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Abstract

The ability to capture frequency dispersion over a wide range is of fundamental importance for nearshore
wave models that are designed for practical use in coastal engineering. Considering the Serre-Green-Naghdi
equations, which are only weakly dispersive, we present and outline a strategy that can adapt the level of dis-
persion through a simple and easily implementable modification of the equations. The momentum equations
considered as starting point contain an elliptic equation, which determines the non-hydrostatic pressure.
The proposed modified system is designed in a way to facilitate the optimization of its dispersion properties
through a finite difference discretization of the linearized equations. Due to the fact that the improvement of
the dispersion properties is performed through modification of the elliptic part of the governing equations,
the introduced term for improving the dispersion properties is of order σ4 according to Airy wave theory,
where σ is the shallowness parameter. This differs from classical methods for dispersion improvement and
is of advantage for both numerical and theoretical reasons. Although the presented justification is based on
a linear dispersion analysis assuming zero bathymetry variation, numerical comparison with experimental
data shows that the modified system provides encouraging results even over a spatially varying bottom.

Keywords: Serre-Green-Naghdi equations, Dispersion, Depth-integrated models, Non-hydrostatic models.

1. Introduction

On most beaches, swell waves are the controlling factor for the overall shape of the beach and the dura-
bility and effectiveness of coastal protection structures. With an increasing use of phase-resolving nearshore
wave models for practical use in coastal engineering, their ability to accurately capture frequency dispersion
of short waves is of fundamental importance; see e.g.[1, 2, 3, 4].

Various flow models are used in coastal engineering and applied geophysics. Their grouping into fam-
ilies regarding non-linearity and non-hydrostasy, which is the origin of dispersion effects, is based on the
introduction of dimensionless numbers, including the shallowness parameter:

σ =
b0
λ0

,

where b0 is a typical water depth and λ0 is a typical horizontal wavelength; and the amplitude parameter:

ϵ =
η0
b0

,

where η0 is a typical wave amplitude. The approximate flow models used for nearshore waves, where it is
desirable to take dispersion into account, are derived from the free surface Euler equations for non-viscous
fluid, or, if irrotationality is assumed, from the Laplace equation (see e.g.[5, 6, 7]). The first step of derivation
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is a depth-integration of the basic equations. Then, one usually distinguishes between weakly dispersive and
weakly non-linear Boussinesq equations, for which O(σ2)-terms are kept and with ϵ belonging to O(σ2),
and the Serre-Green-Naghdi equations [8, 9, 10], which are fully non-linear (no assumption on ϵ) but also
weakly dispersive. Note that it is possible to derive Boussinesq-type models with dispersion properties
higher than those of the basic Boussinesq equations (see e.g. [11, 12]), but in the present study we focus on
the dispersion improvement of the Serre-Green-Naghdi equations.

The basic ideas for improving the dispersion properties of the Serre-Green-Naghdi equations originate
from the work by Witting [13] (see also Schröter et al. [14] in the same vein), where the analysis was
carried out in the case of a flat bottom, and the (Padé) approximation of the dispersion relation is for linear
waves. This strategy was used by many authors (e.g. by Madsen et al. [15]; see below for other examples):
the correction constructed in this way is used, sometimes after adaptation, in cases where the bathymetry
varies (see e.g. Madsen and Sørensen [16]). Considering also the case of a constant bathymetry, we can
roughly distinguish three families of methods to improve the dispersion properties of the Serre-Green-
Naghdi equations:

The first family of methods originates from the work by Madsen et al. [15] (see also, e.g., [17, 18]).
Considering the 1-D (horizontal) equations to simplify the presentation, it consists in adding the terms

αb2 [∂xxtv + ∂xx(v∂xv) + g∂xxxh]

to the right-hand side of the momentum equation, which can be written as

∂tv + v∂xv + g∂xη =
1

h
∂xp̃,

with h the water depth, η the surface elevation, b the bathymetry, v the depth-averaged horizontal velocity,
g the acceleration of gravity, p̃ the non-hydrostatic pressure and α the parameter to be optimized for the
improvement of dispersion. As it can be considered that ∂x(·) and ∂t(·) belong to O(σ), the added term,
that is equal to αb2∂xx

(
h−1∂xp̃

)
where p̃ is O(σ2) (this can be seen directly from Equations (4) and (5) in

Section 2), belongs to O(σ5).
The second family of methods, first proposed by Liu and Sun [19] (see also [20, 21] and the discussion

in [22]), can be explained as follows. From the momentum equation above, we have

− 3

h2
p̃ = 2h(∂xv)

2 + gh∂xxh− h∂x

(
1

h
∂xp̃

)
,

so that

p̃ = p̃approx +O(σ4), with p̃approx = −h3

3
[2(∂xv)

2 + g∂xxh].

Then, averaging by (1− β) and β the exact and the approximate expressions of p̃, the momentum equation
to be solved becomes

∂tv + v∂xv + g∂xη =
1

h
∂xp̃β , where p̃β = βp̃approx + (1− β)p̃. (1)

Thus,

p̃β = (1− β)p̃+O(βσ2),

so that, for a fixed β, the dispersion properties of the Serre-Green-Naghdi equations are modified by adding
a O(σ3)-term to the momentum equation.

