounded by
n−1∑
k=0

∫ t

0
· · ·
∫ tk−1

0

(∣∣Lk0F (0)
∣∣+
∣∣∣MLk0F

tk

∣∣∣) dtk · · · dt1 ≤ 2γ√
N

n−1∑
k=0

tk

k! ≤
2γ√
N

n−1∑
k=0

tk,

with QX -probability at least 1−K2 exp(−γ2/(K2T0)). Since |Ln0F | = ‖Ln0F‖∞ ≤ C(n, r, c2, c3) by (4.6),
the second line of (4.5) is bounded by∫ t

0
· · ·
∫ tn−1

0
|Ln0F (tn)|dtn · · · dt1 ≤ C

tn

n! ≤ C
′tn.

We turn to the last line of (4.5). According to Lemma 4.3 and (4.6), it follows that

|AijLk−1
0 F | = ‖AijLk−1

0 F‖∞ ≤
1
N
‖ψij‖G1‖Lk−1

0 F‖G1 ≤ C̃(n, r, c1, c2, c3).

Therefore, using assumption (4), we bound the last line of (4.5) by∑
1≤i,j≤r

n∑
k=1

∫ t

0
· · ·
∫ tk−1

0
|aij(tk)|dtk · · · dt1 ≤

∑
1≤i,j≤r

n∑
k=1

εk−1
∫ t

0
|aij(s)|ds ≤

1
1− ε

∑
1≤i,j≤r

∫ t

0
|aij(s)|ds.

Choosing K = 2 ∨ C ′ ∨ C̃ gives the desired estimate.
To prove the result under assumption (3′), we begin by noting that the third term in (4.5) can be

rewritten as
n−1∑
k=1

∫ t

0
· · ·
∫ tk−1

0
Lk0F (0)dtk · · · dt1 =

n−1∑
k=1

Lk0F (0) t
k

k! ,

and for every t ∈ (0, 1), an order n Taylor expansion gives:

etL0F (0) =
n−1∑
k=1

Lk0F (0) t
k

k! + Ln0F (t̃) t
n

n! (4.7)
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for some t̃ ∈ [0, t], so that the following estimate holds according to the ladder relations (see Lemma 4.3)

|etL0F (0)−
n−1∑
k=1

Lk0F (0) t
k

k! | ≤ ‖L
n
0F‖∞

tn

n! . (4.8)

�

4.2. Evolution equations for the correlations and eigenvalues

We are interested in the evolution of the correlations mij under Langevin dynamics. In particular, we
let mij(Xβ

t ) denote the evolution of Xβ
t according to (1.6).

Lemma 4.5 (Itô’s formula in RN×r). Let Xt solve the following RN×r-valued SDE:

dXt = a(Xt)dt+ b dBt, t > 0

with initial solution X0 ∈ RN×r. Here, (Bt)t≥0 is a RN×r-valued Brownian motion, a : RN×r → RN×r
is a measurable function, and b is a constant. Suppose that F is a C2 function from some open domain
D ⊂ RN×r into R. Suppose that almost surely, Xt ∈ D for all t ≥ 0. Then, the process (F (Xt))t≥0
satisfies

F (Xt) = F (X0) +MF
t +

∫ t

0
LF (Xs)ds,

where MF
t = b

∫ t
0 〈∇̂F (Xs), dBs〉 is a local martingale such that [MF

t ] ≤ b2t‖∇̂F‖2L∞ and LF (Xt) =
b2

2 ∆̂F (Xt) + 〈∇̂F (Xt), ∇̂a(Xt)〉.

For every 1 ≤ i, j ≤ r, the correlations mij are smooth functions from MN,r ⊂ RN×r to R. Thus,
according to the Itô’s formula, we have that

mij(Xβ
t ) = mij(Xβ

0 ) +M
mij
t +

∫ t

0
Lβmij(Xβ

s )ds,

where Mmij
t =

√
2
∫ t

0 〈∇mij(Xβ
s ), dBs〉 and Lβmij(Xβ

t ) = ∆mij(Xβ
t ) − β〈∇H(Xβ

t ), ∇̂mij(Xβ
t )〉, as

stated by (1.8). An explicit computation of the generator gives the the following evolution equations
for {mij(Xβ

t )}1≤i,j≤r. We write mij(t) = mij(Xβ
t ) to simplify notation slightly.

Lemma 4.6 (Evolution equations for mij). For every 1 ≤ i, j ≤ r, the evolution equation for mij is
given by

dmij(t) = Lβmij(t)dt+ dM
mij
t ,

where

Lβmij = L0,βmij + β
√
Mpλiλjm

p−1
ij − β

√
M
p

2
∑

1≤k,`≤r
λkmkjmk`mi`

(
λjm

p−2
kj + λ`m

p−2
k`

)
,

and
L0,βmij = ∆mij − β〈∇H0, ∇̂mij〉.

Proof. According to (1.8), we have that

Lβmij = ∆mij − β〈∇H, ∇̂mij〉 = L0,βmij + β〈∇Φ, ∇̂mij〉,

where Φ(X) = N
√
M
∑

1≤i,j≤r λiλjm
p
ij(X). The Riemannian gradient of Φ on the manifold MN,r is

given by

∇Φ(X) = ∇̂Φ(X)− 1
2NX

(
X>∇̂Φ(X) + ∇̂Φ(X)>X

)
.

An explicit computation gives that

(∇Φ(X))j = ∇xjΦ(X)− 1
2N

r∑
i=1

(
X>∇̂Φ(X) + ∇̂Φ(X)>X

)
ij

xi

=
√
M

r∑
k=1

pλkλjm
p−1
kj vk −

√
M
p

2

r∑
k=1

r∑
`=1

λkmkjmk`

(
λjm

p−2
kj + λ`m

p−2
k`

)
x`.
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Since ∇xjmij = vi
N and 〈vi,vj〉 = Nδij , we obtain that

〈∇Φ, ∇̂mij〉 =
√
Mpλiλjm

p−1
ij −

√
M
p

2
∑

1≤k,`≤r
λkmi`mkjmk`

(
λjm

p−2
kj + λ`m

p−2
k`

)
.

�

We also recall a classical estimate to bound the martingale part of the evolution of a function under
Langevin dynamics, based on the Doob’s maximal inequality.

Lemma 4.7 (Sub-Gaussian tail bound for local martingales). Let F : MN,r → R be a smooth function
such that ‖F‖G1 ≤ K and let F (t) = F (Xβ

t ) denote its evolution under Langevin dynamics (1.6). Then,
for every ε, T > 0 and every N , we have that

sup
X0∈MN,r

QX0

(
sup
t∈[0,T ]

∣∣MF
t

∣∣ ≥ ε) ≤ 2 exp
(
− Nε2

4K2T

)
.

Proof. According to Lemma 4.5, MF
t is a local martingale and its quadratic variation

[
MF
t

]
satisfies

[
MF
t

]
≤ 2t‖∇F‖2L∞ ≤

2t
N
‖F‖2G1 ≤

2K2t

N
,

where the second inequality follows by definition of the G1-norm. For every λ ≥ 0, Zλt = exp(λMF
t −

λ2[MF
t ]/2) is a positive super-martingale such that Zλ0 = 1 and supX0 EQX0

[
Zλt
]
≤ 1 for all t ≥ 0. For

all t, λ, ε ≥ 0, we then have that

sup
X0

QX0

(
sup
t∈[0,T ]

MF
t ≥ ε

)
≤ sup

X0

QX0

(
sup
t∈[0,T ]

Xλ
t ≥ eλε−

λ2
2

2K2T
N

)
≤ sup

X0

EQX0

[
Zλ0
]
eλ

2 K2T
N −λε = eλ

2 K2T
N −λε,

where we used the maximal inequality for the super-martingale Zλ for the last inequality. Since the
above inequality holds for all λ ≥ 0, we can take λ = εN/(2K2T ) and obtain that

sup
X0

QX0

(
sup
t∈[0,T ]

MF
t ≥ ε

)
≤ exp

(
− Nε2

4K2T

)
.

Proceeding similarly for −M we get

sup
X0

QX0

(
sup
t∈[0,T ]

(−MF
t ) ≥ ε

)
≤ exp

(
− Nε2

4K2T

)
,

yielding the desired result by union bound. �

In particular, since ‖mij‖Gn ≤ c(n), it follows from Lemma 4.7 that there is a universal constant
K > 0 such that for every γ, T > 0 and every N ,

sup
X0

QX0

(
sup
t∈[0,T ]

∣∣Mmij
t

∣∣ ≥ γ√
N

)
≤ 2 exp

(
− γ2

KT

)
. (4.9)

In addition to the evolution of the correlationsmij under Langevin dynamics, we are also interested in
the evolution of the matrix-valued function G(X) = M>M , where M = (mij)1≤i,j≤r is the correlation
matrix. The latter is needed to study the case p = 2 and λ1 = · · · = λr. Let G : MN,r → Rr×r denote

G(X) = M>M = 1
N2 X>V V >X, (4.10)

where each entry Gij is a smooth function fromMN,r to R such that Gij(X) =
∑r
k=1mki(X)mkj(X).

Note that Gij = Gji for every i, j ∈ [r], that is, G(X) is a symmetric matrix.
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Lemma 4.8 (Evolution equation for Gij). For every 1 ≤ i, j ≤ r, the evolution equation for Gij is
given by

dGij(t) = LβGij(t)dt+ dM
Gij
t ,

where MGij
t =

√
2
∫ t

0 〈∇Gij(s), dBs〉 is the martingale part of the evolution, and the generator LβGij(t)
is given by LβGij(t) = L0,βGij(t) + L̂βGij(t) and is of the form

L0,βGij =
r∑

k=1
(mkiL0,βmkj +mkjL0,βmki) + 2

N
(rδij −Gij) , (4.11)

and
L̂βGij = 4β

√
Mλ2(Gij − (G2)ij). (4.12)

Moreover, the quadratic variation of MGij
t satisfies

[MGij
t ] ≤ 2r

N

∫ t

0
‖M(s)‖2opds. (4.13)

Proof. For every i, j ∈ [r], the summary statistic Gij : MN,r → R is a smooth function, thus by Itô’s
Lemma 4.5 we have that

Gij(Xt) = Gij(X0) +M
Gij
t +

∫ t

0
LβGij(Xs)ds,

where MGij
t =

√
2
∫ t

0 〈∇Gij(Xs), dBs〉 is a local martingale and LβGij(X) is given by LβGij(X) =
L0,βGij(X) +β〈∇Φ(X), ∇̂Gij(X)〉 with Φ(X) = H0(X)−H(X). By an explicit computation as done
in the proof of Lemma 4.6, we then find that the population generator L̂β = β〈∇Φ(X), ∇̂·) satisfies

L̂βGij = 4β
√
Mλ2(Gij − (G2)ij).

Moreover, according to [33, Proposition 1.3.1] the quadratic variation [MGij
t ] of MGij

t satisfies

[MGij
t ] =

∫ t

0
‖∇Gij(s)‖2Fds ≤

∫ t

0
‖∇̂Gij(s)‖2Fds,

where we recall that ∇ denotes the Euclidean gradient. Since ∇xkmij(X) = vi
N δkj , we have that

‖∇̂Gij‖2F = Tr((∇̂Gij)>(∇̂Gij)) = 2
N

r∑
k=1

(m2
ki +m2

kj) = 2
N

(Gii +Gjj) ≤
2
N

Tr(G).

In particular, we find that

[MGij
t ] ≤ 2

N

∫ t

0
Tr(G(s))ds = 2

N

∫ t

0
‖M(s)‖2Fds ≤

2r
N

∫ t

0
‖M(s)‖2opds,

as desired. �

We readily obtain the following corollary.

Corollary 4.9 (Evolution equation for G). The evolution equation for G is given by

G(t) = G(0) +MG
t +

∫ t

0
LβG(s)ds,

where MG
t = (MGij

t )ij ∈ Rr×r and LβG(t) = (LβGij(t))ij ∈ Rr×r. In particular, LβG is of the form
LβG = L0,βG + L̂βG, where

L0,βG = (L0,βM)>M + M> (L0,βM) + 2
N

(rIr −G) , (4.14)

and
L̂βG = 4β

√
Mλ2(G−G2). (4.15)

Similarly to the sub-Gaussian tail bound for the martingale part of the evolution of the correlations
mij given by (4.9) obtained by the Doob’s maximal inequality (see Lemma 4.7), we have the following
result.
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Lemma 4.10. For every γ > 0, T > 0 and every positive, increasing, and deterministic function f(t)
verifying

f(t) ≥
∫ t

0
‖M(s)‖2opds,

for all t ∈ [0, T ], we have that

sup
X0∈MN,r

QX0

(
sup
t∈[0,T ]

‖MG
t ‖op ≥

γ√
N
f(T )1/2

)
≤ r(r + 1)e−γ

2/(4r2).

Proof. We first note that ‖MG
t ‖op ≤ rmax1≤i,j≤ |M

Gij
t |, where MGij

t is a local martingale given by
Lemma 4.8 such that its quadratic variation satisfies (4.13), i.e., for every i, j ∈ [r]

[MGij
t ] ≤ 2r

N

∫ t

0
‖M(s)‖2opds ≤

2r
N
f(t).

For every λ ≥ 0, we now introduce the exponential martingale Zλt = exp(λMGij
t − λ2[MGij

t ]/2). The
same reasoning used in the proof of Lemma 4.7 gives that

sup
X0

QX0

(
sup
t∈[0,T ]

|MGij
t | ≥ ε

)
≤ 2 exp

(
− Nε2

4rf(T )

)
,

for every i, j ∈ [r]. From this, we then have that

sup
X0

QX0

(
sup
t∈[0,T ]

‖MG
t ‖op ≥ ε

)
≤ sup

X0

QX0

(
sup
t∈[0,T ]

max
1≤i,j≤r

|MGij
t | ≥ ε

r

)

≤ r(r + 1)
2 sup

X0

QX0

(
sup
t∈[0,T ]

|MG11
t | ≥ ε

r

)

≤ r(r + 1) exp
(
− Nε2

4r2f(T )

)
.

Choosing ε = γ√
N
f(T )1/2 gives the desired result, since f is an increasing function by assumption. �

4.3. Comparison inequalities

We first report Lemma 5.1 of [8] that provides simple comparison inequalities for functions.

Lemma 4.11 (Bounds on functions). Let γ > 0 with γ 6= 1, c > 0, and f ∈ Cloc([0, T )) with f(0) > 0.
(a) Suppose that there exists T such that f satisfies the integral inequality

f(t) ≥ a+
∫ t

0
cfγ(s)ds, (4.16)

for every t ≤ T and some a > 0. Then, for t ≥ 0 satisfying (γ − 1)caγ−1t < 1, we have that

f(t) ≥ a
(
1− (γ − 1)caγ−1t

)− 1
γ−1 .

(b) If the integral inequality (4.16) holds in reverse, i.e., if f(t) ≤ a +
∫ t

0 cf
γ(s)ds, then the corre-

sponding upper bound holds.
(c) If γ > 1, then T ≤ t∗, where t∗ =

(
(γ − 1)caγ−1)−1 is called the blow-up time.

(d) If (4.16) holds with γ = 1, then the Grönwall’s inequality gives f(t) ≥ a exp(ct).

Lemma 4.11 will be useful in providing bounds on the correlation functions m(N)
ij for both p ≥ 3

and p = 2. For subspace recovery when p = 2, we need to establish comparison inequalities for the
eigenvalues of the matrix-valued function G defined by (4.10). The following lemma is a standard result
on the rate of change of eigenvalues for matrix differential equations, as found e.g. in [27, 45]. For clarity
and completeness, we include a brief proof.
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Lemma 4.12. Let G be an entry-wise continuously differentiable matrix-valued function defined on
[0,∞) and taking values in the space of symmetric positive semi-definite matrices of size r × r. Let
θi(t) denote the ith eigenvalue of G(t) and ui(t) be the corresponding normalized eigenvector. Then,
for every i ∈ [r], θi(t) and ui(t) are continuously differentiable and satisfy

θ̇i(t) = ui(t)>Ġ(t)ui(t).

Proof. For the regularity of the eigenvalues and eigenvectors of parameter-dependent symmetric matri-
ces, we refer to [37, Chapter 2, Sections 5 and 6]. For every i ∈ [r], we have that

(G(t)− θi(t)Ir) ui(t) = 0.

Differentiating with respect to t gives(
Ġ(t)− θ̇i(t)Ir

)
ui(t) + (G(t)− θi(t)Ir) u̇i(t) = 0.

Since u̇i(t) ∈ Rr, it can be expressed as a linear combination of the orthonormal basis {u1(t), . . . ,ur(t)},
i.e.,

u̇i(t) =
∑

1≤j≤r
αij(t)uj(t),

for a collection of coefficients αij(t). Therefore, we have that(
Ġ(t)− θ̇i(t)Ir

)
ui(t) +

∑
1≤j≤r

αij(t) (G(t)− θi(t)Ir) uj(t) = 0.

By expanding the second term we have that∑
1≤j≤r

αij(t) (G(t)− θi(t)Ir) uj(t) =
∑

1≤j≤r
αij(t) (θj(t)− θi(t)) uj(t) =

∑
1≤j≤r
j 6=i

αij(t) (θj(t)− θi(t)) uj(t).

Multiplying from the left by u>i the term(
Ġ(t)− θ̇i(t)Ir

)
ui(t) +

∑
1≤j≤r
j 6=i

αij(t) (θj(t)− θi(t)) uj(t) = 0

gives the desired result. �

In the case of Langevin dynamics however, the matrix-valued function G(t) is not differentiable and
we need an integral comparison inequality, as stated in the following lemma.

Lemma 4.13. Assume that the matrix-valued function A ∈ Rr×r satisfies{
d
dtA(t) = aG(t)(Ir −G(t))
A(0) = G(0)

,

for a > 0. Then, for every i ∈ [r] and every t ≥ 0, we have that

θi(0) + a

∫ t

0
(θmin(s)− θ2

max(s))ds ≤ µi (A(t)) ≤ θi(0) + a

∫ t

0
(θmax(s)− θ2

min(s))ds, (4.17)

where µi(A(t)) denotes the ith eigenvalue of A(t). Moreover, for every i ∈ [r] and every t ≥ 0 such that
θmax(t) ≤ 1

2 , we have that

θi(0) + a

∫ t

0
(θmin(s)− θ2

min(s))ds ≤ µi (A(t)) ≤ θi(G(0)) + a

∫ t

0
(θmax(s)− θ2

max(s))ds. (4.18)

Proof. We show the lower bound. The upper bound is obtained in a similar fashion. If uA
i (t) denotes

the ith normalized eigenvector of A(t), by Lemma 4.12 we have that

µ̇i (A(t)) =
(
uA
i (t)

)> d

dt
A(t)uA

i (t)

= a
(
uA
i (t)

)>
G(t)(Ir −G(t))uA

i (t)
≥ aλmin

(
G(t)−G2(t)

)
,
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where the inequality follows from the fact that θmin(M) = minu : ‖u‖=1 u>Mu for any symmetric
matrix M . Since G is positive semi-definite, the eigenvalues of G −G2 are given by θi − θ2

i for every
i ∈ [r], where θ1, . . . , θr denote the eigenvalues of G. In particular, we have that

λmin
(
G(t)−G(t)2) = min

1≤i≤r

(
θi(t)− θ2

i (t)
)
.

From this, it follows that
min

1≤i≤r

(
θi(t)− θ2

i (t)
)
≥ θmin(t)− θ2

max(t),

yielding

µi (A(t)) ≥ µi(A(0)) + a

∫ t

0

(
θmin(s)− θ2

max(s)
)
ds = θi(0) + a

∫ t

0

(
θmin(s)− θ2

max(s)
)
ds,

thus proving (4.17). The lower bound in (4.18) can be established similarly by noting that the function
x 7→ x− x2 is increasing on [0, 1

2 ]. We therefore have that

min
1≤i≤r

(
θi(t)− θ2

i (t)
)

= θmin(t)− θ2
min(t),

provided θmax(t) ≤ 1
2 . �

5. Proofs for p ≥ 3

This section is devoted to the proof of Propositions 3.5 and 3.6.

5.1. Recovery of leading spike

We begin by showing Proposition 3.5. The first step is to show that weak recovery of the first spike is
achieved, provided

√
M scales as N

p−2
2 , as stated in the following lemma.

Lemma 5.1. Let β ∈ (0,∞), p ≥ 3 and λi = λ0,iλi+1 for every 1 ≤ i ≤ r − 1 and λ0,i ≥ 1. Consider
a sequence of initializations µ0 ∈ P(MN,r). Let εN = N−

p−2
2(p−1) and let T (11)

εN denote the hitting time
of the set {X : m11(X) ≥ εN}. Then, the following holds: For every n ≥ 1, γ0 > 0, γ1 > 1 > γ2 > 0,
there exists C0 ∈ (0, 1

2 ) such that if λ0,1 >
1+C0
1−C0

(
3γ1
γ2

)p−2
and
√
M & (n+2)γ0

βpλ2
rC0γ

p−1
2

N
p−1

2 −
n

2(n+1) , then for
N sufficiently large we have that∫

MN,r

QX

(
T (11)
εN &

1
(n+ 2)γ0N

1
2(n+1)

)
1{C0(n, γ0) ∩ C1(γ1, γ2)}dµ0(X)

≤ K1e
−γ3

0 (n+2)N
1

2(n+1) /K1 + r2K2e
−γ2

2γ0(n+2)N
1

2(n+1) /K2 ,

with P-probability at least 1− exp(−KN).

The strategy used to prove weak recovery of the first spike is the following. We first show that,
since λ1 is much larger than the other SNRs, the correlation m11 is the first correlation to reach the
microscopic threshold ε̃N = γ̃N−

1
2 , where γ̃ is a sufficiently large constant of order 1 in N . Therefore,

despite a potentially lower initial value m11(0) < maxi,jmij(0), the strength of λ1 ensures that m11
exceeds ε̃N before the other correlations do. Furthermore, we show that m11 keeps increasing and
becomes the first correlation to cross the critical threshold εN = N−

p−2
2(p−1) . Given the algorithmic

threshold M ∼ Np−1− n
n+1 , there is no control on the stability of the evolution of the other correlations.

Now, strong recovery of the first spike immediately follows from the weak recovery result, as stated
in the following result.

