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S U M M A R Y 

Modelling seismic wavefields in complex 3-D elastic media is the key in many fields of Earth 

Science: seismology, seismic imaging, seismic hazard assessment and earthquake source 
mechanism reconstruction. This modelling operation can incur significant computational cost, 
and its accuracy depends on the ability to take into account the scales of the subsurface hetero- 
geneities varying. The theory of homogenization describes how the small-scale heterogeneities 
interact with the seismic waves and allows to upscale elastic media consistently with the wave 
equation. In this study, an efficient and scalable numerical homogenization tool is developed, 
relying on the similarity between the equations describing the propagation of elastic waves 
and the homogenization process. By exploiting the optimized implementation of an elastic 
modelling kernel based on a spectral-element discretization and domain decomposition, a fully 

scalable homogenization process, working directly on the spectral-element mesh, is presented. 
Numerical experiments on the entire SEAM II foothill model and a 3-D version of the Mar- 
mousi II model illustrate the efficiency and flexibility of this approach. A reduction of two 

orders of magnitude in terms of absolute computational cost is observed on the elastic wave 
modelling of the entire SEAM II model at a controlled accuracy. 

Key wor ds: F inite element method; Numerical modelling; Numerical solutions; Computa- 
tional seismology; Seismic anisotropy; Wave propagation. 
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1  I N T RO D U C T I O N  

Our ability to model accurately the propagation of mechanical waves 
in the Earth interior is the key in many fields of seismology, such as 
seismic tomography and imaging (Bozda ̆g et al. 2016 ; Karao ̆glu & 

Romanowicz 2018 ; Lei et al. 2020 ; Thrastarson et al. 2022 ; Yuan 
et al. 2014 ; Fichtner & Villase ̃ nor 2015 ; Lu et al. 2020 ), seismic 
hazard risk assessment (Chaljub et al. 2015 ) and earthquake source 
mechanism inversion (Ide et al. 2011 ). One important question is 
the meaning we give to ‘accurately’? In most of current applica- 
tions, ‘accurate’ means numerically approximating the solution of 
3-D elastodynamics equations in media with mechanical properties 
varying in the three spatial directions. The key point, specific to the 
Earth’s interior, is the variety of the spatial scales of its mechanical 
proper ties. From microscopic g rains to macroscopic tectonic units, 
the subsurface exhibits a continuous spectrum of heterogeneities. 
Simulating wavefields through such a medium by the mean of nu- 
merical approaches al wa ys relies on some types of discretization. 
In theory, we need to use suf ficientl y fine meshes to accommodate 
Now at: CGG, F-91300 Massy, France. 
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for all scales of heterogeneities, which would lead to intractable 
computational cost. 

This is why for most applications, heterogeneities below a certain 
‘mesoscopic’ scale are usuall y simpl y ignored. This is a rather crude 
approximation and a deeper understanding on how to manage this 
specific problem is the core of the homogenization theory, or the so- 
called ‘equi v alent media’ theory. In seismology, this topic has been 
pioneered by Backus ( 1962 ) for the study of layered media (3-D 

media with spatial variations only in a single direction, usually the 
vertical direction in seismology). The work on non-periodic homog- 
enization of 2-D and 3-D media was initiated in Capdeville et al. 
( 2010b , 2015 ), respecti vel y. What we consider in this study is an ex- 
tension of this seminal work to large-scale 3-D problems. The lead- 
ing idea behind homogenization is as follows: in the propagation of 
a band-limited wavefield, there is a threshold scale below which het- 
erogeneities are ‘seen’ by the wavefields as a local smooth ef fecti ve 
medium. In general, even for isotropic fine scales, the corresponding 
ef fecti ve medium is fully anisotropic. The threshold scale is related 
to the smallest propagated w avelength. Basicall y, an y hetero geneity 
smaller than half of the smallest propagated wavelength is seen as 
a locally smooth and anisotropic medium. It means that the wave 
velocity depends on the wave propagation direction locally. In the 
ress on behalf of The Royal Astronomical Society. This is an Open Access 
s Attribution License ( https://creati vecommons.org/licenses/b y/4.0/ ), which 
 any medium, provided the original work is properly cited. 
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ase of layered media studied by Backus ( 1962 ), it is possible to
pproximate the wave propagation by a wavefield propagating in
 smoothly var ying ver tical transverse isotropic medium. The 3-D
on-periodic homogenization theory extends this result by stating
hat the wave propagation in a 3-D fine-scale isotropic medium can
e approximated by a wavefield propagating in an equi v alent smooth
nisotropic medium, where the anisotropy is generic: the equi v a-
ent medium is described by the 21 independent coefficients of the
ooke’s tensor and its density (the so-called triclinic anisotropy). 
This result has a deep repercussion both in the understanding of

he mechanical waves we measure at the surface, and also in our
apacity to model comple x wav e propagation phenomena in 3-D
eterogeneous media. The anisotropy we observe in the seismic
easurement can originate from multiple factors, from the crys-

alline structure of the rocks (the intrinsic anisotropy) to the specific
lignment or bending of geological layers (the extrinsic anisotropy).
eparating these two origins of anisotropy is difficult. It is an active
esearch topics which goes beyond this study (Fichtner et al. 2013 ;

ang et al. 2013 ; Bodin et al. 2015 ; Alder et al. 2017 ; Magali
t al. 2021 ). In any case, the band-limited data we measure should
e al wa ys interpreted as propagating in an anisotropic medium,
ecause of the presence of heterogeneities smaller than the mini-
um propagating wavelength. From a modelling perspective, the

omogenization theory provides a tool to compute approximations
f wavefields propagating in complex media with small-scale het-
rogeneities at a cheaper cost. This approximation can be indeed
omputed in a smooth anisotropic medium, for which the require-
ents in terms of mesh complexity are much less drastic, leading

o important computational savings. This is true only if we are
ble to compute such equi v alent media from a fine-scale isotropic
epresented subsurface. 

How to compute this equi v alent media is the main topic of the
tudy we propose here. A series of studies (Capdeville et al. 2015 ;
upillard & Capdeville 2018 ; Cupillard et al. 2020 ) have set up

he theory leading to the equations for constructing the equi v alent
edium from a fine-scale medium. The method is derived from the

wo-scale homogenization theory, or formal asymptotic homoge-
ization analysis (S ánchez-Palencia 1980 ) originally designed for
edia with a scale separation (periodic or stochastic media) and

hen extended to media with non-scale separation such as geo-
ogical media (see Capdeville et al. 2020 , for an introduction and
 re vie w to the method). In summary, to compute the equi v alent
ooke’s tensor and density, an elastostatic problem has to be solved

or unitary loads on each components of the stress, leading to six
lastostatic prob lems. F rom the six second-order tensors solutions
f these equations, the so-called ‘strain and stress concentrators’
re built, which only involves algebraic operations on fourth-order
ensors at each gridpoint. The last stage consists of filtering the
train and stress concentrators, the local inversion of the stress con-
entrators at each gridpoint, and the product of the filtered strain
oncentrator with the inverted filtered stress concentrators. These
omputations are all detailed in the next section. 

From a numerical standpoint, two operations in this workflow are
ar ticularly cr ucial and computationally demanding: (1) the solution
f the elastostatic equations, and (2) the filtering of the concentra-
ors. These two operations are the critical part when addressing 3-D
arge-scale problems. In the state-of-the-art w orkflo w proposed in
upillard et al. ( 2020 ), the elastostatic problems are solved using

he direct linear solver PARDISO (Schenk & G ärtner 2011 ). After
iscretization, the elastostatic equation turns into an ill-conditioned
arge-scale sparse linear system. A direct solver such as PARDISO
s agnostic to the ill-conditioning of the matrix, making it an in-
eresting choice. Ho wever , it suffers from the usual dra wback of
uch numerical strategies when tackling large-scale problems: the
lgorithm scalability is relati vel y poor and the memory requirement
ncreases in O ( N 

4 ) where N is the average number of discrete points
n one dimension (see, for instance, Li et al. 2020 , for an example on
requenc y-domain elastic wav e propagation with a direct solver). An
d hoc strategy is designed by Cupillard et al. ( 2020 ) to overcome
his limitation when addressing large-scale problems. The domain
s partitioned in smaller subdomains following a domain decompo-
ition strategy. Each subdomain has to be suf ficientl y small so that
he direct linear solver can be used. Each of them is considered in-
ependently with overlapping buffers to avoid boundaries artefacts.
he global solution is obtained by assembling all the solutions (ex-
luding the buffer layers) over the whole domain. Depending on the
omogenization parameters, the overlapping buffers can induce a
ignificant numerical ov er-cost. Re garding the filtering operation, a
aussian smoothing through a windowed convolution is chosen for

he implementation. This can be efficient on regular grids, owing
o the tensorial nature of such a filter, making it possible to con-
ert the 3-D-smoothing into a sequence of 1-D smoothing in each
irection. Ho wever , on non-regular grids, such as the one which is
sually considered in seismology for the solution of elastodynamics
quations (namely Gauss–Lobatto–Legendre (GLL) points on hex-
hedral mesh used in a Spectral Element Method, SEM, Komatitsch
997 ), this tensorization strategy cannot be applied anymore. Trun-
ated convolution volumes is required, however if the correlation
ength is large, such truncated convolution are quickly computa-
ionall y non-af fordable and dif ficult to manage for efficient parallel
mplementation with domain decomposition. 