A third family is the method proposed by Bonneton et al. [23] and Chazel et al. [24] (see also [25]). It
relies on a formulation of the momentum equation, initially proposed in [26], as

(I + L)(∂tv + v∂xv) + ∂xη +Q(v) = 0,

where L and Q are a linear differential operator and a quadratic form, respectively. The parameter α is
introduced through an averaging similar to that used for the derivation of the second-family method but
applied here on the term ∂tv. This results in

(I + αL)(∂tv + v∂xv) + [I − (1− α)L]∂xη +Q(v) = 0.
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It is of particular interest regarding the present study to note that a variant with solution of mass and mo-
mentum equations coupled to an auxiliary elliptic equation was proposed by Chassagne et al. [27] (see
also [28]). For improvement of dispersion, the momentum equation is not modified and the parameter α is
inserted into the elliptic equation as

∂xp̃+ αL(∂xp̃) = L(gh∂xη)−Q(v),

where L(ϕ) = −∂x
[
h3∂x(h

−1ϕ)
]

and Q(v) = 2∂x
[
h3(∂xv)

2
]
/3. An obvious advantage that can be first

noted from the resulting three-equation model, namely with the elliptic equation coupled to the mass and
momentum equations, is that it is simple to implement, since no new terms with derivatives need to be added
to the equations of the original model. A second obvious advantage is that the dispersion correction thus
performed does not require the addition of terms with high-order derivatives in dispersion correction terms,
which often compromise numerical stability; see Cienfuegos et al. [18]. We also see that the term added to
improve the dispersion properties of the system belongs to O(σ4), which can be of interest compared to the
O(σ5)-terms added in the first family of methods - with the potential numerical issues mentioned previously
- and compared to the second family of methods with O(σ3)-terms added to the momentum equation, hence
of the same order as dispersive terms present in the original equation. It is this approach that we outline in
detail in the present study, following the three-equation formulation with the auxiliary elliptic equation in
the form proposed by Khakimzyanov et al. [29].

The layout of the paper is the following. In Section 2 we recall the different forms of the Serre-Green-
Naghdi equations, including when an auxiliary elliptic equation is present. Section 3 is devoted to the
derivation and justification of a dispersion correction based on an elliptic equation. In particular, the rela-
tionship, when the dispersion correction parameter is small, between the linear system used to derive the
method and the non-linear system to which it is applied, is examined. A straightforward numerical method
allowing momentum conservation on a staggered grid, and a set of tests are finally presented in Section 4.

2. Different forms of the Serre-Green-Naghdi equations

The Serre-Green-Naghdi (SGN) equations are first given with space-varying bathymetry, since bathymetry
terms are taken into account in some tests presented at the end of this study. With the momentum equa-
tion in non-conservative form, as it is often found, the one-dimensional SGN equations, are (see e.g.
[30, 18, 29, 31])

∂th+ ∂x(hv) = 0, (2)

∂tv + v∂xv + g∂xη =
1

h
(∂xp̃− pb∂xb) , (3)

where h is the water depth, v is the depth-averaged horizontal velocity, b is the bathymetry or water depth at
rest, η = h−b is the surface elevation and g is the acceleration of gravity. Moreover, p̃ is the depth-integrated
non-hydrostatic pressure defined as

p̃ = −h2

3

(
γs +

1

2
γb

)
, (4)

with

γb = −v2∂xxb− (∂tv + v∂xv) ∂xb, γs = γb + h
[
(∂xv)

2 − ∂xtv − v∂xxv
]
, (5)

which are approximations of the vertical accelerations of the water column at the bottom and at the free
surface, respectively (see e.g. [32, 18]), and pb is the non-hydrostatic pressure at the bottom, defined as

pb = −h

2
(γs + γb) .

Using the continuity equation (2) and the momentum equation in non-conservative form, (3), the momentum
balance can be written in conservative form as

∂t(hv) + ∂x(hv
2 + p) = ∂xp̃+ (gh− pb)∂xb, (6)
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where p = gh2/2 is the depth-integrated hydrostatic pressure. Equations (2) and (6) result in the SGN model
in conservative form. Also, following Khakimzyanov et al. [29], it can be observed that the depth-integrated
non-hydrostatic pressure p̃ satisfies the elliptic equation

∂x

(
∂xp̃

h

)
− 3

h3
p̃ = g∂xxη + 2(∂xv)

2 + ∂x

(pb
h
∂xb
)
+

3

2h
γb, (7)

obtained from Equations (3), (4) and (5). Equation (7) can be solved coupled to Equations (2) and (3), or
(2) and (6), the whole sets forming another form of the SGN equations. Indeed, exploiting the relation

pb =
3

2h
p̃− h

4
γb,

Equation (7) can be recast as

4∂x

(
∂xp̃

hY

)
− 6

[
2

h3

Y − 3

Y
+ ∂x

(
∂xb

h2Y

)]
p̃ = ∂x

(
g∂xη +

R∂xb

Y

)
− 6

R

hY
+ 2 (∂xv)

2
, (8)

where Y = 4 + (∂xb)
2 and R = −g∂xη∂xb + v2∂xxb. It is with this latter form of the elliptic equation

that Khakimzyanov et al. propose to numerically solve the SGN equations. We follow this approach in the
present study and we will use Equation (8) to define the proposed modification of the SGN equations.

3. Modified Serre-Green-Naghdi equations and their dispersion properties

The original SGN system considered in this paper is given by Equations (2),(3) together with the elliptic
equation (8). The dispersion correction we propose is based on a modification of the elliptic equation (8)
and the modified SGN system is defined as

∂th+ ∂x(hv) = 0,

∂tv + v∂xv + g∂xη =
1

h
(∂xp̃− pb∂xb) ,

4(1 + δ)∂x

(
∂xp̃

hY

)
− 6

[
2

h3

Y − 3

Y
+ ∂x

(
∂xb

h2Y

)]
p̃ = ∂x

(
g∂xη +

R∂xb

Y

)
− 6

R

hY
+ 2 (∂xv)

2
.

