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Improved Quasi-Min-Max MPC for Constrained LPV Systems via
Nonlinearly Parameterized State Feedback Control

Jin Yan†, Hoai-Nam Nguyen†, Nel Samama†

Abstract— We consider the regulation problem of linear
parameter varying systems with input and state constraints.
It is assumed that the time-varying parameters are available
at the current time, but their future behavior is unknown
and contained in a polytopic set. The aim is to design new
stabilizing quasi-min-max MPC algorithms based on a non-
linearly parameterized state feedback control law. It is shown
that the use of such a control law leads to less conservative
results compared to those derived from linearly parameterized
state feedback control laws. At each time instant, a convex
semi-definite optimization problem is required to solved. Two
numerical examples, including a non-quadratically stabilizable
system, are given with comparison to earlier solutions from
the literature to illustrate the effectiveness of the proposed
approaches.

I. INTRODUCTION

Model Predictive Control (MPC) is widely used in indus-
try as an effective method for dealing with constrained multi-
variable control problems [1], [2], [3]. In essence, this control
scheme consists of the on-line optimization technique: at
each time instant, an open-loop optimization problem is
solved online using the current available measurements. The
first element of the resulting optimal control sequence is
applied to the system. At the next time instant, the entire
procedure is repeated: the optimization problem is refreshed
with the new measurements and re-solved. The issues of fea-
sibility of the on-line optimization problem, and of stability
of the closed-loop system are largely understood for linear
discrete-time systems with input and state constraints.

In the last three decades, various research efforts have been
made to synthesize an MPC controller for nonlinear systems,
see e.g., [4], [5]. In this context, linear parameter varying
(LPV) system modeling framework offers a powerful tool.
LPV systems are dynamical models capable of capturing the
behavior of nonlinear plants in terms of a linear structure
[6]. Signal relations between the inputs and outputs in an
LPV representation are linear. Nonetheless, this linearity is
parameter-dependent. The parameters affecting the system
dynamics are often referred to as scheduling variables, which
are assumed to be measurable online and taking values
from a so-called scheduling region, often restricted to be
a polytopic set.

Frequently used MPC approaches for the control of LPV
systems with input and state constraints are based on the
online design of closed-loop linear feedback strategies, e.g.,
[7], [15], [16]. The optimization is done over a feedback law.
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In [9], a quasi-min-max MPC algorithm was proposed. The
MPC algorithm is called quasi since the first stage cost can
be calculated without any uncertainty. At time instant k, the
first predicted control move u(k) is separated from the rest
of the predicted control moves u(k + t),∀t ≥ 1 governed
by a feedback control law. At each time instant, a solution
of a convex semi-definite program (SDP) is required. It was
shown that the quasi-min-max MPC control law can improve
the performance and reduce the conservativeness with respect
to other min-max MPC techniques, e.g., [8]. However, the
feedback control law for u(k + t),∀t ≥ 1 in [9] is a linear
function of the scheduling parameters.

It is worth noticing that the application of the Linear
Matrix Inequality (LMI) technique in the context of fuzzy
control has opened up new ideas for the design of MPC
strategies for LPV systems. In [11], a nonlinearly param-
eterized Lyapunov function and an associated nonlinearly
parameterized state feedback control law were proposed for
the stabilization problem of a discrete-time Takagi-Sugeno
fuzzy system. It was shown that the results are less conser-
vative than what can be obtained with a quadratic Lyapunov
function. Using this class of Lyapunov function and of the
control law, an LMI based MPC control law was considered
in [17]. The algorithm can be classified as a closed-loop
linear feedback strategy, as the optimization is done over a
feedback law.

The objective of this paper is to propose new stabilizing
quasi-min-max MPC algorithms for LPV systems. Both input
and state constraints are considered. The main contributions
of the paper are

• We consider the class of nonlinearly parameterized state
feedback control laws for u(k + t), t ≥ 1 in our quasi-
min-max MPC algorithms.

• Our nonlinearly parameterized Lyapunov function is
simpler than the one in [11], [17]. In our companion
paper, we show that the use of the complex Lyapunov
function in [11], [17] does not bring any advantages
compared to ours.