An alternative to the finite-element type solution above is the
ast Fourier homogenization method (Capdeville et al. 2015 ). The
ethod is derived from Moulinec & Suquet ( 1998 ). The solution

f the elastostatic part is based on a Lippmann–Schwinger equa-
ion which can be solved ef ficientl y in the w avenumber domain,
hrough fast Fourier transform, with a computational cost scaling in
 (( N log( N )) 3 ). The Lippmann–Schwinger decomposition is solved

terati vel y, though, with a convergence which depends on the media
oughness (contrasts in mechanical properties). The filtering part
s trivial and performed directly in the wavenumber domain. This
ethod is very efficient as long as the computation fits within a

hared memory computer. For larger domain, the same domain de-
omposition strategy as for the finite-element type solver needs to
e employed, with the same buffer layers issue. 

In this study, we propose to overcome these limitations by the
se of systematically scalable numerical strategies, relying on a
omain decomposition algorithm. The core of the method relies on
he analogy of different partial differential equations systems. The
ommon denominator is the system of elastodynamics equations.
he elastostatic equations which need to be solved correspond to a
tatic version of these equations where the mass-acceleration term
s set to zero. The filtering operation we use is based on the Bessel
lter proposed by Trinh et al. ( 2017 ). Again, behind this filter,

he Bessel equation can be seen as a static equation similar to the
lastostatic equation. In addition, we discuss how to obtain a low-
ass filter which approximates the response of a Gaussian filter in the
avenumber domain by composing and scaling different Bessel’s
lter. We perform a specific numerical analysis of this problem and
olve it using a global optimization algorithm. 

In the context of the SEISCOPE project, w e ha v e dev eloped the
ull waveform modelling and inversion package ‘SEM46’ for elas-
odynamics equation (Trinh et al. 2019 ; Cao et al. 2022b ). It is based
n a spectral-element discretization and a domain decomposition
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Figure 1. Schematic illustration of 1-D non-periodic homogenization. Series of heterogeneous fine layers in a finite 1-D medium of length L in which a 
zeroth-order homogenized solution of a wavefield with minimum wavelength λmin < L could be analytically derived. 

Figure 2. Convergence comparison of the conjugate gradient method with 
and without the diagonal pre-conditioner (PreconCG and CG) for the so- 
lution of the elastostatic equations. The 3-D random model described in 
Section 4.1 is used here, with two mesh sizes: one with 25 3 elements, and 
the other with 50 3 elements. 
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strategy ensuring an excellent scalability. The most computationally 
intensive part of the full waveform modelling solver is related to 
the stiffness matrix-vector product which needs to be performed at 
each time-marching iteration. This matrix-vector product has been 
carefully optimized, based on loop unrolling (Deville et al. 2002 ), 
cache optimization (Tarayoun et al. 2022 ) and parallelism thanks 
to domain decomposition. Owing to the above-mentioned analogy 
between the mathematical structure of the operators involved in the 
homogenization process, we can re-exploit the computational kernel 
optimized for the elastodynamic equations to obtain a fully scalable 
homogenization process. To re-exploit it, we simply need to rely on 
an iterativ e solv er for the solution of the resulting linear systems 
after discretization of the elastostatic and Bessel equations. Thanks 
to the symmetric positive definiteness (achieved by choosing appro- 
priate boundary conditions in the elastostatic case), a matrix-free 
conjugate gradient solver is implemented. 

Another advantage of the technique we propose is that all the 
operations are performed directly on the spectral-element mesh, 
without need to project back and forth on a Cartesian grid. The latter 
operation can be time-consuming and inaccurate. Working directly 
on the spectral-element mesh, the homogenization routine can be 
directly integrated in the full waveform modelling and inversion 
package SEM46, which makes it very easy to use. 

To illustrate the efficiency of our approach, we first present a 
validation test on a 3-D random media, which is a homogeneous 
medium with randomly located cubic fine-scale perturbations, with 
random amplitude. We perform a convergence test in terms of ho- 
mogenization theory (convergence of the solution in the equivalent 
medium towards the solution in the fine-scale model), and a scalabil- 
ity test. Both illustrate the good behaviour of the proposed method. 
Second, we illustrate the ef fecti veness of the strategy by considering 
the homogenization of the entire SEAM II foothill model. Thanks 
to the scalability and the flexibility of our implementation, we man- 
age to homogenize an unprecedented large-scale model containing 
almost 15 billions of unknowns. We compare the computation cost 
for a 4 Hz central frequency signal in the fine-scale model and the 
smooth equi v alent model, and find a gain approximatel y equal to 
300 times in terms of computational hours per core considering the 
modelling time only and not the time spent to build the homog- 
enized model. Finally, we also consider the case of a fluid/solid 
coupling modelling in a 3-D version of the Marmousi II model. 
Although the homogenization theory is designed for elastic media 
only, we present a strategy to use it in this marine context, where 
a layer of fluid is located above the elastic medium. We explicitly 
appl y homo genization to the elastic part only, and find that the re- 
sulting simulation in the homogenized medium converges towards 
the simulation in the fine-scale model. Given the ongoing interest 
for ocean-bottom-station data in exploration scenario and imaging 
of the deep crust, this result should have an important impact in 
both communities. 

In Section 2 , we start by a short re vie w of the non-periodic ho- 
mogenization theory in the 1-D and 3-D cases, respecti vel y. Then 
in Section 3 , we present the methodology we propose to solve for 
the 3-D homogenization problem. We first explicit the analogy be- 
tween elastodynamics, elastostatic and Bessel equations, which is 
the core of our strategy. We then present in details how we solve the 
elastostatic equation with a conjugate gradient iterative solver, and 
how we design a low-pass filter to approximate a Gaussian filter by 
the composition of several Bessel filters. In Section 4 , we show how 

our method can be used to solve for large-scale 3-D homogenization 
problems. After performing a convergence analysis, we investigate 
the homogenization of the entire SEAM II Foothill model, involv- 
ing several billions of discrete parameters, before we consider the 
homogenization for fluid/solid problem based on a 3-D extension 
of the Marmousi II model. 

2  R E V I E W  O F  T H E  N O N - P E R I O D I C  

H O M O G E N I Z AT I O N  T H E O RY  

2.1 The 1-D case 

The field of non-periodic homogenization dates back to the compu- 
tation of ef fecti ve properties for composite materials in microme- 
chanics (Bensoussan et al. 1978 ). Its application to the modelling 
of the propagation of mechanical waves in solids is derived later by 
Capdeville et al. ( 2010a , b ) and Cupillard & Capdeville ( 2018 ) with 
the objective to upscale any 1-D, 2-D and 3-D elastic media without 
size, shape and contrast restrictions on the heterogeneities. We start 
this study by a brief overview of this non-periodic homogenization 
theory in mechanics in the 1-D case. This makes it possible to recall 
the main concepts in the non-periodic homogenization. 
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Figure 3. (a) Wavenumber spectra ˆ w 

λ0 and (b) corresponding wavelets w 

λ0 for three low-pass filters: Cosine-tapered filter, Gaussian filter and Laplace filter 
implemented by a cascade of two Bessel filters, with 2.5 λ0 spatial support. 

Table 1. The pre-conditioned parallel CG method for computing the six correctors χpq . The 
computer intensive part is the computation of y by matrix-vector product involving the matrix K . 
This operation is separated from the others in lines 10 and 16 to identify it clearly. We see that 
the number of such matrix-vector product is equal to k + 1 after k iterations for each corrector 
χpq . All the other operations are vector based: scalar products between vectors, addition of two 
vectors, multiplication by a constant and multiplication by a diagonal matrix. 

1: for p = 1 to 3 do 
2: for q = p to 3 do 
3: Initialize χ pq = 0 , load medium parameter m = 

( C , ρ) 
4: Build right-hand side vectors F 

pq ( m ) 
5: end for 
6: end for 
7: Build the preconditioner P = 

( diag ( K 

) ) −1 

8: for p = 1 to 3 do 
9: for q = p to 3 do 

10: y = K χ pq 

11: r pq, 0 = b 

pq − y 
12: z pq, 0 = Pr pq, 0 

13: p 

pq, 0 = z pq, 0 

14: k = 0 
15: do while ( 

√ 

‖ r pq,k ‖ 2 / ‖ b 

pq,k ‖ 2 > tol .AND. k < iter max) 
16: y = Kp 

pq,k 

17: α = 

( r pq,k ) T z pq,k 

( p pq,k ) T y 
18: χ pq,k+ 1 = χ k 

i + αp 

k 
i 

19: r pq,k+ 1 = r pq,k − αy 
20: z pq,k+ 1 = Pr pq,k+ 1 

21: β = 

( r pq,k+ 1 ) T z pq,k+ 1 

( r pq,k ) T z pq,k 

22: p 

pq,k+ 1 = z pq,k + βp 

pq,k 

23: k = k + 1 
24: end do 
25: end for 
26: end for 
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Figure 4. (a) Approximation of the Gaussian filter through a cascade of Bessel filters and their corresponding misfits with respect to the stretching factor α
and number of Bessel filters N (b) which are calculated by solving a wavenumber response fitting problem. As a compromise in terms of the approximation 
accuracy (blue) and computational cost (orange), we superpose these two curves in (c), and their intersection is between Bessel 4x with α = 6.496 × 10 −2 and 
Bessel 5x with α = 5.752 × 10 −2 . 