(9)

We emphasize that we recover the original SGN equations, namely (2)-(3)-(8), when δ = 0. Note that the
∂xp̃-term of the momentum equation belongs to O(σ3) only, so introducing the factor (1 + δ) in this term
would modify the SGN system at the order of σ3. Instead, we use the elliptic equation fulfilled by the non-
hydrostatic p̃ to modify the dispersion of the SGN model. In the elliptic equation of the set (9), the term
modified by the factor (1 + δ) belongs to O(σ4), which allows to gain one order of magnitude as σ → 0.

3.1. Interpretation of the modified Serre-Green-Naghdi equations for small parameter δ
In this Section, some additional information related to the modified SGN equations for small δ are given.
As here the bathymetry is assumed to be constant, the modified SGN system with elliptic equation (7) -

which is equivalent to the form (9) -, is

∂th+ ∂x(hv) = 0,

∂tv + v∂xv + g∂xh =
1

h
∂xp̃δ,

(1 + δ)∂x

(
∂xp̃δ
h

)
− 3

h3
p̃δ = g∂xxh+ 2(∂xv)

2.

(10)

Taking the derivative with respect to x of the second equation and inserting the obtained expression into the
elliptic equation results in

δ∂x

(
∂xp̃δ
h

)
− 3

h3
p̃δ = (∂xv)

2 − ∂xtv − v∂xxv =
γs
h
. (11)
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For δ = 0, Equation (11) directly gives the depth-integrated non-hydrostatic pressure p̃ as a function of
h and v. This shows once again that, for δ = 0, one can get p̃ without solving the elliptic equation. The
latter facilitates the numerical calculations (see the discussion in the Introduction Section and Section 4.1).
However, when δ ̸= 0, it is evident from Equation (11) that h, v and p̃δ satisfy a fully coupled non-linear
system, for which p̃δ is no longer the depth-integrated non-hydrostatic pressure as defined by Equation (4).
To explain further how the solution of Equations (10) is related to the one of the original SGN systems, we
now present an analysis as δ → 0.

Assuming δ to be small, we postulate the expansions

h = h0 + h1δ + · · · , v = v0 + v1δ + · · · , p̃δ = p̃0 + p̃1δ + · · · .

Inserting these into the modified SGN equations, we find that h0, v0 and p̃0 satisfy the original (namely
with δ = 0) SGN system. In addition, Equation (11) gives

− 3

h3
0

p̃0 =
γ0,s
h0

, with γ0,s = h0

[
(∂xv0)

2 − ∂xtv0 − v0∂xxv0
]
.

As expected, the zeroth-order term of the non-hydrostatic pressure expansion is exactly the non-hydrostatic
pressure defined by Equation (4):

p̃0 = −h2
0

3
γ0,s.

Continuing the identification, the first-order perturbations are solutions to

∂th1 + ∂x(h0v1 + h1v0) = 0,

∂tv1 + v0∂xv1 + v1∂xv0 + g∂xh1 =
1

h0
∂xp̃1 −

h1

h2
0

∂xp̃0.

The first-order perturbation of the depth-integrated non-hydrostatic pressure, p̃1, can be obtained from Equa-
tion (11) by

− 3

h3
0

p̃1 = −9
h1

h4
0

p̃0 + (2∂xv0∂xv1 − ∂xtv1 − v0∂xxv1 − v1∂xxv0)− ∂x

(
∂xp̃0
h0

)
.

As p̃0 satisfies the elliptic equation associated with the original SGN system, we obtain

p̃1 =

(
1 + 3

h1

h0

)
p̃0 −

h3
0

3

[
2∂xv0∂xv1 − ∂xtv1 − v0∂xxv1 − v1∂xxv0 − g∂xxh0 − 2(∂xv0)

2
]
. (12)

The first-order perturbation of the depth-integrated non-hydrostatic pressure is thus determined.
We now study how to eliminate the modified elliptic equation, and thus rewrite the modified SGN

system as a set of two equations for the water depth and the depth-averaged horizontal velocity. Assuming
that the first-order perturbations of h and v vanish and dropping the subscript 0 to work with h and v, the
modified non-hydrostatic pressure p̃δ = p̃0 + δp̃1 given by Equation (12) then reduces to

p̃δ = −h2

3
γs + δ

{
−h2

3
γs +

h3

3

[
g∂xxh+ 2(∂xv)

2
]}

. (13)

Inserting this expression into Equations (10), the modified SGN equations can be rewritten as the following
two-equation set:

∂th+ ∂x(hv) = 0,

∂tv + v∂xv + g∂xh =
1

h
∂x

(
−(1 + δ)

h2

3
γs + δ

{
h3

3

[
g∂xxh+ 2(∂xv)

2
]})

.
(14)

Now, p̃δ given by Equation (13) where h and v satisfy Equations (14), is a solution up to O(δ2) of the
modified elliptic equation obtained from Equation (10).

5



Remark 1: The linearization of the two-equation form (14) of the modified SGN system gives ∂tη + b∂xv = 0,

∂tv + g∂xη = (1 + δ)
b2

3
∂xxtv + gδ

b2

3
∂xxxη.

(15)

Equations (15) are the same as [22, Eqs. (51)-(52)] with β = 3δ/2 and the same as the linearized model
from [19] (see also (1)). However, returning to the non-linear equations, the two-equation form (14) is
different from the consistent modification of the Serre equations from [22, Eqs. (36)-(38)], whose momentum
equation is

∂tv + v∂xv + g∂xh =
1

h
∂x

{
−(1 + δ)

h2

3
γs + δ

[
g
h3

3
∂xxh+ gh2 (∂xh)

2

2

]}
. (16)

The difference between the two momentum equations (14) and (16) lies in the right-hand sides, where the
term 2h3(∂xv)

2/3 in (14) is replaced by gh2(∂xh)
2/2 in (16). Nevertheless, setting β = −δ in (1) which is

derived from [19], we see that p̃β = p̃δ where p̃δ is given by (13). As a result, (1) is exactly the two-equation
form (14) of the modified SGN system we propose.