• We provide a new LMI condition for state constraints.
• We show how to reformulate the online optimization

problem as a convex SDP program.
The paper is organized as follows. Section II covers

the problem formulation and preliminaries. Section III is
dedicated to the main results of the paper. Two simulated
examples with comparison to earlier solutions from the
literature are evaluated in Section IV before drawing the
conclusions in Section V.

Notation: We denote by R the set of real number, by



Rn×m the set of n×m real matrices. Given an integer L > 0,
we use 1, L to denote the set {1, 2, . . . , L}. We denote a
positive definite matrix P by P ≻ 0. We use Sn to denote
the set of positive definite matrices in Rn×n. For symmetric
matrices, the symbol (∗) denotes each of its symmetric block.
For a given matrix P ∈ Sn, E(P ) is used to denote the
ellipsoid

E(P ) = {x ∈ Rn : xTP−1x ≤ 1}

We use 0, I to denote the zero and the identity matrices of
appropriate dimension.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem Formulation

Consider the following discrete-time linear parameter
varying (LPV) system

x(k + 1) = A(k)x(k) +B(k)u(k) (1)

where x ∈ Rnx is the measured state, u ∈ Rnu is the control
input. The matrices [A(k) B(k)] ∈ Ω with

Ω = Co ([A1 B1] , [A2 B2] , . . . , [AL BL]) (2)

where Aj ∈ Rnx×nx and Bj ∈ Rnx×nu are constant
matrices, ∀j = 1, L, L is the number of subsystems, and
Co(·) denotes the convex hull operator. It is well known
[13] that the condition [A(k) B(k)] ∈ Ω holds if and only if
∃pj(k),∀j = 1, L such that

A(k) =

L∑
j=1

pj(k)Aj , B(k) =

L∑
j=1

pj(k)Bj (3)

where p(k) = [p1(k) p2(k) . . . pL(k)]
T satisfies

p(k) ∈ ΣL :=

p ∈ RL |
L∑

j=1

pj = 1, pj ≥ 0

 (4)

The vector p(k) may represent time-varying lumped param-
eters or state space components. In this paper, it is assumed
here after.

LPV hypothesis: p(k) is available in each time instant k.
The state x(k) and the input u(k) are subject to the

constraints, ∀k ≥ 0{
x(k) ∈ X :=

{
x ∈ Rnx | |xl| ≤ xl,max, l = 1, nx

}
u(k) ∈ U :=

{
u ∈ Rnu | |ul| ≤ ul,max, l = 1, nu

}
(5)

We denote x(k + t), u(k + t), t = 0, 1, . . ., respectively, as
the predicted states and the predicted control inputs at time
k + t from time k. Consider the following infinite horizon
objective function

J∞
0 (k) =

∞∑
t=0

x(k+t)TQx(k+t)+u(k+t)TRu(k+t) (6)

where Q ∈ Snx , R ∈ Snu are weighting matrices.
At a generic time k, the objective of the paper is to design

a control law

u(k + t) = g(x(k + t), p(k + t)), t = 0, 1, . . . (7)

that asymptotically stabilizes the system (1). Furthermore,
u(k + t) = g(x(k + t), p(k + t)) should solve the following
min-max problem

min
U∞

0 (k)
max

[A(p(k+t)),B(p(k+t))]∈Ω
J∞
0 (k)

s.t. (1), (5)
(8)

where
U∞
0 (k) = [u(k)T u(k + 1)T . . .]T (9)

One way to solve the problem (8) is to apply the quasi-min-
max MPC control strategy [9]. Using this method, we split
the cost function J∞

0 (k) into two parts

J∞
0 (k) = x(k)TQx(k) + u(k)TRu(k) + J∞

1 (k) (10)

with

J∞
1 (k) =

∞∑
t=1

x(k+t)TQx(k+t)+u(k+t)TRu(k+t) (11)

Using (10), (11), and the principle of optimality [14], prob-
lem (8) is equivalent to

min
u(k)

(
u(k)TRu(k) + min

U∞
1 (k)

max
[A(p(k+t)),B(p(k+t))]∈Ω

J∞
1 (k)

)
s.t. (1), (5)

(12)
with U∞

1 (k) = [u(k + 1)T u(k + 2)T . . .]T . Note that the
term x(k)TQx(k) is removed from the cost (12) as it does
not influence the optimal argument.

