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Abstract. As cyberattacks continue to increase, detecting and perform-
ing remediation actions against them is essential. This paper presents an
approach to automate the countermeasures selection process to deal with
a vulnerability exploitation performed by a cyberattack. We propose an
approach to match two knowledge graphs, one from a vulnerability on-
tology, Vulnerability Description Ontology (VDO), and the other is the
countermeasures knowledge graph, D3FEND, to mitigate cyberattack
impacts. Our approach uses machine learning and an inference system
to match entities from VDO and D3FEND to select candidate counter-
measures to an attack. Our contribution aims to automatically select
countermeasures intended to be part of an incident response playbook
for a vulnerability. We show our approach application to a WannaCry
use-case scenario. We validate our countermeasures selection approach by
comparing the countermeasures automatically selected with those pro-
posed in the literature for a WannaCry attack.

Keywords: Graph Matching · Machine Learning for Cybersecurity ·
Incident Response

1 Introduction

As cyberattacks increase, advancing our capabilities to thwart them is crucial. In
this paper, we consider cyberattacks that are performed by exploiting a vulner-
ability. Detection is the first step in stopping a cyberattack. An Intrusion Detec-
tion System (IDS) generates an alert when it detects a cyberattack. A Security
Information and Event Management (SIEM) system correlates the alerts an IDS
generates. The next step consists of selecting appropriate countermeasures to
manage the attack. As there are many alerts, countermeasures must be auto-
matically activated. Security Orchestration, Automation, and Response (SOAR)
systems represent a step towards automation; a SOAR allows one to write play-
books and scripts to execute to cope with an attack. However, presently, experts
manually write playbooks, and a SOAR requires extensive configuration.

Integrating an organization’s security tools within the SOAR is a substan-
tial task; it is even more complex when an organization has several instances



of tools from different vendors. The SOAR configuration requires a significant
investment in time and financial resources, and there is no standard to ease
SOAR interoperability. To reduce the manual work experts should do regarding
SOAR configuration, we propose to automatically select countermeasures aimed
to generate automated playbooks that will be integrated into a SOAR.

Resolving this gap in cyberattack response automation consists of automat-
ically identifying which countermeasures are effective in dealing with a cyber-
attack. We address this problem in this paper. As a system is monitored in
real-time, metadata of generated alerts of detected intrusions is available. By
semantically mapping this metadata with system knowledge, such as existing
vulnerabilities, it is possible to determine the exploited vulnerabilities. Multiple
vulnerability databases exist that contain the required conditions for the ex-
ploitation of vulnerabilities as well as the post-conditions of their exploitation.

In order to mitigate adversary actions and block any possible future action,
it is necessary to know which countermeasures are related to the consequences
of vulnerability. We propose to generate the individuals for each vulnerability
description information to create a Knowledge Graph (KG) for the Vulnerability
Description Ontology (VDO)1, proposed by the National Institute of Standards
and Technology (NIST). Then, the data can be available and machine-readable
for automation tasks. Additionally, a popular KG of countermeasures exists,
D3FEND2. We propose matching the VDO KG with D3FEND to identify the
countermeasures to mitigate an ongoing vulnerability exploitation.

To perform the proposed KG matching we utilize a knowledge base of vul-
nerabilities, the targets of cyberattacks, and defensive countermeasures.

– VDO To represent vulnerabilities, we use VDO, a standardized vulnera-
bility ontology proposed by NIST. VDO represents various attributes for
characterizing software vulnerabilities.

– Digital Artifact Ontology (DAO). DAO is used to represent the target of
an attack. DAO is an ontology that specifies the concepts needed to classify
and represent digital objects of interest for cybersecurity analysis. The use
of DAO makes it possible to associate the offensive techniques offered by
ATT&CK3 with the defensive techniques of D3FEND.

– D3FEND To select countermeasures, we use D3FEND, a KG created by
MITRE that describes specific technical functions within cyber technologies
in a common language of defensive techniques. The D3FEND taxonomy
inherits artifacts from DAO. ATT&CK is incorporated into the D3FEND
KG by mapping its concepts directly to D3FEND’s defensive techniques and
artifacts model. Throughout this paper, when mentioning D3FEND, we also
reference the inherited concepts from DAO and ATT&CK.