Figure 5. Homogenization in the 3-D isotropic random model. (a) The original P -wave velocity model V p and (b) its ef fecti v e ‘v ertical’ V p model ( V p = 

√ 

c 
∗,ε 0 
3333 
ρ

) 

obtained by the proposed homogenization process with ε 0 = 1.0, corresponding to λ0 = ε 0 λmin . (c) and (d) illustrate snapshots of the vertical displacement 
wavefield generated from the original random model and ef fecti ve model with ε 0 = 1.0, respecti vel y, and (e) is a comparison of their horizontal displacement 
wavefields in terms of shot gather (receiver line placed along the x -direction with 1 km depth). 
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Let us consider the wave propagation in a finite 1-D bar of length 
L , composed of N heterogeneous fine layers (Fig. 1 ). The 1-D wave 
equation in such an elastic medium is given by 

ρ∂ t t u − ∂ x σ = b, 

σ = E∂ x u, (1) 

where the medium parameters are Young’s modulus E ( x ) and density 
ρ( x ), σ ( x , t ) is the traction field, u ( x , t ) is the particle displacement
field, and b ( x , t ) is the source term. We consider a point source 
(localization in space) at x S with a time signature given by a Ricker 
wavelet such that 

b( x, t) = δ( x − x S ) r ( t) , (2) 

with the Ricker wavelet r ( t) = 

(
1 − 2 π 2 f 2 0 ( t − t 0 ) 2 

)
e −π2 f 2 0 ( t−t 0 ) 

2 
. 

The function δ( x ) is the Dirac delta function, f 0 is the central fre- 
quency of the Ricker, and t 0 is a time-shift to make the Ricker 
function causal ( r (0) � 0). The frequency content of the Ricker 
wavelet has a compact support in the frequency domain, and it is 

art/ggae132_f4.eps
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Figure 6. Convergence test of the homogenized solution with respect to ε 0 . (a) 1-D depth profile illustration of ef fecti v e ‘v ertical’ P -wav e v elocity models V ∗p 
taken in the centre of the cube, where ε 0 = 0 corresponds to the original isotropic P -wav e v elocity V p . (b) Relativ e error betw een wa vefields computed in the 
homogenized model and the reference wavefield computed in the fine-scale isotropic model using three types of low-pass filter strategies: the Gaussian filter, 
and its approximation through 4 and 5 Bessel’s filter applied in cascade. 

Table 2. Discretization and computational cost of the CG-based iterative homogenization process in the 3-D random model validation test. Although we run 
the test with different ε 0 from 0.1 to 1.0 for a quantitativ e conv ergence study, the changing of ε 0 only influences the number of CG iteration for low-pass 
filtering the concentrators (more number of iterations for a higher ε 0 ), which is around 10 per cent cost of the total process. The elapsed time which is given is 
the av erage ov er the homogenization for different ε 0 . These tests have been performed on the SWAN platform of Cray Marketing Partner Network with Intel 
Cascade Lake CPU architecture (2.5G Hz, 40 CPU cores per node). 

Mesh Element Solution space CG iterations for solving CG iterations for Average 

(elements) size (DOF) elastostatic equations low-pass filtering 
elapsed time 

(s) 
b 1 b 2 b 3 b 4 b 5 b 6 

161 × 161 × 161 100 m 810 million 1514 1500 1531 1508 1510 1509 ≤800 1099 
(the scale of 

random cubes) 

Figure 7. Strong scalability tests for the homogenization process on the 3-D 

random model validation test. We measure the elapsed time with respect to 
the number of CPU cores used, with two different meshes: one with 128 3 

elements, and the second with 256 3 elements. In both cases, the scalability 
is close to be linear. The tests are run on SWAN platform of Cray Marketing 
Partner Network with Intel Cascade Lake CPU architecture (2.5G Hz, with 
40 CPU cores per node). 
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sual to consider that the maximum frequency at which the energy
s non-zero is given by 

f max = 2 . 5 f 0 . (3) 

rom this maximal frequency, the signal propagated in the 1-D bar
s bandlimited, and there exists a minimum wavelength λmin such
hat 

min = 

c min 

f max 
, (4) 

ith c min the minimum velocity in the bar, related to the Young’s
odulus E ( x ) and the density ρ( x ) by 

 min = min 
x 

√ 

E( x) 

ρ( x ) 
. (5) 

Linear elasticity theory imposes specific conditions at all medium
iscontinuities ( i.e. between each layers). These conditions are the
ontinuity of the displacement and traction fields. We denote by x i , i
 1, . . . , N − 1 the position of each interface between the layer i

nd the layer i + 1. These conditions can be expressed by 

[ u ] ( x i , t) = 0 , [ σ ] ( x i , t) = 0 , i = 0 , . . . , N , (6) 
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Table 3. Strong scalability tests for the homogenization process on the 3-D random model validation test. 
Detailed statistic from Fig. 7 . We measure the elapsed time with respect to the number of CPU cores used, 
with two different meshes: one with 128 3 elements, and the second with 256 3 elements. In both cases, the 
scalability is close to be linear. The tests are run on SWAN platform of Cray Marketing Partner Network with 
Intel Cascade Lake CPU architecture (2.5G Hz, with 40 CPU cores per node). 

Mesh Element Solution space Elapsed time (s) 
(elements) size (number of DOF) 240 480 960 1920 

CPU cores CPU cores CPU cores CPU cores 

128 × 128 × 128 100 m 410 million 2013 1042 516 290 

256 × 256 × 256 50 m 3.24 billion N/A 8800 4588 2293 

Figure 8. Schematic of the deformed Cartesian-based structured mesh to 
conform the strong topography variation. 
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where for a given field v ( x , t ), [ v ]( x , t ) denotes the ‘jump’ across x
at time t 

[ v]( x, t) = v( x + , t) − v( x −, t) . (7) 

We also impose periodic boundary conditions at x = 0 and L 

(Capdeville et al. 2010a ). In the above settings, the non-periodic 
homogenization theory provides the following zeroth-order effec- 
ti ve w ave equation 

ρ∗∂ t t u 

0 − ∂ x σ
0 = b ∗, 

σ 0 = E 

∗∂ x u 

0 , (8) 

where ρ∗ and E 

∗ are the so-called zeroth-order long-wavelength 
equi v alent ef fecti ve density and Young’s modulus and b ∗ the effec- 
ti ve source term. A step-b y-step tutorial describing how to obtain 
this result is provided in Capdeville et al. ( 2020 ). 

In the following, we use b ∗ = b , but in general, to be consistent, 
the source term needs to be a modified point source (Capdeville 
et al. 2010a , b ; Burgos et al. 2016 ) or an ef fecti ve distributed source 
(Capdeville 2021 ). This is a zeroth-order approximation in the sense 
that it can be proved that the solution u ( x , t ) of the fine-scale problem 

and the solution u 0 ( x , t ) of the ef fecti ve w ave equation are related
by 

u 

( x, t ) = u 

0 ( x, t ) + ε 0 R 

(
x, 

x 

ε 0 
, t 

)
, (9) 

with R ( x, t) a residual function. In eq. ( 9 ), ε 0 controls the accuracy 
of the approximation u 0 . It is the key parameter to compute the long- 
w avelength equi v alent ef fecti ve density ρ∗( x ) and Young’s modulus 
E 

∗( x ) as 

ρ∗ = F 

ε 0 ( ρ) , E 

∗ = 

[
F 

ε 0 
(

1 
)]−1 

, (10) 
E 
where F 

ε 0 is a filter which removes any heterogeneities of a scale 
below λ0 such that 

λ0 = ε 0 λmin . (11) 

The formulae for the ef fecti ve density and Young’s modulus, and the 
parameter ε 0 are introduced in Capdeville et al. ( 2010a ). The latter 
controls the accuracy of the homogenization approximation. The 
smaller ε 0 is, the better the approximation u 0 is. In turns, the ef fecti ve 
medium parameters ρ∗( x ) and E 

∗( x ) contain smaller heterogeneities. 
On the opposite, when ε 0 is large, the ef fecti ve medium parameters 
ρ∗( x ) and E 

∗( x ) are smoother, but the approximation u 0 might be 
less accurate. This trade-off between accuracy and smoothness of 
the ef fecti ve medium parameters is inherent to the non-periodic 
homogenization. One shall keep in mind that the forsaken reduction 
in computational cost comes from the smoothness of the ef fecti ve 
medium parameters which makes it possible to use much coarser 
meshes as the one which would be required to model the propagation 
of waves in the fine-scale medium. Usually, a choice of ε 0 = 0.5 
gives a good trade-off: any heterogeneities below half the minimum 

wav elength are remov ed from the ef fecti ve medium parameters, 
yielding a good approximation and a simplification of the medium 

properties. What is interesting to see already is also that the ef fecti ve 
density is simply a low-passed filtered version of the fine-scale 
density, while the ef fecti ve stif fness (Young’s modulus) requires a 
more complicated operation (inverse of the smoothed inverse). 