Lemma 5.2. Let β ∈ (0,∞), p ≥ 3 and εN = N−
p−2

2(p−1) . Then, for every ε > 0 and
√
M & N

p−1
2 −

n
2(n+1) ,

there exists T0 >
1

(n+2)γ0
N−

1
2(n+1) such that for all T ≥ T0 and N sufficiently large,

inf
X : m11(X)≥εN

QX

(
inf

t∈[T0,T ]
m11(Xβ

t ) ≥ 1− ε
)

≥ 1−K1e
−γ0(n+2)N

2p−1
2(p−1)−

n
2(n+1) /K1 − 2K2e

−Nε2/(K2T ),

with P-probability at least 1− exp(−KN).
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Having Lemmas 5.1 and 5.2 at hand, Proposition 3.5 follows by the strong Markov property.

Proof of Proposition 3.5. We note that∫
MN,r

QX

(
inf

t∈[T0,T ]
m11(Xβ

t ) ≥ 1− ε
)
dµ0(X)

≥ inf
X : m11(X)≥εN

QX

(
inf

t∈[T0,T ]
m11(Xβ

t ) ≥ 1− ε
)
×
∫
MN,r

QX

(
T (11)
εN ≤ 1

(n+ 2)γ0N
1

2(n+1)

)
dµ0(X),

where we first conditioned the QX -probability inside the integral by the event T (11)
εN ≤ 1

(n+2)γ0N
1

2(n+1)

and then used the strong Markov property. We estimate the first term according to Lemma 5.2 and the
second term by∫

MN,r

QX

(
T (11)
εN ≥ 1

(n+ 2)γ0N
1

2(n+1)

)
dµ0(X)

≤ µ0(C0(n, γ0)c) + µ0(C1(γ1, γ2)c)

+
∫
MN,r

QX

(
T (11)
εN ≥ 1

(n+ 2)γ0N
1

2(n+1)

)
1{C0(n, γ0) ∩ C1(γ1, γ2)}dµ0(X).

Combining Lemma 5.1 with Definitions 3.1 and 3.3 gives the estimate for the second term. Proposi-
tion 3.5 then follows straightforwardly. �

It remains to prove the two intermediate results, namely Lemmas 5.1 and 5.2. We begin with the
proof of Lemma 5.1.

Proof of Lemma 5.1. We let A = A(n, γ0, γ1, γ2) denote the event

A(n, γ0, γ1, γ2) = {X0 ∼ µ : X0 ∈ C0(n, γ0) ∩ C1(γ1, γ2)} ,
where we recall that C0(n, γ0) and C1(γ1, γ2) are given by Definitions 3.1 and 3.3, respectively. We first
note that on C1(γ1, γ2), for every i, j ∈ [r] there exists γij ∈ (γ2, γ1) such that mij(0) = γijN

− 1
2 . For

some T (ij)
0 > 0 to be chosen later, we then define the event A(ij) = A(ij)(n, γ0, γ1, γ2, T

(ij)
0 ) by

A(ij)(n, γ0, γ1, γ2, T
(ij)
0 ) = A(n, γ0, γ1, γ2) ∩

 sup
t∈[0,T (ij)

0 ]
|Mmij

t | ≤ γ2

2
√
N

 ,

where we recall that according to Lemma 4.7 and (4.9), there exists an absolute constant K1 > 0 such
that

sup
X

QX

 sup
t∈[0,T (ij)

0 ]
|Mmij

t | ≥ γ2

2
√
N

 ≤ K1 exp
(
− γ2

2

4K1T
(ij)
0

)
.

Moreover, for every i, j ∈ [r], we let T (ij)
L0,β

denote the hitting time of the set{
X : |L0,βmij(X)| > C0β

√
Mpλiλjm

p−1
ij (X)

}
,

where C0 ∈ (0, 1
2 ) is a constant which does not depend on N . We note that on C0(n, γ0),

|L0,βmij(X0)| ≤ γ0√
N
≤ C0β

√
Mpλiλj

(
γ2√
N

)p−1
,

provided
√
M ≥ γ0

C0βpλiλjγ
p−1
2

N
p−2

2 , which certainly holds by assumption. Therefore, on the event
C0(n, γ0), we have that

|L0,βmij(X0)| ≤ C0β
√
Mpλiλjm

p−1
ij (X0),

and by continuity of the process Xt, T (ij)
L0,β

> 0. We also introduce the hitting time TL0,β of the set{
X : sup

1≤k,`≤r
|L0,βmk`(X)| > C0β

√
Mpλ2

1m
p−1
11 (X)

}
.
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We also have that TL0,β > 0 and we note that TL0,β ≤ T
(11)
L0,β

.
In the following, we fix i, j ∈ [r] and place ourselves on the event A(ij). We consider the threshold

εN = N−
p−2

2(p−1) and we denote by T (ij)
εN the hitting time for the set {X : mij(X) ≥ εN}. Recalling the

generator expansion given by Lemma 4.6, i.e.,

Lβmij = L0,βmij + β
√
Mpλiλjm

p−1
ij − β

√
M
p

2
∑

1≤k,`≤r
λkmi`mkjmk`(λjmp−2

kj + λ`m
p−2
k` ),

we have that

(1− C0)β
√
Mpλiλjm

p−1
ij (t) ≤ Lβmij(t) ≤ (1 + C0)β

√
Mpλiλjm

p−1
ij (t),

for every t ≤ T (ij)
L0,β
∧ TL0,β ∧min1≤k,`≤r T (k`)

εN . Since the evolution equation for mij is given by

mij(t) = mij(0) +M
mij
t +

∫ t

0
Lmij(s)ds,

we obtain the integral inequality

γij

2
√
N

+(1−C0)β
√
Mpλiλj

∫ t

0
mp−1
ij (s)ds ≤ mij(t) ≤

3γij
2
√
N

+(1+C0)β
√
Mpλiλj

∫ t

0
mp−1
ij (s)ds, (5.1)

which holds for t ≤ T (ij)
L0,β
∧ TL0,β ∧min1≤k,`≤r T (k`)

εN ∧ T (ij)
0 . Applying items (a) and (b) of Lemma 4.11,

we then have the comparison inequality

`ij(t) ≤ mij(t) ≤ uij(t), (5.2)

for t ≤ T (ij)
L0,β
∧ TL0,β ∧min1≤k,`≤r T (k`)

εN ∧ T (ij)
0 , where the functions `ij and uij are given by

`ij(t) = γij

2
√
N

(
1− (1− C0)β

√
Mp(p− 2)λiλj

(
γij

2
√
N

)p−2
t

)− 1
p−2

, (5.3)

and

uij(t) = 3γij
2
√
N

(
1− (1 + C0)β

√
Mp(p− 2)λiλj

(
3γij
2
√
N

)p−2
t

)− 1
p−2

, (5.4)

respectively. We then let T (ij)
`,εN

denote the time such that `ij(T (ij)
`,εN

) = εN , i.e.,

T
(ij)
`,εN

=
1−

(γij
2
)p−2

N−
p−2

2(p−1)

(1− C0)β
√
Mp(p− 2)λiλj

(
γij

2
√
N

)p−2 . (5.5)

Similarly, we let T (ij)
u,εN satisfy uij(T (ij)

u,εN ) = εN , i.e.,

T (ij)
u,εN =

1−
(

3γij
2

)p−2
N−

p−2
2(p−1)

(1 + C0)β
√
Mp(p− 2)λiλj

(
3γij
2
√
N

)p−2 . (5.6)

On the event A(ij), we therefore have that T (ij)
u,εN ≤ T

(ij)
εN ≤ T

(ij)
`,εN

. We then choose T (ij)
0 = T

(ij)
`,εN

> 0
and note that

T
(ij)
0 .

1
(n+ 2)γ0N

1
2(n+1)

< 1,

where we bounded T (ij)
`,εN

according to the assumption that
√
M & (n+2)γ0

βpλ2
rC0γ

p−1
2

N
p−1

2 −
n

2(n+1) . By assump-
tion we also have that λ1 ≥ λ0λ2 and λ2 ≥ · · · ≥ λr, where λ0 satisfies

λ0 = c(λ0)1 + C0

1− C0

(
3γ1

γ2

)p−2
, (5.7)
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for some constant c(λ0) > 1. It then follows that T (11)
0 = min1≤k,`≤r T

(k`)
0 since for every i, j ∈

[r], (i, j) 6= (1, 1),

T
(11)
`,εN
≤

1−
(
γ11
2
)p−2

N−
p−2

2(p−1)

c(λ0)(1 + C0)β
√
Mp(p− 2)λiλj

(
γ11

2
√
N

)p−2 ( 3γ1
γ2

)p−2 ≤ T
(ij)
u,εN ,

provided N >
(

c(λ0)
c(λ0)−1

) 2(p−1)
p−2 ( 3γ1

2
)2(p−1)

.

Our goal is to show that T (11)
εN = min1≤k,`≤r T (k`)

εN and that T (11)
εN ≤ TL0,β since TL0,β ≤ T

(11)
L0,β

. To this
end, in order to get an estimate for L0,βmij for every i, j ∈ [r], we wish to apply Lemma 4.4 to the func-
tion Fij(X) = L0,βmij(X). We see that if we let ψk`(X) = 〈vk,x`〉, ak`(X) = βp

√
Mλkλ`m

p−1
k` (X)

and U = H0, then condition (1) is satisfied with P-probability at least 1 − exp(−KN) for every n ≥ 1
according to Lemma 4.2. Condition (2) is easily verified since the function Fij is smooth and for every
n ≥ 1 it holds that ‖Fij‖G2n ≤ Λ with P-probability at least 1 − exp(−KN) according to (4.3). Item
(3) holds by assumption on the initial data, namely the event C0(n, γ0). It therefore remains to check
condition (4). For every i, j ∈ [r] we note that on the event A(ij),∫ t

0
|aij(s)|ds ≤

1
1− C0

(
mij(t)−

γij

2
√
N

)
≤ 1

1− C0
mij(t), (5.8)

for every t ≤ T (ij)
L0,β
∧ TL0,β ∧ min1≤k,`≤r T (k`)

εN ∧ T (11)
0 , where we used the lower bound in the integral

inequality (5.1). We then observe that at time t = 0, for every ξ > 0 we have that

ξβ
√
Mpλiλj (`ij(0))p−1 = ξβ

√
Mpλiλj

(
γij

2
√
N

)p−1
≥ Cξ(n+ 2)γ0N

− n
2(n+1) ≥ `ij(0),

where we used that by assumption
√
M ≥ C (n+2)γ0

βpλ2
rC0γ

p−1
2

N
p−1

2 −
n

2(n+1) for some constant C > 0. Since

by (5.2) the functionmij(t) is lower bounded by `ij(t) for every t ≤ T (ij)
L0,β
∧TL0,β∧min1≤k,`≤r T (k`)

εN ∧T (11)
0

and since `ij(t) is an increasing function satisfying the above inequality, we therefore obtain that

mij(t) ≤ ξβ
√
Mpλiλjm

p−1
ij (t),

so that from (5.8) it follows that∫ t

0
|aij(s)|ds ≤

1
1− C0

mij(t) ≤
ξ

1− C0
β
√
Mpλiλjm

p−1
ij (t),

for t ≤ T (ij)
L0,β
∧ TL0,β ∧ min1≤k,`≤r T (k`)

εN ∧ T (11)
0 . Choosing ξ = (1 − C0)/2 yields condition (4) with

ε = 1/2. We can therefore apply Lemma 4.4: for every i, j ∈ [r], there exists K > 0 such that on the
event ∩1≤k,`≤rA(k`),

|L0,βmij(t)| ≤ K

 γ0√
N

n−1∑
k=0

tk + tn + 2
∑

1≤k,`≤r

∫ t

0
|ak`(s)|ds

 , (5.9)

for every t ≤ min1≤k,`≤r T (k`)
L0,β

∧ TL0,β ∧ min1≤k,`≤r T (k`)
εN ∧ T (11)

0 , with QX -probability at least 1 −

K2 exp
(
−γ2

0/(K2T
(11)
0 )

)
and with P-probability at least 1− exp(−KN).

Given the estimate (5.9), in the remaining of the proof we show that m11 is the first correlation to
reach εN and that T (11)

εN ≤ TL0,β . To this end, we first introduce an intermediate threshold ε̃N = γ̃N−
1
2

for a sufficiently large constant γ̃ of order 1 and show that T (11)
ε̃N

≤ min1≤k,`≤r T (k`)
L0,β
∧ TL0,β , where

T (ij)
ε̃N

denotes the hitting time for the set {X : mij(X) ≥ ε̃N}. In particular, we choose γ to solve the
equation

c(λ0) ≥ (2γ)p−2

(2γ)p−2 − (3γ1)p−2 , so that γ ≥ 3
2

(
c(λ0)

c(λ0)− 1

) 1
p−2

γ1. (5.10)
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Since the integral and comparison inequalities (5.1) and (5.2) are still valid for t ≤ T (ij)
L0,β
∧ TL0,β ∧

min1≤k,`≤r T (k`)
ε̃N
∧ T (ij)

0 , we can define T (ij)
`,ε̃N

and T (ij)
u,ε̃N

similarly to (5.5) and (5.6), and we see that for
every (i, j) 6= (1, 1),

T
(11)
`,ε̃N

=
1−

(
γ11
2γ

)p−2

(1− C0)β
√
Mp(p− 2)λ2

1

(
γ11

2
√
N

)p−2

≤ 1

c(λ0)(1 + C0)β
√
Mp(p− 2)λiλj

(
3γij
2
√
N

)p−2

≤
1−

(
3γij
2γ

)p−2

(1 + C0)β
√
Mp(p− 2)λiλj

(
3γij
2
√
N

)p−2 = T
(ij)
u,ε̃N

,

where we used (5.7) and (5.10). In order to deduce that on the event ∩1≤k,`≤rA(k`), it holds that
T (11)
ε̃N

= min1≤k,`≤r T (k`)
ε̃N

, we need to show that min1≤k,`≤r T (k`)
ε̃N
≤ min1≤k,`≤r T (k`)

L0,β
∧ TL0,β . Since the

estimate (5.9) holds for every t ≤ T (ij)
L0,β
∧ TL0,β ∧min1≤k,`≤r T (k`)

ε̃N
∧ T (ij)

0 , it thus suffices to show that

each term in the sum (5.9) is upper bounded by C0β
√
Mpλiλj
n+2 mp−1

ij (t) for every i, j ∈ [r].

(i) We start by observing that according to the lower bound in (5.2), for t ≤ T (ij)
L0,β
∧ TL0,β ∧

min1≤k,`≤r T (k`)
ε̃N
∧ T (11)

0

C0β
√
Mpλiλj

n+ 2 mp−1
ij (t) ≥ C0β

√
Mpλiλj

n+ 2 `p−1
ij (t) ≥ C0β

√
Mpλiλj

n+ 2 `p−1
ij (0),

so that for every 0 ≤ k ≤ n− 1,

C0β
√
Mpλiλj

n+ 2

(
γij

2
√
N

)p−1
≥ C γ0

N
n

2(n+1)
≥ K γ0√

N
tk,

provided tk = O(1), which certainly holds for all k ≤ n− 1 and t ≤ T (11)
0 since T (11)

0 < 1.
(ii) A sufficient condition to control the second term is given by F (t) ≤ G(t), where F (t) = Ktn

and G(t) = C0β
√
Mpλiλj
n+2 `p−1

ij (t). By an easy computation, we have that for any k ≤ n

F (k)(t) = Kn(n− 1) · · · (n− k + 1)tn−k

and

G(k)(t) =
C0β
√
Mpλiλj

∏k
i=1

(
p−1
p−2 + (i− 1)

)
n+ 2

(
γij

2
√
N

)p−1( 1
t
(ij)
∗

)k (
1− t

t
(ij)
∗

)−( p−1
p−2 +k)

,

where t(ij)∗ denotes the blow-up time of `ij which is given by

t
(ij)
∗ =

[
(1− C0)β

√
Mp(p− 2)λiλj

(
γij

2
√
N

)p−2
]−1

.

For k ≤ n− 1, it holds that G(k)(0) ≥ 0 = F (k)(0), and for k = n we have that

G(n)(t) ≥ (
√
Mβpλiλj)n+1C0(1− C0)n

n+ 2

(
γij

2
√
N

)p−1+n(p−2)(
1− t

t
(ij)
∗

)−( p−1
p−2 +n)

& C0(1− C0)n(n+ 2)nγn+1
0

≥ Kn! = F (n)(t),

provided t/t(ij)∗ is of order 1 for any t ≤ T (11)
0 , which certainly holds since T (11)

0 ≤ t(11)
∗ < t

(ij)
∗ .
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(iii) We control the last term as follows. According to the integral inequality (5.1), on the event
∩1≤k,`≤rA(k`) we have that

2
∑

1≤k,`≤r

∫ t

0
|ak`(s)|ds ≤

2r2

1− C0
max

1≤k,`≤r
{mk`(t)} ≤

2r2

1− C0
ε̃N = 2r2

1− C0

γ√
N
,

for t ≤ min1≤k,`≤r T (k`)
L0,β
∧ TL0,β ∧min1≤k,`≤r T (k`)

εN ∧ T (11)
0 . Moreover, it follows from (5.2) that

C0β
√
Mpλiλj

n+ 2 mp−1
ij (t) ≥ C0β

√
Mpλiλj

n+ 2 `p−1
ij (t) ≥ C0β

√
Mpλiλj

n+ 2 `p−1
ij (0),

for t ≤ min1≤k,`≤r T (k`)
L0,β
∧TL0,β ∧min1≤k,`≤r T (k`)

εN ∧T (11)
0 . Since by assumption on

√
M we have

that
C0β
√
Mpλiλj

n+ 2

(
γij

2
√
N

)p−1
≥ C γ0

(1− C0)N
n

2(n+1)
≥ K 2r2

1− C0

γ√
N
,

for some constant C > 0, the desired bound then follows.
On the event ∩1≤k,`≤rA(k`), we therefore have that min1≤k,`≤r T (k`)

ε̃N
≤ min1≤k,`≤r T (k`)

L0,β
∧ TL0,β and it

follows that
T (11)
ε̃N

= min
1≤k,`≤r

T (k`)
εN ,

with QX -probability at least 1−K2 exp
(
−γ2

0/(K2T
(11)
0 )

)
and with P-probability at least 1−exp(−KN).

Now, according to the generator expansion Lβmij given by Lemma 4.6 we see that at t = T (11)
ε̃N

,

Lβm11(T (11)
ε̃N

) ≥ (1− C0)β
√
Mpλ2

1m
p−1
11 (T (11)

ε̃N
),

and for any (i, j) 6= (1, 1)

Lβmij(T (11)
ε̃N

) ≤ C0β
√
Mpλ2

1m
p−1
11 (T (11)

ε̃N
) + β

√
Mpλiλjm

p−1
ij (T (11)

ε̃N
),

yielding

Lβmij(T (11)
ε̃N

) ≤ C0β
√
Mpλ2

1

(
γ√
N

)p−1
+β
√
Mpλiλj

(
γ√
N

)p−1
≤
(
C0 + 1

λ0

)
β
√
Mpλ2

1

(
γ√
N

)p−1
,

where we used the fact that λiλj ≤ λ2
1/λ

2
0 < λ2

1/λ0. According to (5.7) we then have that 1
λ0
≤

1
3c(λ0)

1−C0
1+C0

≤ 1− 2C0 for some C0 < 1/2, thus C0 + 1
λ0
≤ 1− C0 and it follows that

Lβmij(T (11)
ε̃N

) ≤ Lβm11(T (11)
ε̃N

).

As a consequence, on the event ∩1≤k,`≤rA(k`), since m11(T (11)
ε̃N

) > mij(T (11)
ε̃N

) and Lβm11(T (11)
ε̃N

) ≥
Lβmij(T (11)

ε̃N
) for every (i, j) 6= (1, 1), we obtain that m11(t) > mij(t) for T (11)

ε̃N
≤ t ≤ min1≤k,`≤r T (k`)

L0,β
∧

TL0,β ∧min1≤k,`≤r T (k`)
εN ∧ T (11)

0 , ensuring that

T (11)
εN = min

1≤k,`≤r
T (k`)
εN ,

with QX -probability at least 1−K2 exp
(
−γ2

0/(K2T
(11)
0 )

)
and with P-probability at least 1−exp(−KN).

It therefore remains to show that on the event ∩1≤k,`≤rA(k`), T (11)
εN ≤ TL0,β with high QX - and P-

probability. We recall that the estimate (5.9) holds for t ≤ min1≤k,`≤r T (k`)
L0,β
∧ TL0,β ∧ T

(11)
εN ∧ T (11)

0 with

QX -probability at least 1 − K2 exp
(
−γ2

0/(K2T
(11)
0 )

)
and with P-probability at least 1 − exp(−KN).

Therefore, since each ak`(t) ≤ a11(t) for T (11)
ε̃N

≤ t ≤ min1≤k,`≤r T (k`)
L0,β
∧ TL0,β ∧ T

(11)
εN ∧ T (11)

0 , we obtain
that on the event ∩1≤k,`≤rA(k`),

|L0,βmij(t)| ≤ K
(
γ0√
N

n−1∑
k=0

tk + tn + 2r2
∫ t

0
|a11(s)|ds

)
, (5.11)

for T (11)
ε̃N

≤ t ≤ min1≤k,`≤r T (k`)
L0,β
∧TL0,β∧T

(11)
εN ∧T

(11)
0 , withQX -probability at least 1−K2 exp

(
−γ2

0/(K2T
(11)
0 )

)
and with P-probability at least 1 − exp(−KN). In the same way as before, we can show that by the



Langevin dynamics for high-dimensional optimization 29

assumption on
√
M each term in the sum (5.11) is bounded above by C0β

√
Mpλ2

1
n+2 mp−1

11 (t) for every
T (11)
ε̃N

≤ t ≤ min1≤k,`≤r T (k`)
L0,β
∧ TL0,β ∧ T

(11)
εN ∧ T (11)

0 , ensuring that T (11)
εN ≤ TL0,β with high QX - and

P-probability. In particular, on the event C0(n, γ0) ∩ C1(γ1, γ2) we have that

T (11)
εN ≤ T (11)

0 .
1

(n+ 2)γ0N
1

2(n+1)
< 1

withQX -probability at least 1−K2 exp
(
−γ3

0(n+ 2)N
1

2(n+1) /K2

)
−K2r

2 exp
(
−γ2

2γ0(n+ 2)N
1

2(n+1) /(4K2)
)

and with P-probability at least 1− exp(−KN), which completes the proof of Lemma 5.1. �

We finally provide the proof of the second intermediate result, namely Lemma 5.2.