Our contributions consist of creating corpora based on entities from VDO and
D3FEND, matching each impact and exploitation method of a CVE with an
1 https://github.com/usnistgov/vulntology
2 https://d3fend.mitre.org/
3 https://attack.mitre.org/
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offensive technique of D3FEND, and selecting the defensive techniques related
to the offensive technique for the countermeasure plan construction. We show
the application of the proposed model in a real-world situation. We validate
the approach by comparing the countermeasures automatically selected for a
WannaCry use-case scenario with those proposed for this kind of attack.

The paper is organized as follows: Section 2 covers techniques for matching
KGs. Section 3 reviews related works and compares them to our approach. Sec-
tion 4 details our methodology for matching VDO and D3FEND to select coun-
termeasures. Section 5 evaluates the approach’s efficiency and demonstrates its
application in a use case. Section 6 discusses the advantages and challenges of
our approach. Finally, Section 7 concludes the paper.

2 Background

This section introduces the related concepts used in our approach.

Attack Graph An Attack Graph (AG) represents all the paths an adversary can
take to release a detrimental event on an Information System.

Attack-Defense Graph An attack defense graph (ADG) is a directed acyclic
graph in which nodes represent threats arising from existing vulnerabilities and
countermeasures to mitigate these threats.

Ontologies An ontology is the concrete and formal representation of a domain.
An ontology is a set of terms and the links between them. The ontology ensures
that no contradictions exist between these terms. Description Logic (DL) makes
it possible to represent an ontology. Ontologies allow automating inference and
enabling operability between applications [12]. The open-world assumption gov-
erns ontologies and states that what is not known is assumed to be true. It is
common to confuse the concepts of ontology and KG, however they have nuanced
differences [11]. In the next paragraph, we explain the concept of KG.

Knowledge Graph (KG) A KG is a data graph aimed at accumulating and dis-
seminating knowledge of the real world. A KG uses an ontology as a framework
to describe a given instance of a domain. A concrete example would be creating
an ontology to describe a countermeasure. The ontology comprises all the char-
acteristics that all countermeasures share. This ontology would, therefore, have
classes for the concepts of countermeasure, asset, adversarial action, and proper-
ties like mitigates. These terminologies are represented in the TBox. Definition 1
represents the TBox in the DL language. However, a knowledge graph must be
created to represent a particular countermeasure, such as Update software.
The asset mitigated by this countermeasure is a software. Nodes represent enti-
ties of interest, such as Software, and edges of potentially different relationships
between nodes, such as impacts, mitigates. The constructed KG makes it possible
to represent the following reality: A countermeasure Update software mitigates



an asset that is a software. This software is impacted by an adversarial action
Run virtual instance. This KG does not make it possible to know if Update
software and Run virtual instance are two different entities, namely that
the countermeasure and adversarial action classes are disjoint. It is the ontology
that makes it possible to define such restrictions.

Definition 1. Terminologies domain in DL language

Countermeasure ∩AdversarialAction ≡ ⊥
Countermeasure ≡ mitigates.Asset

SPARQL Protocol and RDF Query Language (SPARQL) KGs are often modeled
using the Resource Description Framework (RDF) in the N-triple format. This
is a line-based, plain text serialization format for RDF graphs. For applications
to interact with data, queries must be made on KGs. SPARQL is used to query
an RDF graph. SPARQL is a query language that allows searching, adding,
modifying, or deleting available RDF data.

b-matching of a Graph Based on a, possibly weighted, graph with a positive
integer bv for every vertex v of the graph, a b-matching of a graph is a multiset
M of its edges such that, for every vertex v, the number of edges of M incident
to v does not exceed bv [9].

Graph Matching A matching of a graph is a case of b-matching in which bv = 1
for every vertex v. We use a word embedding model to proceed to the b-matching
of the two KGs.

3 Related Work

In recent years, researchers have proposed several countermeasure selection ap-
proaches. However, they come with limitations that are presented in this section.
To fill this gap, we base our approach on graph matching. The research into graph
matching has followed several approaches. In this section, we also present the
different graph-matching approaches and their limitations and explain how we
address them with our work to propose an automated countermeasures selection
approach.

In their survey of countermeasures selection approaches [20], Nespoli et al.
define a countermeasure strategy. A countermeasure strategy comprises method-
ologies, procedures, and processes that aim to react to and eradicate security in-
cidents. They present a list of necessary components to define a countermeasure
strategy.