2.2 3-D generalization 

The generalization of this concept to 2-D and 3-D is investigated in 
Capdeville et al. ( 2010b , 2015 ), Capdeville ( 2016 ) and Cupillard & 

Capdeville ( 2018 ) with an example on the SEG/EAGE over thr ust 
model presented in Cupillard et al. ( 2020 ). The propagation of me- 
chanical waves in a 3-D elastic media are described by the following 
elastodynamics equations 

ρ∂ t t u i −
3 ∑ 

j= 1 

∂ j σi j = b i , i = 1 , . . . 3 , 

σi j = 

1 

2 

3 ∑ 

k= 1 

3 ∑ 

l= 1 

c i jkl ( ∂ k u l + ∂ l u k ) , i = 1 , . . . , 3 , j = 1 , . . . , 3 , 

(12)

or, equi v alentl y, eliminating the stress 

ρ∂ t t u i − 1 

2 

3 ∑ 

j= 1 
∂ j 

3 ∑ 

k= 1 

3 ∑ 

l= 1 
c i jkl ( ∂ k u l + ∂ l u k ) = b i , i = 1 , . . . 3 . 

(13) 

The mechanical properties now correspond to the density ρ( x ), 
where x ∈ R 

3 , and the fourth-order Hooke’s tensor c ijkl ( x ). The 
displacement wavefield u ( x , t ) has three components, and the stress 
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Figure 9. 3-D SEAM-II onshore models and its ef fecti ve models after the homogenization process. (a)–(c) are the original P -wave velocity V p , S -wave velocity 
V s and density models. (d)–(f) are ef fecti ve models of V p , V s and the total anisotropy in percentage obtained with ε 0 = 0.25, 0.5 and 1.0 from left to right, 
respecti vel y. They are calculated by projecting the resulting elasticity tensor coefficients c ∗,ε 0 from the homogenization process to the closest isotropic model 
(Brow aeys & Che vrot 2004 ). The ef fecti v e models of density are not shown, since the y are obtained b y simpl y low-pass filtering the original density according 
to the homogenization theory. 
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ensor σ ( x , t ) is a symmetric three-by-three matrix, hence containing
ix independent coefficients σ ij ( x , t ). 

Re vie wing the mathematical deri v ation of the long-w avelength
qui v alent coef ficients ρ∗( x ) and c ∗i jkl ( x ) through the homogeniza-
ion theory is beyond the scope of this study and is now well es-
ablished. Here, we only summarize the numerical procedure to
ompute these coefficients, with the objective to make each step
xplicit, avoiding general high-order tensorial notations which tend
ometimes to obscure the nature of the operations involved. For this
eason, we make the decision in this study not to rely on the Einstein
ummation convention and to make each summation explicit. 

The homogenization procedure for 3-D media can be decom-
osed in the following three steps: 

(i) Step 1: solve the elastostatic equations (so-called cell prob-
ems) with periodic boundary conditions for the so-called first-order
orrector tensor χ pq , p , q = 1, . . . , 3. The corrector’s components
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Table 4. Discretization and computational cost for the CG-based iterative homogenization process on the challenging 3-D SEAM II model with ε 0 = 0.5. The 
test is run on Jean Zay (HPE SGI 8600 supercomputer from IDRIS, CNRS) using 7680 CPU cores with Intel Cascade Lake CPU architecture (2.5G Hz, 40 
CPU cores per node). 

Mesh Element Solution CG iterations for solving CG iterations for Elapsed time 
(elements) size space elastostatic equations low-pass filtering (s) 

(DOF) b 1 b 2 b 3 b 4 b 5 b 6 

349 × 502 × 436 30 m 14.69 billion 12613 12482 11983 12998 13623 12720 ≤420 10 668 
(the smallest 
heterogeneity 

scale) 

Figure 10. Snapshots of the 3C displacement wavefields u x (a), u y (b) and u z (c) at the surface topography generated from the original SEAM-II model with 
a mesh of 339 × 502 × 436 elements and its ef fecti ve models b y using ε 0 = 0.5 in the homogenization process with two different mesh configurations in the 
modelling (the same mesh of 339 × 502 × 436 elements as for the original model and a coarse mesh of 66 × 119 × 106 elements adaptive to the local velocity 
of the homogenized V s model). 
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Figure 11. Shot gather comparison of the vertical displacement wavefields u z recorded at the surface topography with x = 7.33 km. Left-hand panel: the gather 
generated from the original SEAM-II model with a mesh of 339 × 502 × 436 elements. Middle panel: the gather generated from its equi v alent model b y using 
ε 0 = 0.5 in the homogenization process on a coarse mesh of 66 × 119 × 106 elements adaptive to the local velocity of the homogenized V s model). Right-hand 
panel: the relative difference between ‘Ref’ and ‘Homo’ presented in percentage. 

Table 5. Computational cost for modelling in the fine mesh and the coarse mesh for the SEAM II model. Total CPU hours are 
calculated by the product of elapsed time and total number of CPU cores. It quantifies the computational complexity and can be 
interpreted as the elapsed time when using a single CPU core only. Both tests are run on Jean Zay (HPE SGI 8600 supercomputer 
from IDRIS, CNRS) with Intel Cascade Lake CPU architecture (2.5G Hz, 40 CPU cores per node). 

Model Mesh Element size d t NT Cores Elapsed time Total CPU hours 
( x × y × z ) (m) (ms) (min) 

Fine scale 339 × 502 × 436 30 0.25 20 000 2,560 97.99 4181 
Homogenized 66 × 119 × 106 127.98–254.73 1.25 4000 160 5.22 13.9 
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pq are homogeneous to displacement fields, with three compo-
ents. 

1 

2 

3 ∑ 

j= 1 
∂ j 

3 ∑ 

k= 1 

3 ∑ 

l= 1 
c i jkl 

(
∂ k χ

pq 
l + ∂ l χ

pq 
k 

) = F 

pq 
i , i = 1 , . . . 3 , 

F 

pq 
i = 

3 ∑ 

j= 1 
∂ j c i j pq , i = 1 , . . . 3 . 

(14) 

ecause of the minor symmetry of the Hooke’s tensor c ijpq = c ijqp ,
 e ha ve F 

pq = F 

qp , therefore χ pq = χ qp , and six elastostatic equa-
ions have to be solved in total to compute the corrector. 

(ii) Step 2: build the fourth-order strain concentrator G as 

G i j pq = 

1 

2 

(
δi p + δ jq 

) + 

1 

2 

(
∂ i χ

pq 
j + ∂ j χ

pq 
i 

)
, (15) 

nd the fourth-order stress concentrator H = c : G , that is, 

H i jkl = 

3 ∑ 

m = 1 

3 ∑ 

n = 1 
c i jmn G mnkl . (16) 

(iii) Step 3: filter the concentrators G and H component by com-
onent so as to obtain G 

ε 0 and H 

ε 0 as 

G 

ε 0 
i jkl = F 

ε 0 
(
G i jkl 

)
, H 

ε 0 
i jkl = F 

ε 0 
(
H i jkl 

)
, (17) 
nd build the equi v alent ef fecti ve elasticity tensor c ∗,ε 0 as c ∗,ε 0 =
H 

ε 0 : ( G 

ε 0 ) −1 , that is, 

 

∗,ε 0 
i jkl = 

3 ∑ 

m = 1 

3 ∑ 

n = 1 
H 

ε 0 
i jmn ( G 

ε 0 ) −1 
mnkl , (18) 

here the inverse operation is to be understood in the algebra of
ourth-order tensors. 

Of note, the tensorial products in steps 2 and 3 are to be under-
tood pointwise: it means that the corresponding algebraic opera-
ions are applied for each spatial position x independently. A final
ost-processing stage is applied to c ∗,ε 0 to guarantee the symmetry
f the equi v alent stif fness s tensor which is a physically required
onstraint. The final equi v alent stif fness tensor is thus c ∗,ε 0 

sym 

 

∗,ε 0 
sym 

= 

1 

2 

(
c ∗,ε 0 + 

( c ∗,ε 0 ) T 
)
. (19) 

o simplify the notations, in the remainder of the study, we use the
otation c ∗,ε 0 for c ∗,ε 0 

sym 

. 
Previous finite-element-like implementation of the non-periodic

omogenization involves the following numerical strategies. A clas-
ical weak-form-based finite-element technique is used to solve the
lastostatic equations and compute the concentrators χ pq . The re-
ulting finite-element discrete linear equation system of the elas-
ostatic equation in step 1 is solved through a direct solver such
s PARDISO (Schenk & G ärtner 2011 ) over distributed-memory
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Figure 12. 3-D Marmousi-II marine velocity models and its ef fecti ve models after the homogenization process. (a) and (b) are the original P -wave V p and 
S -wav e V s v elocity models. (c)–(e) are ef fecti ve models of V p , V s and the total anisotropy in percentage obtained with ε 0 = 0.2, 0.4 and 0.8 from left to right, 
respecti vel y. They are calculated by projecting the resulting elasticity tensor coefficients c ∗,ε 0 from the homogenization process to the closest isotropic model 
(Browaeys & Chevrot 2004 ). 
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platforms. This has the advantage to provide accurate solutions 
regardless of the conditioning of the discretized elastostatic equa- 
tions. The main disadvantage of such strategy is the computational 
cost and memory imprint of direct solvers, and their lack of scal- 
ability. A recent study for the solution of frequency-domain 3-D 

elastodynamic equations illustrate this limitation (Li et al. 2020 ). 
This issue is addressed in Cupillard & Capdeville ( 2018 ) where a 

domain-decomposition strategy is proposed, each subdomain being 
treated independently with a direct solver. Buffer layers are added 
to each of the subdomain as the solution is known to be invalid 
in a region of size λ0 in the vicinity of the boundaries. The global 
solution is then built as a concatenation of the solution in each 
subdomain after removing the buffer lay ers. While applicab le in 
practice, this solution lacks flexibility, and comes with a numerical 
over-cost that can be significant. 
The implementation of step 2 is trivial, since it only involves 
algebraic tensor operations, for each gridpoint. Step 3 is the second 
key point: the low-pass filtering operation, as is going to be de- 
scribed further in the remainder of this study, is crucial. In current 
implementation, it is based on a Gaussian filter, with an explicit 
convolution process. While it can be ef ficientl y applied on regular 
grids, it is much more computationally intensive on irregular or 
defor med g rids, because of the extra interpolation operations to get 
the proper contribution points in the surrounding volume for each 
input point that needs to be filtered (Trinh et al. 2017 ). 