Proof of Lemma 5.2. Let ε > 0 be sufficiently small and let T (11)
ε denote the first hitting time of the

set {X : m11(X) ≥ ε}. We first show that from any initial data satisfying m11(X0) ∈ [εN , ε), we have
that T (11)

ε ≤ 1 with high QX - and P-probability.
We have from Lemma 4.6 that Lβm11 satisfies

Lβm11(t) ≥ −‖L0,βm11‖∞ + β
√
Mpλ2

1m
p−1
11 (t)(1− r2m2

11(t)) ≥ −‖L0,βm11‖∞ + β
√
Mpλ2

1m
p−1
11 (t) > 0

for t ≤ T (11)
εN/2 ∧ T

(11)
ε , provided ε < 1/r. Moreover, we also have for t ≤ T (11)

εN/2 ∧ T
(11)
ε ,

‖L0,βm11‖∞ ≤ Λ ≤ C0β
√
Mpλ2

1m
p−1
11 (t)

for some C0 ∈ (0, 1
2 ), with P-probability at least 1− exp(−KN). Therefore, for every t ≤ T (11)

εN/2 ∧T
(11)
ε ,

we obtain that

Lβm11(t) ≥ (1− C0)β
√
Mpλ2

1m
p−1
11 (t) > 0,

yielding

m11(t) ≥ εN
2

(
1− (1− C0)β

√
Mp(p− 2)λ2

1

(εN
2

)p−2
t

)− 1
p−2

,

with QX -probability at least 1−K2 exp(−N
1
p−1 /(4K2(T (11)

εN/2 ∧ T
(11)
ε ))) and with P-probability at least

1−exp(−KN). Since on the interval [0, T (11)
εN/2∧T

(11)
ε ], m11(t) is lower bounded by an increasing function

which is positive at t = 0, we deduce that T (11)
ε < T (11)

εN/2 and by an easy computation we have that

T (11)
ε ≤

1−
(

1

2εN
p−2

2(p−1)

)p−2

(1− C0)β
√
Mp(p− 2)λ2

1

(
N
− p−2

2(p−1)

2

)p−2 .
1

(n+ 2)γ0N
2p−3

2(p−1)−
n

2(n+1)
< 1.

We then obtain that

inf
X : m11(X)∈[εN ,ε)

QX

(
T (11)
ε ≤ 1

)
≥ 1−K2 exp

(
−(n+ 2)γ0N

2p−1
2(p−1)−

n
2(n+1) /(4K2)

)
(5.12)

with P-probability at least 1−exp(−KN). By the strong Markov property for Xt, it remains to consider
the case that m11(X0) ≥ ε for some ε > 0 sufficiently small. According to Lemma 4.1 of [8] there exists
T0 such that for every T ≥ T0,

inf
X : m11(X)≥ε

QX

(
inf

t∈[T0,T ]
m11(t) ≥ 1− ε

)
≥ 1− 2K2 exp

(
−Nε2/(K2T )

)
(5.13)

with P-probability at least 1−exp(−KN). Combining (5.12) and (5.13) yields the desired statement. �
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5.2. Recovery of all spikes

Now, we prove Proposition 3.6 on the recovery of all spikes. The proof of Proposition 3.6 proceeds
through r steps, each focusing on the recovery of a new correlation mii. For every ε > 0, we consider
the following events

E1(ε) = R1(ε) ∩
{

X : mij(X) ∈ Θ(N− 1
2 ) for i, j 6= 1

}
,

E2(ε) = R1(ε) ∩R2(ε) ∩
{

X : mij(X) ∈ Θ(N− 1
2 ) for i, j 6= 1, 2

}
,

· · ·

Er−1(ε) = ∩1≤i≤r−1Ri(ε) ∩
{

X : mrr(X) ∈ Θ(N− 1
2 )
}
,

Er(ε) = ∩1≤i≤r−1Ri(ε) ∩ {X : mrr(X) ≥ 1− ε} ,

where Ri(ε) denotes the set of strong recovery of the spike vi:

Ri(ε) =
{

X : mii(X) ≥ 1− ε and mij(X),mji(X) . log(N)− 1
2N−

p−1
4 ∀j 6= i

}
. (5.14)

We note that the set Er(ε) corresponds to R(ε), which is defined in (3.1). Looking at the r events defined
earlier, we note once a correlation mii reaches a macroscopic threshold ε, all correlations mij and mji

for j 6= i decrease below log(N)− 1
2N−

p−1
4 . This is crucial to ensure the recovery of the subsequent

correlation mi+1,i+1.
The following result shows that attaining the event E1 starting from a random initialization that meets

Condition 1 is possible, provided M is of order Np−1. According to Proposition 3.5 and Lemma 5.1,
this suggests that the complexity threshold Np−2 ensures the recovery of the first direction, but is not
sufficient to ensure the stability of the other directions.

Lemma 5.3. Let β ∈ (0,∞), p ≥ 3 and λi = λ0,iλi+1 for every 1 ≤ i ≤ r − 1 and λ0,i ≥ 1. Consider
a sequence of initializations µ0 ∈ P(MN,r). Then, the following holds: For every γ1 > 1 > γ2 > 0 and

ε > 0, there exist Λ = Λ(p, n, β, {λi}ri=1) > 0 and C0 ∈ (0, 1
2 ) such that if λ0,1 >

1+C0
1−C0

(
3γ1
γ2

)p−2
and

√
M & Λ

βpλ2
rC0γ

p−1
2

N
p−1

2 , then for N sufficiently large,∫
MN,r

QX

(
TE1 &

1√
N

)
1{C1(γ1, γ2)}dµ0(X)

≤ r2K1e
−γ2

2
√
N/K1 +K2e

−N
p+1

2(p−1) /K2 +K3e
−ε2N3/2/K3 ,

with P-probability at least 1− exp(−KN).

Once event E1 is attained, reaching event E2 is straightforward, and so on. Having the (k − 1)st
event Ek−1(ε) at hand, we now show that achieving Ek(ε) is possible.

Lemma 5.4. Let β ∈ (0,∞), p ≥ 3, and λi = λ0,iλi+1 for every 1 ≤ i ≤ r − 1 and λ0,i ≥ 1. Then,
the following holds: For every γ1 > 1 > γ2 > 0 and ε > 0, there exist Λ = Λ(p, n, β, {λi}ri=1) > 0 and

C0 ∈ (0, 1
2 ) such that if λ0,k >

1+C0
1−C0

(
3γ1
γ2

)p−2
and
√
M & Λ

βpλ2
rC0γ

p−1
2

N
p−1

2 , then there exists Tk > Tk−1

(with T0 = TE1) such that for every T > Tk and N sufficiently large,

inf
X0∈Ek−1(ε)

QX0

(
inf

t∈[Tk,T ]
Xβ
t ∈ Ek(ε)

)
≥ 1− (r − (k − 1))2K1e

−γ2
2
√
N/K1 −K2e

−N
p+1

2(p−1) /K2 −K3e
−ε2N/(K3T ),

with P-probability at least 1− exp(−KN).

Having Lemmas 5.3 and 5.4 at hand, we now are in the position to provide the proof of Proposition 3.6.
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Proof of Proposition 3.6. By the strong Markov property, we have that∫
MN×r

QX

(
inf

t∈[T0,T ]
Xβ
t ∈ R(ε)

)
dµ0(X)

≥ inf
X∈E1(ε)

QX

(
inf

t∈[T0,T ]
Xβ
t ∈ R(ε)

)
×
∫
MN×r

QX

(
TE1(ε) .

1√
N

)
dµ0(X).

Again by the strong Markov property, we have that

inf
X∈E1(ε)

QX

(
inf

t∈[T0,T ]
Xβ
t ∈ R(ε)

)
≥ inf

X∈E1(ε)
QX

(
inf

t∈[T0,T ]
Xβ
t ∈ E2(ε)

)
× inf

X∈E2(ε)
QX

(
inf

t∈[T0,T ]
Xβ
t ∈ R(ε)

)
.

Applying the strong Markov property recursively, we find that∫
MN×r

QX

(
inf

t∈[T0,T ]
Xβ
t ∈ R(ε)

)
dµ0(X)

≥
r∏

k=2
inf

X∈Ek−1(ε)
QX

(
inf

t∈[Tk,T ]
Xβ
t ∈ Ek(ε)

)
×
∫
MN×r

QX

(
TE1(ε) .

1√
N

)
dµ0(X).

The first term is bounded according to Lemma 5.4. For the second term we first have by the strong
Markov property,∫

MN×r

QX

(
TE1(ε) &

1√
N

)
dµ0(X)

≤ µ0(C1(γ1, γ2)c) +
∫
MN×r

QX

(
TE1(ε) &

1√
N

)
1{C1(γ1, γ2)}dµ0(X).

We then bound µ0(C1(γ1, γ2)c) according to Definition 3.3 and the integral according to Lemma 5.3.
Proposition 3.6 then follows straightforwardly. �

We therefore need to prove the two intermediate results, namely Lemmas 5.3 and 5.4.

Proof of Lemma 5.3. The proof of this lemma is divided into four different parts, which we briefly de-
scribe. First, we show thatm11 is the first correlation to reach the microscopic threshold εN = N−

p−2
2(p−1) ,

while the other correlations are still in Θ(N− 1
2 ). This is due to the fact that by assumption the parame-

ter λ2
1 is much larger than λiλj . As already seen in Lemma 5.2, the microscopic threshold εN is sufficient

to ensure strong recovery of the first spike v1. Next, we see that as m11 crosses the threshold N−
p−2
2p ,

the correlations mi1 and m1i for i 6= 1 start decreasing from Θ(N− 1
2 ) since the evolution equation at this

point is approximately given by ṁi1 ≈ −λ2
1m

p
11mi1 and ṁ1i ≈ −λ2

1m
p
11m1i, respectively. In particular,

we show that such correlations will reach the lower threshold N−
p−1

4 log(N)− 1
2 in a microscopic time.

Finally, we study the evolution of the correlations mij for i, j 6= 1 as m11 crosses εN which is approxi-
mately given by ṁij ≈ λiλjmp−1

ij − r2λ2
1m

p−1
11 mi1m1j . In particular, we show that such correlations can

undergo a decrease, which is at most by a constant, and thus globally we have that mij remain on the
scale Θ(N− 1

2 ).

Step 1: Evolution of the correlations until the first correlation reaches εN = N−
p−2

2(p−1) .
On the initial event C1(γ1, γ2) given by Definition 3.3, for every i, j ∈ [r] there exists γij ∈ (γ2, γ1)
such that mij(0) = γijN

− 1
2 . For some T (ij)

0 > 0 to be chosen later, we then define the event A(ij) =
A(ij)(γ1, γ2, T

(ij)
0 ) by

A(ij)(γ1, γ2, T
(ij)
0 ) = C1(γ1, γ2) ∩

 sup
t∈[0,T (ij)

0 ]
|Mmij

t | ≤ γ2

2
√
N

 ,

where we recall that according to (4.9), there exists a constant K2 > 0 such that

sup
X

QX

 sup
t∈[0,T (ij)

0 ]
|Mmij

t | ≥ γ2

2
√
N

 ≤ K2 exp
(
− γ2

2

4K2T
(ij)
0

)
.
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In the following, we fix i, j ∈ [r] and place ourselves on the event A(ij). Let εN = N−
p−2

2(p−1) and let T (ij)
εN

denote the hitting time of the set {X : mij(X) ≥ εN}. Given the generator expansion by Lemma 4.6,
i.e.,

Lβmij = L0,βmij + β
√
Mpλiλjm

p−1
ij − β

√
M
p

2
∑

1≤k,`≤r
λkmi`mkjmk`(λjmp−2

kj + λ`m
p−2
k` ),

we see that

−‖L0,βmij‖∞ + β
√
Mpλiλjm

p−1
ij (t) ≤ Lβmij(t) ≤ ‖L0,βmij‖∞ + β

√
Mpλiλjm

p−1
ij (t),

for t ≤ min1≤k,`≤r T (k`)
εN . Moreover, according to Lemma 4.2 and especially to (4.3), we have that

‖L0,βmij‖∞ ≤ Λ for some constant Λ = Λ(β, p, n, {λi}ri=1), with P-probability at least 1− exp(−KN).
We then observe that for t ≤ min1≤k,`≤r T (k`)

εN ,

C0β
√
Mpλiλjm

p−1
ij (t) ≥ C Λ

γp−1
2

N
p−1

2 mp−1
ij (t) ≥ Λ,

for some constant C0 ∈ (0, 1
2 ), where we used the facts that

√
M ≥ C Λ

βpλ2
rC0γ

p−1
2

N
p−1

2 and that mij(t) ≥

γ2N
− 1

2 . We therefore obtain the integral inequality given by

γij

2
√
N

+ (1− C0)β
√
Mpλiλj

∫ t

0
mp−1
ij (s)ds ≤ mij(t) ≤

3γij
2
√
N

+ (1 + C0)β
√
Mpλiλj

∫ t

0
mp−1
ij (s)ds,

for t ≤ min1≤k,`≤r T (k`)
εN ∧T (ij)

0 , with P-probability at least 1− exp(−KN). Lemma 4.11 then yields the
comparison inequality

`ij(t) ≤ mij(t) ≤ uij(t),

for t ≤ min1≤k,`≤r T (k`)
εN ∧ T (ij)

0 , where the functions `ij and uij are given by

`ij(t) = γij

2
√
N

(
1− (1− C0)β

√
Mp(p− 2)λiλj

(
γij

2
√
N

)p−2
t

)− 1
p−2

and

uij(t) = 3γij
2
√
N

(
1− (1 + C0)β

√
Mp(p− 2)λiλj

(
3γij
2
√
N

)p−2
t

)− 1
p−2

,

respectively. We then define T (ij)
`,εN

by `ij(T (ij)
`,εN

) = εN , i.e.,

T
(ij)
`,εN

= 1− (γij/2)p−2
N−

p−2
2(p−1)

(1− C0)β
√
Mp(p− 2)λiλj

(
γij

2
√
N

)p−2 .

Similarly, we let T (ij)
u,εN denote the time such that uij(T (ij)

u,εN ) = εN , i.e.,

T (ij)
u,εN = 1− (3γij/2)p−2

N−
p−2

2(p−1)

(1 + C0)β
√
Mp(p− 2)λiλj

(
3γij
2
√
N

)p−2 .

We note that on the event A(ij), T (ij)
u,εN ≤ T

(ij)
εN ≤ T

(ij)
`,εN

. We then choose T (ij)
0 = T

(ij)
`,εN

. Since by
assumption λ1 ≥ λ0λi, where λ0 > 1 is given by

λ0 = c(λ0)1 + C0

1− C0

(
3γ1

γ2

)p−2
,

for some constant c(λ0) > 1, we see that for every (i, j) 6= (1, 1)

T
(11)
`,εN
≤

1−
(
γ11
2
)p−2

N−
p−2

2(p−1)

c(λ0)(1 + C0)β
√
Mp(p− 2)λiλj

(
γij

2
√
N

)p−2 ( 3γ1
γ2

)p−2 ≤ T
(ij)
u,εN ,



Langevin dynamics for high-dimensional optimization 33

provided N >
(

c(λ0)
c(λ0)−1

) 2(p−1)
p−2 ( 3

2γ1
)2(p−1). As a consequence, on the event ∩1≤k,`≤rA(k`), we have that

T (11)
εN = min

1≤k,`≤r
T (k`)
εN

with P-probability at least 1−exp(−KN), that is, m11 is the first correlation that reaches the threshold
εN . We therefore have that on the event ∩1≤k,`≤rA(k`),

T (11)
εN ≤ T (11)

0 .
1√
N

with P-probability at least 1 − exp(−KN). Furthermore, we observe that as the correlation m11(t)
exceeds εN , the other correlations are still on the scale Θ(N− 1

2 ). Indeed, since T (11)
εN ≤ T

(11)
`,εN

and

uij is a monotone increasing function, on the event A(11) ∩ A(ij) we can upper bound mij(T (11)
εN ) by

uij(T (11)
εN ) ≤ uij(T (11)

`,εN
) and we find that

uij(T (11)
`,εN

) = 3γij
2
√
N

(
1− λiλj

λ2
1

1 + C0

1− C0

(
3γij
γ11

)p−2 (
1− (γ11/2)p−2

N−
p−2

2(p−1)

))− 1
p−2

≤ 3γij
2
√
N

(
1− λiλj

λ2
1

λ0

c(λ0)

)− 1
p−2

= 3γij
2
√
N

(
c(λ0)

c(λ0)− 1

) 1
p−2

.

(5.15)

Therefore, on the event ∩1≤k,`≤rA(k`), we have that mij(T (11)
εN ) = γ′ijN

− 1
2 for some constant γ′ij > 0

for every (i, j) 6= (1, 1).

Step 2: Recovery of the first spike. Next, we study the evolution of m11(t) for t ≥ T (11)
εN . Let

ε ∈ (0, 1) be sufficiently small. According to the generator expansion given by Lemma 4.6, for every
T (11)
εN ≤ t ≤ T (11)

ε ∧ T (11)
εN/2 we obtain that

Lβm11(t) ≥ −‖L0,βm11‖∞ + β
√
Mpλ2

1m
p−1
11 (t)(1−m2

11(t))

≥ −‖L0,βm11‖∞ + β
√
Mpλ2

1m
p−1
11 (t) > 0.

Since ‖L0,βm11‖∞ ≤ Λ with P-probability at least 1 − exp(−KN) and since by assumption
√
M ≥

C Λ
βpλ2

rC0γ
p−1
2

N
p−1

2 for some constant C > 0, we then have that Lβm11 is bounded below by

Lβm11(t) ≥ (1− C0)β
√
Mpλ2

1m
p−1
11 (t) > 0,

for T (11)
εN ≤ t ≤ T (11)

ε ∧ T (11)
εN/2, with P-probability at least 1 − exp(−KN). According to Lemma 4.11,

this then yields

m11(t) ≥ εN
2

(
1− (1− C0)β

√
Mp(p− 2)λ2

1

(εN
2

)p−2
(t− T (11)

εN )
)− 1

p−2

for every T (11)
εN ≤ t ≤ T (11)

ε ∧ T (11)
εN/2, with QX -probability at least 1 − K2 exp(−N

1
p−1 /(4K2(T (11)

ε ∧
T (11)
εN/2))) and with P-probability at least 1− exp(−KN). In particular, we have that m11(t) is bounded

below by a monotone increasing function which is positive at t = T (11)
εN . We therefore deduce that

T (11)
ε < T (11)

εN/2 and by an easy computation we have that

T (11)
ε − T (11)

εN ≤
1−

(
1

2εN
p−2

2(p−1)

)p−2

(1− C0)β
√
Mp(p− 2)λ2

1

(
N
− p−2

2(p−1)

2

)p−2 .
1

N
2p−3

2(p−1)
< 1, (5.16)

with QX -probability at least 1 − K2 exp(−N
1
p−1 /(4K2T (11)

ε )) and with P-probability at least 1 −
exp(−KN). As a consequence, on the event ∩1≤k,`≤rA(k`), we find that

T (11)
ε = T (11)

εN + (T (11)
ε − T (11)

εN ) . 1√
N
,
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with QX -probability at least 1−K2 exp(−N
p+1

2(p−1) /(4K2)) and with P-probability at least 1−exp(−KN).
This proves weak recovery of the first spike. In order to show strong recovery, we proceed in a similar
way. We note from Lemma 4.6 that Lβm11 satisfies

Lβm11(t) ≥ −‖L0,βm11‖∞ + 2−p+1β
√
Mpλ2

1ε
p−1(2ε− ε2),

for all T (11)
ε ≤ t ≤ T (11)

ε/2 ∧ T
(11)

1−ε . It therefore follows that

m11(t) ≥ ε

2 + c

2p−1 β
√
Mpλ2

1ε
p−1(2ε− ε2)(t− T (11)

ε ),

for every T (11)
ε ≤ t ≤ T (11)

ε/2 ∧T
(11)

1−ε , with QX -probability at least 1−K2 exp(−ε2N/(4K2(T (11)
ε/2 ∧T

(11)
1−ε )))

and with P-probability at least 1− exp(−KN). As a consequence, we have that T (11)
1−ε < T (11)

ε/2 and we
find that

T (11)
1−ε − T (11)

ε ≤ (1− 3ε/2)2p−1

cβ
√
Mpλ2

1ε
p−1
.

1
N

p−1
2

<
1√
N
,

withQX -probability at least 1−K2 exp(−εN/(4K2T (11)
1−ε )) and with P-probability at least 1−exp(−KN).

In particular, we see that on the event ∩1≤k,`≤rA(k`),

T (11)
1−ε = T (11)

ε + (T (11)
1−ε − T (11)

ε ) . 1√
N
,

with QX -probability at least 1 − K2 exp(−N
p+1

2(p−1) /(4K2)) − K2 exp(−ε2N/(4K2T (11)
1−ε )) and with P-

probability at least 1− exp(−KN).

Step 3: Evolution of mi1(t) and m1i(t) for i 6= 1 as t ≥ T (11)
εN . Now, we study the evolution

of mi1(t) and m1i(t) for i 6= 1 as t ≥ T (11)
εN . According to Step 1, as m11 crosses the threshold

εN = N−
p−2

2(p−1) , the correlations mi1 and m1i are on the scale Θ(N− 1
2 ). We first observe that for

t ≥ T (11)
εN the generators Lβm1i and Lβmi1 are bounded above by

Lβmi1(t) ≤ ‖L0,βmi1‖∞ + β
√
Mpλ1λim

p−1
i1 (t)− β

√
Mpλ2

1m
p
11(t)mi1(t),

Lβm1i(t) ≤ ‖L0,βm1i‖∞ + β
√
Mpλ1λim

p−1
1i (t)− β

√
Mpλ2

1m
p
11(t)m1i(t).

(5.17)

In particular, we note that for T (11)
εN ≤ t ≤ T (11)

N
− p−2

2p
∧ T (i1)

εN ,

Lβmi1(t) ≤ ‖L0,βmi1‖∞ + β
√
Mpλ1λim

p−1
i1 (t) ≤ (1 + C0)β

√
Mpλ1λim

p−1
i1 (t),

and similarly for T (11)
εN ≤ t ≤ T (11)

N
− p−2

2p
∧ T (1i)

εN ,

Lβm1i(t) ≤ ‖L0,βm1i‖∞ + β
√
Mpλ1λim

p−1
1i (t) ≤ (1 + C0)β

√
Mpλ1λim

p−1
1i (t),

for some constant C0 ∈ (0, 1
2 ), with P-probability at least 1− exp(−KN). In particular, we can extend

the argument of Step 1 and bound m1i(t),mi1(t) at time t = T (11)

N
− p−2

2p
by (5.15) so that we have that

m1i(T (11)

N
− p−2

2p
) = γ′1iN

− 1
2 and mi1(T (11)

N
− p−2

2p
) = γ′i1N

− 1
2 with high QX - and P-probability.