Some necessary components [20] are a monitored system, detection tools, and
countermeasure knowledge. Others are a system model that synthesizes informa-
tion gathered from the monitored system, atomic countermeasure options, and
a list of possible countermeasures. A threat model representing attack patterns
in AGs or ATs is essential. Finally, countermeasures were selected while looking
for a trade-off between security level and cost of reaction. A crucial component



is a prediction reward that can lead to a model attacker decision where the
threat model is updated based on all previously cited components. The system
operator’s decision is also important.

In our proposed approach, we consider these components. From a vulner-
ability report and a system model, we automatically generate an AG that is
updated in real time based on system monitoring. Countermeasure knowledge is
available in the literature. In this paper, we propose to select a list of possible
countermeasures by correlating countermeasures knowledge with vulnerability
reports. Other components, such as cost of reaction, are part of our automati-
cally optimal security playbook generation approach [26] that can lead to the
update of the threat model.

Nespoli et al. [20] survey the approaches based on 7 comparison features such
as attack modeling, countermeasures provision techniques, and used standards.
The surveyed approaches [8, 15, 29] highlight the lack of countermeasure stan-
dards. This issue is linked to the lack of countermeasure knowledge. The authors
only present a limited set of countermeasures used to counteract specific attacks
reported to the monitored system. These countermeasure selection processes lose
relevance and effectiveness because they do not apply to another type of attack.
The solutions also rely on the administrator’s knowledge of each threat [10,29],
implying a limitation in the correlation between atomic mitigation steps and
attacks.

In [8, 15], the authors use the Common Remediation Enumeration (CRE)
standard to develop a countermeasure model. Nespoli et al. argue that CRE
can not contribute significantly to the automation of countermeasures selection.
Kotenko et al. [15] also assume that the system already has a pool of counter-
measures that can be selected for an ad hoc algorithm. This assumption requires
much effort from the expert filling the knowledge database of countermeasures.
Our countermeasure selection approach is based on countermeasure and vul-
nerability standards. Using D3FEND, security experts do not have to fill any
countermeasures knowledge base.

Our countermeasure selection approach is part of an ADG generation pro-
cess. Compared with the approach in [28], our approach selects countermeasures
for a system monitored in real-time instead of a formal system model. The AG
generated in an initial state is updated in real-time based on newly deducted
knowledge from VDO [5]. We choose this ontology because it is a standardized
ontology proposed by NIST. It allows the representation of vulnerabilities based
on the natural language description of a vulnerability in the National Vulnera-
bility Database (NVD).

VDO is an ontology that describes vulnerabilities, the required conditions
for exploitation, the consequences, and the product concerned. In our approach,
we implement VDO in DL and automatically generate individuals for specific
vulnerabilities to create the KG. In order to select appropriate countermeasures
to a vulnerability, we need other knowledge bases focusing on countermeasures.
We investigate several countermeasure knowledge bases such as the Security



Control Catalogue ITSG-33 (from the Canadian Centre for Cyber Security) [6],
D3FEND, and CIS Security Controls [7].

In [6], the Canadian Centre for Cyber Security provides security control def-
initions suitable for Departmental Security Officers (DSOs), IT security coor-
dinators, and security practitioners. Each security control provides guidance on
the best practices the security department should have in developing departmen-
tal and domain security control profiles, as well as, defining and implementing
departmental IT security functions. In our approach, we focus on alleviating the
work of security practitioners by automatically selecting countermeasures aimed
to create automatic playbooks that can be integrated into a SOAR. Therefore,
we discard these security controls.

In [14], Kaloroumakis et al. present a countermeasure knowledge graph,
D3FEND. The Digital Artifact Ontology (DAO) is an ontology that specifies
the concepts needed to classify and represent digital objects of interest for cy-
bersecurity analysis. The use of DAO makes it possible to associate the offensive
techniques proposed by ATT&CK with the defensive techniques of D3FEND
based on the relationship of each technique with digital objects.

The CIS controls aim to share insights about attacks and attackers to iden-
tify root causes and translate them into defensive action classes. Each protective
measure is general advice to enhance an organization’s security. In compari-
son, the D3FEND defensive techniques provide more granularity by proposing
specific actions applicable to a specific artifact. Additionally, D3FEND is stan-
dardized and machine-readable, which implies that integration for automated
countermeasures selection is more accessible than the other knowledge-based
methods.

In [22], Pershina et al. present an algorithm for aligning instances in large
knowledge bases using Holistic Entity Matching (HolisticEM). Their approach
involves generating entity pairs from two KGs and matching them based on at-
tribute similarity. However, this approach’s heuristic optimization phase results
in varying matches between executions. Our approach aims to obtain a stable
and equivalent output from a graph-matching procedure.