In the quasi-min-max MPC, the first control move u(k)
is a decision variable in the problem (12). The rest of the
future control moves is parameterized as [9]

u(k + t) = Fx(k + t),∀t = 1, 2, . . . (13)

where F ∈ Rnu×nx is a decision variable in (12). In [9],
[15], [16], less conservative results can be achieved where
linearly scheduled state feedback control laws of the form,
∀t = 1, 2, . . .

u(k + t) =

 L∑
j=1

pj(k + t)Fj

x(k + t) (14)

are employed, where Fj ∈ Rnu×nx ,∀j = 1, L are decision
variables in (8).

With the aim of obtaining even less conservative results,
in this paper we will adopt the following class of nonlinearly
parameterized state feedback control laws, ∀t = 1, 2, . . .

u(k + t) = F (k + t)G(k + t)−1x(k + t) (15)

where F (k+t) =
L∑

j=1

pj(k+t)Fj , G(k+t) =
L∑

j=1

pj(k+t)Gj

with Fj ∈ Rnu×nx , Gj ∈ Rnx×nx ,∀j = 1, L, are decision
variables in (8). Clearly if Gj = I, ∀j = 1, L then (15)
coincides with (14).

It should be stressed that the use of (15) is not new.
In [11], the authors employed (15) for the stabilization
problem of unconstrained discrete-time Takagi-Sugeno fuzzy
systems. The control law (15) was also used in the context



of MPC [17] for constrained LPV systems. However the
MPC strategy is not the quasi-min-max one, as the cost
function does not split into two parts, and the control input
is parameterized by (15) for all t ≥ 0.

It is worth noticing that both in [11], [17], the following
nonlinearly parameterized Lyapunov function

V (x, p) = xT

(
L∑

j=1

pjGj

)−T ( L∑
j=1

pjPj

)(
L∑

j=1

pjGj

)−1

x

(16)
was employed to associate with the control law (15),. In

our companion paper, we will show that the use of (16)
does not bring any advantages compared to our simpler
”nonlinearly” paramerized Lyapunov function in Section III.

B. Preliminaries

We will deal several times with the following double sum
positivity problem of the form

xT

 L∑
i,j=1

pipjMij

x ≥ 0 (17)

where x ∈ Rn, Mij ∈ Rn×n. The parameters pi satisfy

L∑
i=1

pi = 1, pi ≥ 0,∀i = 1, L (18)

Lemma 1: [12] Inequality (17) holds ∀x ∈ Rn, ∀pi
satisfying (18) if{

Mii ⪰ 0,∀i = 1, L
2

L−1Mii +Mij +Mji ⪰ 0, 1 ≤ i ̸= j ≤ L
(19)

We will use the following lemma to construct a parameter
dependent Lyapunov function.

Lemma 2: [18] Given Q ∈ Sn×n, G ∈ Rn×n. The
following relation holds

GTQ−1G ⪰ G+GT −Q (20)

III. MAIN RESULTS

A. Algorithm 1

In this section, we will first provide a way to calculate
the upper bound of J∞

1 (k) using the control law (15).
Substituting (15) into (1), one obtains, ∀t ≥ 1

x(k + t+ 1) = Ac(k + t)x(k + t) (21)

where Ac(k+ t) = A(k+ t)+B(k+ t)F (k+ t)G(k+ t)−1.
We will provide a way to design Fj , Gj ,∀j = 1, L such
that the closed-loop system (21) is asymptotically stable. For
the moment, it is assumed that lim

t→∞
x(k + t) = 0 for any

admissible state x(k).
Consider the following parameterized quadratic function,

∀t ≥ 1

V (k+ t) = x(k+ t)T

 L∑
j=1

pj(k + t)Sj

−1

x(k+ t) (22)

where Sj ∈ Snx×nx ,∀j = 1, L are chosen to satisfy, ∀t ≥ 1

xT (k + t)Qx(k + t) + u(k + t)TRu(k + t) ≤
V (k + t)− V (k + t+ 1)

(23)

As lim
t→∞

x(k+ t) = 0, one has lim
t→∞

V (k+ t) = 0. Summing
(23) from t = 1 to t =∞, one obtains
∞∑
t=1

xT (k + t)Qx(k + t) + u(k + t)TRu(k + t) ≤ V (k + 1)

or equivalently, ∀k ≥ 0

J∞
1 (k) ≤ V (k + 1) (24)

Hence V (k + 1) is an upper bound of the cost J∞
1 (k).