3.2. Phase velocity associated to the modified Serre-Green-Naghdi equations
With h = b + η, where b is the constant bathymetry, the linearization of the modified SGN equations

(9) (see also Equations (10)) results in
∂tη + b∂xv = 0,

∂tv + g∂xη =
1

b
∂xp̃,

(1 + δ)∂xxp̃−
3

b2
p̃ = gb∂xxη,

(17)

where δ > 0 is going to be optimized to have the wave velocity associated to the modified SGN equations
(9) as close as possible to the wave velocity of the Airy theory. It can be noted that the linearization of the
original SGN equations is obtained from Equations (17) by setting δ = 0.

The phase velocity associated to Equations (17) are obtained by considering the plane wave solutions
Xei(kx−ωt). Now, non-zero solutions of

A(ω, k)X = 0, where A(ω, k) =


−iω −ibk 0

−igk −iω i
k

b

gbk2 0 −(1 + δ)k2 − 3

b2

 ,

are obtained if

b3gk4δ − b2k2δw2 − b2k2ω2 + 3bgk2 − 3ω2 = 0.

The phase velocity of the modified SGN equations is thus

cSGN,δ(kb) =
ω

k
=
√
gb

√
1 + (kb)2δ/3

1 + (1 + δ)(kb)2/3
.

As the phase velocity of the original SGN equations is retrieved for δ = 0, we set

cSGN(kb) = cSGN,0(kb) =
√

gb

√
1

1 + (kb)2/3
.

In addition, a Taylor expansion as δ → 0 gives

cSGN,δ(kb)− cSGN(kb) = δ

∫ 1

0

∂δcSGN,tδ(kb) dt, (18)

6



where

∂δcSGN,s(kb) =

√
gb

2

(kb)4

[(1 + s)(kb)2 + 3]3/2
√
s(kb)2 + 3

is the derivative of cSGN with respect to δ. Since cSGN(0) = cSGN,0(0) for any δ, it can be assumed that
kb > 0. Then,∣∣∣∣∫ 1

0

∂δcSGN,tδ(kb) dt

∣∣∣∣ ≤
∫ 1

0

√
gb

2

(kb)4

[(1 + tδ)(kb)2]3/2
√
3
dt

=
√
gb

kb

2
√
3

∫ 1

0

1

(1 + tδ)3/2
dt ≤

√
gb

kb

2
√
3
.

With Equation (18),

cSGN,δ(kb) = cSGN(kb) +O(δ kb). (19)

Thus, if kb ≤ M for some M > 0, and if δ is small enough, the dispersion properties of the modified SGN
equations are close to those of the original SGN equations up to order δ.

Remark 2: Assuming that kb > 0,∣∣∣∣∫ 1

0

∂δcSGN,tδ(kb) dt

∣∣∣∣ ≤ 1

2
√
δ

∫ 1

0

(kb)4

[(1 + tδ)(kb)2]3/2
√
t (kb)2

dt

≤
√
gb

2
√
δ

∫ 1

0

1

(1 + tδ)3/2
√
t
dt

≤
√
gb

2
√
δ

∫ 1

0

1√
t
dt =

√
gb√
δ
,

and thus, with Equation (18),

sup
kb≥0

|cSGN,δ(kb)− cSGN(kb)| = O
(√

δ
)
.

Comparing this result with Equation (19), the dependence in kb has disappeared, but at the cost of a
decrease in the order of accuracy. In the following, kb will be considered such that kb ≤ M , and thus the
modified SGN equations approximate the phase velocity of the original SGN equations up to O(δ). This
is consistent with the fact that the modified SGN set of equations is a regular perturbation of the SGN
equations.

We now seek for δmin such that cSGN,δ is as close as possible to cAiry given by

cAiry(kb) =
√
gb

√
tanh(kb)

kb
.

Setting x = kb,

J(δ) =

{
1

xmax

∫ xmax

0

[cSGN,δ(x)− cAiry(x)]
2
dx

}1/2

,

is discretized using a uniform subdivision with N points of the interval [0, xmax], and then minimized using
the Nelder-Mead algorithm with δ = 0 as initial guess.

In Figure (1) are shown some results for varying xmax and in Table 1 are given values of J before and
after optimization as well as δmin. From this results, it is observed that, as xmax increases, δmin decreases
but J(δmin) increases. In Figure 2 is evidenced the dependence on xmax of δmin and J(δmin). It is shown in
Figure 2 that δmin ≈ 0.2 for small values of x = kb and that, for large values of kb, δmin has a finite limit
value.
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Figure 1: cSGN,δmin
/cAiry for several values of xmax. Up left: xmax = π, up right: xmax = 2π, bottom left: xmax = 4π, bottom

right: xmax = 8π. N = 100.

xmax J(0) J(δmin) δmin

π 0.12504 0.0046825 0.17

2π 0.26704 0.02584 0.13375

4π 0.36867 0.065371 0.092875

8π 0.40214 0.10452 0.059313

16π 0.38512 0.12945 0.035875

Table 1: Value of J and δmin for various xmax. N = 100.
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Figure 2: δmin and J(δmin) for varying xmax.
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3.2.1. Optimized δ-parameter for small reduced wavenumber kb
In this Subsection, we compute the optimal value of δ for which the phase velocity associated with

the modified SGN equations matches the Airy velocity when kb goes to zero. This derivation is done by
matching the Taylor expansions of both phase velocities as kb → 0.