In [4], Azmy et al. propose an approach to match entities from two different
KGs focusing on ambiguous entities from DBpedia and Wikidata. The approach
consists of matching an entity from DBpedia with an entity in Wikidata corre-
sponding to the same real-world entity and vice versa. The datasets are created
thanks to existing cross-ontology links (i.e OWL:sameAs predicate) between DB-
pedia and Wikidata. They focus on entities from the KGs that share the same
name, for example, the foaf:name predicate in DBpedia and the rdfs:label pred-
icate in Wikidata. This approach is not adaptable to our needs because there
are no existing cross-ontology links between VDO and D3FEND.

In [23], Portish et al. propose an approach to align graphs through a graph
embedding algorithm. The ontologies are embedded, and an approach known as
absolute orientation aligns the two embedding spaces. To match the two KGs,
they use the Euclidian distance to assign each node of a graph to its closest node
in the other graph. However, the approach only works well on similarly structured



graphs because they only match entity with entity. In our approach, we are
matching a sub-graph from VDO with a sub-graph from D3FEND, and the sub-
graphs are structured differently using cosine distance defined in Appendix A.

Currently, there is no contribution in the cybersecurity domain that pro-
poses to match KGs. However, some existing contributions propose the match-
ing of behavioral graphs in cybersecurity and the matching of AGs. In [21],
Park et al. propose a malware classification method based on maximal joint
sub-graph detection. In [16], Li et al. propose an approach to automatically ex-
tract behavior-based AGs from CTI reports and identify the associated attack
techniques. They identify the associated techniques by matching the AGs with
technique templates.

Hung et al., in [13], also propose an approach to address the radicaliza-
tion detection problem. They propose graph pattern matching to be used to
track individual-level indicators using data merged from available public and
government/law enforcement databases. The approach provides a quantifica-
tion method that allows for checking the occurrence of the indicators that are
beneficial in prioritizing investigative efforts and resources for planned attack
prevention.

In [22], the resulting matching varies from one case to another. Our ap-
proach aims to obtain a stable output from the graph-matching process. The
methods proposed in [4] and [23] are promising; however, they are not adaptable
to our goal as the approaches are limited to either KGs that share exiting cross-
ontology links or KGs structured similarly. In the approaches in [13] and [21], the
researchers propose matching behavioral graphs to prevent adversarial actions
against a system or a government. In this paper, we propose a solution that can
be adapted to KGs representing attacker behavior and countermeasures actions
to block attackers’ actions.

4 Methodology

4.1 Overview

We propose an approach for selecting countermeasures based on KG matching.
This approach allows selecting countermeasure actions for an attack scenario in
our ADG generation process, represented in Figure 1. The components in blue
in Figure 1 represent the ones involved in our AG enrichment process, part of
another contribution [25]. In Step 1, we scan the system. In Step 2, the scanning
output serves as input to a logical reasoner, allowing the AG generation to occur
in Step 3. When an adversary exploits a vulnerability, as shown in Figure 2, the
procedural reasoner matches the alert information with the AG information in
Step 4. In Step 5, the vulnerability ontology infers new information. When the
procedural reasoner receives the inferred information in Step 6, it releases new
rules to the logical reasoner in Step 7 and generates an enriched AG with a new
attack path in Step 3.

After, as shown in Figure 2, the ADG generation process can start. The com-
ponents in gray in Figure 1 are involved in the ADG generation process. Even if



the procedural reasoner does not release the AG enrichment process, the ADG
generation process starts as shown in the flow chart presented in Figure 2. An
ADG is generated in Step 10 by mapping the AG with an Incident Response
(IR) playbook for the exploited vulnerability in Step 9. An IR playbook consists
of the steps and procedures an organization should follow when addressing and
mitigating occurred incidents. If there is no existing playbook for this vulnera-
bility, our solution automatically generates it from a list of countermeasures as
shown in Step 8 of Figure 1.

If the playbook is not generated because of the countermeasures absence
for the exploited vulnerability, the automated countermeasures selection process
is executed (see Figure 2). The components involved in the countermeasures
selection are in white, as well as the output of the countermeasures selected. The
dashed box represents the graph-matching process. The graph matching involves
VDO and D3FEND KGs. Humans can periodically execute the graph matching
process, as well as the scanning of the system. However, it is automatically
released for a specific vulnerability exploited when there are no countermeasures
available for this vulnerability. It outputs the countermeasures in Step 7 that are
required for generating the playbook necessary for the ADG generation. In this
paper, we focus on the selection of countermeasures through graph matching. In
the next section, we present the dataset involved in the graph-matching process.