In this study, we propose an integrated method which over- 
comes the aforementioned limitations. It works on the same GLL 

mesh used to solve the elastodynamics equations with the SEM, 
therefore avoiding any interpolation/extrapolation step on a regu- 
lar grid, and it exploits the similarity of the computational kernels 
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Figure 13. Seismogram comparison of the 4C OBN data (pressure wavefield and 3C displacement wavefield on the seabed) computed at the receivers of (a), 
(c), (e) and (g) the near offset x = 320 m and (b), (d), (f) and (h) the far offset x = 3200 m. The homogenized solutions with different ε 0 are benchmarked 
again the reference solution (red line) which is generated from the original model. An excellent agreement is obtained when ε 0 = 0.2, since the green dashed 
lines (the homogenized solution with ε 0 = 0.2) almost fully cover the red solid lines (the reference solution). Here, the wave simulation is performed by using 
a fluid–solid coupled SEM solver (Cao et al. 2022b ). 
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among the elastodynamics equations, the elastostatic equations and 
the Bessel filtering equations to provide an efficient and domain- 
decomposition-based scalable algorithm. We present this method in 
Section 3. 

3  F U L LY  S C A L A B L E  

I M P L E M E N TAT I O N  O F  T H E  3 - D  

N O N - P E R I O D I C  H O M O G E N I Z AT I O N  

3.1 Similarity of the equations 

The similarity between the elastodynamic and elastostatic equa- 
tions is clear from equations ( 13 ) and ( 14 ). The latter is the same 
as the former minus the dynamics part related to the second-order 
partial deri v ati ves in time of the displacement field u . The Bessel 
filtering we are going to use for the step 3 in the homogenization 
process also shares similarities with these equations. More precisely, 
giving an input model m ( x ), the filtered version s( x ) = 

(
F 

B ( m ) 
)

( x ) 
is obtained by solving the equation 

s −
3 ∑ 

j= 1 
l 2 j ∂ j s = m, (20) 

where l j are associated with correlation length in direction j to de- 
sign an anisotropic (possibly non-stationary) filter (see the details 
in Trinh et al. 2017 ). Eq. ( 20 ) can be seen as a (strongly) sim- 
plified version of the elastodynamic equations with the following 
identification 

∂ t t u ←→ s, c i jkl ←→ l 2 j . (21) 

This analogy provides us with the possibility to use the same finite- 
element formalism to compute numerical approximation of the so- 
lutions of all these equations. 

We make use of the SEM, which is a standard in seismology 
since the seminal work of Komatitsch ( 1997 ) and Komatitsch & 

Vilotte ( 1998 ). This discretization method is based on the use of 
Lagrange polynomial on hexahedral elements, and GLL points for 
the quadrature rules. Choosing the same collocation and integration 
point yields a diagonal mass matrix M , while the GLL points have 
the interesting properties to position points at the boundaries of the 
elements, making it possible to enforce directly the continuity of the 
field between elements without any additional constraints. Choosing 
these points also ensure spectral convergence, the property which 
initiated the interest of such strategies when they were conceived 
(Patera 1984 ). Interestingly, this is not the main reason the method 
has become popular in seismology. The success of this method in 
this field is more related to its excellent numerical dispersion prop- 
erties, which makes it possible to use fewer points to sample the 
wavefield compared with finite-difference strategies in the context 
of the elastic approximation and the propagation of surface waves. 
The fact that the mass matrix is diagonal is also a strong point com- 
pared to conventional finite-element strategies: when using explicit 
time schemes, no matrix inversion is required. Finally, as it is a 
finite-element based method, it is possible to work with deformed 
meshes to conform to specific geometries, and the free surface con- 
dition is inherently taken into account thanks to the weak form of 
the equations which is solved. The latter is a strong advantage over 
finite-difference methods, which require specific treatment for han- 
dling the free surface boundary condition as soon as the free surface 
boundary is not flat. 
Following the SEM strategy, the corresponding semi-discrete 
elastodynamics equations can be written as 

M ∂ t t u − Ku = b , (22) 

where M is the diagonal mass matrix and K is the so-called stiffness 
matrix. Using a second-order explicit time scheme, solving the 
elastodynamics equations amount to compute u 

n from u 

0 as 

u 

n + 1 = 2 u 

n − u 

n −1 + 

1 

�t 2 
M 

−1 Ku 

n + 

1 

�t 2 
M 

−1 b 

n . (23) 

In practice other explicit time schemes are often employed, namely 
the Newmark’s scheme tends to be a reference. As it is not the 
main focus of the study we choose this simple second-order finite- 
difference time scheme for the sake of clarity. 

From eq. ( 23 ), we see that the matrix K is the k ey k ernel in
the implementation of the SEM method for the solution of elas- 
todynamics equations. Indeed, the operator M being diagonal, the 
application of its inverse has the complexity of a scalar product, 
while the operator K is a sparse operator with a sparsity pattern 
associated with the mesh and the chosen polynomial degree of the 
Lagrange interpolants. 

In the development of the code SEM46, we have come to a very 
efficient and scalable implementation of the matrix-vector prod- 
uct Ku , relying on loop unrolling, cache optimization, vectoriza- 
tion and domain decomposition, up to the use of several thou- 
sands of computing units (Deville et al. 2002 ; Trinh et al. 2019 ; 
Cao et al. 2022a , b ; Tarayoun et al. 2022 ). We rely on fourth- 
and fifth-order Lagrange polynomial, which gives a good trade-off 
between numerical dispersion property and smallest distance be- 
tween two adjacent discretization point, the latter governing the 
stability constraint of the explicit-time scheme (also known as CFL 

condition). 
Using the same discrete formalism, the elastostatic equations can 

be written as 

− Kχ pq = F 

pq , p = 1 , . . . 3 , q = p, . . . , 3 . (24) 

The Bessel filtering equations can be written as 

s − K 

Bessel s = m , (25) 

or equi v alentl y (
I − K 

Bessel 
)

s = m , (26) 

with I the identity operator and K 

Bessel a simplified version of the 
SEM kernel K which shares a similar structure. Eqs ( 23 ), ( 24 ) and 
( 26 ) reveal the link among elastodynamics equations, elastostatic 
equations and Bessel filtering equations, and emphasize the impor- 
tance of the stiffness matrix K . 

Contrary to the elastodynamic equations which rely on an explicit 
scheme, both the elastostatic equations and the Bessel filtering op- 
eration turn to the solution of linear systems. We describe in the next 
paragraph how we can solve these linear systems using a matrix- 
free conjugate gradient algorithm, which exploits the optimized 
matrix-vector product Ku implemented in the SEM46 code. 

3.2 The elastostatic equation solution with 

conjugate-gradient method 

The moti v ation to use a conjugate gradient algorithm (Hestenes 
& Stiefel 1952 ) to solve the system ( 24 ) has been already 
stated: it overcomes the memory limitation from direct solvers as 
well as their lack of scalability. Only the matrix-vector product 
operation is required, which is already available, optimized and 
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calable through a matrix-free implementation and a domain de-
omposition algorithm. 

What remains to be ensured is the convergence of such an iterative
olver. The matrix K comes from the discretization of a generalized
elmholtz operator, therefore it is a symmetric positive operator.
o wever , depending on the boundary conditions, it might have a
on-empty kernel preventing the convergence of the conjugate gra-
ient algorithm (see, for instance, Tang et al. 2022 , where a similar
inear system is solved in the frame of a controllability method for
omputing the frequency-domain solution of the elastodynamics
quations). This is the reason why instead of periodic boundary
onditions, we impose on purpose Dirichlet boundary conditions,
aking the operator K symmetric positive definite. This has an

ffect to generate a spurious solution in a thin layer at the model
oundaries, as observed and documented in Capdeville et al. ( 2015 ),
here the same boundary condition is used. The width of this layer

s apparently to the order of λ0 . Numerical experiments show that
he error on the solution remain confined in this thin layer, with no
nfluence in the inner part of the domain. This complies with the
act that the boundary condition effect decays exponentially in the
lastostatic equation. The pragmatic solution we implement is thus
o add buffer layers around the model, similar as what is done for
he elastodynamics equations when using sponge layers to attenuate
utgoing waves. 