Since

cSGN,δ(kb) =
√

gb

[
1− 1

6
(kb)2 +

(
δ

18
+

1

24

)
(kb)4

]
+O((kb)6),

and

cAiry(kb) =
√
gb

[
1− 1

6
(kb)2 +

19

360
(kb)4

]
+O((kb)6),

we can have cSGN,δ close to cAiry for small kb if δ satisfies

δ

18
+

1

24
=

19

360
.

Then, for δ = 1/5,

cSGN,δ(kb)− cAiry(kb) = O((kb)6),

instead of being O((kb)4). This confirms what what can be seen in Figure 2, i.e. that the optimal value of δ
for kb small enough is δ = 1/5.

3.2.2. Matching phase velocities for a given value of reduced wavenumber kb
The optimization results from the previous Subsection are very useful for problems involving several

spatial frequencies. For one fixed frequency kb = x0, we can look for δ0 such that

cSGN,δ0(x0) = cAiry(x0).

The previous equation can be solved exactly and gives

δ0 =
x2
0 exp(2x0)− 3x0 exp(2x0)− x2

0 + 3 exp(2x0)− 3x0 − 3

[x0 exp(2x0)− exp(2x0) + x0 + 1]x2
0

. (20)

This is the value of δ for which, for fixed kb, the phase velocity of the modified SGN matches the Airy wave
theory. It is worth noting that, as x0 → 0,

δ0 =
1

5
+O(x0).

The optimal value δmin = 1/5 for small enough kb is thus again recovered.

Remark 3: Comparison with dispersion properties of Nwogu equations
The wave velocity associated to Nwogu equations [33] is

cNwogu(kb) =
√

gb

√
1− (α+ 1/3)(kb)2

1− α(kb)2
.

Let us recall that the wave velocity of the modified SGN system is

cSGN,δ(kb) =
√
gb

√
1 + b2k2δ/3

1 + (1 + δ)b2k2/3
.

If δ = −3α− 1, then δ/3 = −(α+ 1/3) and (1 + δ)/3 = −α, and thus

cSGN,δ(kb) = cNwogu(kb).

The proposed modified SGN system thus has the same dispersion properties as the Nwogu system.
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xmax Jg(0) Jg(δmin,g) Jg(δmin) δmin,g

π 0.1022 0.0073 0.0108 0.1549

2π 0.1498 0.0286 0.0398 0.1054

4π 0.1538 0.0511 0.0697 0.0609

8π 0.1362 0.0613 0.0832 0.0324

16π 0.1126 0.0604 0.0822 0.0167

Table 2: Value of Jg and δmin,g for various xmax. N = 100. The value of δmin is the one minimizing J from Table 1.

3.3. Group velocity

We now investigate the group velocity of the modified SGN system. It is defined as

cg = ∂kω = ∂k(kc) = k∂kc+ c,

so that for the Airy wave theory,

cg,Airy(kb) =

√
gb

2

sinh(kb) cosh(kb) + kb

[cosh(kb)]3/2
√

kb sinh(kb)
,

and for the modified SGN system,

cg,SGN,δ =
√
gb

(kb)4δ2 + (kb)4δ + 6(kb)2δ + 9

[(kb)2δ + (kb)2 + 3]3/2
√

δ(kb)2 + 3
.

For the original SGN system, cg,SGN = cg,SGN,0. Taylor expansions for kb → 0 give

cg,Airy =
√
gb

[
1− 1

2
(kb)2 +

19

72
(kb)4

]
+O((kb)6),

cg,SGN,δ =
√
gb

[
1− 1

2
(kb)2 +

(
5

18
δ +

5

24

)
(kb)4

]
+O((kb)6),

which show that the group velocity associated to the original SGN equations (with δ = 0) approximates the
one of the Airy theory up to O((kb)4). Choosing δ such that

5

18
δ +

5

24
=

19

72
,

which yields δ = 1/5, we obtain that the group velocity of the modified SGN equations approximates the
group velocity of the Airy wave theory up to O((kb)6) instead of O((kb)4).

We now compute δmin,g that minimizes

Jg(δ) =

{
1

xmax

∫ xmax

0

[cg,SGN,δ(x)− cg,Airy(x)]
2
dx

}1/2

.

Again, a uniform subdivision of [0, xmax] with N points is used, and the previous function is minimized
using the Nelder-Mead algorithm with δ = 0 as an initial guess. The results are shown in Figure 3 for the
ratio of group velocities and in Table 2 for some numerical values. We compare what happened when using
either δmin (the value minimizing phase dispersion error) or δmin,g which minimizes the gap between group
velocities. It is worth noting that a minimization of the phase error still reduces the group velocity error.
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4. Numerical tests

In this Section, we first detail some elements of the numerical method used, in particular on the dis-
cretization of the elliptic equation. For further details on the discretization of the hyperbolic part of the
SGN equations, we refer to a previous study from some of the authors, [34]. Next, a set of numerical tests
has been selected to highlight the applicability of this new framework and the effects of the improved dis-
persion on the quality of the results both for linear and nonlinear problems. As we are interested here in
nearshore wave propagation, we therefore consider, as is customary in coastal engineering, kb in [0, π].
Thus, in line with the results of Section 3.2, we take the value 0.17 for the dispersion correction parameter
δ in the tests considered in Section 4.4 and 4.3.