Fig. 1. Our ADG generation process

4.2 Experimental Dataset

The dataset in our approach consists of a sub-graph of VDO KG and a sub-graph
of D3FEND KG. VDO describes the pre and post-conditions of a vulnerability
exploitation. The countermeasures KG, derived from D3FEND [14], provides
corrective actions to perform in the face of exploitations of particular systems.



Fig. 2. A flow chart of the ADG generation process

We analyze VDO and D3FEND to choose the classes of interest for the coun-
termeasures selection approach. Figure 3 represents the selected sub-graphs for
D3FEND and VDO, respectively.

In D3FEND, these classes are OffensiveTechnique, Artifact, and DefenseTech-
nique. We select these classes to simplify the graph embedding and avoid noise in
the matching process. The class OffensiveTechnique refers to the methods an ad-



versary can employ to attack a system and the impacts of the attack. The class
Artifact refers to the components affected by an offensive technique, and the
class DefensiveTechnique refers to the countermeasures that should be applied
to an artifact. We, therefore, select the sub-graph composed of all the entities
whose type is either OffensiveTechnique, DefensiveTechnique and Artifact and
the properties allowing the relation between those entities.

Fig. 3. VDO and D3FEND sub-graphs

In VDO, we choose the classes LogicalImpact, ImpactMethod, Action, Con-
text, and VulnerabilityIdentifier. We do not choose the other classes to simplify
the graph embedding and avoid noise in the matching process. These classes are
essential to understanding the assets of a system affected by a scenario, how an
adversary can exploit a vulnerability and the consequences of this vulnerability.
LogicalImpact refers to the consequences of exploiting a vulnerability. Impact-
Method relates to the methods applied by an adversary to exploit a vulnerability.
Context refers to the software and hardware concerned by a vulnerability. Vul-
nerabilityIdentifier represents the CVE ID. However, some of the classes are
not directly linked. Therefore, we consider the class Action to make the com-
plete meaningful sub-graph required for the matching. The class Action allows
linking an entity of the class VulnerabilityIdentifier with entities of the classes
ImpactMethod and LogicalImpact.

4.3 Graph Matching

Our graph matching approach takes as input two KGs, O and O
′
. O contains the
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matching approach on graph embedding, word embedding, and SPARQL queries.
Figure 4 gives an overview of our solution architecture. The input is the two

subgraphs of D3FEND and VDO KGs. The automated pre-processing phase of
the KGs involves parsing the KGs, text processing, and corpora creation. This
phase is necessary before starting the training of Word2Vec (see Appendix A)
models and the embedding of KGs. Afterward, the matching process starts au-
tomatically.



In the matching phase, the cosine similarity is calculated automatically be-
tween the offensive techniques from D3FEND and the impact and method from
VDO. A SPARQL query then allows the automated retrieval of artifact entities
linked to the offensive techniques. If no artifact entity is retrieved, the cosine
similarity is automatically calculated between the artifact entities of D3FEND
and the context entities of VDO to find the artifact entities necessary to query
candidate countermeasures for each CVE. The output from the matching process
consists of a list of candidate countermeasures for each CVE.

Fig. 4. Architecture of the proposed solution

4.4 Matching Models Validation

The value of the parameters of a Word2Vec model impacts its performance. Win-
dow size is the size of the context window used to predict surrounding words. A
smaller window size captures a more specific, local context, which leads to more
precise word associations. We fix the window size to 5. The value of min_count
is a threshold, where words that appear fewer times than the value are ignored
during training; we fix its value to 1. The number of workers refers to the num-
ber of CPU cores used for parallel processing. A higher workers number leads
to faster training. We fix the number of workers to 20. The vector size is the
dimensionality of the word vector. Higher dimensions capture more semantic
nuances and context but can lead to overfitting. The number of iterations over
the training corpus is the number of epochs. Fewer epochs reduce training time
but can lead to underfitting. More epochs allow the model to learn better and
converge more fully.