To speed-up the convergence of the conjugate gradient algorithm,
e also make use of a pre-conditioner. The latter is simple: relying
n a Jacobi strategy, we simply extract the diagonal of the operator
 and take its inverse as a pre-conditioner P , such that 

 = 

( diag ( K 

) ) −1 . (27) 

s shown in Fig. 2 for the test on a 3-D random model (which is
etailed in Section 4.1 ), this pre-conditioner is already quite efficient
nd makes it possible to accelerate the convergence by factors of
ore than 5 to reach a relati ve-residual le vel of 1.E-3 and 2 to

each a relative-residual level of 1.E-5. In addition, by comparing
he convergence curves among two different meshes, we can also
bserve that this acceleration turns out to be more efficient as the
roblem size increases. 

We summarize this section by presenting the algorithm imple-
ented to solve the six elastostatic systems ( 24 ) in Table 1 . 

.3 Low-pass filter design 

he step 3 of the homogenization process requires to apply a low-
ass filter to remove scales smaller than λ0 = ε 0 λmin from the
oncentrators ( G ) and ( H ). The ideal filter to perform this operation
hould have a boxcar response in the wavenumber domain. Ho wever ,
n practice, implementing such an ideal filter is difficult. In Fig. 3 ,
hree examples of filters are presented: the cosine taper filter with
he closest response to the ideal filter, the Gaussian filter, which
s conventionally used for homogenization, and the Bessel filter
e consider in this study. In practice, the Gaussian filter is used
ecause of its compact wavelet and absence of ne gativ e amplitude
esponses. Such a ne gativ e amplitude, which we observ e with the
osine filter for instance, would create instability issues during the
onvolution with highly heterogeneous fields. The problem with
aussian filter has been denoted pre viousl y: to be implemented

t requires a projection on a Car tesian g rid, which results in loss
f accuracy and degraded numerical efficiency. This is the reason
hy we are interested in the Bessel filter, which can share the

ame numerical framework as the elastodynamics and elastostatic
roblems thanks to the general PDE formalism on which it relies. 
Solving directly the Bessel equation ( 26 ) avoids any projection
s it is posed directly on the SEM mesh. The same CG algorithm
 is thus used to solve the Bessel equation and apply the filter,
eplacing −K with I − K 

Bessel . The addition of the identity matrix
lso improves the conditioning of the system and makes it possible to
hoose Neumann boundary condition instead of Dirichlet boundary
onditions. 

There is however one difficulty which is posed by the use of
he Bessel’s filter. We can usually approximate a Laplace filter by
ascading two Bessel filters (Fig. 3 ; Trinh et al. 2017 ). Ho wever , as
llustrated in Fig. 3 (b), the Laplace filter exhibits a suboptimal steep
esponse for homogenization. From this perspective, the Gaussian
lter exhibits a better wavenumber response, closer from the steep
oxcar ideal filter we want to approximate. Ho wever , thanks to the
entral limit theorem, it is possible to replicate a Gaussian-like
esponse through a cascade of filters (Wells 1986 ). To do so, we
ropose to calibrate the Bessel’s filter with a specific stretching
actor α, such that the filter F 

B 
α ( m ) is given by the solution of ⎛ 

⎝ I − α

3 ∑ 

j= 1 
l 2 j ∂ j 

⎞ 

⎠ s = m. (28) 

he cascade of filters we consider is F 

B,n 
α defined as the n -times

omposition of the filter F 

B 
α

 

B,n 
α = F 

B 
α ◦ · · · ◦ F 

B 
α︸ ︷︷ ︸ 

n times 

. (29) 

t should be noted that the stretching factor α is case independent,
herefore this calibration step does not add any computational over-
ead or complexity to the homogenization recipe we are proposing.
he computation of the values of α and n , we present in the follow-

ng, can be readily used for any application. 
In order to solve for the optimal values of α and n , we define a
inimization problem as 

rg min 
α,n 

[1 − Corr ( G 

k 0 , | F[ F 

B,n 
α ( δ)] | ) , (30) 

hich is nothing else than maximizing the correlation coefficient
etween the sought analytical Gaussian filter wavenumber response
 

k 0 (Fig. 4 a, the red solid line) and the calculated response of the
ascaded custom filter r cal = | F[ F 

B,n 
α ( δ)] | (Fig. 4 a, dashed lines).

n practice, the latter wavenumber domain response is obtained by
erforming a 3-D discrete Fourier transform of the impulse response
nd deducing the amplitude of the spectrum. 

The 2-D real-integer problem related to finding the optimal real
alue of α defined in the spatial domain and the acceptable number
f Bessel filter application n described in eq. ( 30 ) is conv e x along
he real dimension for all values of α where F 

B,n 
α is defined. In

ractice, the problem is split and the optimization is done for a
ange of n as illustrated in Fig. 4 (a) for n = 1 to 10. It should be
oted that for this particular problem, according to the central limit
heorem, as n increases, the impulse response of the cascaded filter
ends towards the sought impulse response of the Gaussian filter so
here is no need to actually solve the 2-D real-integer problem as
ong as the optimal stretching factor α is found for a suitable and
ractical number of Bessel filter application. 

The optimization for α is done using a classical implementation of
ar ticle swar m optimization (PSO) algorithm (Kennedy & Eberhart
995 ) with both co gniti ve and social coefficients set at 0.1 and a
xed inertia weight of 0.8. The values of α are bounded between
0 −5 and 0.5 using a random boundary condition. We opted for
SO , kno wing that the problem at hand is conv e x, and the method is



86 J. Cao et al . 
D

ow
nloaded from

 https://academ
ic.oup.com

/gji/article/238/1/72/7642276 by Bibliothèque U
niversitaire de N

antes. Section Sciences user on 14 August 2024
deri v ati ve-free, insensiti ve to parameter scaling and generally more 
efficient than grid-search strategies or other global optimizers. The 
results presented in Figs 4 (a) and (b) show the spectra and misfit 
v alues for dif ferent v alues of α and number of applications of the 
filter are presented and as expected, increasing the number of Bessel 
filters yields more accurate approximation of the Gaussian filter. As 
an example, in Fig. 4 (a) (orange fine dashed line), for n = 10 and its 
corresponding optimal stretching factor, the response correlates the 
most with the Gaussian response (Fig. 4 a, red solid line). Having 
said that we remind the reader that the global minimum of the 
function defined by eq. ( 30 ) is at theoretical convergence where 
lim 

n →∞ 

α→ 0 

F 

B,n 
α . 

In practice, we consider a trade-off between accuracy and compu- 
tational cost as shown in the graph superposition of Fig. 4 (c). Since 
the optimal stretching factor decreases as the number of filter appli- 
cation increases we see that the computational cost does not grow 

in a linear fashion with n . The latter is a good property that enables 
choosing practical optimal v alues e ven at an increased number of 
Bessel filtering application. We recommend and use across the pa- 
per a stretching factor of α = 6.496 × 10 −2 at n = 4 or alternati vel y 
α = 5.752 × 10 −2 with n = 5 which corresponds to the intersection 
of the two curves of Fig. 4 (c). The latter parameter tuning, tested 
throughout our implementation of the proposed strategy, is a fair 
compromise between accuracy and cost for problems of the size and 
type found in seismic modelling. 

4  A P P L I C AT I O N S  

In this section, we illustrate the interest of our homogenization im- 
plementation to upscale large 3-D elastic models. We start with a 
validation test in a 3-D random elastic medium for which we can 
test the convergence of our homogenization algorithm. Next, we 
consider the entire 3-D SEAM II foothill model to investigate the 
feasibility of our proposed homogenization method in a large-scale 
onshore e xploration conte xt. Thanks to the scalability and the flexi- 
bility of our implementation, we manage to homogenize an unprece- 
dented large-scale model containing almost 15 billions of discrete 
unknowns. We repeat a similar experiment in an offshore explo- 
ration context, using a 3-D extension of the Marmousi-II model. 
Since no theoretical results exist for upscaling fluid/solid coupled 
media, we propose a pragmatic approach where only the solid part 
is homogenized, leaving the fluid layer untouched. The numerical 
results we obtain are convincing: such strategy might be used to 
decrease the computational cost of modelling in such fluid/solid 
media. In all the presented experiments, we use a fourth-order La- 
grange polynomial spectral-element discretization. 

4.1 Validation tests on a 3-D random model 

We consider a highl y hetero geneous isotropic medium in a cubic 
domain of 15 km 

3 made of a constant background, where the pres- 
sure wav e v elocity V p , the shear wav e v elocity V s and the density ρ
are 

V p = 5000 m s −1 , V s = 3200 m s −1 , ρ = 3000 kg m 

−3 , (31) 

and randomly distributed cubic inclusions of 100 m 

3 scale, where 
V p , V s and ρ v alues dif fer from ±50 pe r c e nt from the background. 
The instance of such random medium we consider in this study is 
presented in Fig. 5 (a). We consider the propagation of a wavefield 
generated by a vertical force source localized in the centre of the 
domain, emitting a 1.6 Hz Ricker wavelet. The maximum frequency 
is approximately f max = 4 Hz. The minimal wavelength λmin we con- 
sider for the filter design is based on the shear wave velocity value 
in the background V s = 3200 m s −1 and this maximal frequency, 
giving λmin = 800 m, meaning that we have eight cubic inclusions 
per λmin in each Cartesian direction. 