Define Rc ∈ Rnu×nu , Qc ∈ Rnx×nx , respectively, as a
squared root of R, Q, i.e., RT

c Rc = R,QT
c Qc = Q. For a

given x(k), the following result provides a way to calculate
u(k), Fj , Gj , Sj that satisfies condition (23), and that solves
the problem (12).

Proposition 1: For a given x(k) at a generic time instant
k, a solution to the problem (12) may be found by solving
the following SDP program

min
u(k),Fj ,Gj ,S̃j ,α

{α} (25)

subject to 1 ∗ ∗
A(k)x(k) +B(k)u(k) S̃s ∗

Rcu(k) 0 αI

 ⪰ 0, s = 1, L (26)

Miis ⪰ 0, i = 1, L, s = 1, L (27)

2

L− 1
Miis +Mijs +Mjis ⪰ 0, 1 ≤ i ̸= j ≤ L, s = 1, L

(28)
|ul(k)| ≤ ul,max,∀l = 1, nu (29)[

αu2
l,max ∗

FT
i fl,u GT

i +Gi − S̃i

]
⪰ 0, i = 1, L, l = 1, nu (30)[

x2
l,max ∗
S̃ifl,x S̃i

]
⪰ 0 i = 1, L, l = 1, nx (31)

where S̃s = αSs,∀s = 1, L, and, ∀i,∀j,∀s = 1, L

Mijs =


GT

i +Gi − S̃i ∗ ∗ ∗
AiGj +BiFj S̃s ∗ ∗

QcGi 0 αI ∗
RcFi 0 0 αI

 (32)

and fl,u, fl,x are, respectively, the lth element of the standard
basis in Rnu and Rnx , i.e.,{

fl,u = [0 . . . 0 1 0 . . . 0]
T
,

fl,x = [0 . . . 0 1 0 . . . 0]
T (33)

Proof: See Appendix. □
For further use, denote the solution of (25), (26), (27),

(28), (29), (30), (31) as u∗(k), F ∗
j , G

∗
j , S

∗
j ,∀j = 1, L.

Remark 1: It is worth noting that, unlike [9], we omit
the term x(k)TQx(k) in (12). Hence the dimension of the



LMI condition (26) is smaller than that of the corresponding
condition in [9]. Consequently, the computational effort is
reduced. □

Remark 2: Using the proof of Proposition 1, it follows
that condition (31) is for the admissibility of the state
constraints. Note that this condition is much simpler than
that was proposed in [9]. □

Based on Proposition 1, we propose the following quasi-
min-max MPC algorithm

Algorithm 1 Improved quasi-min-max MPC
1: Set k ← 0
2: Measure and/or estimate x(k) and p(k).
3: Solve the optimization problem (25), (26), (27), (28),

(29), (30), (31).
4: Feed the plant with u∗(k).
5: Set k ← k + 1 and go to step 2.

The following theorem holds.
Theorem 1: Assuming feasibility at the initial condition

x(0). Then, Algorithm 1 guarantees recursive feasibility, and
the closed-loop system with the MPC control law yields is
asymptotically stable.

Feasibility Proof: The basic idea of the feasibility proof
is to show that the optimal solution at time k is a feasible
solution at time k + 1.

As condition (26) is for the performance, one needs only
to check conditions (27), (28), (29), (30), (31).

Using the proof of Proposition 1, one has that conditions
(27), (28) do not contain the parameters p(k), and are for
the upper bound of the cost J∞

1 (k). Using (23), it is clear
that if J∞

1 (k) ≤ V (k + 1), then J∞
1 (k + 1) ≤ V (k + 2).