We now study the evolution of mi1 and m1i as t ≥ T (11)

N
− p−2

2p
for every i 6= 1. We note from (5.17) that

as m11 exceeds N−
p−2
2p ,

Lβmi1(t) ≤ ‖L0,βmi1‖∞ − cβ
√
Mpλ2

1m
p
11(t)mi1(t),

and mi1 start decreasing from Θ(N− 1
2 ). The same holds for the correlations m1i for i 6= 1. We therefore

introduce the stopping time T (i1)
lower given by

T (i1)
lower = inf

{
t : mi1(t) . 1√

log(N)N p−1
4

}
, (5.18)
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and we let Tlower denote Tlower = max2≤i≤r{T (i1)
lower, T

(1i)
lower}. We then note that if T (11)

N
− p−2

2p
≤ Tlower ≤

T (11)
ε , then there is nothing to prove since we have already shown in Step 2 that T (11)

ε . N−
1
2 with high

QX - and P-probability. It therefore remains to consider the case T (11)

N
− p−2

2p
< T (11)

ε < Tlower and show

that Tlower = T (11)
ε + (Tlower − T (11)

ε ) . N−
1
2 with high QX - and P-probability. To this end, fix i 6= 1

and look at Lβm1i which is bounded for T (11)
ε ≤ t ≤ T (i1)

lower ∧ T
(i1)
εN by

Lβmi1(t) ≤ Λ− cβ
√
Mpλ2

1m
p
11(t)mi1(t) ≤ − c2β

√
Mpλ2

1ε
pmi1(t),

with P-probability at least 1 − exp(−KN) provided
√
M ≥ Λ

C
2 βpλ

2
1ε
pmi1(t) , which certainly holds since

log(N)− 1
2N−

p−1
4 . mi1(t) . N− 1

2 . By the Grönwall’s inequality (see item (d) of Lemma 4.11) we then
have on the event ∩1≤k,`≤rA(k`),

mi1(t) ≤ 3γ′i1
2
√
N
− c

2β
√
Mpλ2

1ε
p

∫ t

T (11)
ε

mi1(s)ds ≤ 3γ′i1
2
√
N

exp
(
− c2β

√
Mpλ2

1ε
p(t− T (11)

ε )
)
,

for T (11)
ε ≤ t ≤ T (i1)

lower∧T
(i1)
εN , with P-probability at least 1−exp(−KN). Since mi1 is upper bounded by

a decreasing function for every T (11)
ε ≤ t ≤ T (i1)

lower ∧ T
(i1)
εN , it then follows that T (i1)

lower < min1≤i≤r T (i1)
εN .

Therefore, we have that

T (i1)
lower − T

(11)
ε ≤ 2

cβ
√
Mpλ2

1ε
p

log(
√

log(N)N
p−3

4 ) . log(N)N−
p−1

2 , (5.19)

ensuring that on the event ∩1≤k,`≤rA(k`),

Tlower = T (11)
ε + (Tlower − T (11)

ε ) . T (11)
ε + log(N)N−

p−1
2 <

1√
N
,

with QX -probability at least 1−K2 exp(−N
p+1

2(p−1) /(4K2)) and with P-probability at least 1−exp(−KN).

Step 4: Evolution of mij(t) for i, j 6= 1 as t ≥ T (11)
εN . It remains to study the evolution of mij(t)

for every i, j 6= 1 as t ≥ T (11)
εN . We first observe that for t ≥ T (11)

εN , according to Lemma 4.6 the generator
Lβmij is bounded above by

Lβmij(t) ≤ ‖L0,βmij‖∞ + β
√
Mpλiλjm

p−1
ij (t)− 1

2β
√
Mpλ2

1m
p−1
11 (t)mi1(t)m1j(t). (5.20)

In particular, we note that for T (11)
εN ≤ t ≤ T (11)

N
− p−3

2(p−1)
∧ T (ij)

εN ,

Lβmij(t) ≤ ‖L0,βmij‖∞ + β
√
Mpλiλjm

p−1
ij (t) ≤ (1 + C0)β

√
Mpλiλjm

p−1
ij (t),

for some C0 ∈ (0, 1
2 ), with P-probability at least 1− exp(−KN). In particular, as argued in Step 3, we

can extend the argument given by (5.15) so that we have that mij

(
T (11)

N
− p−3

2(p−1)

)
= γ′ijN

− 1
2 with high

QX - and P-probability.
We now fix i, j 6= 1 and study the evolution of mij for t ≥ T (11)

N
− p−3

2(p−1)
. We first note that as

t ≥ T (11)

N
− p−3

2(p−1)
, the term λ2

1m
p−1
11 (t)mi1(t)m1j(t) in (5.20) may be larger than λiλjm

p−1
ij (t) and may

lead to a decrease in mij . Recalling the stopping time Tlower introduced by (5.18), we see that if
T (11)

N
− p−2

2p
≤ Tlower ≤ T (11)

N
− p−3

2(p−1)
, then we still have the estimate

− ‖L0,βmij‖∞ + β
√
Mpλiλjm

p−1
ij (t) ≤ Lβmij(t) ≤ ‖L0,βmij‖∞ + β

√
Mpλiλjm

p−1
ij (t), (5.21)



gérard ben arous, cédric gerbelot, and vanessa piccolo36

for every T (11)

N
− p−3

2(p−1)
≤ t ≤ T (11)

ε ∧ T (ij)
εN , and the evolution mij keeps increasing. Otherwise, if Tlower >

T (11)

N
− p−3

2(p−1)
, then Lβmij(t) is bounded according to

Lβmij(t) ≥ −‖L0,βmij‖∞ − r2β
√
Mpλ2

1m
p−1
11 (t)mp−1

i1 (t)mp−1
1j (t)

Lβmij(t) ≤ ‖L0,βmij‖∞ −
1
2β
√
Mpλ2

1m
p−1
11 (t)mp−1

i1 (t)mp−1
1j (t),

(5.22)

for T (11)

N
− p−3

2(p−1)
≤ t ≤ Tlower∧T (11)

ε ∧T (ij)
εN , thus the evolution ofmij on this time interval is decreasing. We

therefore need to quantify the decrease of mij between T (11)

N
− p−3

2(p−1)
and Tlower. We may assume without

loss of generality that T (11)
ε < Tlower in order to have the maximal decrease of mij . It is then sufficient

to show that the decrease of mij between T (11)

N
− p−3

2(p−1)
and T (11)

ε is by a constant, thus ensuring that as

m11 exceeds ε the correlations mij are still on a scale Θ(N− 1
2 ). We claim that we have shown that

mij(T (11)
ε ) = γ′′ijN

− 1
2 for some constant γ′′ij > 0. Then, we see from (5.22) that

Lβmij(t) ≥ −‖L0,βmij‖∞ − r2β
√
Mpλ2

1m
p−1
11 (t)mi1(t)m1j(t) ≥ −Cr2β

√
Mpλ2

1(1− ε)p−1N−1,

for every T (11)
ε ≤ t ≤ Tlower ∧ T (11)

1−ε , with P-probability at least 1 − exp(−KN). We therefore obtain
that

mij(t) ≥ mij(T (11)
ε ) +M

mij
t − Cr2β

√
Mpλ2

1(1− ε)p−1N−1(t− T (11)
ε )

for T (11)
ε ≤ t ≤ Tlower ∧ T (11)

1−ε , yielding

mij(Tlower) ≥
γ′′ij

2
√
N
− Cr2β

√
Mpλ2

1(1− ε)p−1N−1
(
Tlower − T (11)

ε

)
≥

γ′′ij

2
√
N
− C ′(1− ε)p−1 log(N)√

N
√
N
≈ c′√

N
,

on the event ∩1≤k,`≤rA(k`), with P-probability at least 1− exp(−KN), where we used the bound given
by (5.19).

It therefore remains to prove the claim that mij(T (11)
ε ) = γ′′ijN

− 1
2 . We first note that there is

nothing to prove for p = 3 since mij may decrease once m11 is macroscopic since mij start decreasing
as m11 exceeds N−

p−3
2(p−1) ≈ ε. We therefore consider p ≥ 4. In particular, we observe that for every

ν ∈ (0, p−3
2(p−1) ] and every δ < ν, the time difference T (11)

N−ν+δ − T (11)
N−ν is bounded above by

T (11)
N−ν+δ − T (11)

N−ν ≤ 2
(
T

(11)
`,N−ν+δ − T (11)

`,N−ν

)
= 2

(1− C0)β
√
Mp(p− 2)λ2

1
Nν(p−2)

(
1−N−δ(p−2)

)
,

where we used (5.16). We will use the above estimate to provide a bound on the correlation mij(t) for
T (11)
N−ν ≤ t ≤ T

(11)
N−ν+δ . According to (5.22), for every T (11)

N−ν ≤ t ≤ T
(11)
N−ν+δ , we bound Lβmij below by

Lβmij(t) ≥ −‖L0,βmij‖∞ − r2β
√
Mpλ2

1m
p−1
11 (t)mi1(t)m1j(t)

≥ −Λ− r2β
√
Mpλ2

1N
−(ν−δ)(p−1)−1

≥ −2r2β
√
Mpλ2

1N
−(ν−δ)(p−1)−1,

with P-probability at least 1− exp(−KN), provided
√
M ≥ Λ

βpr2λ2
1
N (ν−δ)(p−1)+1 which certainly holds

since by assumption (ν − δ)(p− 1) + 1 ≤ p−1
2 . We therefore obtain that

mij(t) ≥ mij(T (11)
N−ν ) +M

mij
t − r2β

√
Mpλ2

1N
−(ν−δ)(p−1)−1

(
t− T (11)

N−ν

)
,

for every T (11)
N−ν ≤ t ≤ T

(11)
N−ν+δ , yielding

mij(T (11)
N−ν+δ) ≥

1
2mij(T (11)

N−ν )− r2β
√
Mpλ2

1N
−(ν−δ)(p−1)−1

(
T (11)
N−ν+δ − T (11)

N−ν

)
≥ 1

2mij(T (11)
N−ν )− CN

δ(p−1) −Nδ

NNν
.

(5.23)
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We see that if ν = p−3
2(p−1) and δ < ν

p−1 , then

mij(T (11)
N−ν+δ) ≥

γ′ij

2
√
N
− C√

N

Nδ(p−1) −Nδ

Nν+ 1
2

≥ c√
N
.

In particular, we can divide the interval [T (11)

N
− (p−3)

2(p−1)
, T (11)
ε ] into a finite number n(δ) of small intervals

and by iterating the argument above until N−ν+δ ≈ ε we can show that at each step the decrease of
mij is at most by a constant. This ensures that at t = T (11)

ε the correlation mij(t) ∈ Θ(N− 1
2 ).

Step 5: Conclusion of the proof. We therefore see that the hitting time TE1(ε) = inf {X : X ∈ E1(ε)}
is given by

TE1(ε) = T (11)
1−ε ∨ Tlower.

In particular, according to the Steps 2 and 3 we have that on the event ∩1≤k,`≤rA(k`),

TE1(ε) = T (11)
1−ε ∨ Tlower .

1√
N
,

with QX -probability at least 1 − K2 exp(−N
p+1

2(p−1) /(4K2)) − K2 exp(−ε2N3/2/(4K2)) and with P-
probability at least 1 − exp(−KN). We then choose T

(11)
0 = T

(11)
`,εN

and T
(ij)
0 = Tlower for every

(i, j) 6= (1, 1). In this way, we have that on the initial event C1(γ1, γ2),

TE1(ε) .
1√
N
,

with QX -probability at least

1− r2K2 exp(−γ2
2
√
N/(4K2))−K2 exp(−N

p+1
2(p−1) /(4K2))−K2 exp(−ε2N3/2/(4K2)), (5.24)

and with P-probability at least 1− exp(−KN) thus completing the proof. �

It remains to prove Lemma 5.4.

Proof of Lemma 5.4. We prove the statement for k = 2 since the proof will be identical for the other
cases. Let ε > 0 and assume that X0 ∈ E1(ε). We first show that the evolution of the correlations
m11 and m1i,mi1 for i 6= 1 are stable for all t ≥ 0. This can indeed be easily see from the generator
expansion given by Lemma 4.6. In particular, we have that

Lβm11(t) ≥ −‖L0,βm11‖∞ + β
√
Mpλ2

1m
p−1
11 (t)(1−m2

11(t)),

for every t ≥ 0. Using similar arguments to that used for Step 2 of the proof of Lemma 5.3 we can show
that m11(t) will stay above 1− ε for all t ≥ 0 with high QX - and P-probability. Similarly, we see that

Lβm1i(t) ≤ ‖L0,βm1i‖∞ − cβ
√
Mpλ2

1m
p
11(t)m1i(t)

for all t ≥ 0. As done in Step 3 of the proof of Lemma 5.3 we can show that m1i(t) and mi1(t) will not
increase and therefore will stay below the threshold 1/(

√
log(N)N

p−1
4 ) for every t ≥ 0, with high QX -

and P-probability.
We therefore consider the evolution of the correlations mij for i, j 6= 1. Since X0 ∈ E1(ε) we have

that mij(0) = γijN
− 1

2 for some order-1 constant γij > 0. Let εN = N−
p−2

2(p−1) . By the generator
expansion from Lemma 4.6, i.e.,

Lβmij = L0,βmij + β
√
Mpλiλjm

p−1
ij − β

√
M
p

2
∑

1≤k,`≤r
λkmi`mkjmk`(λjmp−2

kj + λ`m
p−2
k` ),

we see that for every i, j 6= 1,

−‖L0,βmij‖∞ + β
√
Mpλiλjm

p−1
ij (t) ≤ Lβmij(t) ≤ ‖L0,βmij‖∞ + β

√
Mpλiλjm

p−1
ij (t),

for all t ≤ min2≤k,`≤r T (k`)
εN . Indeed, the terms associated with m11 in the generator expansion are

also accompanied by mi1 and m1i which make that globally they are small compared to the term
β
√
Mpλiλjm

p−1
ij , for N sufficiently large. We can therefore proceed exactly as done in the proof of
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Lemma 5.3 by mimicking all the four steps. This shows that there exists T2 > TE1(ε) such that for all
T > T2,

inf
X0∈E1(ε)

QX0

(
inf

t∈[T2,T ]
Xβ
t ∈ E2(ε)

)
≥ 1− (r − 1)2K2 exp(−γ2

2
√
N/(4K2))−K2 exp(−N

p+1
2(p−1) /(4K2))−K2 exp(−ε2N3/2/(4K2)),

with P-probability at least 1− exp(−KN) provided N is sufficiently large. �

6. Proofs for p = 2 and distinct SNRs

This subsection is devoted to the proofs of Propositions 3.7 and 3.8.

6.1. Recovery of leading spike

The proof of Proposition 3.7 follows a similar structure to the proof of Proposition 3.5. We begin to
state the result on weak recovery of the first spike.

Lemma 6.1. Let β ∈ (0,∞), p = 2, λi = λi+1(1 + κi) for every 1 ≤ i ≤ r − 1 and κi > 0. Consider
a sequence of initializations µ0 ∈ P(MN,r). For every ε > 0, we let T (11)

ε denote the hitting time of
the set {X : m11(X) ≥ ε}. Then, the following holds: For every n ≥ 1, γ0 > 0, γ1 > 1 > γ2 > 0, there
exist ε0 > 0 and c0 ∈ (0, 1

2 ∧
κ1

2+κ1
) such that for every ε < ε0, C0 < c0,

√
M & (n+2)γ0

βλ2
rC0γ2

N
1

2(n+1) , and
log(N) ≥ 2 log(3γ1/2) + 2 log(3γ1/γ2) 1+C0

(1−C0)(1+κ1)−(1+C0) − 2 log(ε) we have that∫
MN,r

QX

(
T (11)
ε &

log(N)
(n+ 2)γ0N

1
2(n+1)

)
1{C0(n, γ0) ∩ C1(γ1, γ2)}dµ0(X)

≤ K1e
−γ3

0 (n+2)N
1

2(n+1) /(K1 log(N)) + r2K2e
−γ2

2γ0(n+2)N
1

2(n+1) /(4K2 log(N)),

with P-probability at least 1− exp(−KN).

As for p ≥ 3, strong recovery of the first spike follows straightforwardly from the weak recovery result,
as stated in the following lemma.

Lemma 6.2. Let β ∈ (0,∞), p = 2, λi = λi+1(1 + κi) for every 1 ≤ i ≤ r − 1 and κi > 0. Then, for
every ε > 0, there exists T0 & 1

(n+2)γ0
log(N)N−

1
2(n+1) such that for all T ≥ T0 and N large enough,

inf
X : m11(X)≥ε

QX

(
inf

t∈[T0,T ]
m11(Xβ

t ) ≥ 1− ε
)
≥ 1− 2K1e

−Nε2/(K2T ),

with P-probability at least 1− exp(−KN).

The proof of Lemma 6.2 follows the same strategy used to prove [8, Lemma 4.1] and is therefore left
to the reader. Proposition 3.7 follows the same approach of the proof of Proposition 3.5 by combining
Lemmas 6.1 and 6.2 via the strong Markov property. It then remains to prove Lemma 6.1, for which
we will mimic the proof of Lemma 5.1.

Proof of Lemma 6.1. We let A = A(n, γ0, γ1, γ2) denote the event

A(n, γ0, γ1, γ2) = {X0 ∼ µ : X0 ∈ C0(n, γ0) ∩ C1(γ1, γ2)} ,
where C0(n, γ0) and C1(γ1, γ2) are given in Definitions 3.1 and 3.3, respectively. We note that on
C1(γ1, γ2), for every i, j ∈ [r] there exists γij ∈ (γ2, γ1) such that mij(0) = γijN

− 1
2 . For some T (ij)

0 > 0
to be chosen later, we then define the event A(ij) = A(ij)(n, γ0, γ1, γ2, T

(ij)
0 ) by

A(ij)(n, γ0, γ1, γ2, T
(ij)
0 ) = A(n, γ0, γ1, γ2) ∩

 sup
t∈[0,T (ij)

0 ]
|Mmij

t | ≤ γ2

2
√
N

 ,

where we recall that according to Lemma 4.7 and (4.9), there exists a constant K2 > 0 such that

sup
X

QX

 sup
t∈[0,T (ij)

0 ]
|Mmij

t | ≥ γ2

2
√
N

 ≤ K2 exp
(
− γ2

2

4K2T
(ij)
0

)
.
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Moreover, for every i, j ∈ [r], we let T (ij)
L0,β

denote the hitting time of the set{
X : |L0,βmij(X)| > 2C0β

√
Mλiλjmij(X)

}
,

where C0 ∈ (0, 1
2 ) is a constant which does not depend on N . We note that on C0(n, γ0),

|L0,βmij(X0)| ≤ γ0√
N
≤ 2C0β

√
Mλiλj

γ2√
N
,

provided
√
M ≥ γ0

2C0βλiλjγ2
, which certainly holds by assumption. Therefore, on the event C0(n, γ0), we

have that
|L0,βmij(X0)| ≤ 2C0β

√
Mλiλjmij(X0),

and by continuity of the process Xt, T (ij)
L0,β

> 0. We also introduce the hitting time TL0,β of the set{
X : sup

1≤k,`≤r
|L0,βmk`(X)| > 2C0β

√
Mλ2

1m11(X)
}
.

We also have that TL0,β > 0 and we note that TL0,β ≤ T
(11)
L0,β

.
In the following, we fix i, j ∈ [r] and place ourselves on the event A(ij). For every ε > 0, we denote

by T (ij)
ε the hitting time for the set {X : mij(X) ≥ ε}. Recalling the generator expansion given by

Lemma 4.6, i.e.,

Lβmij(t) = L0,βmij(t) + 2β
√
Mλiλjmij(t)− β

√
M

∑
1≤k,`≤r

λk(λj + λ`)mi`(t)mkj(t)mk`(t),

we have that
2(1− C0)β

√
Mλiλjmij(t) ≤ Lβmij(t) ≤ 2(1 + C0)β

√
Mλiλjmij(t),

for every t ≤ T (ij)
L0,β
∧ TL0,β ∧ min1≤k,`≤r T (k`)

ε . According to the evolution equation for mij , namely

mij(t) = mij(0) +M
mij
t +

∫ t
0 Lmij(s)ds, we obtain the integral inequality

γij

2
√
N

+ 2(1− C0)β
√
Mλiλj

∫ t

0
mij(s)ds ≤ mij(t) ≤

3γij
2
√
N

+ 2(1 + C0)β
√
Mλiλj

∫ t

0
mij(s)ds, (6.1)

which holds for t ≤ T (ij)
L0,β
∧ TL0,β ∧ min1≤k,`≤r T (k`)

ε ∧ T (ij)
0 . Grönwall’s inequality (see item (d) of

Lemma 4.11) then gives that
`ij(t) ≤ mij(t) ≤ uij(t), (6.2)

for every t ≤ T (ij)
L0,β
∧ TL0,β ∧min1≤k,`≤r T (k`)

ε ∧ T (ij)
0 , where the functions `ij and uij are given by

`ij(t) = γij

2
√
N

exp
(

2(1− C0)β
√
Mλiλjt

)
,

and

uij(t) = 3γij
2
√
N

exp
(

2(1 + C0)β
√
Mλiλjt

)
,

respectively. We then define T (ij)
`,ε by `ij(T (ij)

`,ε ) = ε, i.e.,

T
(ij)
`,ε = log(ε

√
N)− log(γij/2)

2(1− C0)β
√
Mλiλj

. (6.3)

Similarly, we let T (ij)
u,ε satisfy uij(T (ij)

u,ε ) = ε, so that

T (ij)
u,ε = log(ε

√
N)− log(3γij/2)

2(1 + C0)β
√
Mλiλj

. (6.4)
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We note that on the event A(ij), T (ij)
u,εN ≤ T

(ij)
εN ≤ T

(ij)
`,εN

. We then choose T (ij)
0 = T

(ij)
`,ε > 0. We then

note that

T
(11)
`,ε ≤

log(ε
√
N)− log(γ2/2)

2(1− C0)β
√
Mλiλj

∏i−1
k=1(1 + κk)

∏j−1
`=1(1 + κ`)

≤ log(ε
√
N)− log(γ2/2)

2(1− C0)β
√
Mλiλj(1 + κ1)

≤ log(ε
√
N)− log(3γ1/2)

2(1 + C0)β
√
Mλiλj

≤ T (ij)
u,ε ,

where for the first two inequalities we used the fact that by definition λ1 = λi(1 + κ1) · · · (1 + κi−1) and
that λ2

1 ≥ λiλj(1 +κ1)2 ≥ λiλj(1 +κ1) for every i ≥ 2, and for the last inequality we used the fact that
by assumption,

log(ε
√
N) ≥ log

(
3γ1

2

)
+ log

(
3γ1

γ2

)
(1 + C0)

(1− C0)(1 + κ1)− (1 + C0) .