We perform different Word2Vec model training for the method and impact
corpora by modifying the vector size and the number of epochs. To choose the
best Word2Vec model, we consider the number of VDO entities for which we
get the correct matches and the similarity score for the matches with the most
similar D3FEND entity. Table 1 compares different models based on the number
of correct matching for impacts and methods in VDO and the average cosine
similarity score for the correct prediction. The blue rows in Table 1 indicate the
best models for LogicalImpact and ImpactMethod, respectively. For 250 vector
size and 150 epochs, 100% of the predictions for the entities of LogicalImpact
are correct. Most importantly, for this model, the average similarity score is



Table 1. Word2Vec model prediction evaluation

Entity class vector size epochs Percentage of
correct

predictions

Average
Similarity Score

LogicalImpact 250 150 100% 0.46
ImpactMethod 250 150 50% 0.5
LogicalImpact 250 50 100% 0.45
ImpactMethod 250 50 100% 0.69
LogicalImpact 250 200 75% 0.38
ImpactMethod 250 200 25% 0.25
LogicalImpact 400 50 100% 0.44
ImpactMethod 400 50 50% 0.33
LogicalImpact 400 150 100% 0.45
ImpactMethod 400 150 75% 0.43
LogicalImpact 400 200 75% 0.38
ImpactMethod 400 200 50% 0.5
LogicalImpact 200 150 100% 0.44
ImpactMethod 200 150 50% 0.5
LogicalImpact 200 50 100% 0.44
ImpactMethod 200 50 50% 0.38
LogicalImpact 200 200 75% 0.5
ImpactMethod 200 200 25% 0.25

higher. The average similarity score is less than 0.5 because the higher similarity
score for the match of privilege escalation is 0.33. This value low similarity score
for this entity is due to the impact of corpus size. Since the dataset is small,
the model lacks variety, leading to poor generalization. For more epochs, the
model learns specific patterns and noise from the training data rather than the
underlying trends, which results in overfitting. We, therefore, fix the threshold
value for the similarity score to 0.33.

4.5 Countermeasure Selection

To extract the entities required for the model’s training and the matching pro-
cess, we parse the KGs using techniques such as SPARQL queries and splitting.
We create an impact corpus composed of the entities of ImpactTechnique and
PrivilegeEscalationTechnique, both subclasses of OffensiveTechnique, and Logi-
calImpact. We also create a method corpus composed of the entities of the other
subclasses of OffensiveTechnique and the entities of the classes ImpactMethod.
We create an artifact corpus with the entities of Artifact and Context. A general
corpus is created with the entities of all the classes.

We train 2 Word2Vec models with the impact and method corpora. We fix
the parameters for the best model in Table 1 in Section 4.4 for Word2Vec impact
and method models. A Word2Vec model receives a corpus text and produces the
word vectors as output. It first constructs a vocabulary from the training text
data and then learns the vector representation of words. To get the embeddings of
the KGs with RDF2Vec, we use the general corpus for the Word2Vec embedder.

We get the literals of the VDO graph embedding for each CVE. Then, for
each entity classified as an impact from VDO, we calculate the cosine similar-
ity between this entity and each offensive technique entity of the impact corpus



using the trained model for the impact corpus. As output, we get the most sim-
ilar offensive technique for the impact. We also calculate the cosine similarity
between each entity categorized as a method from VDO and each offensive tech-
nique entity of the method corpus using the trained model for the exploitation
method corpus. The output consists of the most similar offensive technique for
the exploitation method.

The similarity score varies from 0 to 1. When the score is equal to 1 for an
entity, this means that this entity is similar to the input entity. However, it is
common for an entry entity to have several matches. We choose the one whose
score is higher than the given similarity threshold from those entities. Therefore,
if all entity scores exceed this threshold, we keep them all. Then, we execute
a SPARQL query on D3FEND KG to get the artifact entities related to the
offensive techniques. However, it is possible not to get a specific artifact entity
from the SPARQL query. In this case, we calculate the cosine similarity for each
artifact’s entities of D3FEND for the context entity of each CVE using a trained
Word2Vec model with the artifact corpus. Then, we get the artifact with the
highest score as output. Afterward, we proceed to a SPARQL query to get all
the countermeasures related to the artifact entities.

5 Implementation Results

5.1 Countermeasures Selection Evaluation

We use the trained models highlighted in blue from Table 1 for the countermea-
sures selection process4. Our solution automatically executes a SPARQL query
on D3FEND for each selected offensive technique to retrieve related artifacts
and their defensive techniques. If no artifact is linked to an offensive technique,
cosine similarity is used to find the top 5 matching artifacts that match the con-
text entity in VDO most. A SPARQL query follows to obtain the corresponding
defensive techniques for each match. We evaluate the efficiency of the coun-
termeasures selected using the precision, recall, and F1 score metrics, defined
in Appendix A.