Hence conditions (27), (28) are satisfied at time k + 1.
Using (30), one has |ul(k + 1)| ≤ ul,max,∀l = 1, L with

u(k + 1) = F ∗(k + 1)G∗(k + 1)−1x(k + 1)

Hence, condition (29) is satisfied. It remains to show (30),
(31), which are for the constraint admissibility. As (30), (31)
do not contain the parameters p(k), hence if it holds at time
k, then it holds at time k + 1.

Stability Proof: Consider the following parameter-
dependent Lyapunov candidate function

ϕ(k) = x(k)TQx(k) + u∗(k)TRu∗(k)

+ x(k + 1)TS∗(k + 1)−1x(k + 1)
(34)

where u∗(k), S∗
j ,∀j = 1, L are the outputs of Algorithm 1

at time k. Note that ϕ(k) > 0,∀x(k) ̸= 0. Note also that in
Algorithm 1, if x(k) = 0, then u(k) = 0 is the solution. In
this case ϕ(k) = 0.

As u(k+1) = F ∗(k+1)G∗(k+1)Tx(k+1) and S∗(k+1)
is a feasible solution at time k + 1, one obtains

x(k + 1)TQx(k + 1) + u(k + 1)TRu(k + 1)

+ x(k + 2)TS(k + 2)−1x(k + 2)

≤ x(k + 1)S∗(k + 1)−1x(k + 1)

(35)

Using (34), (35), one gets

ϕ(k) ≥ x(k)TQx(k) + u∗(k)TRu∗(k)

+ x(k + 1)TQx(k + 1) + u(k + 1)TRu(k + 1)

+ x(k + 2)TS(k + 2)−1x(k + 2)
(36)

At time instant k + 1, one has

ϕ(k + 1) = x(k + 1)TQx(k + 1) + u∗(k + 1)TRu∗(k + 1)

+ x(k + 2)TS∗(k + 2)−1x(k + 2)

≤ x(k + 1)TQx(k + 1) + u(k + 1)TRu(k + 1)

+ x(k + 2)TS(k + 2)−1x(k + 2)
(37)

Combining (36), (37), one obtains

ϕ(k) ≥ ϕ(k + 1) + x(k)TQx(k) + u∗(k)TRu∗(k)

Hence, ϕ(k) is a Lyapunov function for the closed-loop
system with the control law u(k) = u∗(k). In the other
words, asymptotic stability is guaranteed. This complete the
proof. □

B. Algorithm 2

Algorithm 1 guarantees recursive feasibility and the
closed-loop system is asymptotically stable. With respect
to other well-known techniques, the main advantage of
Algorithm 1 is the reduced conservativeness.

In the following we provide a second quasi-min-max
MPC scheme that yields an asymptotically stable closed-
loop system. The motivation for the second algorithm is the
observation that requiring the satisfaction of the input and
state constraints for the entire infinite horizon might be too
restrictive. Therefore, for the second algorithm we impose
the constraints only on u(k) and x(k + 1). To guarantee
the stability of the closed-loop system, we require that the
objective function decreases monotonically. This is done by
explicitly incorporating a linear Lyapunov constraint in the
online optimization problem. Consider the cost function

φ(k) = x(k)TQx(k) + u(k)TRu(k)

+ x(k + 1)TS(k + 1)−1x(k + 1)
(38)

We include the following Lyapunov constraint in the opti-
mization problem

φ(k) < φ(k − 1) (39)

Using (38), (39), and the proof of Proposition 1, we obtain
the following result.

Proposition 2: For a given state x(k) at time k, a solution
to the problem (12) with the constraint (39) may be found
by solving the following SDP problem

min
u(k),Fj ,Gj ,Sj ,γ

{γ} (40)



subject to
γ ∗ ∗ ∗

A(k)x(k) +B(k)u(k) Ss ∗ ∗
Qcx(k) 0 I ∗
Rcu(k) 0 0 I

 ⪰ 0,∀s = 1, L

(41)
γ ≤ φ(k − 1) (42)

Niis ⪰ 0,∀i,∀s = 1, L (43)