We need to choose C0 < 1
2 ∧

κ1
2+κ1

in order to ensure that (1 − C0)(1 + κ1) − (1 + C0) > 0. Since

T
(11)
`,ε ≤ T

(ij)
u,ε for every (i, j) 6= (1, 1), we deduce that T (11)

0 = min1≤k,`≤r T
(k`)
0 .

Our goal is to show that T (11)
ε = min1≤k,`≤r T (k`)

ε and that T (11)
ε ≤ TL0,β ≤ T

(11)
L0,β

. As done in the
proof of Lemma 5.1 for p ≥ 3, to get an estimate for L0,βmij for every i, j ∈ [r], we wish to apply
Lemma 4.4 to the function Fij(X) = L0,βmij(X). Conditions (1)-(3) are easily verified using the same
arguments of the proof of Lemma 5.1. To see condition (4), we note that for every i, j ∈ [r], on the
event A(ij), ∫ t

0
|aij(s)|ds ≤

1
1− C0

(
mij(t)−

γij

2
√
N

)
≤ 1

1− C0
mij(t), (6.5)

for every t ≤ T (ij)
L0,β
∧ TL0,β ∧ min1≤k,`≤r T (k`)

ε ∧ T (11)
0 , where we used the lower bound in the integral

inequality (6.1) and recall that aij(t) = 2β
√
Mλiλjmij(t). We then observe that at time t = 0, for

every ξ > 0 we have that

ξ2β
√
Mλiλj`ij(0) = ξβ

√
Mλiλj

γij√
N
≥ Cξ(n+ 2)γ0N

− n
2(n+1) ≥ `ij(0),

where we used that
√
M ≥ C n+2

βλ2
rC0(1−C0)γ2

γ0N
1

2(n+1) for some constant C > 0. Since by (5.2) the

function mij(t) is lower bounded by `ij(t) for every t ≤ T (ij)
L0,β
∧TL0,β ∧min1≤k,`≤r T (k`)

εN ∧T (11)
0 and since

`ij(t) is an increasing function satisfying the above inequality, we therefore obtain that

mij(t) ≤ 2ξβ
√
Mλiλjmij(t),

so that from (6.5) it follows that∫ t

0
|aij(s)|ds ≤

1
1− C0

mij(t) ≤
ξ

1− C0
2β
√
Mλiλjmij(t),

for t ≤ T (ij)
L0,β
∧ TL0,β ∧ min1≤k,`≤r T (k`)

εN ∧ T (11)
0 . Choosing ξ = (1 − C0)/2 yields condition (4) with

ε = 1/2. From Lemma 4.4 it follows that there exists K > 0 such that on the event ∩1≤k,`≤rA(k`), for
every t ≤ min1≤k,`≤r T (k`)

L0,β
∧ TL0,β ∧min1≤k,`≤r T (k`)

ε ∧ T (11)
0 , it holds that

|L0,βmij(t)| ≤ K

 γ0√
N

n−1∑
k=0

tk + tn + 2
∑

1≤k,`≤r

∫ t

0
|ak`(s)|ds

 , (6.6)

with QX -probability at least 1−K2 exp(−γ2
0/(K2T

(11)
0 )) and with P-probability at least 1−exp(−KN).

We then proceed in the same way as in the proof of Lemma 5.1. We first introduce an intermediate
threshold ε̃N = γ̃N−

1
2 for a sufficiently large constant γ̃ of order 1. In particular, we choose γ to verify

the inequality

log(γ) ≥ κ+ 1
κ− 2 log

(
3γ1

2

)
. (6.7)



Langevin dynamics for high-dimensional optimization 41

We also let T (ij)
ε̃N

denote the hitting time for the set {X : mij(X) ≥ ε̃N}. Since the integral and
comparison inequalities (6.1) and (6.2) are still valid for t ≤ T (ij)

L0,β
∧ TL0,β ∧min1≤k,`≤r T (k`)

ε̃N
∧ T (ij)

0 , we

can define T (ij)
`,ε̃N

and T (ij)
u,ε̃N

as in (6.3) and (6.4). We then see that for every (i, j) 6= (1, 1),

T
(11)
`,ε̃N

= log(γ)− log(γ11/2)
2(1− C0)β

√
Mλ2

1
≤ log(γ)

2(1− C0)β
√
Mλiλj(1 + κ)

≤ log(γ)− log(3γ1/2)
2(1 + C0)β

√
Mλiλj

≤ T (ij)
u,ε̃N

,

where we used that λ1 = λ2(1 + κ) ≥ λi(1 + κ) for every 3 ≤ i ≤ r and (6.7). In order to deduce
that, on the event ∩1≤k,`≤rA(k`), T (11)

ε̃N
= min1≤k,`≤r T (k`)

ε̃N
, we need to show that min1≤k,`≤r T (k`)

ε̃N
≤

min1≤k,`≤r T (k`)
L0,β
∧TL0,β . It therefore suffices to show that for every i, j ∈ [r], each term in the sum (6.6)

is upper bounded by 2C0β
√
Mλiλj

n+2 mij(t) for every t ≤ min1≤k,`≤r T (k`)
L0,β
∧TL0,β ∧min1≤k,`≤r T (k`)

ε̃N
∧T (11)

0 .

(i) We start by observing that on the event ∩1≤k,`≤rA(k`),

2C0β
√
Mλiλj

n+ 2 mij(t) ≥
2C0β

√
Mλiλj

n+ 2 `ij(t) & γ0N
− n

2(n+1) exp((n+ 2)γ0N
1

2(n+1) t),

for t ≤ min1≤k,`≤r T (k`)
L0,β

∧ TL0,β ∧ min1≤k,`≤r T (k`)
ε̃N

∧ T (11)
0 , where we used the assumption

√
M & (n+2)γ0

βλ2
rC0(1−C0)γ2

N
1

2(n+1) . We then see that for every 0 ≤ k ≤ n− 1,

exp((n+ 2)γ0N
1

2(n+1) t) ≥ (n+ 2)kγk0N
k

2(n+1)

k! tk & tk

for t ≤ T (11)
0 < log(ε

√
N)/((n+ 2)γ0N

1
2(n+1) ). We therefore have that for every 0 ≤ k ≤ n− 1,

2C0β
√
Mλiλj

n+ 2 mij(t) & K
γ0√
N
tk.

(ii) We next observe that a sufficient condition to control the second term is given by F (t) = Ktn ≤
2C0β

√
Mλiλj

n+2 `ij(t) = G(t). An explicit computation shows that for every k ≤ n,

F (k)(t) = Kn(n− 1) · · · (n− k + 1)tn−k

and

G(k)(t) = C0β
√
Mλiλj

n+ 2
γij√
N

(
2(1− C0)β

√
Mλiλj

)k
exp(2(1− C0)β

√
Mλiλjt).

For k ≤ n− 1, it holds that F (k)(0) = 0 ≤ G(k)(0), and for k = n we have that

G(n)(t) =

(
β
√
Mλiλj

)n+1
γijC02n(1− C0)n

(n+ 2)
√
N

exp(2(1− C0)β
√
Mλiλjt)

&
2n(n+ 2)nγn+1

0
γn2C

n
0 (1− C0) exp((n+ 2)γ0N

1
2(n+1) t)

≥ Kn! = F (n)(t),

which gives the bound for the second term.
(iii) To bound the last term, we note from (6.1) that on the event ∩1≤k,`≤rA(k`),

2
∑

1≤k,`≤r

∫ t

0
|ak`(s)|ds ≤

2r2

1− C0
max

1≤k,`≤r
{mk`(t)} ≤

2r2

1− C0
ε̃N = 2r2

1− C0

γ√
N
,

for t ≤ min1≤k,`≤r T (k`)
L0,β
∧ TL0,β ∧min1≤k,`≤r T (k`)

ε̃N
∧ T (11)

0 . Then, since by the assumption on√
M we have that

C0β
√
Mλiλj

n+ 2
γij√
N
&

γ0

1− C0
N−

n
2(n+1) ≥ K 2r2

1− C0

γ√
N
,
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it follows that
2C0β

√
Mλiλj

n+ 2 mij(t) ≥
2C0β

√
Mλiλj

n+ 2 `ij(0) & K 2r2

1− C0

γ√
N
,

for t ≤ min1≤k,`≤r T (k`)
L0,β
∧ TL0,β ∧min1≤k,`≤r T (k`)

ε̃N
∧ T (11)

0 . This shows the last bound.

We therefore have that, on the event ∩1≤k,`≤rA(k`), min1≤k,`≤r T (k`)
ε̃N
≤ min1≤k,`≤r T (k`)

L0,β
∧TL0,β so that

it follows
T (11)
ε̃N

= min
1≤k,`≤r

T (k`)
ε̃N

,

with QX -probability at least 1−K2 exp(−γ2
0/(K2T

(11)
0 )) and with P-probability at least 1−exp(−KN).

Now, according to the generator expansion Lβmij given by Lemma 4.6 we note that at t = T (11)
ε̃N

,

Lβm11(T (11)
ε̃N

) ≥ 2(1− C0)λ2
1m11(T (11)

ε̃N
),

and for every (i, j) 6= (1, 1),

Lmij(T (11)
ε̃N

) ≤ 2C0β
√
Mλ2

1m11(T (11)
ε̃N

) + 2β
√
Mλiλjmij(T (11)

ε̃N
).

In particular, since λiλj ≤ λ2
1/(1 + κ) we have that

Lmij(T (11)
ε̃N

) ≤ 2C0β
√
Mλ2

1
γ√
N

+ 2β
√
M

λ2
1

1 + κ

γ√
N

= 2
(
C0 + 1

1 + κ

)
β
√
Mλ2

1
γ√
N
.

By (6.7) we then see that

C0 + 1
1 + κ

≤ C0 + 1− C0

1 + C0

log(γ)− log(3γ1/2)
log(γ) ≤ 1− C0,

provided C0 < 1/2 is sufficiently small. We therefore have that for every (i, j) 6= (1, 1),

Lβmij(T (11)
ε̃N

) ≤ Lβm11(T (11)
ε̃N

).

As a result, on the event ∩1≤k,`≤rA(k`), we have that for every (i, j) 6= (1, 1), m11(T (11)
ε̃N

) > mij(T (11)
ε̃N

)
and since Lβm11(T (11)

ε̃N
) ≥ Lβmij(T (11)

ε̃N
), hence

m11(t) > mij(t),

for every T (11)
ε̃N

≤ t ≤ min1≤k,`≤r T (k`)
L0,β
∧ TL0,β ∧min1≤k,`≤r T (k`)

ε ∧ T (11)
0 , with QX -probability at least

1 − K2 exp(−γ2
0/(K2T

(11)
0 )) and with P-probability at least 1 − exp(−KN). In particular, we deduce

that on the event ∩1≤k,`≤rA(k`),
T (11)
ε = min

1≤k,`≤r
T (k`)
ε ,

with QX -probability at least 1−K2 exp(−γ2
0/(K2T

(11)
0 )) and with P-probability at least 1−exp(−KN).

It remains to show that T (11)
ε ≤ T (11)

L0,β
with high QX - and P-probability. To this end, we want to use

the estimate (6.6). Since each ak`(t) ≤ a11(t) for T (11)
ε̃N

≤ t ≤ min1≤k,`≤r T (k`)
L0,β
∧ TL0,β ∧ T

(11)
ε ∧ T (11)

0 ,

it follows from (6.6) that on the event ∩1≤k,`≤rA(k`), for every T (11)
ε̃N

≤ t ≤ min1≤k,`≤r T (k`)
L0,β
∧ TL0,β ∧

T (11)
ε ∧ T (11)

0 ,

|L0,βmij(t)| ≤ K
(
γ0√
N

n−1∑
k=0

tk + tn + 2r2
∫ t

0
|a11(s)|ds

)
, (6.8)

with QX -probability at least 1−K2 exp
(
−γ2

0/(K2T
(11)
0 )

)
and with P-probability at least 1−exp(−KN).

In the same way as before, we can show that each term in the sum (6.8) is upper bounded by
2C0β

√
Mλ2

1
n+2 m11(t) for T (11)

ε̃N
≤ t ≤ min1≤k,`≤r T (k`)

L0,β
∧ TL0,β ∧ T

(11)
ε ∧ T (11)

0 , ensuring that T (11)
ε ≤ TL0,β .

It then follows that on the event C0(n, γ0) ∩ C1(γ1, γ2) we have that

T (11)
ε ≤ T (11)

0 .
log(N)

(n+ 2)γ0N
1

2(n+1)
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with QX -probability at least

1−K2 exp
(
−γ3

0(n+ 2)N
1

2(n+1) /(K2 log(N))
)
−K2r

2 exp
(
−γ2

2γ0(n+ 2)N
1

2(n+1) /(4K2 log(N))
)

and P-probability at least 1− exp(−KN), which completes the proof of Lemma 6.1. �

6.2. Recovery of all spikes

In the following, we focus on the proof of exact recovery of all spikes when p = 2 and the SNRs are
sufficiently separated. We first recall the event of strong recovery (3.2) that we wish to achieve from
random initializations that meet Condition 0 at level n and Condition 1. For every ε > 0 and C0 ∈ (0, 1

2 ),
R(ε, C0) is defined by

R(ε, C0) =
{

X : mii(X) ≥ 1− ε ∀ i ∈ [r] and mk`(X) . N
− 1

2

(
1− 1−C0

1+C0
λ2
r
λ2

1

)
∀ k, ` ∈ [r], k 6= `

}
.

Similar to the proof of Proposition 3.6, we proceed through several steps, each focusing on establishing
the weak recovery of a correlation. To this end, we first need to introduce some notations. For every
1 ≤ k ≤ r − 1 and every k ≤ i, j ≤ r, we denote by δ(k)

ij and ξ(k)
ij the parameters given by

δ
(k)
ij = 1− 1 + C0

1− C0

λiλj
λ2
k

and ξ
(k)
ij = 1− 1− C0

1 + C0

λiλj
λ2
k

.

We see that δ(k)
ij < ξ

(k)
ij , δ(k)

ij = δ
(k)
ji and ξ

(k)
ij = ξ

(k)
ji for every i, j, k. Moreover, we have that 0 <

ξ
(k)
kk ≤ ξ

(k)
ij for every i, j ≥ k. On the other hand, we have that δ(k)

kk < 0 < δ
(k)
k,k+1 ≤ δ

(k)
ij for every

i, j ≥ k + 1, provided C0 <
1
2 ∧

κk
2+κk . Since we want to ensure that this condition holds for all k, we

choose C0 <
1
2 ∧

κ
2+κ with κ = min1≤k≤r−1 κk. For every ε > 0 and C0 ∈ (0, 1

2 ∧
κ

2+κ ), we then consider
the following sets:

E1(ε, C0) = W1(ε, C0) ∩
{

X : N−
ξ

(1)
ij
2 . mij(X) . N−

δ
(1)
ij
2 ∀ 2 ≤ i, j ≤ r

}
,

E2(ε, C0) = S1(ε, C0) ∩W2(ε, C0) ∩
{

X : N−
ξ

(2)
ij
2 . mij(X) . N−

δ
(2)
ij
2 ∀ 3 ≤ i, j ≤ r

}
,

· · ·

Er−1(ε, C0) = ∩1≤i≤r−2Si(ε, C0) ∩Wr−1(ε, C0) ∩
{

X : N−
ξ

(r−1)
rr

2 . mrr(X) . N−
δ

(r−1)
rr

2

}
,

Er(ε, C0) = ∩1≤i≤r−1Si(ε, C0) ∩Wr(ε, C0),

where Wi(ε, C0) and Si(ε, C0) denote the set of weak and strong recovery of the spike vi, i.e.,

Wi(ε, C0) =
{

X : mii(X) ≥ ε and mij(X),mji(X) . N−
δ

(i)
ij
2 ∀ j > i

}
,

Si(ε, C0) =
{

X : mii(X) ≥ 1− ε and mij(X),mji(X) . N−
ξ

(1)
rr
2 ∀ j > i

}
.

With these notations, achieving R(ε, C0) from Er(ε, C0) means showing that weak recovery of mrr

implies strong recovery.
The first step consists in showing that the estimator m11 becomes macroscopic, provided a sample

complexity of order Nδ for some δ ∈ (0, 1) which depends on the ratio between the signal sizes.

Lemma 6.3. Let β ∈ (0,∞), p = 2, and λi = λi+1(1+κi) for every 1 ≤ i ≤ r−1 and κi > 0. Consider a
sequence of initializations µ ∈ P(MN,r). For every ε > 0 and C0 ∈

(
0, 1

2 ∧
κ1

2+κ1

)
, we consider E1(ε, C0)

and we let TE1 denote the first hitting time of this set. Then, the following holds: For every n ≥ 1, γ0 > 0
and γ1 > γ2 > 0 there exist ε0 > 0 and c0 ∈ (0, 1

2 ∧
κ1

2+κ1
) such that for every ε < ε0, C0 < c0, if

√
M &
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(n+2)γ0γ1
βC0λ2

rγ2
N

1
2

(
1+C0
1−C0

−λ
2
r
λ2

1

)
and if log(N) ≥ 2 log(3γ1/2) + 2 log(3γ1/γ2) 1+C0

(1−C0)(1+κ1)−(1+C0) − 2 log(ε), we
have that

∫
MN,r

QX

TE1 &
log(N)N

− 1
2

(
1+C0
1−C0

−λ
2
r
λ2

1

)
(n+ 2)γ0γ1

1 {C0(n, γ0) ∩ C1(γ1, γ2)} dµ0(X)

. K1e
−γ3

0γ1(n+2)N
1
2

(
1+C0
1−C0

−
λ2
r
λ2

1

)
/(K1 log(N)) + r2K2e

−γ2
2γ0γ1(n+2)N

1
2

(
1+C0
1−C0

−
λ2
r
λ2

1

)
/(K2 log(N)),

with P-probability 1− exp(−KN).

Having the first step at hand, we next show that x1 achieves strong recovery with v1 and that x2
achieves weak recovery with v2, i.e., we show that from the event E1 we obtain the event E2. In general,
having the event Ek with 1 ≤ k ≤ r−1 at hand, we can reach the event Ek+1, as stated by the following
lemma.

Lemma 6.4. Let β ∈ (0,∞), p = 2, and λi = λi+1(1 + κi) for every 1 ≤ i ≤ r − 1 and κi > 0.
Let κ = min1≤i≤k+1 κi. Then, the following holds: For every n ≥ 1 and γ1 > γ2 > 0 there exist
ε0 > 0, c0 ∈ (0, 1

2 ∧
κ

2+κ ), and Λ = Λ(p, n, β, {λi}ri=1) such that for every ε < ε0, C0 < c0, if
√
M &

Λ
βC0λ2

rγ2
N

1
2

(
1+C0
1−C0

−λ
2
r
λ2

1

)
, and if log(N) & 1

(1+κk)2 log( 1
κk

), there exists Tk > Tk−1 (with T0 = TE1) such
that for every T > Tk,

inf
X∈Ek(ε,C0)

QX

(
inf

t∈[Tk,T ]
Xβ
t ∈ Ek+1(ε, C0)

)
≥ 1−K1e

−Nε2/(K1T ) −K2e
−N

1
2 (1+δ)/(K2T )

with P-probability at least 1− exp (−KN).

The last phase is to show that strong recovery of the last spike follows straightforwardly from
Er(ε, C0).

Lemma 6.5. Let β ∈ (0,∞), p = 2, and λi = λi+1(1 + κi) for every 1 ≤ i ≤ r − 1 and κi > 0. Then,

for every ε > 0 and
√
M & Λ

βC0λ2
rγ2

N
1
2

(
1+C0
1−C0

−λ
2
r
λ2

1

)
, there exists an order time Tr such that for every

T ≥ Tr,

inf
X∈Er(ε,C0)

QX

(
inf

t∈[Tr,T ]
Xβ
t ∈ R(ε, C0)

)
≥ 1−K1 exp(−Nε2/(K1T )), (6.9)

with P-probability at least 1− exp(−KN).

Having Lemmas 6.3, 6.4, and 6.5 at hand, we now provide the proof of Proposition 3.8 using the
strong Markov property.

Proof of Proposition 3.8. By the strong Markov property, we have that∫
MN×r

QX

(
inf

t∈[T0,T ]
Xβ
t ∈ R(ε, C0)

)
dµ0(X)

≥ inf
X∈E1(ε,C0)

QX

(
inf

t∈[T0,T ]
Xβ
t ∈ R(ε, C0)

)
×
∫
MN×r

QX

TE1(ε,C0) .
log(N)N

− 1
2

(
1+C0
1−C0

−λ
2
r
λ2

1

)
(n+ 2)γ0γ1

 dµ0(X).
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Applying the strong Markov property recursively to the first term, we have that

inf
X∈E1(ε,C0)

QX

(
inf

t∈[T0,T ]
Xβ
t ∈ R(ε, C0)

)
≥ inf

X∈E1(ε,C0)
QX

(
inf

t∈[T0,T ]
Xβ
t ∈ E2(ε, C0)

)
× inf

X∈E2(ε,C0)
QX

(
inf

t∈[T0,T ]
Xβ
t ∈ R(ε, C0)

)
≥ · · ·

≥
r−1∏
k=1

inf
X∈Ek(ε,C0)

QX

(
inf

t∈[T0,T ]
Xβ
t ∈ Ek+1(ε, C0)

)
× inf

X∈Er(ε,C0)
QX

(
inf

t∈[T0,T ]
Xβ
t ∈ R(ε, C0)

)
,

so that we can use Lemmas 6.4 and 6.5 to bound the above factors. It remains to estimate the integral
term. We write

∫
MN×r

QX

TE1(ε,C0) .
log(N)N

− 1
2

(
1+C0
1−C0

−λ
2
r
λ2

1

)
(n+ 2)γ0γ1

 dµ0(X)

≤ µ0(C0(n, γ0)c) + µ0(C1(γ1, γ2)c)

+
∫
MN×r

QX

TE1(ε,C0) .
log(N)N

− 1
2

(
1+C0
1−C0

−λ
2
r
λ2

1

)
(n+ 2)γ0γ1

1{C0(n, γ0) ∩ C1(γ1, γ2)}dµ0(X),

so that we bound µ0(C0(n, γ0)c) and µ0(C1(γ1, γ2)c) according to Definitions 3.1 and 3.3, and the integral
according to Lemma 6.3. Proposition 3.8 then follows straightforwardly. �

It therefore remains to prove all the auxiliary results stated at the beginning of this subsubsection.