We count the FN, TP, and FP for the defensive techniques matched with
each method and impact. Then, we calculate the precision, recall, and F1 score.
Finally, we calculate the macro-value for these metrics by calculating the average
recall, precision, and F1 score value for the method and impact, respectively.
Table 2 and 3 represents the value for these metrics for the methods and impacts
respectively.

The average F1 score for the countermeasures selected for both the impacts
and the methods is higher than 0.9. Thus, we conclude that our approach for
automatically selecting countermeasures is efficient.



Table 2. Evaluation of the prediction for the methods

hhhhhhhhhImpact Method
Metric Precision Recall F1 Score

Code Execution 1 0.75 0.86
Man-in-the-Middle 1 1 1
Authentication Bypass 1 1 1
Trust Failure 1 1 1
Average 1 0.94 0.97

Table 3. Evaluation of the prediction for the impacts

hhhhhhhhhLogical Impact
Metric Precision Recall F1 Score

Manipulation 1 1 1
Discovery 1 0.88 0.93
Shutdown 1 1 1
Privilege Escalation 1 1 1
Average 1 0.97 0.98

Fig. 5. A Maritime Transportation System use case

5.2 Illustrative Use Case

This section introduces an illustrative use case represented in Figure 5 to validate
our approach. We choose a WannaCry use case because ransomware is the attack
that has impacted most organizations recently [18, 27]. The use case concerns a
Maritime Transportation System (MTS). We choose an MTS because this is a
critical sector; in the past, attacks such as the one impacting Maersk [19] have
shown how a ransomware attack against an MTS organization can have a severe
financial impact.

There is a terminal port with several workstations and a robot hoist that
unloads merchandise from ships. The terminal port receives data from the cloud
through an internet connection. External and internal firewalls exist between the
port network and the internet. The Maritime Internet of Things (IoT) system
communicates in real time with the cloud. A user on the entry point machine
vulnerable to EternalBlue (CVE-2017-0144) downloads a malicious input with
the WannaCry ransomware. The WannaCry propagates to all vulnerable local
hosts via port 445, encrypts files, and ransom requests follow. The terminal port
must disconnect from the internet and work in degraded mode. There is no
4 https://github.com/phDimplKS/graph-matching

https://github.com/phDimplKS/graph-matching


communication between the terminal port and the mIoT system. Let us explain

Fig. 6. An AG generated for the use case scenario

how our architecture integration allows us to deal with this scenario. For this use
case scenario, an AG is generated first, as shown in Figure 6. The node in the
dashed box represents the WannaCry propagation on the vulnerable local hosts.
Thanks to detection rules created on an IDS installed over the SIEM, the SIEM
allows the detection of EternalBlue exploit attempts : alert tcp any any − >
any 445 (msg:"SURICATA SMB Trans2 Request"; flow:to_server,established;
content:"|FF 53 4D 42 32|"; depth:5; content:"|00 00|"; distance:30; within:2;
content:"|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00|"; distance:10; within:16;
reference:cve,2017-0143; classtype:attempted-admin; sid:1000003; rev:1;).

Our solution maps the alert information with the AG generated for the sce-
nario. The alert is mapped with the Node 19 representing the EternalBlue vul-
nerability on the entry point. Then, it launches the countermeasures selection
process to get the related countermeasures that can block the attacker from
launching the ransomware. This is the list of countermeasures proposed by our
solution for CVE-2017-0144:

– There are countermeasures about the smbv1: Asset Vulnerability Enumera-
tion, Software Update, and Restore Software.

– Some countermeasures aim to control files allowed to be downloaded or ex-
ecuted: File Encryption, Local File Permissions, Decoy File, File Analysis,
File Removal, File Integrity Monitoring, Restore File, Dynamic Analysis,
Emulated File Analysis, Executable Allowlisting and Executable Denylist-
ing.

– Other countermeasures concern the network traffic: Client-server Payload
Profiling, Network Traffic Community Deviation, Per Host Download-Upload
Ratio Analysis, Protocol Metadata Anomaly Detection, Remote Terminal
Session Detection, User Geolocation Logon Pattern Analysis, and Network
Traffic Filtering.



– Several countermeasures selected concern a process: Process Spawn Analysis,
Hardware-based Process Isolation, Mandatory Access Control, System Call
Analysis, and System Call Filtering.