2

L− 1
Niis +Nijs +Njis ⪰ 0, 1 ≤ i ̸= j ≤ L,∀s = 1, L

(44)
|ul(k)| ≤ ul,max, l = 1, nu (45)

|A(k)x(k) +B(k)u(k)| ≤ xmax (46)

where

Nijs =


GT

i +Gi − Si ∗ ∗ ∗
AiGj +BiFj Ss ∗ ∗

QcGi 0 I ∗
RcFi 0 0 I

 (47)

Proof: Following the proof of Proposition 1, it is clear that
conditions (43), (44) are for the upper bound of J∞

1 (k) in
the sense that if there exist Fj , Gj , Sj satisfying (43), (44),
then

J∞
1 (k) ≤ x(k + 1)

 L∑
j=1

pj(k + 1)Sj

−1

x(k + 1)

In this case, the cost function of (12) can be rewritten as

min
u(k),Fj ,Gj ,Sj ,γ

{γ}

subject to

x(k)TQx(k) + u(k)TRu(k)

+ x(k + 1)TS(k + 1)−1x(k + 1) ≤ γ

Thus, using Schur complements, one obtains (41).
Note that γ provides an upper bound of φ(k), i.e., φ(k) ≤

γ, and there exists a particular set of parameters poj(k + 1)
such that

γ = x(k)TQx(k) + u(k)TRu(k)

+ x(k + 1)T

 L∑
j=1

poj(k + 1)Sj

−1

x(k + 1)
(48)

Hence condition (42) is for satisfying the Lyapunov con-
straint (39).

Finally, conditions (45), (46) are, respectively for the input
constraint u(k) and for the state constraint x(k + 1). □

For further use, denote the solution of (40), (41), (42),
(43), (44), (45), (46) as u∗(k), F ∗

j , G
∗
j , S

∗
j ,∀j = 1, L.

Using proposition 2, we propose the following quasi-min-
max MPC algorithm.

Algorithm 2 Improved quasi-min-max MPC
1: Set k ← 0.
2: Measure and/or estimate x(k) and p(k).
3: if k=0 then
4: Solve (40), (41), (43), (44), (45), (46).
5: else
6: Solve (40), (41), (42), (43), (44), (45), (46).
7: Feed the plant with u(k) = u∗(k).
8: Set k ← k + 1 and go to step 2.

Theorem 2: Assuming feasibility at time k, Algorithm 2
yields an asymptotically stable closed-loop system.

Proof: The main idea of the proof is to show that φ(k) is
a Lyapunov function of the closed-loop system. The proof is
omitted as it follows closely to the proof of Theorem 1. □

Remark 3: Note that recursive feasibility is not guaran-
teed with Algorithm 2. However, for all the examples in
the paper, if the optimization problem of Algorithm 2 is
feasible at time k = 0, then it is always feasible. Note also
that feasibility of the optimization problem of Algorithm 1
implies feasibility of the optimization problem of Algorithm
2, but the reverse does not generally hold. □

IV. NUMERICAL EXAMPLES

Two example systems are shown in this section. The
CVX toolbox [14] was used to solve the SDP optimization
problems.

A. Example 1

This example is taken from [19]. Consider system (1) with

A1 =

[
1.0 0.1
0 0.99

]
, A2 =

[
1.0 0.1
0 0

]
,

B1 =
[
0 0.0787

]T
, B2 = B1

Note that the open-loop system is unstable. The input and
state constraints are |u(k)| ≤ 1. The weighting matrices are
Q = I,R = 1.

For the initial condition x(0) = [2 1]T , Fig. 1 and Fig.
2 present the state and the input trajectories as functions of
time for Algorithm 1 (solid blue), for Algorithm 2 (dash
dot violet) for [9] (dashed red). Using Fig. 1, Fig. 2, the
superior performance of both Algorithm 1 and Algorithm 2
compared to [9] is clearly observed. Finally, Fig. 3 presents
the accumulated cost V(k), which is computed as, V(−1) =
0

V(k) = V(k − 1) + x(k)TQx(k) + u(k)TRu(k)

for Algorithm 1 (solid blue), for Algorithm 2 (dashed-dot
violet), and for [9] (dashed red). Fig. 3 also presents the p1
realization as a function of time.