Proof of Lemma 6.3. The proof follows the same approach used for the proof of Lemma 6.1 and
consists in studying the evolution of the correlations until max1≤k,`≤rmk` reaches the macroscopic
threshold ε > 0. We let A = A(n, γ0, γ1, γ2) denote the initial event

A(n, γ0, γ1, γ2) = {X0 ∼ µ : X0 ∈ C0(n, γ0) ∩ C1(γ1, γ2)} .

We note that on C1(γ1, γ2), for every i, j ∈ [r] there exists γij ∈ (γ2, γ1) such that mij(0) = γijN
− 1

2 .
For some T (ij)

0 > 0 to be chosen later, we then define the event A(ij) = A(ij)(n, γ0, γ1, γ2, T
(ij)
0 ) by

A(ij)(n, γ0, γ1, γ2, T
(ij)
0 ) = A(n, γ0, γ1, γ2) ∩

 sup
t∈[0,T (ij)

0 ]
|Mmij

t | ≤ γ2

2
√
N

 ,

where we recall that according to Lemma 4.7 and (4.9), there exists a constant K2 > 0 such that

sup
X

QX

 sup
t∈[0,T (ij)

0 ]
|Mmij

t | ≥ γ2

2
√
N

 ≤ K2 exp
(
− γ2

2

4K2T
(ij)
0

)
.

Moreover, for every i, j ∈ [r] we let T (ij)
L0,β

denote the hitting time of the set{
X : |L0,βmij(X)| > 2C0β

√
Mλiλjmij(X)

}
,

for some order 1 constant C0 ∈ (0, 1/2). We note that on C0(n, γ0),

|L0,βmij(X(0))| ≤ γ0√
N
≤ 2C0β

√
Mλiλj

γ2√
N
,

provided
√
M ≥ γ0

2C0βλiλjγ2
, which certainly holds by assumption. Therefore, on the initial event A,

we have that |L0,βmij(0)| ≤ 2C0β
√
Mλiλjmij(0), thus by continuity of the process Xt it follows that

T (ij)
L0,β

> 0 for every i, j ∈ [r].
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In the following, we fix i, j ∈ [r] and place ourselves on the event A(ij). For every ε > 0, we denote
by T (ij)

ε the hitting time for the set {X : mij(X) ≥ ε}. Recalling the generator expansion given by
Lemma 4.6, i.e.,

Lβmij(t) = L0,βmij(t) + 2β
√
Mλiλjmij(t)− β

√
M

∑
1≤k,`≤r

λk(λj + λ`)mi`(t)mkj(t)mk`(t),

we have that

2(1− C0)β
√
Mλiλjmij(t) ≤ Lβmij(t) ≤ +2(1 + C0)β

√
Mλiλjmij(t),

for every t ≤ T (ij)
L0,β
∧ min1≤k,`≤r T (k`)

ε , provided ε is sufficiently small. We then obtain the integral
inequality

γij

2
√
N

+ 2(1− C0)β
√
Mλiλj

∫ t

0
mij(s)ds ≤ mij(t) ≤

3γij
2
√
N

+ 2(1 + C0)β
√
Mλiλj

∫ t

0
mij(s)ds, (6.10)

for all t ≤ T (ij)
L0,β
∧min1≤k,`≤r T (k`)

ε ∧ T (ij)
0 . Furthermore, by the Grönwall’s inequality (see item (d) of

Lemma 4.11) we have that

γij

2
√
N

exp
(

2(1− C0)β
√
Mλiλjt

)
= `ij(t) ≤ mij(t) ≤ uij(t) = 3γij

2
√
N

exp
(

2(1 + C0)β
√
Mλiλjt

)
,

(6.11)
for every t ≤ T (ij)

L0,β
∧min1≤k,`≤r T (k`)

ε ∧ T (ij)
0 . We then define T (ij)

`,ε by `ij(T (ij)
`,ε ) = ε, i.e.,

T
(ij)
`,ε = log(ε

√
N)− log(γij/2)

2(1− C0)β
√
Mλiλj

. (6.12)

Similarly, we let T (ij)
u,ε satisfy uij(T (ij)

u,ε ) = ε, so that

T (ij)
u,ε = log(ε

√
N)− log(3γij/2)

2(1 + C0)β
√
Mλiλj

. (6.13)

We note that on the event A(ij), T (ij)
u,ε ≤ T (ij)

ε ≤ T (ij)
`,ε . We then choose T (ij)

0 = T
(ij)
`,ε > 0. Moreover, we

observe that

T
(11)
`,ε ≤

log(ε
√
N)− log(γ2/2)

2(1− C0)β
√
Mλiλj(1 + κ1)

≤ log(ε
√
N)− log(3γ1/2)

2(1 + C0)β
√
Mλiλj

≤ T (ij)
u,ε ,

where we used the fact that by assumption log(ε
√
N) ≥ log(3γ1/2) + log(3γ1/γ2) 1+C0

(1−C0)(1+κ1)−(1+C0) .

Since T (11)
`,ε ≤ T

(ij)
u,ε for every (i, j) 6= (1, 1), we also deduce that T (11)

0 = min1≤k,`≤r T
(k`)
0 . In order to

deduce that T (11)
ε = min1≤k,`≤r T (k`)

ε , we have to show that on the event ∩1≤k,`≤rA(k`) it holds that
min1≤k,`≤r T (k`)

ε ≤ min1≤k,`≤r T (k`)
L0,β

with high QX - and P-probability. To this end, we wish to apply
Lemma 4.4 to the function Fij(X) = L0,βmij(X). We refer the reader to the proof of Lemma 6.1 for
a proof of conditions (1)-(4). We therefore have that there exists a constant K > 0 such that on the
event ∩1≤k,`≤rA(k`),

|L0,βmij(t)| ≤ K

 γ0√
N

n−1∑
k=0

tk + tn + 2
∑

1≤k,`≤r

∫ t

0
|ak`(s)|ds

 , (6.14)

for t ≤ min1≤k,`≤r T (k`)
L0,β
∧min1≤k,`≤r T (k`)

ε ∧T (11)
0 , withQX -probability at least 1−K2 exp(−γ2

0/(K2T
(11)
0 ))

and with P-probability at least 1 − exp(−KN). Our goal is to show that, on the event ∩1≤k,`≤rA(k`),
min1≤k,`≤r T (k`)

ε ≤ min1≤k,`≤r T (k`)
L0,β

so that we have that T (11)
ε = min1≤k,`≤r T (k`)

ε . It therefore suffices

to show that for every i, j ∈ [r], each term in the sum (6.14) is upper bounded by 2C0β
√
Mλiλj

n+2 mij(t) for
every t ≤ min1≤k,`≤r T (k`)

L0,β
∧min1≤k,`≤r T (k`)

ε ∧ T (11)
0 .
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(i) We start by observing that on the event ∩1≤k,`≤rA(k`),

2C0β
√
Mλiλj

n+ 2 mij(t) ≥
2C0β

√
Mλiλj

n+ 2 `ij(t) = C0β
√
Mλiλj

n+ 2
γij√
N

exp(2(1− C0)β
√
Mλiλjt),

for t ≤ min1≤k,`≤r T (k`)
L0,β
∧min1≤k,`≤r T (k`)

ε ∧ T (11)
0 . We then see that for every 0 ≤ k ≤ n− 1,

exp(2(1− C0)β
√
Mλiλjt) ≥

(2(1− C0)β
√
Mλiλj)k

k! tk.

Therefore, a sufficient condition for the first estimate to hold is given by

Kγ0√
N
tk ≤ C0β

√
Mλiλj

n+ 2
γij√
N

(2(1− C0)β
√
Mλiλj)k

k! tk,

which implies that
√
M ≥ 1

βλiλj

(
Kγ0(n+ 2)k!

2kC0(1− C0)kγij

) 1
k+1

for every 0 ≤ k ≤ n− 1, which certainly holds by assumption.
(ii) We next observe that a sufficient condition to control the second term is given by F (t) = Ktn ≤

2C0β
√
Mλiλj

n+2 `ij(t) = G(t). An explicit computation shows that for every k ≤ n,

F (k)(t) = Kn(n− 1) · · · (n− k + 1)tn−k

and

G(k)(t) = C0β
√
Mλiλj

n+ 2
γij√
N

(
2(1− C0)β

√
Mλiλj

)k
exp(2(1− C0)β

√
Mλiλjt).

For k ≤ n− 1, it holds that F (k)(0) = 0 ≤ G(k)(0), and for k = n we have that

G(n)(t) =

(
β
√
Mλiλj

)n+1
γijC02n(1− C0)n

(n+ 2)
√
N

exp(2(1− C0)β
√
Mλiλjt)

&
2n(n+ 2)nγn+1

0
γn2C

n
0 (1− C0) exp((n+ 2)γ0N

1
2(n+1) t)

≥ Kn! = F (n)(t),
which gives the bound for the second term.

(iii) To bound the last term, we note from (6.10) that on the event ∩1≤k,`≤rA(k`),

2
∑

1≤k,`≤r

∫ t

0
|ak`(s)|ds ≤

2r2

1− C0
max

1≤k,`≤r
mk`(t) ≤

2r2

1− C0
max

1≤k,`≤r
uk`(t),

for t ≤ min1≤k,`≤r T (k`)
L0,β
∧min1≤k,`≤r T (k`)

ε ∧ T (11)
0 . Therefore a sufficient condition for the last

estimate is given by

2r2

1− C0
max

1≤k,`≤r
uk`(t) ≤

2C0β
√
Mλiλj

n+ 2 `ij(t),

which implies that
√
M ≥ 3r2(n+ 2)

C0(1− C0)βλiλjγij
max

1≤k,`≤r
{γk` exp(2β

√
M ((1 + C0)λkλ` − (1− C0)λiλj) t)},

for t ≤ min1≤k,`≤r T (k`)
L0,β
∧min1≤k,`≤r T (k`)

ε ∧ T (11)
0 . Since the right-hand side is increasing, the

maximum value of this function is attained at T (11)
0 . We therefore obtain that

√
M ≥ 3r2(n+ 2)γ1

C0(1− C0)βλiλjγij

(
2ε
√
N

γ11

) 1+C0
1−C0

−
λiλj

λ2
1
,

which holds by assumption.
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We therefore have that, on the event ∩1≤k,`≤rA(k`), min1≤k,`≤r T (k`)
ε ≤ min1≤k,`≤r T (k`)

L0,β
, so that

min
1≤k,`≤r

T (k`)
ε = T (11)

ε .
log(N)N

− 1
2

(
1+C0
1−C0

−λ
2
r
λ2

1

)
(n+ 2)γ0γ1

,

withQX -probability at least 1−K2 exp(−γ3
0γ1(n+2)N

1
2

(
1+C0
1−C0

−λ
2
r
λ2

1

)
/(K2 log(N))) and with P-probability

at least 1− exp(−KN).
Furthermore, on the event ∩1≤k,`≤rA(k`), we have from (6.11) that mij(T (11)

ε ) ≤ uij(T (11)
ε ). Since

the function uij is monotone increasing, we can upper bound mij(T (11)
ε ) by uij(T (11)

`,ε ). It therefore
follows from (6.11) and (6.12) that

uij(T (11)
`,ε ) = 3γij

2
√
N

exp
(

2(1 + C0)β
√
MλiλjT

(11)
`,ε

)
= C

(ij)
1 N

− 1
2

(
1− 1+C0

1−C0

λiλj

λ2
1

)
,

where C(ij)
1 = 3

2γij

(
2ε
γ11

) 1+C0
1−C0

λiλj

λ2
1 . Since C0 <

1
2 ∧

κ1
2+κ1

, we have that

1 + C0

1− C0

λiλj
λ2

1
= 1 + C0

1− C0

1∏i−1
k=1(1 + κk)

∏j−1
`=1(1 + κ`)

≤ 1 + C0

1− C0

1
1 + κ1

≤ 1.

Similarly, on the event ∩1≤k,`≤rA(k`), we have that mij(T (11)
ε ) ≥ `ij(T (11)

ε ). Since `ij is a monotone
increasing function, we can bound mij(T (11)

ε ) below by `ij(T (11)
u,ε ). It therefore follows from (6.11)

and (6.13) that

`ij(T (11)
u,ε ) = γij

2
√
N

exp
(

2(1− C0)β
√
MλiλjT

(11)
u,ε

)
= C

(ij)
2 N

− 1
2

(
1− 1−C0

1+C0

λiλj

λ2
1

)
,

where C(ij)
2 = γij

2

(
2ε

3γ11

) 1−C0
1+C0

λiλj

λ2
1 . This completes the proof of Lemma 6.3. �

Proof of Lemma 6.4. We show Lemma 6.4 for k = 1. We now assume that X0 ∈ E1(ε, C0). First,
we show that there is a sufficiently large threshold ε′ > ε such that when m11 reaches ε′, then the
correlations m1k and mk1 for 2 ≤ k ≤ r begin to decrease. Moreover, we show that this occurs before
m1k and mk1 are too large to result in a decrease in mij for every 2 ≤ i, j ≤ r. Subsequently, we show
that m1k and mk1 decrease below a certain threshold, allowing m22 to become macroscopic.

Step 1: Evolution of m11(t) for t ≤ T (11)
ε′ for every ε′ > ε. Let ε′ ∈ (ε, 1). For every i, j 6= 1 and

δ > 0, we consider the stopping times T (1j)

N−
δ

(1)
1j −δ

2

, T (i1)

N−
δ

(1)
i1 −δ

2

and T (ij)

N−
δ

(1)
ij
−δ

2

which represent the required

time for m1j ,mi1 and mij to change scale in N . We then see that

Lβm11(t) ≥ −‖L0,βm11‖∞ + 2β
√
Mλ2

1m11(t)
(

1−m2
11(t)− (r2 − 1) max

2≤i,j≤r
{mi1(t)m1j(t)}

)
≥ −‖L0,βm11‖∞ + 2β

√
Mλ2

1m11(t)
(

1−m2
11(t)− (r2 − 1)N−(δ12−δ)

)
≥ −‖L0,βm11‖∞ + β

√
Mλ2

1m11(t)
(
1−m2

11(t)
)
,

for every t ≤ T (11)
ε′ ∧T (11)

ε/2 ∧min2≤i,j≤r

T (1j)

N−
δ

(1)
1j −δ

2

∧ T (i1)

N−
δ

(1)
i1 −δ

2

∧ T (ij)

N−
δ

(1)
ij
−δ

2

, where the last inequality

holds provided N >
(

2(r2−1)
1−(ε′)2

) 1
δ

(1)
12 −δ . Therefore, we have that

Lβm11(t) ≥ −Λ + β
√
Mλ2

1m11(t)(1−m2
11(t)) ≥ 1

2β
√
Mλ2

1m11(t)(1−m2
11(t)) > 0,
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with P-probability at least 1 − exp(−KN), provided
√
M ≥ 2Λ

βλ2
1m11(t)(1−m2

11(t)) , which certainly holds
by assumption. Recalling that

m11(t) = m11(0) +Mm11
t +

∫ t

0
Lβm11(s)ds,

we obtain the integral inequality given by

m11(t) ≥ ε

2 + 1
2β
√
Mλ2

1

∫ t

0
m11(s)(1−m2

11(s))ds, (6.15)

for every t ≤ T (11)
ε′ ∧ T (11)

ε/2 ∧min2≤i,j≤r

T (1j)

N−
δ

(1)
1j −δ

2

∧ T (i1)

N−
δ

(1)
i1 −δ

2

∧ T (ij)

N−
δ

(1)
ij
−δ

2

, with QX -probability at

least 1 − K1 exp
(
−ε2N/(4K1(T (11)

ε′ ∧ T (11)
ε/2 ))

)
and with P-probability at least 1 − exp(−KN). Since

the function x 7→ x(1− x2) is locally Lipschitz on (ε,∞) for every ε > 0, we have that the equation{
ḟ = af(1− f2)
f(0) = b

,

admits as unique solution f(t) = eat
(
e2at + 1

b2 − 1
)− 1

2 . It then follows from (6.15) that

m11(t) ≥ exp(β
√
Mλ2

1t/2)√
exp(β

√
Mλ2

1t) + 4
ε2 − 1

,

for every t ≤ T (11)
ε′ ∧ T (11)

ε/2 ∧ min2≤i,j≤r

T (1j)

N−
δ

(1)
1j −δ

2

∧ T (i1)

N−
δ

(1)
i1 −δ

2

∧ T (ij)

N−
δ

(1)
ij
−δ

2

 and we deduce that

T (11)
ε′ ≤ T (11)

ε/2 . Moreover, we have the following estimate for T (11)
ε′ , namely

T (11)
ε′ ≤ 1

β
√
Mλ2

1
log
(

(ε′)2

1− (ε′)2
4− ε2

ε2

)
, (6.16)

with QX -probability at least 1 − K1 exp
(
−ε2N/(4K1T (11)

ε′ )
)

and with P-probability at least 1 −
exp(−KN).

Step 2: Evolution of mi1(t), m1j(t) and mij(t) for every t ≤ T (11)
ε′ . We first consider the

correlations mi1 and m1j for i, j 6= 1 and observe that

Lβmi1(t) ≤ ‖L0,βmi1‖∞ + 2β
√
Mλ1λimi1(t)− β

√
M

∑
1≤k,`≤r

λk(λ1 + λ`)mk1(t)mi`(t)mk`(t)

≤ Λ + 2β
√
Mλ1

(
λi − λ1m

2
11(t)

)
mi1(t),

and similarly,

Lβm1j(t) ≤ ‖L0,βm1j‖∞ + 2β
√
Mλ1λjm1j(t)− β

√
M

∑
1≤k,`≤r

λk(λj + λ`)mkj(t)m1`(t)mk`(t)

≤ Λ + β
√
Mλ1

(
2λj − (λ1 + λj)m2

11(t)
)
m1j(t),

for every t ≤ T (11)
ε′ ∧min2≤i,j≤r

T (1j)

N−
δ

(1)
1j −δ

2

∧ T (i1)

N−
δ

(1)
i1 −δ

2

∧ T (ij)

N−
δ

(1)
ij
−δ

2

, with P-probability at least 1−

exp(−KN). We then note that the correlation mi1 starts decreasing as soon as

m2
11 >

λi
λ1

= 1∏i−1
`=1(1 + κ`)

,
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so that as m2
11 exceeds 1

1+κ1
, all correlations m21, . . . ,mr1 are decreasing. In the same way, we see that

the correlation m1j starts decreasing as soon as

m2
11 >

2λj
λ1 + λj

= 2
1 +

∏j−1
`=1(1 + κ`)

,

so that the condition m2
11 >

2
2+κ1

ensures that m12, . . . ,m1r are decreasing. Since 1
1+κ1

< 2
2+κ1

, we
have that as soon as m2

11 = 2
2+κ1

+ ω for 0 < ω < κ1
2+κ1

, all correlations mi1 and m1j are decreasing.
Without loss of generality, we may assume that ω = 1

2
κ1

2+κ1
, and we set

(ε′)2 = 4 + κ1

2(2 + κ1) .

According to (6.16), we have that

T (11)
ε′ ≤ 1

β
√
Mλ2

1
log
(

4 + κ1

κ1

4− ε2

ε2

)
. N

− 1
2

(
1+C0
1−C0

−λ
2
r
λ2

1

)
log
(

4 + κ1

κ1

4− ε2

ε2

)
,

with QX -probability at least 1 − K2 exp
(
−ε2N/(4K2T (11)

ε′ )
)

and with P-probability at least 1 −

exp(−KN). Since T (11)
ε′ is of order 1, the correlations m1i and mi1 do not change scales during this

interval (as it requires a time of order log(N) to do so) so that they are still upper bounded in a scale

N−
δ

(1)
1i
2 .

It remains to consider the evolution of the correlations mij for 2 ≤ i, j ≤ r during [0, T (11)
ε′ ]. We aim

to show that during this interval the functions mij remain increasing. To carry out this analysis, we let
T

(ij)
1 denote the hitting time for the set{

X : 2r2λ2
1m11(X)mi1(X)m1j(X) > C0λiλjmij(X)

}
.

Our goal is to show that T (11)
ε′ ≤ min2≤k,`≤r T

(k`)
1 . To this end, we first observe that

Lβmij(t) ≥ −‖L0,βmij‖∞ + 2β
√
Mλiλjmij(t)− β

√
M

∑
1≤k,`≤r

λk(λj + λ`)mkj(t)mi`(t)mk`(t)

≥ −Λ + 2β
√
Mλiλjmij(t)− 2r2β

√
Mλ2

1m1j(t)mi1(t)m11(t)

≥ 2(1− C0)β
√
Mλiλjmij(t),

for every t ≤ T (11)
ε′ ∧ T (ij)

1 , with P-probability at least 1 − exp(−KN), provided
√
M ≥ Λ

C0βλiλjmij(t) ,
which certainly holds by assumption. From this, we obtain that

mij(t) ≥ mij(0) +M
mij
t + 2(1− C0)β

√
Mλiλj

∫ t

0
mij(s)ds

≥ N−
ξ

(1)
ij
2

2 + 2(1− C0)β
√
Mλiλj

∫ t

0
mij(s)ds

≥ N−
ξ

(1)
ij
2

2 exp
(

2(1− C0)β
√
Mλiλjt

)
,

for every t ≤ T (11)
ε′ ∧ T (ij)

1 , with QX -probability at least 1 −K2 exp(−N
1−C0
1+C0

λiλj

λ2
1 /4K2T (11)

ε′ ) and with
P-probability at least 1 − exp(−KN), where the last inequality follows from item (d) of Lemma 4.11.
We denote by `ij the function given by

`ij(t) = N−
ξ

(1)
ij
2

2 exp
(

2(1− C0)β
√
Mλiλjt

)
.

Furthermore, we always have the brutal upper bound on the generator Lβmij , i.e., for every i, j ∈ [r]
and t ≥ 0 it holds that

Lβmij(t) ≤ Λ + 2β
√
Mλiλjmij(t) ≤ 2(1 + C0)β

√
Mλiλjmij(t),
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with P-probability at least 1− exp(−KN). Therefore, we find that

mij(t) ≤
mij(0)

2 + 2(1 + C0)β
√
Mλiλj

∫ t

0
mij(s)ds ≤

mij(0)
2 exp

(
2(1 + C0)β

√
Mλiλjt

)
,

for t ≤ T (11)
ε′ ∧ T (ij)

1 , with QX -probability at least 1 − K2 exp(−mij(0)2N/(4K2T (11)
ε′ )) and with P-

probability at least 1− exp(−KN). We denote by uij the function given by

uij(t) = mij(0)
2 exp

(
2(1 + C0)β

√
Mλiλjt

)
.