4.1. Numerical method
A key point of the numerical method used in the present study is that it avoids splitting the free surface

gradient into an artificial flux gradient and a source term, which accounts for bed slope. As a result, the free
surface gradient is computed separately from the numerical flux, eliminating the need for additional treat-
ments to guarantee the well-balanced properties of the scheme [34]. Note also that the mass and momentum
equations are taken in conservative form, so that the system to be solved is

∂th+ ∂x(hv) = 0,

∂t(hv) + ∂x(hv
2) + gh∂xη = ∂xp̃− pb∂xb,

4(1 + δ)∂x

(
∂xp̃

hY

)
− 6

[
2

h3

Y − 3

Y
+ ∂x

(
∂xb

h2Y

)]
p̃

= ∂x

(
g∂xη +

R∂xb

Y

)
− 6

R

hY
+ 2 (∂xv)

2
. (21)

In the sequel on this Subsection, we provide the hyperbolic solver first, next the elliptic solver, then the
numerical scheme associated to the time-integration and finally we explain how the wave generation has
been done.

4.1.1. Hyperbolic solver
The space discretization of the hyperbolic part of these equations - formally obtained for non-hydrostatic

pressure components p̃ and pb going to zero - is based on an approach allowing momentum conservation
on staggered grids [35]. This technique has been proven to be appropriate for rapidly varying flows, such as
bores and inundation of dry land [34]. It is summarized here to make the present paper self-contained. The
variables are approximated on a staggered grid: the total water depth h and the bed topography b are defined
at the cell center i, and the depth-averaged velocity v is stored at the cell interfaces i±1/2. The water depth
h is evaluated at each time step level t = n∆t, whereas the depth-averaged velocity v is evaluated halfway
between the present and the following time step, i.e. at t = [n+ (1/2)]∆t. This leads to the staggering
of spatial and temporal information and facilitates consistent second-order accuracy in space and time. The
mass equation is discretized as

hn+1
i − hn

i

∆t
+

1

∆x

(
ĥn
i+1/2v

n+1/2
i+1/2 − ĥn

i−1/2v
n+1/2
i−1/2

)
≈ 0, (22)

where ĥi±1/2 are the water depths at the cell interfaces computed with an upwind approximation:

ĥn
i+1/2 ≈

hn
i if v

n+1/2
i+1/2 ≥ 0,

hn
i+1 if v

n+1/2
i+1/2 < 0.

(23)

The next step is the solution of the momentum equation. For this, we employ the finite difference approxi-
mations recommended in Zijlema [35] to achieve conservation of the momentum flux across discontinuities,
as

h
n+1

i+1/2v
n+3/2
i+1/2 − h

n

i+1/2v
n+1/2
i+1/2

∆t
+

v̂
n+1/2
i+1 qni+1 − v̂

n+1/2
i qni

∆x
≈ −gh

n+1

i+1/2

ηn+1
i+1 − ηn+1

i

∆x
. (24)
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Regarding the free surface gradient term, the use of the updated variable h
n+1

i+1/2 is necessary for the scheme
to guarantee the entropy inequality, as demonstrated in [36]. Further, it is necessary to approximate the
convection term with an upwind scheme, where the mass flux q is the criterium for upwinding and the
velocity v is the upwinded quantity:

v̂
n+1/2
i ≈ v

n+1/2
i−1/2 if qni ≥ 0, v

n+1/2
i+1/2 if qni < 0. (25)

It is important to note that a reversed approach where the upwinded quantity is q, leads to errors in the
computation of the momentum fluxes across discontinuities, as demonstrated by Zijlema [35]. Also, since
the mass flux q is continuous, an averaged approximation can be used for its computation, as

qni+1/2 ≈ 1

2
(qni + qni+1). (26)

The flow depth, originally defined at the cell centroid, is also approximated at the cell interface with arith-
metic averaging to be used in the computation of the local acceleration:

h
n+1

i+1/2 ≈ 1

2
(hn+1

i + hn+1
i+1 ). (27)

To counter numerical dissipation, the above-described first-order upwind scheme is extended to second-
order accuracy by using the Minmod slope limiter [37].

4.1.2. Elliptic solver
The non-hydrostatic source terms are computed by solving the elliptic equation (21), which is dis-

cretized as∫ x
i+1

2

x
i− 1

2

4 (1 + δ) ∂x

(
∂xp̃

hY

)
dx ≈

(
Ki+1 +Ki

2∆x

)
p̃i+1 −

(
Ki+1 + 2Ki +Ki−1

2∆x

)
p̃i

+

(
Ki +Ki−1

2∆x

)
p̃i−1, (28)

where Ki = 4(1+ δ)h−1
i

[
4 +

(bi+1 − bi−1)
2

4(∆x)2

]−1

. The second term in the left-hand side of Equation (21)

is discretized as∫ x
i+1

2

x
i− 1

2

6

[
2

h3

Y − 3

Y
+ ∂x

(
∂xb

h2Y

)]
p̃ dx = 6

[
∆x

h3
i

Yi − 3

Yi
+

(
∂xb

h2Y

)
i+1/2

−
(

∂xb

h2Y

)
i−1/2

]
p̃i. (29)

The source term of Equation (21), denoted by F , is discretized as

Fi =

∫ x
i+1

2

x
i− 1

2

{
∂x

(
g∂xη +

R∂xb

Y

)
− 6

R

hY
+ 2 (∂xv)

2

}
dx ≈

(
g∂xη +

R∂xb

Y

)
i+1/2

−
(
g∂xη +

R∂xb

Y

)
i−1/2

−∆x
6Ri

hiYi
+

2
(
vi+1/2 − vi−1/2

)2
∆x

,

where centered finite difference schemes are used for the discretization of the space derivatives of h and η.
The following tridiagonal system is thus obtained :

αi−1p̃i−1 + αip̃i + αi+1p̃i+1 ≈ Fi, (30)

where

αi−1 =
Ki +Ki−1

2∆x
, (31)