B. Example 2

Consider system (1) with

A1 =

[
1.0 −1.4
−1.0 −0.8

]
, A2 =

[
1.0 1.4
−1.0 −0.8

]
B1 =

[
5.9 2.8

]
, B2 =

[
3.1 −2.8

] (49)
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Fig. 1. State trajectories for Algorithm 1 (solid blue), for Algorithm 2
(dash dot violet), for [9] (dashed red) for example 1.
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Fig. 2. Input trajectories for Algorithm 1 (solid blue), for Algorithm 2
(dash dot violet), for [9] (dashed red) for example 1.
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Fig. 3. Accumulated cost for Algorithm 1 (solid blue), for Algorithm 2
(dashed-dot violet), for [9] (dashed red), and p1−realization for example 1.

Note that system (1), (49) is unstable. It can also be verified
that it is not quadratically stabilizable. Since B1 ̸= B2, the
linear parameterized control law in [9] is not applicable.

The input constraints are |u(k)| ≤ 1. There are no state
constraints. The weighting matrices are Q = I,R = 0.01.

For the initial condition x(0) = [2.78 2]T , Fig. 4 and Fig.
5 show the state and the input trajectories as function of
time for Algorithm 1 (solid blue), and for [17] (dashed red).
Note that for this example both Algorithm 1 and Algorithm
2 have the identical performance. Finally, Fig. 6 shows
the accumulated cost for Algorithm 1 (solid blue), for [17]
(dashed red). Fig. 6 also shows the p1−realization as a
function of time.
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Fig. 4. State trajectories for Algorithm 1 (solid blue), for [17] (dashed
red) for example 2.
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Fig. 5. Input trajectories for Algorithm 1 (solid blue), for [17] (dashed
red) for example 2.
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Fig. 6. Accumulated cost for Algorithm 1 (solid blue), for [17] (dashed
red), and p1−realization for example 2.

V. CONCLUSION

In this paper we proposed two new quasi-min-max MPC
algorithms for discrete-time LPV systems with input and
state constraints. The main idea is to use a class of non-
linearly parameterized state feedback control laws. In Al-
gorithm 1, recursive feasibility of the online optimization
problem and asymptotic stability of the closed system are
guaranteed. In Algorithm 2, a linear Lyapunov constraint was
considered to guarantee stability. Two numerical examples
with comparison to earlier solutions in the literature demon-
strate the effectiveness of the new methods.

The requirement of solving a convex semi-definite pro-
gram at each time instant for the proposed algorithms im-



poses a computational burden, especially for systems with
high complexity or fast sampling rates. This limitation can
restrict the applicability of the techniques to systems where
the computational resources are sufficient to handle the real-
time requirements. In the future, we aim to reduce the online
computational burden of the proposed techniques.
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VI. APPENDIX - PROOF OF PROPOSITION 1

We divide the proof into four mains parts concerning the
cost function, the upper bound of J∞

1 , the input constraints,
and the state constraints.

A. Cost Function

Using (12), (24), the problem of minimizing J∞
0 can be

rewritten as

[A(k)x(k) +B(k)u(k)]TS(k + 1)−1[A(k)x(k) +B(k)u(k)]

+ u(k)TRu(k) ≤ α
(50)

Thus, using Schur complements
1 ∗ ∗

A(k)x(k) +B(k)u(k) α
L∑

j=1

pj(k + 1)Sj ∗

Rcu(k) 0 αI

 ⪰ 0

(51)
As S̃j = αSj , it follows that (51) holds ∀p(k + 1) ∈ ΣL if
and only if (26) holds.

B. Upper Bound of J∞
1 (k)

Concerning condition (23), it is clear that it suffices to
verify (23) with t = 1, i.e

xT (k + 1)Qx(k + 1) + u(k + 1)TRu(k + 1) ≤
V (k + 1)− V (k + 2)

(52)

Using (15), (21), it follows that (52) holds if and only if

S(k + 1)−1 −Ac(k + 1)TS(k + 2)−1Ac(k + 1)

−Q− [F (k + 1)G(k + 1)−1]TRF (k + 1)G(k + 1)−1 ⪰ 0
(53)

By pre- and post-multiplying with
√

1
αG(k + 1)T and√

1
αG(k + 1), one obtains

Sg(k + 1)−Ag(k + 1)T × S̃(k + 2)−1Ag(k + 1)