6 Discussion

We compare the countermeasures selected by our approach with the counter-
measures proposed in the literature for ransomware [1,3,18] and, more precisely,
WannaCry [2] use cases. In the literature, most of the proposed countermeasures
concern prevention to avoid infection. The proposed actions consist of setting up
spam filters to quarantine suspicious emails and attachments [1] and using pre-
dictive models to detect malicious behavior [3]. Other countermeasures proposed
frequently are patching the vulnerability [3], excluding kill-switch domains from
firewall rules, and blocking the SMB ports [2]. Our approach selects counter-
measures that are part of the prevention phase but also from the containment,
eradication, and recovery phases. File removal is an action from the eradication
phase, which consists of removing the ransomware from the system. The recovery
of encrypted files may follow.

All the countermeasures mentioned in Section 5.2 are the candidate counter-
measures to the mitigation plan. This paper only aims to select countermeasures,
a basis for the playbook generation that is part of another contribution [26].
Thanks to the real-time generation, the AG will help determine which coun-
termeasure actions should be applied quickly based on the attacker’s position
knowledge. So, based on how far the attacker has gone, only some countermea-
sures will be instantiated to the AG, leading to the ADG generation, which is
part of future work. In the future, we will evaluate our approach performance
to select countermeasures in real-time for different system complexity, partic-
ularly for large-scale infrastructure for which many security incidents may be
generated. We will consider the impact of real-time countermeasure selection
performance on the ADG generation process.

7 Conclusion

As part of our ADG generation, we propose a countermeasures selection ap-
proach based on graph matching. The approach matches a cybersecurity vulner-
ability KG, VDO, with a countermeasures KG, D3FEND, thanks to 4 corpora
creation for the Word2Vec models training. Graph and word embedding fol-
low to calculate the cosine distance between the entities of the two KGs. The
similarity between the entities from the two KGs allows us to select countermea-
sures. However, some candidate countermeasures only apply to specific assets.
The countermeasures are also different in terms of complexity and impact. The
selected countermeasures are used for automated playbook generation based on
system and organization constraints. Using the AG will help us to determine at
which point of the network the playbook actions should be applied to block the
adversary from advancing in the system.
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Appendix A Additional Background Definitions

Word2Vec Word2Vec [17] is a popular word embeddings model used to address
the limitations of the bag-of-words model [30], which is a type of vector space
model that simplifies text data representation in Natural Language Processing
(NLP) and Information Retrieval (IR). A bag-of-words vector represents text
describing the occurrence of words within a document. In Word2Vec, each token
becomes a vector with the length of a determined number.

RDF2Vec RDF2Vec, created by Ristoski et al. [24], is an unsupervised technique
built on Word2Vec. RDF2Vec first creates sentences that can be fed to Word2Vec
by extracting walks of a certain depth from a KG to make the embedding. A
vector of latent numerical features represents each entity in the KG. We calculate
the similarity of the vectors to match their embeddings using a distance metric.

Cosine Similarity Cosine similarity is a metric for measuring distance when
the magnitude of the vectors does not matter. Mathematically, cosine similarity
calculates the cosine of the angle between two vectors projected in a multi-
dimensional space. Considering two vectors A and B; we can measure their
cosine similarity using Formula 1.

cos(AB) =
A.B

||A||||B||
(1)

Where, A.B is the dot product of the vectors A and B, ||A|| and ||B|| are
the length (magnitude) of the two vectors A and B, and ||A||||B|| is the regular
product of the vectors A and B.

If A = B, cos(AB) = 1; in this case A and B are fully similar. If A.B=0,
then A and B are in opposite directions, so A.B is negative, and one or both
vectors are zero vectors, cos(AB) = 0; in this case A and B are opposite.

Precision Precision measures the number of positive prediction correctly pre-
dicted. So, it is calculated by dividing the number of true positive prediction
(TP) by all positive prediction i.e. True Positive (TP) + False Positive (FP).

Precision =
TP

TP + FP

Recall Recall gives a percentage of true positives instances by a model. It is the
number of well predicted positives divided by the total number of positives (True
Positive + False Negative (FN)).

Recall =
TP

TP + FN

F1 Score Either precision and recall can not evaluate a machine learning model
separately. F1 score allows combining precision and recall. So, it can provide a
good evaluation of a model performance. It is calculating as follow:

F1Score = 2 · Recall · Precision

Recall + Precision
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