We present in Fig. 5 (b), the equi v alent media from our homoge- 
nization algorithm corresponding to the choice ε 0 = 1.0. Since its 
equi v alent stif fness tensor c ∗,ε 0 is full y anisotropic, more precisel y, 
we present the resulting ef fecti v e ‘v ertical’ V 

∗,ε 0 
p model, 

V 

∗,ε 0 
p = 

√ 

c ∗,ε 0 
3333 

ρ∗,ε 0 
, (32) 

impl ying an y hetero geneities below the minimal w avelength are 
considered as apparent anisotropy. 

In Figs 5 (c)–(e), we compare the wavefields computed in the 
equi v alent media with the ones computed in the reference isotropic 
fine-scale medium in terms of wavefield snapshots and shot gathers. 
We can see the ef fecti ve solution exhibits an excellent agreement 
with the reference wavefield regarding the propagation of trans- 
mitted energy, both in terms of traveltimes and amplitude. On the 
other hand, the weak-amplitude scattered field is less well approxi- 
mated as expected, since more discontinuities are filtered out in the 
low-pass filtering step: a smaller value of ε 0 would improve this. 

Besides this qualitative first analysis, we perform a quantitative 
convergence study where we homogenize this 3-D model for dif- 
ferent values of ε 0 ranging from 0.1 to 1.0. In Fig. 6 (a), 1-D depth 
profiles extracted in the middle of the resulting ef fecti v e ‘v ertical’ 
V 

∗,ε 0 
p models are presented. We can see, as expected, that less and 

less small-scales heterogeneities are preserved in the homogeniza- 
tion process. For each value of ε 0 , we compute the relative error 
between the e xact wav efield and the one computed in the corre- 
sponding equi v alent medium, as presented in Fig. 6 (b). To be more 
precise, the exact wavefield is the one computed in the original 
medium with a fine mesh based on 100 m 

3 cubic elements (the 
size of the cubic heterogeneities). The approximate wavefields are 
the wavefields computed in the equi v alent media on the same fine 
mesh. Doing so, we do not bias the error estimation by a second 
source of error coming from a coarser discretization. Of course, in 
practice, we would use indeed coarse meshes as the intent of such 
homogenization is ultimately to decrease the computational cost. 
The experiment here is a validation test to quantify the convergence 
rate of the numerical homogenization strategy we deploy. 

Although Capdeville et al. ( 2010b ) demonstrate that the homog- 
enized wavefield solution converges asymptotically towards the ref- 
erence wavefield solution (generated from the original medium) 
with a O 

(
ε 2 0 

)
convergence rate, Fig. 6 (b) shows that we actually 

obtain a convergence order between O ( ε 0 ) to O 

(
ε 2 0 

)
(see the dash 

lines between the two red lines). The latter is due to two reasons. 
First, we do not implement an ef fecti ve source as mentioned in Sec- 
tion 2.1 . In the worst case, this can bound the convergence error to 
O ( ε 0 ). Second, it is due to the fact that the filter used to low-pass 
filter the concentrators has a biased wavenumber response com- 
pared with an ideal bo xcar -type filter considered in the optimal case 
for the mathematical demonstration. We also compare in Fig. 6 (b), 
the convergence depending on the choice of the Bessel-based low- 
pass filter: one where 4 Bessel’s filters are used with α = 6.496 
× 10 −2 , one where 5 Bessel’s filters are used with α = 5.752 ×
10 −2 . The two results are almost equi v alent, indicating a robustness 
with respect to these parameters. This test is also an opportunity to 
compare the behaviour of our cascaded Bessel’s filter strategy with 
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he use of a Gaussian filter, by paying the price of an explicit con-
olution with a true Gaussian-filter wavelet in the homogenization
rocess as shown in Fig. 6 (b). The accuracy of the homogenized
olution obtained with the cascaded Bessel’s filter is similar to the
ne corresponding to the Gaussian filter, and is even superior at
o w ε 0 , o wing to its PDE-based implementation that preserves the
EM precision consistency of all the homogenization steps. This
igher accuracy of the Bessel-based homogenization for small ε 0 
ight be due to the wa y w e implement the Gaussian filtering here:

o work on the Gauss-Lobatto-Legendre (GLL) point, w e ha ve to
nterpolate model parameters in the 3-D volumes built to window
he Gaussian convolution. This interpolation might tend to be less
ccurate when the model heterogeneities are smaller, which is the
ase when ε 0 decreases. 

We finalize this first test by analysing the performance of our
lgorithm in terms of scalability and high performance computing.
irst we give in Table 2 the size of the model, the number of it-
rations performed to solve the elastostatic problems and to filter
he concentrators, and the total elapsed time on 960 CPU cores.
n average, around 1500 CG iterations are required to solve each
f the 6 elastostatic prob lems, w hile less than 800 are required to
pply the cascaded Bessel’s filter. The size of the model is already
ignificant with 161 elements in each direction, leading to a 810
illion degrees of freedom (DOF) size problem. 
Second we present a strong scalability test, where we measure

he reduction in elapsed time of the whole homogenization process
hen the number of CPU cores increases. We consider running the

ame homogenization process with two different meshes: one with
28 3 elements (410 million DOF), and the second with 256 3 ele-
ents (3.24 billion DOF). We set ε 0 to 0.5 in these two cases, which

orrespond to the half-wavelength resolution usually considered for
eismic imaging. We observe for the two meshes a quasi-perfect lin-
ar scalability for a number of CPU cores going from 240 to 1920.
or the larger mesh, the memory requirement for solving each elas-
ostatic equation is too big to be run on a single node, hence the
bsence of result in this case (first point is missing). The scalability
est is illustrated in Fig. 7 , and for more details, the corresponding
umbers are given in Table 3 . 

.2 3-D SEAM-II foothill model 

ext we consider a more realistic large-scale onshore model: the 3-
 SEAM-II benchmark foothill model. This model was designed to

epresent challenges of seismic exploration in mountainous regions,
specially for rough topography of mountain regions interacting
ith strong lateral variation in the first few hundred metres of the

ubsurface. More details on this model and the SEAM project can be
ound in Oristaglio ( 2012 ). From the perspective of elastic wavefield
odelling, such a model is very challenging. The deformation of

he mesh to conform to the rough topography leads to the creation
f elongated elements, as shown in Fig. 8 . 

Figs 9 (a)–(c) present the corresponding P -wave velocity V p , S -
av e v elocity V s and density ρ models. To model accurately the
avefield propagating in this medium, the presence of fine-scale

tructures and heterogeneities requires to decrease the element size
own to λh = 30 m. For a model of size 9.87 km × 14.46 km ×
2.48 km, this discretization leads to 339 × 502 × 436 elements
n z- , x- and y- directions, respecti vel y (including 10 sponge-layer
lements on each side, except for the top where the free-surface
oundary condition is applied, for attenuating outgoing wave and
revent from spurious reflections). According to the fourth-order
agrange interpolation we use, this leads to (339 × 4 + 1) × (502
4 + 1) × (436 × 4 + 1) × 3 � 14.27 billion DOF. Ho wever , if

e consider simulating the wave propagation induced by a vertical
orce localized in the middle of the free surface at x = 7230 m, y =
240 m, with a 2 Hz Ricker wavelet ( f max = 5 Hz) as source time
unction, the minimum wavelength to consider is λmin = 127.98 m
uch larger than the smallest heterogeneity: λmin � λh . This makes

his example ideal for showing the practical benefits provided by
omogenization in terms of computation cost reduction for seismic
ave modelling. 
We apply the proposed CG-based homogenization process to this

odel with scaling parameters ε = 0.25, 0.5 and 1.0, respecti vel y.
ince we achieve a similar accuracy in the homogenized solutions
y using the cascade of 4- and 5-times Bessel filters in the previous
ase, we here choose 4-times Bessel filter which is slightly less
omputationally demanding. Two particular points need to be taken
nto consideration: 

(i) potential site effects at the near surface; 
(ii) the use of a variable local minimum wavelength λmin . 

Regarding the first point, it is explained in Capdeville & Marigo
 2008 , 2013 ) that when computing the wavefield at the surface, a
rst-order correction should be considered in the homogenization
pproximation, to take into account the presence of shallow hetero-
eneities and specific site effects. The computation of this first-order
orrection is however cumbersome, and goes beyond the scope of
his study. A pragmatic approximation of the first-order correc-
ion consists of mirroring the medium parameters with respect to
he surface topography along the local normal to the topography
Capdeville & Marigo 2007 ), so as to fill-in the buffer layer on top
f the surface. This strategy shows to be efficient in the following
umerical experiments. The second point is related to the possi-
ility to use a single value for ε 0 in the whole medium, while the
inimum w avelength v aries within the medium due to the variation

f velocities (see Capdeville et al. 2013 , appendix B). To account
or these variations, we define a spatially varying λmin ( x ) as 

min ( x ) = 

V s ( x ) 

f max 
, (33) 

nd define accordingly λ0 ( x ) as 

0 ( x ) = ε 0 λmin ( x ) . (34) 

his spatially varying coherence length can be taken into account
aturall y b y the Bessel filter we use. 