A sufficient condition to show that T (11)
ε′ ≤ min2≤k,`≤r T

(k`)
1 is therefore given by T (11)

ε′ ≤ min2≤k,`≤r T̃
(k`)
1 ,

where T̃ (ij)
1 denotes the hitting time for the set{

X : 2r2λ2
1u11(X)ui1(X)u1j(X) > C0λiλj`ij(X)

}
.

The inequality defining the above event can be written as

2r2λ2
1ε
′N
−δ(1)

1i /2

2
N−δ

(1)
1j /2

2 e2(1+C0)β
√
Mλ1(λi+λj)t > C0λiλj

N−ξ
(1)
ij
/2

2 e2(1−C0)β
√
Mλiλjt,

yielding an explicit expression for T̃ (ij)
1 , i.e.,

T̃
(ij)
1 =

1
2

(
δ

(1)
1i + δ

(1)
1j − ξ

(1)
ij

)
log(N) + log(C0λiλj/(r2ε′λ2

1))

2β
√
M ((1 + C0)λ1(λi + λj)− (1− C0)λiλj)

.

We note that the term δ
(1)
1i + δ

(1)
1j − ξ

(1)
ij , which is given by

δ
(1)
1i + δ

(1)
1j − ξ

(1)
ij = 1 + 1− C0

1 + C0

λiλj
λ2

1
− 1 + C0

1− C0

λi + λj
λ1

,

is positive, provided C0 sufficiently small. In particular, if κ = min1≤i≤r−1 κi is sufficiently large then
we can easily found C0 < 1

2 ∧
κ

1+κ such that δ(1)
1i + δ

(1)
1j − ξ

(1)
ij > 0. Otherwise, we need to take C0

sufficiently close to zero. Therefore, we can find c0 = c0(κ) such that for every C0 < c0 the quantity
δ

(1)
1i + δ

(1)
1j − ξ

(1)
ij is in (0, 1). In addition, we see that T̃ (22)

1 = min2≤k,`≤r T̃
(k`)
1 . A sufficient condition for

T (11)
ε′ ≤ min2≤k,`≤r T̃

(k`)
1 is given by

log(N) ≥ 4
2δ(1)

12 − ξ
(1)
22

1
(1 + κ1)2 (2(1 + C0)(1 + κ1)− (1− C0)) log

(
4 + κ1

κ1

4− ε2

ε2

)
,

and we can take

log(N) & 4
1 + κ1

log
(

4 + κ1

κ1

4− ε2

ε2

)
.

Under this condition, we have that T (11)
ε′ ≤ T̃

(ij)
1 ≤ T

(ij)
1 for all 2 ≤ i, j ≤ r with QX -probability at

least

1− (r − 1)2K2 exp
(
−N

1−C0
1+C0

λ2
2
λ2

1 /(4K2T (11)
ε′ )

)
− 2(r − 1)K2 exp

(
−N

1+C0
1−C0

λ2
λ1 /(4K2T (11)

ε′ )
)

and with P-probability at least 1− exp(−KN). We deduce that mij does not become decreasing during

[0, T (11)
ε′ ] and remains at least of order N−

ξ
(1)
ij
2 .

Step 3: Evolution of all mij(t) for T (11)
ε′ ≤ t ≤ TE2 . The last step focuses on the evolution of the

correlations mij during the time interval T (11)
ε′ ≤ t ≤ TE2 , where we remind that (ε′)2 = 4+κ1

2(2+κ1) .

We start with the correlation m11(t) and note that for every T (11)
ε′ ≤ t ≤ T (11)

ε′/2 ∧ T
(11)

1−ε , it holds that

Lβm11(t) ≥ −‖L0,βm11‖∞ + 2β
√
Mλ2

1m11(t)
(
1− r2m2

11(t)
)
.

We can then proceed using Lemma 6.2 to show that m11 reaches 1 − ε with QX -probability at least
1−K2 exp(−Nε2/(K2T (11)

1−ε )) and with P-probability at least 1− exp(−KN).
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We next focus on m1i(t) and mi1(t), and observe that for every T (11)
ε′ ≤ t ≤ TE2 , it holds that

Lβmi1(t) ≤ ‖L0,βmi1‖∞ − 2β
√
Mλ2

1
κ1

2 + κ1
mi1(t) ≤ −β

√
Mλ2

1
κ1

2 + κ1
mi1(t),

with P-probability at least 1 − exp(−KN), provided
√
M ≥ Λ(2+κ1)

βλ2
1κ1mi1(t) , which certainly holds since

√
M & N

ξ
(1)
rr
2 . By Grönwall’s inequality it then follows that

mi1(t) ≤ 1
2mi1(T (11)

ε′ )− κ1

2 + κ1
β
√
Mλ2

1

∫ t

T (11)
ε′

mi1(s)ds

≤ 1
2mi1(T (11)

ε′ )e−
κ1

2+κ1
β
√
Mλ2

1(t−T (11)
ε′

)

≤ N−
δ

(1)
1i
2

2 e−
κ1

2+κ1
β
√
Mλ2

1(t−T (11)
ε′

),

with QX -probability at least 1 − K3 exp
(
−N

1+C0
1−C0

λ2
λ1 /(4K3TE2)

)
and with P-probability at least 1 −

exp(−KN). This shows that the correlations mi1 descend to a value of order N−
ξ

(1)
rr
2 in a time of order

(ξ(1)
rr −δ

(1)
i1 )(2+κ1)

2κ1β
√
Mλ2

1
log(N).

We finally look at the correlations mij for 2 ≤ i, j ≤ r and show that m22 is the second correlation
to become macroscopic. We see that

Lβmij(t) ≥ −Λ + 2β
√
Mλiλjmij(t)− β

√
M

∑
1≤k,`≤r

λk(λj + λ`)mkj(t)mi`(t)mk`(t)

≥ −Λ + 2β
√
Mλiλjmij(t)− 2r2β

√
Mλ2

1m1j(t)mi1(t)m11(t)

≥ −Λ + 2β
√
M
(
λiλjmij(t)− r2λ2

1(1− ε)N−δrr
)

≥ 2(1− C0)β
√
Mλiλjmij(t).

By Grönwall’s inequality (i.e., Lemma 4.11) we have that

N−ξ
(1)
ij
/2

2 exp(2(1− C0)β
√
Mλiλjt) ≤ mij(t) ≤

N−δ
(1)
ij
/2

2 exp(2(1 + C0)β
√
Mλiλjt),

with high QX - and P-probability. It then follows that

T (22)
ε ≤ log(2εNξ

(1)
22 /2)

2(1− C0)β
√
Mλ2

2
.

Moreover, we see that for every i, j 6= 1, (i, j) 6= (2, 2),

mij(T (22)
ε ) ≤ N−δ

(1)
ij
/2

2

(
2εNξ

(1)
22 /2

) 1+C0
1−C0

λiλj

λ2
2 . N−

1
2 δ

(2)
ij ,

and similarly

mij(T (22)
ε ) ≥ N−ξ

(1)
ij
/2

2

(
2εN δ

(1)
22 /2

) 1−C0
1+C0

λiλj

λ2
2 & N−

1
2 ξ

(2)
ij .

This completes the proof of Lemma 6.4 for k = 1. We proceed analogously for k ≥ 2. �

7. Proofs for p = 2 and equal SNRs

This section is devoted to the proof of Proposition 3.10. We recall that when p = 2 and the SNRs
are all equal, the problem becomes isotropic. Consequently, we focus on the recovery of the eigenvalues
θ1, . . . , θr of G = M>M under Langevin dynamics. We refer to Subsection 4.2 of Section 4 for details
on the evolution equations for the matrix-valued function G.

To prove Proposition 3.10, we first show that weak recovery of the largest eigenvalue θmax of G is
achieved, provided a number of samples of order 1.
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Lemma 7.1. Let β ∈ (0,∞), p = 2, and λ1 = · · · = λr ≡ λ > 0. Consider a sequence of initializations
µ0 ∈ P(MN,r). For every ε > 0 and every C0 ∈ (0, 1

r ) we define the set E = E(ε, C0) by

E(ε, C0) =
{

X : θmax(X) ≥ ε and θmin(X) & N−
2C0r

1+C0r
}
,

where θi denotes the ith eigenvalue of G. We let TE denote the hitting time of E = E(ε, C0). Then, the
following holds: For every n ≥ 1, γ0 > 0, γ1 > γ2 > 0, there exists ε0 > 0 and c0 ∈ (0, 1

3r ) such that for

every ε < ε0, C0 < c0,
√
M & (n+2)γ2

0γ1
βC0λ2γ2

N
1

2(n+1)∨
2C0r

1−C0r ,∫
MN,r

QX

TE & log(N)N−
(

1
2(n+1)∨

2C0r
1−C0r

)
(n+ 2)γ2

0γ1

1{C0(n, γ0) ∩ C′1(γ1, γ2)}dµ0(X)

. K1e
−γ1γ

4
0 (n+2)N

1
2(n+1)∨

2C0r
1−C0r /(K1 log(N)) +K2e

−γ2
0γ2(n+2)N

1
2(n+1)∨

2C0r
1−C0r /K2 ,

with P-probability at least 1− exp (−KN).

Proof. We let A0 = A0(n, γ0, γ1, γ2) denote the initial event given by

A0(n, γ0, γ1, γ2) = {X0 ∼ µ : X0 ∈ C0(n, γ0) ∩ C′1(γ1, γ2)}
We note that on C′1(γ1, γ2), for every i ∈ [r] there exists γii ∈ (γ2, γ1) such that θi(0) = γiiN

−1.
Moreover, for γ > 0 and T0 > 0 to be chosen later, we also define the event A = A(n, γ0, γ1, γ2, γ, T0)
by

A = A0(n, γ0, γ1, γ2) ∩
{

sup
t∈[0,T0]

‖MG
t ‖op ≤

γ√
N
f(T0)1/2

}
,

for some positive, monotone increasing function f to be determined later such that f(t) ≥
∫ t

0‖M(s)‖2op
for every t ∈ [0, T0]. We then introduce the hitting time TG for the set{

t : ‖MG
t ‖op > min

1≤i≤r
2C0rβ

√
Mλ2

∫ t

0
θi(s)ds

}
,

for some C0 ∈ (0, 1
2r ). We note that since ‖MG

0 ‖op = 0, we have that TG > 0. We also introduce the
hitting time TL0,β for the set{

X : ‖L0,βG(X)‖op > 2C0β
√
Mλ2θmin(X)

}
.

According to (4.14) we have the bound

‖L0,βG‖op ≤ 2‖M‖op‖L0,βM‖op + 2r
N

+ 2
N
‖G‖op, (7.1)

so that under the event A,

‖L0,βG(X0)‖op ≤ 2r max
1≤i,j≤r

|mij(X0)| max
1≤i,j≤r

|L0,βmij(X0)|+ 2r
N

+ 2r
N

r∑
k=1

max
1≤i,j≤r

|mki(X0)mkj(X0)|

≤ 2r2γ2
0

N
+ 2r
N

+ 2r2γ2
0

N

≤ 2C0β
√
Mλ2 γ2

N
,

provided
√
M & rγ2

0
C0βλ2γ2

which certainly holds by assumption. This implies that TL0,β > 0.
For every ε > 0, we then let T (i)

ε denote the hitting time for the set {X : θi(X) ≥ ε}. We recall the
evolution equation for G under Langevin dynamics given by Corollary 4.9, i.e.,

G(t) = G(0) +MG
t +

∫ t

0
L0,βG(s)ds+

∫ t

0
L̂βG(s)ds,

where L̂βG satisfies L̂βG = 4β
√
Mλ2G(Ir − G). For all t ≥ 0 and i ∈ [r], we obtain by Weyl’s

inequality that∣∣∣∣θi (t)− µi
(

G(0) + 4β
√
Mλ2

∫ t

0
G(s)(Ir −G(s))ds

)∣∣∣∣ ≤ ‖MG
t +

∫ t

0
L0,βG(s)‖opds,
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where µi(A) stands for the ith eigenvalue of A.Moreover, by the triangle inequality and the fact that
‖
∫ t

0 L0,βG(s)ds‖op ≤ r
∫ t

0‖L0,βG(s)‖opds it then follows that∣∣∣∣θi (t)− µi
(

G(0) + 4β
√
Mλ2

∫ t

0
G(s)(Ir −G(s))ds

)∣∣∣∣ ≤ ‖MG
t ‖op + r

∫ t

0
‖L0,βG(s)‖opds.

According to Lemma 4.13, we then have that

θi(t) ≤ θi(0) + 4β
√
Mλ2

∫ t

0

(
θmax(s)− θ2

min(s)
)
ds+ ‖MG

t ‖op + r

∫ t

0
‖L0,βG(s)‖opds,

θi(t) ≥ θi(0) + 4β
√
Mλ2

∫ t

0

(
θmin(s)− θ2

max(s)
)
ds− ‖MG

t ‖op − r
∫ t

0
‖L0,βG(s)‖opds,

for all t ≥ 0 and i ∈ [r]. Then, on the event A, for every i ∈ [r] we have that

γii
N

+ 4(1− C0r)β
√
Mλ2

∫ t

0
θmin(s)ds ≤ θi(t) ≤

γii
N

+ 4(1 + C0r)β
√
Mλ2

∫ t

0
θmax(s)ds, (7.2)

for all t ≤ TL0,β∧TG∧min1≤i≤r T (i)
ε . Given the integral inequality (7.2) we then obtain from Lemma 4.11

the following comparison inequality,

`(t) ≤ θmin(t) ≤ θi(t) ≤ θmax(t) ≤ u(t), (7.3)

for every i ∈ [r] and every t ≤ TL0,β ∧ TG ∧min1≤i≤r T (i)
ε , where the functions ` and u are given by

`(t) = γ2

N
exp(4(1− C0r)β

√
Mλ2t),

u(t) = γ1

N
exp(4(1 + C0r)β

√
Mλ2t).

We then let T`,ε denote the time such that `(T`,ε) = ε, i.e.,

T`,ε = log(N)− log(γ2/ε)
4β
√
Mλ2(1− C0r)

.

Similarly, we let Tu,ε be such that u(Tu,ε) = ε, i.e.,

Tu,ε = log(N)− log(γ1/ε)
4β
√
Mλ2(1 + C0r)

.

We note that on the event A, Tu,ε ≤ T (i)
ε ≤ T`,ε for every i ∈ [r]. Moreover, since the functions ` and u

are monotone increasing, we can bound θi(min1≤j≤r T (j)
ε ) for every i ∈ [r] by

γ2

(
ε

γ1

) 1−C0r
1+C0r

N−
2C0r

1+C0r = ` (Tu,ε) ≤ θi
(

min
1≤j≤r

T (j)
ε

)
≤ u (T`,ε) = γ1

(
ε

γ2

) 1+C0r
1−C0r

N
2C0r

1−C0r .

In the following, we choose T0 = T`,ε.
Now, we wish to show that on the event A, TG ∧ TL0,β ≥ min1≤i≤r T (i)

ε . We first show that on the
event A, TL0,β ∧min1≤i≤r T (i)

ε ∧ T0 ≤ TG. We observe that

‖M‖2op = ‖M>M‖op = θmax,

so that from (7.3) we have that∫ t

0
‖M(s)‖2opds ≤

γ1

N

∫ t

0
e4(1+C0r)β

√
Mλ2sds = γ1

N

e4(1+C0r)β
√
Mλ2t − 1

4(1 + C0r)β
√
Mλ2

,

for every t ≤ TL0,β ∧ TG ∧ min1≤i≤r T (i)
ε . In particular, the function f(t) = γ1

N
e4(1+C0r)β

√
Mλ2t−1

4(1+C0r)β
√
Mλ2 is

non-negative, monotone increasing for all t > 0, and bounds
∫ t

0‖M(s)‖2opds by above for every t ≤
TL0,β ∧ TG ∧min1≤i≤r T (i)

ε . In order to prove that on the event A, TL0,β ∧min1≤i≤r T (i)
ε ∧ T0 ≤ TG, it

suffices to show that there is γ > 0 such that
γ√
N

√
f(t) ≤ γ2C0r

2(1− C0r)N

(
e4(1−C0r)β

√
Mλ2t − 1

)
, (7.4)
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for every t ≤ TL0,β ∧TG ∧min1≤i≤r T (i)
ε ∧ T0. Indeed, according to the comparison inequality (7.3), the

right-hand side of (7.4) is a lower bound for the desired quantity, i.e.,

γ2C0r

2(1− C0r)N

(
e4(1−C0r)β

√
Mλ2t − 1

)
= 2C0rβ

√
Mλ2 γ2

N

∫ t

0
e4(1−C0r)β

√
Mλ2sds

≤ 2C0rβ
√
Mλ2

∫ t

0
θmin(s)ds,

for every t ≤ TL0,β ∧ TG ∧ min1≤i≤r T (i)
ε . It is easily noticed that (7.4) is verified at t = 0 for every

γ > 0. Moreover, the inequality (7.4) holds at t = T0, provided C0r ≤ 1/3 and

γ2 ≤ γ2
2C

2
0r

2β
√
Mλ2

γ1
.

Since both sides of (7.4) are increasing functions and the inequality is satisfied at t = 0 and at t = T0,
the estimate (7.4) holds for every t ≤ TL0,β ∧ TG ∧ min1≤i≤r T (i)

ε ∧ T0. This implies that TL0,β ∧
min1≤i≤r T (i)

ε ∧ T0 ≤ TG, provided C0r ≤ 1/3 and γ2 ≤ γ2
2C

2
0r

2β
√
Mλ2

γ1
.

Next, we show that TL0,β ≥ min1≤i≤r T (i)
ε ∧ T0. To this end, we wish to apply the bounding flow

method in order to estimate the operator norm ‖L0,βG‖op. We first recall from (7.1) that

‖L0,βG‖op ≤ 2‖M‖op‖L0,βM‖op + 2r
N

+ 2
N
‖G‖op.

Since ‖M‖2op = θmax(G), we can bound ‖M‖op via (7.3). Moreover, we will use the bound ‖G‖op ≤
r2 max1≤i,j,k≤r |mkimkj | ≤ r2 for the last term. It remains to bound ‖L0,βM‖op and for this purpose
we will use Lemma 4.4 with a different control on the last term. We direct the reader to the proof
of Lemma 6.1 for more details on the application of Lemma 4.4. We now consider condition (4) of
Lemma 4.4. Since we do not have comparison inequalities for the mij , in order to verify item (4) of
Lemma 4.4 we need to relate the control of the drift part of the expansion in Lemma 4.4 to the quantity
‖M‖op. Recall the expression for the third term in the expansion (4.5) which is bounded by∑

1≤i,j≤r

n∑
k=1

∫ t

0
· · ·
∫ tk−1

0
|aij(tk)|dtk · · · dt1 = 2β

√
Mλ2

n∑
k=1

∫ t

0
· · ·
∫ tk−1

0
‖M(tk)‖`1dtk · · · dt1

≤ 2β
√
Mλ2r3/2

n∑
k=1

∫ t

0
· · ·
∫ tk−1

0
‖M(tk)‖opdtk · · · dt1,

where we used that aij(s) = 2β
√
Mλ2mij(s) and we used the equivalence of norms ‖M‖`1 ≤ r3/2‖M‖op

(see e.g. [32]). Our goal is therefore to prove that∫ t

0
‖M(s)‖opds ≤ ε‖M(t)‖op, (7.5)

for some ε ∈ (0, 1), ensuring that the third term in the expansion (4.5) is bounded by

2β
√
Mλ2r3/2

n∑
k=1

∫ t

0
· · ·
∫ tk−1

0
‖M(tk)‖opdtk · · · dt1 ≤ 2β

√
Mλ2r3/2

n∑
k=1

εk−1
∫ t

0
‖M(s)‖opds

≤ 2β
√
Mλ2r3/2 1

1− ε

∫ t

0
‖M(s)‖opds.

A sufficient condition for (7.5) to hold is given by√
γ1

N

e2(1+C0r)β
√
Mλ2t − 1

2(1 + C0r)β
√
Mλ2

≤ ε
√
γ2

N
e2(1−C0r)β

√
Mλ2t,

for every t ≤ TL0,β ∧min1≤i≤r T (i)
ε ∧ T0, where we used (7.3). The above inequality is easily verified at

t = 0 and holds at t = T0 with ε = 1/2, provided
√
M &

√
γ1

βλ2√γ2
N

C0r
1−C0r , which holds by assumption.
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We therefore have according to Lemma 4.4 that on the event A,

‖L0,βM(t)‖op ≤ r max
1≤i,j≤r

|L0,βmij(t)| ≤ Kr
(
γ0√
N

n−1∑
k=1

tk + tn + 4β
√
Mλ2r3/2

∫ t

0
‖M(s)‖opds

)
,

for every t ≤ TL0,β ∧min1≤i≤r T (i)
ε ∧T0, with QX -probability at least 1−K2 exp(−γ2

0/(K2T0)) and with
P-probability at least 1− exp(−KN). From this we obtain that, on the event A,

‖L0,βG(t)‖op ≤ 2Kr‖M(t)‖op

(
γ0√
N

n−1∑
k=1

tk + tn + 4β
√
Mλ2r3/2

∫ t

0
‖M(s)‖opds

)
+ 2r
N

+ 2r2

N
, (7.6)

for every t ≤ TL0,β ∧min1≤i≤r T (i)
ε ∧T0, with QX -probability at least 1−K2 exp(−γ2

0/(K2T0)) and with
P-probability at least 1 − exp(−KN). In order to deduce that TL0,β ≥ min1≤i≤r T (i)

ε ∧ T0, it suffices
to show that each term in the right-hand-side of (7.6) is bounded above by 2C0β

√
Mλ2

n+2 θmin(t) for all
t ≤ TL0,β ∧min1≤i≤r T (i)

ε ∧ T0. The reasoning is similar to the one used for the proof of Lemma 6.1.
(i) We first see that according to the lower bound in (7.3), we have that

2C0β
√
Mλ2

n+ 2 θmin(t) ≥ 2C0β
√
Mλ2

n+ 2
γ2

N
exp(4(1− C0r)β

√
Mλ2t),

for t ≤ TL0,β ∧ min1≤i≤r T (i)
ε ∧ T0. Similarly, according to the upper bound in (7.3), we have

that
‖M(t)‖op =

√
θmax(t) ≤

√
γ1√
N

exp(2(1 + C0r)β
√
Mλ2t),

for every t ≤ TL0,β ∧ min1≤i≤r T (i)
ε ∧ T0. Therefore, a sufficient condition for the first term is

given by

2Kr γ0√
N

√
γ1√
N
tke2(1+C0r)β

√
Mλ2t + 2r(r + 1)

N
≤ 2C0β

√
Mλ2

n+ 2
γ2

N
e4(1−C0r)β

√
Mλ2t,

for every 0 ≤ k ≤ n−1. We observe that the inequality holds at t = 0. For t > 0 it is equivalent
to verify that

C0β
√
Mλ2γ2

n+ 2 e2(1−3C0r)β
√
Mλ2t ≥ Crγ0

√
γ1t

k,

for some constant C which may depend on r. We then see that for every 0 ≤ k ≤ n− 1,
C0β
√
Mλ2γ2

n+ 2 e2(1−3C0r)β
√
Mλ2t & γ0γ1rN

1
2(n+1)∨

2C0r
1−C0r e2(1−3C0r)(n+2)γ0γ1rt

& (n+ 2)k t
k

k!γ
k+1
0 γk+1

1 rk+1N
1

2(n+1)∨
2C0r

1−C0r

& rγ0
√
γ1t

k,

where the first inequality follows by assumption on
√
M . This ensures that the first term is

controlled as desired for every t ≤ TL0,β ∧min1≤i≤r T (i)
ε ∧ T0 and every 0 ≤ k ≤ n− 1.