αi = −Ki+1 + 2Ki +Ki−1

2∆x
− 6

[
1

h3
i

Yi − 3

Yi
+

(
∂xb

h2Y

)
i+1/2

−
(

∂xb

h2Y

)
i−1/2

]
, (32)

αi+1 =
Ki+1 +Ki

2∆x
. (33)
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This system is solved with the Thomas algorithm, and the non-hydrostatic pressure at the bottom, pb, is then
calculated at a cell i by

pbi ≈
1

Yi

(
6p̃i
hi

+ hiYi
p̃i+1 − p̃i−1

2∆x

bi+1 − bi−1

2∆x

)
. (34)

Finally, the non-hydrostatic terms are added to the momentum equation as

(∂xp̃− pb∂xb)i+1/2 ≈ p̃i+1 − p̃i
∆x

+
pbi+1 + pbi

2

bi+1 − bi
∆x

. (35)

4.1.3. Time integration
To match the second-order accuracy in space, a combination of the Leapfrog scheme and the Runge-

Kutta prediction-correction method [38] is used. The hyperbolic equations are written in vector form, with
a splitting of the terms into local and convective accelerations, and pressure terms, as

∂tU + F (U) + P (U) +Q (U) = 0, (36)

where U = [h, hv]
T, and

F (U) =

 ∂x(hv)

∂x(hv
2)

 ,P (U) =

 0

gh∂xη

 ,Q (U) =

 0

−∂xp̃+ pb∂xb

 . (37)

The variable U is calculated using a two-stage time integration with an intermediate solution obtained by
the prediction step. In the first step, the equations are solved with only the advection terms and the non-
hydrostatic pressure on the right-hand side:

U∗
i ≈ Un

i −∆tF (Un
i )−∆tQ (Un

i ) . (38)

In the second step, the hydrostatic pressure term is added to the momentum equations, and, to achieve
second-order accuracy in time, the predicted variables are corrected by

Un+1
i ≈ ∆t

2
(Un

i +U∗
i )−

∆t

2
F (U∗

i )−
∆t

2
Q (U∗

i )−∆tP
(
Un+1

i

)
. (39)

It is important to note that the surface gradient term P (U) must be excluded to the prediction step of
the time integration. Second-order accuracy is achieved for the calculation of this term by employing the
Leapfrog scheme in conjunction with staggering the variables in time.

The time stepping is limited by the Courant-Friedrichs-Levy (CFL) constraint and essentially depends
on the cell size and the maximum speed of the gravity waves superposed to the motion of the fluid particles.
Similar to other published SGN and Boussinesq-type numerical solutions (see e.g. [39, 40, 41, 1]), the time
step is computed based on the condition:

∆t =
CFL ∆x

|vi+ 1
2
|+
√
ghi+ 1

2

. (40)

In the following numerical experiments, the CFL number is taken as 0.5 since it is enough to get a stable
numerical scheme .

4.1.4. Wave generation
The numerical implementation of the wave generation is based on the internal wavemaker approach

proposed by [42]. A source term is introduced in the continuity equation, with the effect of adding and
subtracting mass. Since in the original method the source term was derived for the equation by Nwogu [33],
the source term had to be adapted to satisfy the present governing equation. For a monochromatic wave
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of amplitude a, wave number k, and angular frequency ω, the magnitude of the source function has been
modified to account for the free parameter δ in the dispersion relation, as

D =
2a
[
ω2 + 1

3δgk
4h3
]

ωkI1
[
1 + 1

3 (1 + δ) k2h2
] , (41)

where I1 is a function of the wavenumber (see [42] for details). The wave absorption at the boundaries is
then achieved through the sponge layer technique described in [43].
4.2. Sine wave propagation in constant depth

In this section, we test the applicability and stability of the modified SGN equations in a numerical
framework. The first test is the propagation of linear monochromatic waves in a long channel of constant
depth. Inside the one-dimensional computational domain, we generate and propagate linear waves (ϵ =
η0/b0 = 0.01 ≪ 1) with varying wavelengths, resulting in different shallowness parameters (i.e., kb0 =
1, 3, 5, and 10). To achieve the exact dispersion properties, the dispersion correction parameter δ = δ0 is
determined for each value of kb0 by Equation (20). Several numerical tests with different grid resolutions
and time steps show that the solution has converged with CFL = 0.5 and a grid size ∆x such that the
number of grid points per wavelength is λ0/∆x = 20. The numerical results reveal no significant change
with additional refinement. With a coarse grid (i.e. λ0/∆x = 15), we notice a small dispersive error, which
leads to a shorter wavelength than the exact solution described by Airy wave theory.

The results of the proposed modified SGN model are shown in Figure 4, and can be compared to the
fully dispersive Airy wave theory. With a suitable value of the parameter δ, the proposed model is stable
even at high values of kb0 and accurately reproduces the monochromatic wave propagation in terms of
shape and speed. Note that numerical results with the original SGN equations (i.e. with δ = 0) are not
shown in Figure 4. The numerical solutions without dispersion correction are unstable due to the excessive
dispersion error and thus do not converge.

4.3. Periodic wave propagation over a submerged bar
We now consider the test of periodic wave propagation over a submerged bar. The numerical results

are compared with experimental measurements obtained by Beji and Battjes [44]. Figure 5 (a) depicts the
laboratory setup, which includes a 37.7m long and 0.75m tall flume with a 0.30m tall trapezoidal bar 6m
away from a piston-type wavemaker. The front slope of the bar is 1:20, followed by a 2-meter crest and a
1:10 rear slope. At the end of the flume, a gravel beach is installed, which functions as a wave absorber. For
the simulations, we use the computational domain shown in Figure 5 (b). Waves shoal when propagating up
the slope of the bar. This produces a cascade of several bound higher harmonics each with less energy than
the previous. While these waves are not very dispersive on top of the bar due to the relatively shallow water
depth, their kh-value rapidly increases at the lee side where the relative water depth increases rapidly.