−G(k + 1)T
Q

α
G(k + 1)− F (k + 1)T

R

α
F (k + 1) ⪰ 0

where

Sg(k + 1) = G(k + 1)T S̃(k + 1)−1G(k + 1),
Ag(k + 1) = A(k + 1)G(k + 1) +B(k + 1)F (k + 1)

thus, by using Schur complements
Sg(k + 1) ∗ ∗ ∗
Ag(k + 1) S̃(k + 2) ∗ ∗
QcG(k + 1) 0 αI 0
RcF (k + 1) 0 0 αI

 ⪰ 0 (54)

Recall that S̃(k + 2) =
L∑

s=1
ps(k + 2)S̃s. Hence (54) is

satisfied, ∀p(k + 2) ∈ ΣL if and only if
Sg(k + 1) ∗ ∗ ∗
Ag(k + 1) S̃s ∗ ∗
QcG(k + 1) 0 αI 0
RcF (k + 1) 0 0 αI

 ⪰ 0,∀s = 1, L (55)

Using Lemma 2, one has

Sg(k + 1) ⪯ G(k + 1)T +G(k + 1)− S̃(k + 1)



Therefore, if the following condition
G(k + 1)T +G(k + 1)− S̃(k + 1) ∗ ∗ ∗

Ag(k + 1) S̃s ∗ ∗
QcG(k + 1) 0 αI 0
RcF (k + 1) 0 0 αI

 ⪰ 0

(56)
holds ∀s = 1, L, then (55) holds.

Note that (56) can be written in the following double sum
form, ∀s = 1, L

L∑
i=1

L∑
j=1

pi(k + 1)pj(k + 1)Mijs ⪰ 0 (57)

with Mijs being defined in (32). Using Lemma 1, if (27),
(28) hold then (57) holds.

C. Input Constraints

Consider first the case where u(k) is a scalar. In quasi-min-
max MPC, u(k) is a decision variable. Hence (29) imposes
directly the constraint on u(k). For the remaining inputs U∞

1 ,
one has, ∀t ≥ 1

|F (k + t)G(k + t)−1x(k + t)| ≤ umax (58)

Using (50), one obtains

u(k)TRu(k) + x(k + 1)TS(k + 1)−1x(k + 1) ≤ α

Hence
x(k + 1)T S̃(k + 1)−1x(k + 1) ≤ 1

Hence, x(k + 1) belongs to the parameterized ellipsoid

E(
L∑

j=1

pj(k + 1)S̃j). Using the feasibility proof of Theorem

1, it follows that, ∀t ≥ 1

x(k + t) ∈ E(
L∑

j=1

pj(k + t)S̃j) (59)

Consequently, for the input constraint, condition (58) should
hold ∀x(k + t) satisfying (59).

Define, ∀t ≥ 1

vu(t) = max
x(k+t)

{
F (k + t)G(k + t)−1x(k + t)

}
,

s.t. x(k + t)T S̃(k + t)−1x(k + t) ≤ 1
(60)

Using the method of Lagrange multipliers, it can be shown
that

vu(t) =

√
F (k + t)G(k + t)−1S̃(k + t)G(k + t)−TF (k + t)T

As the set E(
L∑

j=1

pj(k + t)S̃j) is symmetric, one has

−vu(t) ≤ F (k + t)G(k + t)−1x(k + t) ≤ vu(t)

∀x(k+1) ∈ E(
L∑

j=1

pj(k+t)S̃j). Hence (58) hold if and only

if

u2
max−F (k+t)G(k+t)−1S̃(k+t)G(k+t)−TF (k+t)T ≥ 0

Thus, using Schur complements[
u2
max ∗

F (k + t)T G(k + t)T S̃(k + t)−1G(k + t)

]
⪰ 0 (61)

Using Lemma 2, it follows that if (30) holds, then (61) is
satisfied ∀t ≥ 1.

Now, consider the case where u(k) is a vector. Note
that conditions (29), (30) impose the constraint on each
component of u(k) and of u(k + t), t ≥ 1.

D. State Constraints

Condition (31) is for the state constraint satisfaction. The
proof is omitted here, as it follows closely the proof of the
input constraints.