(ii) Similar to item (i), a sufficient condition for the second term is given by

2Kr
√
γ1√
N
tne2(1+C0r)β

√
Mλ2t + 2r(r + 1)

N
≤ 2C0β

√
Mλ2

n+ 2
γ2

N
e4(1−C0r)β

√
Mλ2t,

for all t ≤ TL0,β ∧min1≤i≤r T (i)
ε ∧ T0. The bound holds at t = 0 and for t > 0 it is equivalent

to verify that
C0β
√
Mλ2

n+ 2
γ2√
N
e2(1−3C0r)β

√
Mλ2t ≥ Cr√γ1t

n,

for some constant C which may depend on r. Proceeding as done in the proof of Lemma 6.1 to
verify item (ii), gives that the control holds provided

√
M &

(r√γ1(n+ 2))
1

n+1

βλ2C
1

n+1
0 γ

1
n+1
2

N
1

2(n+1) ,
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which holds by assumption.
(iii) Finally, we wish to show that

8Kr5/2β
√
Mλ2‖M(t)‖op

∫ t

0
‖M(s)‖opds+ 2r(r + 1)

N
≤ 2C0β

√
Mλ2

n+ 2 θmin(t),

for every t ≤ TL0,β ∧min1≤i≤r T (i)
ε ∧ T0. To this end, a sufficient condition is given by

4Kr5/2 γ1

N
e2(1+C0r)β

√
Mλ2t e

2(1+C0r)β
√
Mλ2t − 1

1 + C0r
+ 2r(r + 1)

N
≤ 2C0β

√
Mλ2

n+ 2
γ2

N
e4(1−C0r)β

√
Mλ2t,

for every t ≤ TL0,β ∧min1≤i≤r T (i)
ε ∧ T0. We easily verify that the inequality holds at t = 0 and

at t = T0, provided
√
M &

r5/2γ1(n+ 2)
C0βλ2γ2

N
2C0r

1−C0r .

Therefore, we have that the third term is controlled for every t ≤ TL0,β ∧min1≤i≤r T (i)
ε ∧ T0.

We therefore have that on the event A, mini T (i)
ε ∧ T0 ≤ TL0,β with QX -probability at least 1 −

K2 exp(−γ2
0/(K2T0)) and with P-probability at least 1 − exp(−KN). In particular, under the event

C0(n, γ0) ∩ C′1(γ1, γ2) we have that

min
1≤i≤r

T (i)
ε ≤ T0 .

log(N)

(n+ 2)γ2
0γ1N

1
2(n+1)∨

2C0r
1−C0r

,

withQX -probability at least 1−K2 exp(−γ1γ
4
0(n+2)N

1
2(n+1)∨

2C0r
1−C0r /(K2 log(N)))−r(r+1) exp(−γ2/(4r2))

and with P-probability at least 1− exp(−KN). This completes the proof of Lemma 7.1. �

It remains to prove Proposition 3.10.

Proof of Proposition 3.10. We recall from Lemma 7.1 the set E(ε, C0) for every ε > 0 and C0 ∈
(0, 1

r ) given by

E(ε, C0) =
{

X : θmax(X) ≥ ε and θmin(X) & N−
2C0r

1+C0r
}
.

Moreover, TE denotes the hitting time of the set E = E(ε, C0). For every T > T0 &
log(N)

(n+2)γ2
0γ1N

1
2(n+1)∨

2C0r
1−C0r

,

we have by the strong Markov property that∫
MN,r

QX

(
inf

t∈[T0,T ]
θmin(Xβ

t ) ≥ 1− ε
)
dµ0(X)

≥ inf
X∈E(ε,C0)

QX

(
inf

t∈[T0,T ]
θmin(Xβ

t ) ≥ 1− ε
)
×
∫
MN,r

QX

(
TE .

log(N)

(n+ 2)γ2
0γ1N

1
2(n+1)∨

2C0r
1−C0r

)
dµ0(X).

We estimate the integral according to Lemma 7.1 since it holds that∫
MN,r

QX

(
TE &

log(N)

(n+ 2)γ2
0γ1N

1
2(n+1)∨

2C0r
1−C0r

)
dµ0(X)

≤ µ0(C0(n, γ0)c) + µ0(C′1(γ1, γ2)c)

+
∫
MN,r

QX

(
TE .

log(N)

(n+ 2)γ2
0γ1N

1
2(n+1)∨

2C0r
1−C0r

)
1{C0(n, γ0) ∩ C′1(γ1, γ2)}dµ0(X).

Therefore, it remains to estimate the probability of strong recovery of all eigenvalues starting from
X0 ∈ E(ε, C0). It follows from Corollary 4.9 and Weyl’s inequality that for every i ∈ [r],∣∣∣∣θi(t)− µi(G(0) + 4β

√
Mλ2

∫ t

0
G(s)(Ir −G(s))ds

)∣∣∣∣ ≤ ‖MG
t ‖op + r

∫ t

0
‖L0,βG(s)‖opds,
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where µi(A) stands for the ith eigenvalue of A. Now, for every ε′ > ε > 0 such that ε ≤ 1
2 , according

to Lemma 4.13 and especially to (4.18), we have that

µi

(
G(0) + 4β

√
Mλ2

∫ t

0
G(s)(Ir −G(s))ds

)
≥ θi(0) + 4β

√
Mλ2

∫ t

0
θmin(s) (1− θmin(s)) ds,

for every t ≤ T (max)
ε′ ∧ T (min)

ε . In particular, we assume that θmax ∈ (ε, ε′). We then obtain that

θmin(t) ≥ θmin(0) + 4β
√
Mλ2

∫ t

0
θmin(s)ds− ‖MG

t ‖op − r
∫ t

0
‖L0,βG(s)‖opds,

for t ≤ T (max)
ε′ ∧ T (min)

ε . According to (7.1), the operator norm of L0,βG is bounded by

‖L0,βG‖op ≤ 2‖M‖op‖L0,βM‖op + 2r
N

+ 2
N
‖G‖op ≤ 2r2 max

i,j
‖L0,βmij‖∞ + 2r(r + 1)

N
.

We recall from Lemma (4.3) that for every n ≥ 1, there exists a constant Λ = Λ(p, n, {λi}2i=1) such that
‖L0,∞mij‖∞ ≤ Λ with P-probability at least 1− exp(−KN). It then follows that

r

∫ t

0
‖L0,βG(s)‖opds ≤ 4C0rβ

√
Mλ2

∫ t

0
θmin(s)ds,

since

4C0rβ
√
Mλ2

∫ t

0
θmin(s)ds ≥ 4C0rβ

√
Mλ2tN−

2C0r
1+C0r

> 4rt(n+ 2)γ2
0γ1N

4C2
0r

2

1−C2
0r

2

> 2rt
(
r2Λ + r(r + 1)

N

)
≥ ‖L0,βG‖op.

Furthermore, since
∫ t

0‖M(s)‖2opds ≤ r2t, it follows from Lemma 4.10 with f(t) = r2t that

sup
X∈MN,r

QX

(
sup
t∈[0,T ]

‖MG
t ‖op ≥ γ

)
≤ r(r + 1)e−Nγ

2/(4r4T ).

Combining the above results yields

θmin(t) ≥ 1
2N
− 2C0r

1+C0r + 4(1− C0r)β
√
Mλ2

∫ t

0
θmin(s)ds,

for every t ≤ T (max)
ε′ ∧ T (min)

ε , with QX -probability at least 1 − r(r + 1) exp(−N1− 4C0r
1+C0r /(8r4T (min)

ε ))
and with P-probability at least 1− exp(−KN). Grönwall’s inequality from Lemma 4.11 implies that

θmin(t) ≥ 1
2N
− 2C0r

1+C0r exp(4(1− C0r)β
√
Mλ2t),

for every t ≤ T (max)
ε′ ∧ T (min)

ε , with QX -probability at least 1 − r(r + 1) exp(−N1− 4C0r
1+C0r /(8r4T (min)

ε ))
and with P-probability at least 1− exp(−KN). A simple computation shows that

T (min)
ε .

C2
0 log(N)

(n+ 2)γ2
0γ1N

1
2(n+1)∨

2C0r
1−C0r

.

Showing strong recovery of θmin from weak recovery is straightforward and we direct the reader to the
proof of Lemma 5.2. �

Appendix A. Concentration properties of the uniform measure on the Stiefel manifold

The concentration and anti-concentration properties of the uniform measure µN×r on MN,r were
studied in [5]. In particular, there we proved that µN×r satisfies both Conditions 1 and 2. We now need
to present that Condition 1 is satisfied for the eigenvalues.
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Lemma A.1. If X ∼ µN×r and G = M>M with M = 1
NV >X, then there exist constants C(r), C ′(r)

and c(r) > 0 such that for every t > 0,

µN×r

(
θmax(G) > r

N
+ t
)
≤ C(r) exp(−c(r)Nt),

and for every t ∈ (0, 1
2 ),

µN×r

(
θmin(G) < t

N

)
≤ C ′(r)

√
t+ C(r) exp

(
−c(r)N1/4t

)
.

Proof. Since M is a square matrix, it is equivalent to study the operator norm of MM>. Using the

characterization X = Z
(

1
NZ>Z

)−1/2
for X ∼ µN×r given by [22], we then have that

MM> =
(

1
N

V >Z

)(
1
N

Z>Z

)−1( 1
N

Z>V

)
.

We now introduce M̃ = 1√
N

V >Z and note that M̃ ∈ Rr×r has i.i.d. standard normal entries. We
therefore rewrite the previous identity as

MM> = 1
N

M̃M̃
> +

(
1
N

V >Z

)((
1
N

Z>Z

)−1
− Ir

)(
1
N

Z>V

)
.

In particular, we have that

µN×r

(
‖MM> − r

N
Ir‖op > t

)
= µN×r

(
‖ 1
N

M̃M̃
> − r

N
Ir + 1

N
(V >Z)

((
1
N

Z>Z

)−1
− Ir

)
1
N

(Z>V )‖op > t

)

≤ µN×r
(
‖ 1
N

M̃
>

M̃ − r

N
Ir‖op >

t

2

)
+ µN×r

(
‖ 1
N

(V >Z)
((

1
N

Z>Z

)−1
− Ir

)
1
N

(Z>V )‖op >
t

2

)

≤ µN×r
(
‖ 1
N

M̃
>

M̃ − r

N
Ir‖op >

t

2

)
+ µN×r

(
‖ 1
N

M̃
>

M̃‖op‖
(

1
N

Z>Z

)−1
− Ir‖op >

t

2

)
.

According to equation (A.1) in [5], we find that

µN×r

(
‖ 1
N

M̃
>

M̃ − r

N
Ir‖op >

t

2

)
= µN×r

(
‖1
r

M̃
>

M̃ − Ir‖op >
Nt

2r

)

≤ 2 exp

−r(1
c

(
Nt

2r

)1/2
− 1
)2
 ,

The remaining term is handled in a similar fashion to what is done in the proof of [5, Lemma A.1].
For the lower bound on the smallest eigenvalue of G, we first note that by Weyl’s inequality we have

that

θmin(G) ≥ λmin

(
1
N

M̃M̃
>
)
− λmax

((
1
N

V >Z

)((
1
N

Z>Z

)−1
− Ir

)(
1
N

Z>V

))
.

Letting a and b denote the two terms in the r.h.s. of the above expression, we have for every t > 0,

P
(
θmin(G) ≥ t

N

)
≥ P

(
a− b ≥ t

N

)
≥ P

(
a ≥ 2t

N
∩ b ≤ t

N

)
,

so that

P
(
θmin(G) < t

N

)
≤ P

(
a <

2t
N
∪ b > t

N

)
≤ P

(
a <

2t
N

)
+ P

(
b >

t

N

)
.

We first focus on P(a < 2t/N). The matrix M̃M̃
>

is a Wishart matrix, thus the distribution of its
smallest eigenvalue is given by Theorem 3.1 of [26]. If fθmin denotes its density function, for every
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t ∈ (0, 1), there exists a constant C ′(r) such that

fθmin(t) ≤ C ′(r) 1√
t
.

Therefore, for every t ∈ (0, 1/2) it follows that

P
(
λmin

(
1
N

M̃M̃
>
)
≤ 2t
N

)
≤ 2C ′(r)

√
t.

Turning to the second term P(b > t/N), we see that

λmax

((
1
N

V >Z

)((
1
N

Z>Z

)−1
− Ir

)(
1
N

Z>V

))

≤ ‖ 1
N

V >Z‖2op‖
(

1
N

Z>Z

)−1
‖op‖

1
N

Z>Z − Ir‖op.

For every t1, t2, t3 ≥ 0 we then have that

P
(
‖ 1
N

V >Z‖2op > t1

)
= P

(
‖ 1
N

V >Z‖op >
√
t1

)
≤ 2 exp

(
−
(√

t1N

C
− 2
√
r

)2)
,

P

(
‖
(

1
N

Z>Z

)−1
‖op >

1
t2

)
≤ 2 exp

−(√N
C

(1− t2)−
√
r

)2
 ,

P
(
‖ 1
N

Z>Z − Ir‖op >
√
t3

)
≤ 2 exp

(
−
(√

t3N

C
−
√
r

)2)
.

Choosing t1 =
√
t√

2N3/4 ,
√
t3 =

√
t√

2N1/4 and t2 = 1
2 , we deduce that there exist constants C(r), c(r) such

that
P (b > t/N) ≤ C(r) exp

(
−c(r)N1/4t

)
.

This completes the proof. �

It therefore remains to prove the following concentration estimate which ensures that µN×r weakly
satisfies Condition 0 at level ∞.

Lemma A.2. For every T > 0 and every 1 ≤ i, j ≤ r, there exist C1, C2 > 0 depending only on
p, r, {λi}ri=1 such that for every γ > 0,

µN×r

(
sup
t≤T
|etL0,βL0,βm

(N)
ij (X)| ≥ γ

)
≤ C1NT exp

(
−C2γ

2N
)
,

with P-probability at least 1−O(e−KN ).

The proof of the Lemma A.2 follows similar arguments to those made for gradient flow in our com-
panion [5]. In turn, we use similar ideas to those used to prove [8, Theorem 6.2]. In the following, we
let X̂t denote the Langevin dynamics generated by L0,β (see (1.10)). The first step is to establish the
rotational invariance properties of this dynamics. For every X ∈ MN,r we let RNX : TXMN,r →MN,r

denote the polar retraction defined by

RNX(U) = (X + U)
(

Ir + 1
N

U>U

)−1/2
.

which verifies
(
RNX(U)

)>
RNX(U) = NIr.

Lemma A.3. For every t ≥ 0, if X̂0 ∼ µN×r, then X̂t and RNX
(
∇H0(X̂t)

)
are elements of MN,r

that are invariant under left rotations.

Proof. A similar argument to that used in proving [5, Lemma A.5] applies, upon noting that Brownian
motion is invariant under left rotations. �

We now provide the proof of Lemma A.2.
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Proof of Lemma A.2. Let EQX
denote the expectation with respect to the law of the Langevin

dynamics X̂t generated by L0,β started at X. By definition of the semigroup of the noise process, it
holds for every 1 ≤ i, j ≤ r,

etL0L0m
(N)
ij (X̂0) = EQX̂0

[
L0,βm

(N)
ij (X̂t)

]
.

By definition (1.10) and of (1.9) we have that

L0,βm
(N)
ij (X̂t) = ∆m(N)

ij (X̂t)−
β

N
〈∇H0(X̂t), [vi]j〉 = −N − 1

N2 〈X̂t, [vi]j〉 −
β

N
〈∇H0(X̂t), [vi]j〉,

where [vi]j = [0, . . . ,0,vi,0, . . . ,0] ∈ RN×r denotes the matrix with all zero columns except for the jth
column, which is vi. Let H ∈ Rr×r be a matrix sampled from the Haar measure on O(r). For every
t ≥ 0, we introduce

Zt = RN
X̂0

(∇H0(X̂t))H,

Z̃t = X̂tH.

According to Lemma A.3 and by definition of the Haar measure, both Zt and Z̃t belong toMN,r and are
invariant under left and right rotations. Since this property uniquely characterizes the invariant measure
onMN,r, we deduce that both Zt and Ẑt are distributed according to µN×r. The remainder of the proof
follows a similar approach to that used in [5, Lemma A.4]. Specifically, we establish uniform-in-time
deviation inequalities over one-dimensional projections of Zt and Z̃t by discretizing the interval [0, T ]
and relating these inequalities to the quantities appearing in L0,βm

(N)
ij (X̂t). In light of Lemma 4.2, for

constants Γ = Γ(p, {λi}ri=1, r) and K = K(p, {λi}ri=1, r) we have that the event

E = {‖H0‖G2 ≥ ΓN}
holds with P-probability at most exp (−KN). We direct the reader to Definition 4.1 for a definition of
the Gn-norm onMN,r. According to Definition 4.1, we also notice that, under the event Ec,

‖|∇2H0(X)|op‖∞ ≤ Γ.
For every 0 ≤ s ≤ t and every 1 ≤ i, j ≤ r, we now focus on controlling the increments

1
N
〈Z̃t − Z̃s, [vi]j〉 and

1
N
〈Zt −Zs, [vi]j〉.

Defining the function m̃(N)
ij (X̂t) := 1

N 〈Z̃t, [vi]j〉, Itô’s formula gives

1
N
〈Z̃t − Z̃s, [vi]j〉 = 1

N

∫ t

s

〈H>[vi]j , dBu〉+
∫ t

s

L0,βm̃
(N)
ij (X̂u)du,

where we remind that Bt is a Brownian motion on the normalized Stiefel manifold MN,r. Using the
Burkholder-Davis-Gundy inequality (see e.g. [40, Theorem 5.16]) to bound the martingale part, we
obtain ∣∣∣∣EQX̂0

[
1
N
〈Z̃t − Z̃s, [vi]j〉

]∣∣∣∣ ≤ r√t− s+ ‖L0,βm̃
(N)
ij ‖∞(t− s).

From Lemma 4.3 on the ladder relations, the norm ‖L0,βm̃
(N)
ij ‖∞ is bounded by a constant depending

on β, p, {λi}i≤r. Turning to the second increment, we introduce the shorthand U t = ∇H0

(
X̂t

)
. Recall

the following identity from [5, Lemma A.4]:

‖Zt − Zs‖F ≤
r√
N
‖X̂0 + U t‖F‖U>t U t −U>s U s‖1/2F + r‖U t −U s‖F.

Applying Itô’s formula to the vector field U t, we obtain that

U t −U s =
∫ t

s

∇2H0(dBu, .) +
∫ t

s

L0,β∇H0(X̂u)du,

where we used the shorthand L0,β∇H0(X̂u) to denote the vector field onMN,r whose coordinates are
given by, for any 1 ≤ k ≤ N, 1 ≤ ` ≤ r,

[L0,β∇H0(X̂u)]k` = L0,β [∇H0(X̂u)]k,`.
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We then reach

EQX̂0
[‖U t −U s‖F] ≤

(∫ t

s

‖∇2H0‖2Fds
)1/2

+ ‖L0,β∇H0‖∞(t− s)

≤
√
NrΓ

√
t− s+ ‖L0,β∇H0‖∞(t− s),

where we used Burkholder-Davis-Gundy inequality again to bound the martingale part. Now, to bound
‖L0,β∇H0‖∞, we write

‖L0,β∇H0‖∞ ≤ ‖|∇2H0|op‖∞‖|∇H0|op‖∞ +
√
Nr

(
sup

1≤i≤N,1≤j≤r
‖∆∂H0

∂xij
‖2∞
)1/2

≤ Γ2
√
N + ΓN

√
r,

where we used the ladder relation (4.1) in the last line. Similarly,

U>t U t −U>s U s = 2
∫ t

s

∇2H0

(
dBu,∇H0(X̂u)

)
+ 2

∫ t

s

L0,β∇H0(X̂u)>∇H0(X̂u)du,

so that, applying Burkholder-Davis-Gundy inequality again for the martingale part, we reach

EQX0

[
‖U>t U t −U>s U s‖F

]
≤ 2Γ2

√
N
√
t− s+ 2‖L0,β∇H0(X̂u)>∇H0(X̂u)‖∞(t− s).

Finally, to bound ‖L0,β∇H0(X̂u)>∇H0(X̂u)‖∞, we use the ladder relation (4.1) again to control the
Laplacian (applied coordinate-wise):

‖L0,β∇H0(X̂u)>∇H0(X̂u)‖∞ ≤ ‖∇2H0(∇H0,∇H0)‖∞ +Nr

(
sup

1≤i≤N,1≤j≤r
‖∆
(
∂H0

∂xij

)2
‖∞

)1/2

≤ Γ3N + ΓNr
To conclude the proof, we follow the approach outlined in the proof of [5, Lemma A.4] for gradient
flow dynamics. Specifically, we discretize the interval [0, T ] with a sufficiently fine partition to handle
the polynomial increments. We then apply exponential concentration inequalities for one-dimensional
projections of matrices sampled from the invariant measure onMN,r and conclude with a union bound.

�
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