We use the experimental data from case A of [44], which involves a sinusoidal wave with a 1 cm am-
plitude and 2.02 s period. The test was conducted in 0.4m water depth, resulting in a kb0 = 0.67 incident
wave. The numerical tests have been run using a ∆x = 0.02m grid size, and CFL = 0.5.

The wave generation works in the same way as in the previous test from Section (4.2). While the incident
wave is fairly long and can be well resolved with the original SGN equations, the super-harmonics behind
the bar require high-order dispersion properties to be adequately computed. We test both the original SGN
equations (i.e., δ = 0) and the modified SGN equations with δ = 0.17, which corresponds to the value
−0.39 for α in the Nwogu system, as recommended in [33]. Note that this is equivalent to the choice of
xmax = (kb)max = π (see Table 1).

The recorded time series at different wave gauges showcase the difference between the two sets of
equations; see Figure 6. Both the original and modified SGN equations maintain good agreement with
experimental data at stations 4, 5, and 6 over the bar, proving the quality of numerical solutions regarding
wave propagation and shoaling. The solutions of the two models significantly diverge behind the bar at
stations 8–11, where super-harmonics of high kb-values are present. While the modified SGN model is able
to capture the overall wavefield behind the bar with only minor discrepancies, the original SGN model fails
at computing the released short waves due to the poor dispersive properties of the governing equations.
This test case clearly showcases the impact of high-dispersive errors on the accuracy and stability of the
solution. The modified SGN model, with its enhanced dispersion, achieves improved accuracy, especially
for the gauges behind the bar.
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Figure 4: Sine wave on flat bottom; cf. Section 4.2. The black line, which represents the analytical solution from Airy wave theory,
and the colored lines represent the numerical solutions of the modified SGN equations at different grid resolutions.
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Figure 5: Periodic wave propagation over a submerged bar; cf. Section 4.3. (a) Laboratory setup from Reference [44]. (b) Numerical
model setup. Circles indicate gauge locations. Figure adapted from [45].

Figure 6: Periodic wave propagation over a submerged bar; cf. Section 4.3. Circles indicate laboratory data from Reference [44]. The
red lines are time series from the solution of the original SGN model and the blue lines represent the results of the modified SGN

equations.
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Figure 7: Non-linear shoaling of a solitary wave on a plane beach; cf. Section 4.4. Numerical model setup.

4.4. Nonlinear shoaling of a solitary wave over a plane beach
Finally, we consider the test presented in [46], of a solitary wave shoaling over a plane slope. The test

consists of a solitary wave with amplitude a = 0.088m propagating in a b0 = 0.44m water depth, i.e.
a/b0 = 0.2, and shoaling over a constant slope 1 : 35. It is worth noting that during the test, the local
values of the non-linearity parameter ε prior to breaking are between 0.2 and 2.2, and thus the benchmark
is suitable for testing the nonlinear properties of the equations.

The computational domain of the test is shown in Figure 7. The coordinates were set so that the slope’s
toe corresponds to x = 0. The generation of the solitary wave is achieved through the leftward boundary
condition and follows the standard solitary wave profile given below:

η (x, t) = a sech2
(√

3a

4b30

[
x− x0 − t

√
g (a+ b0)

])
,

v (x, t) =
η (x, t)

b0 + η (x, t)

√
g (a+ b0).

The numerical solutions of both the original and modified SGN equations are compared with laboratory
data given in Reference [46]. During the experiment, the free surface elevation was recorded at nine gauges
on the slope. The last gauge (i.e. G9) is located close to the wave breaking point. The numerical results are
fully converged for the grid size ∆x = 0.005m and the CFL number of 0.5. Similar to the previous test,
we take δ = 0.17.

The results are shown in Figure 8. The results obtained with the modified SGN equations show a better
overall match with the laboratory data compared to the original equations, which are composed of weaker
dispersion properties. While the modified SGN equation well captures the shape, height, and speed of the
shoaling wave, the original equation, with its low dispersion properties, underestimates the wave height and
the speed of the wave. We find that the proposed modification of the elliptic equations leads to improved
shoaling properties in the nonlinear regimes. While the optimization of the free parameter was based on the
linear dispersion relationship of the equation, the improved formulation still holds for nonlinear processes
such as shoaling.

5. Conclusion

A method for dispersion correction of the weakly dispersive Serre-Green-Naghdi equations is presented
along with its detailed justification. The proposed modification of the equations relies on a form of the model
where an elliptic equation fulfilled by the depth-integrated non-hydrostatic pressure is solved coupled with
the mass and momentum equations. It is simple to implement in the sense that it does not require the
inclusion of new terms with high-order derivatives into the equations of the original model. The insertion
of the dispersion correction parameter in the equations results in introducing terms of O(σ4) in the elliptic
equation. This can be advantageous compared to classical dispersion correction methods, for which the
added terms are of O(σ5) baring potential problems for the numerical instability, or in O(σ3), then of the
same order as the dispersive terms present in the original equations.
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Figure 8: Non-linear shoaling of a solitary wave on a plane beach; cf. Section 4.4. Comparison between computed wave heights at
gauges 1, 3, 5, 7 and data from Reference [46].

Relevant one-dimensional tests confirm the efficiency of the proposed dispersion correction in an almost
linear regime, in regimes where both non-linearity and dispersion increase, and in a fully non-linear regime.
The results obtained for the tests with bathymetry variable in space are encouraging, even if the method was
not specifically designed for such a setting.
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