We present in Fig. 9 the ef fecti ve models obtained for the three
if ferent v alues of ε 0 we consider, namel y ε 0 = 0.25, 0.5 and 1.
hese models are the projection of the equi v alent stif fness tensor

c ∗,ε 0 to the nearest isotropic V p and V s models (its stiffness tensor
s represented as c ∗,ε 0 

iso ), following the work of Browaeys & Chevrot
 2004 ). The percentage of anisotropy in c ∗,ε 0 is computed as 

nisotropy ( x ) = 

√ ∑ 

i jkl 

(
c ∗,ε 0 

iso ,i jkl ( x ) − c ∗,ε 0 
i jkl ( x ) 

)2 √ ∑ 

i jkl 

(
c ∗,ε 0 

iso ,i jkl ( x ) 
)2 

. (35) 

e observe a significant apparent anisotropy behaving like a locally
ilted transverse isotropy. The percentage of anisotropy increases
ith ε 0 to compensate the small-scale contrasts missing in V p and
 s models, which is consistent with the homogenization theory.
he discretization details and the associated computational cost of

he proposed homogenization process using ε 0 = 0.5 are given in
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Table 4 . We see that the size of the problem reaches 14.69 billion 
DOF. Using 7680 CPU cores, the total elapsed time for the homog- 
enization is approximately 3 hr, the number of CG iterations for the 
elastostatic problems is around 13 000, and less than 420 for the 
low-pass filtering part. 

We perform a modelling test in the model corresponding to ε 0 = 

0.5. We compare three wavefields: the wavefield computed in the 
reference model using the fine mesh with 30 m element size, the 
wavefield computed in the equivalent model using the same fine 
mesh, and finally the wavefield computed in the equi v alent model 
using a coarse mesh whose elements size are adapted to the local V s 

velocity (estimated by projecting the homogenized tensor c ∗,ε 0 to 
the nearest V s model). The result of this experiment is presented in 
Fig. 10 . For each component u x , u y and u z we display the reference 
wavefield at the free surface at time t = 3.725 s, and in-line and 
cross-line traces where we compare the three wavefields. One can 
appreciate the excellent match between the three wavefields, both 
in terms of amplitude and phase, indicating the efficiency of the ho- 
mogenization strategy in this case. A further comparison in terms 
of shot gather is shown in Fig. 11 , which quantitati vel y re veals that 
the relative difference between the seismic data modelled from the 
dense-mesh discretized original model and the seismic data mod- 
elled from the adaptive coarse-mesh discretized equivalent model 
is less than 1.6 percentage. 

The statistics of the modelling test are presented in Table 5 . The 
total number of elements is di vided b y approximatel y a factor 90, 
while the number of time-steps is di vided b y a factor 5. This reduc- 
tion of the number of time-steps results from the use of a coarser 
mesh which leads to a less constrained CFL stability condition for 
the explicit time-marching scheme. The modelling on the fine mesh 
is performed in 98 min on 2560 CPU cores. The modelling on the 
coarse mesh is achieved in 5.2 min on 160 CPU cores. In terms of 
total CPU hours (elapsed time when using a single CPU core, which 
quantifies the computational complexity) this represents a reduction 
of a factor 300, which is very significant. This is an illustration of 
what can be expected in terms of computation cost reduction from 

the use of homogenization theory in this context. Of note, there is 
a computational kernel optimization in the fine-scale isotropic case 
so as to take into account the specific sparsity of the stiffness tensor 
c in this case, ho wever , in the equi v alent medium, a fully populated 
c stiffness tensor is taken into account. This kernel optimization 
does not compensate, by far, the computational cost difference in- 
duced by the possibility to use a coarser mesh from the equi v alent 
medium. 

To complement this modelling cost comparison, it should be 
noted that the extra cost of homogenization process for getting the 
ef fecti ve model also needs to be taken into account. In this exper- 
iment, the elapsed time for homogenization is around 3 hr using 
7680 CPU cores, which is apparently more e xpensiv e than per- 
forming the modelling directly on the fine mesh (1.63-hr elapsed 
time using 2560 CPU cores). If we compare these two costs in 
terms of total CPU time, the homogenization process is about 
5.5 times as much as a direct modelling on the fine mesh. Thus, 
for a one-time seismic modelling, it is not worthy of using the ho- 
mogenization strategy in this case. Ho wever , most of 3-D seismic 
applications require solving the modelling problem for hundreds 
to thousands of sources, for instance in Full Waveform Inversion 
(FWI, Virieux et al. 2017 ). Here, starting at five different sources, 
it becomes more interesting to use the homogenization strategy. 
Let us stress that this number is case-dependent: depending on the 
roughness of the heterogeneities, the maximum frequency of the 
signal, there might be situations for which homogenization is not 
interesting before a very large number of modelling is required, and 
others for which homogenization is already interesting for a single 
source. 

4.3 3-D Marmousi-II marine model 

To finalize this study, we consider here a realistic offshore problem 

based on a 3-D extension of the Marmousi-II model (Martin et al. 
2006 ). It is a simple extension along the y -direction with an angle of 
45 ◦, and an uneven seabed is added to replace the original flat one. 
The model is presented in Figs 12 (a) and (b). Given the ongoing 
importance of the deployment of ocean bottom seismometers (OBS) 
for imaging the crust at exploration and lithospheric scales, it is 
important to assess if the homogenization tools we propose can be 
used in such a context. In general, similarly to the free surface, 
homogenization cannot remove solid–fluid large interfaces. Small 
fluid inclusions can be homogenized and replaced by a solid (see 
Capdeville et al. 2020 , p. 280 for an example), but this is the only 
case for which such a solution is possible. Solid–fluid interface 
topography can be homogenized in the same way as for the free 
surface topography (Capdeville & Marigo 2013 ), then replacing a 
rough topography by a smooth topography to the leading order, and 
changing the coupling conditions to the next order. In the same 
way as for the previous example, here we remain at the leading 
homogenization order. In practice, this means taking a pragmatic 
approach where the elastic part is homo genized independentl y from 

the fluid layer, and the equi v alent fluid–solid model is built by 
adding the fluid layer on top of the equi v alent elastic medium. As 
in the previous example, we consider a point vertical force source 
emitting a 2 Hz Ricker wavelet, located in the water layer. The 
maximum frequency f max is thus f max = 5 Hz as for the previous 
experiment on the SEAM II Foothill model. We also consider a λ0 

adapted to the local minimum wavelength (equation 34 ). 
Figs 12 (c)–(e) display the resulting anisotropic equi v alent mod- 

els with scaling parameters ε 0 = 0.2, 0.4 and 0.8 projected to their 
nearest isotropic V p , V s models and the remaining total anisotropy 
percentages computed following eq. ( 35 ). As for the previous case, 
through the remaining total anisotropy percentages, we can observe 
its amount increasing with ε 0 , which is expected from the homog- 
enization theory: small-scale heterogeneities are seen as an equi v a- 
lent anisotropy. In order to account for the effect of the fluid–solid 
interface in the seismic modelling, we adopt a fluid–solid coupled 
modelling engine in which the fluid and solid domains are divided 
explicitly and handled with the acoustic wave and elastic wave equa- 
tion, respecti vel y. The mutual interaction between these two wave 
equations is modelled by specific fluid–solid boundary conditions. 
This strategy is described in details in Cao et al. ( 2022b ). 

In Fig. 13 , we present synthetic seismograms corresponding to 
two 4-component (4C) OBS recording the pressure and the particle 
3C displacement in the near offset (320 m away from the source) and 
far offset (3200 m away from the source). These synthetic seismo- 
grams are computed both in the reference medium and the equi v a- 
lent medium for the different values of ε 0 mentioned above. We can 
observe again a very good agreement between these seismograms 
in all cases, and the con vergence to wards the reference solution for 
decreasing values of ε 0 qualitatively. This experiment suggests that, 
despite the homogenization theory is not developed for a fluid–solid 
elastic medium, the pragmatic approach we propose, namely sep- 
arating the fluid and solid parts and homogenizing the solid part 
before merging them to be a candidate homogenized model, might 
provide a first answer to the question of how to upscale a coupled 
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 C O N C LU S I O N  A N D  P E R S P E C T I V E S  

n this study we re vie w the process of homogenization and propose
n efficient numerical strategy to upscale large-scale 3-D elastic
edia. The main idea of our method comes from the identification of

ele v ant mathematical analogy among the system of elastodynamics
quations, the elastostatic equations and the filtering operations, the
atter two being at the core of the homogenization process. All these
quations are based on partial differential equations sharing the
ame spatial deri v ati ve operator. Because of this similarity, we can
e-use the optimized numerical kernel developed for elastodynamics
quations, based on a spectral-element discretization and a domain
ecomposition algorithm, to obtain a fully scalable, optimized, and
atrix-free homogenization process. 
We validate our approach on a 3-D random medium where we

an test the convergence of the homogenization process, before we
onsider a realistic large-scale 3-D elastic model representing an
nshore exploration project in foothill environments. We illustrate
he scalability of our method and its capability to handle a problem
nvolving around 15 billions of unknowns using several thousands
f computing units. Based on this problem, we illustrate the interest
f the homogenization method to model complex wavefields in
nshore foothill en vironment. W ith a controlled accuracy, we can
educe the computation cost, in terms of total CPU hours, by a factor
f 300. This is due to the fact that compared to the isotropic fine-
cale model which requires small elements to represent small-scale
etero geneities, its homo genized counterpart is full y anisotropic
nd smooth, making it possible to use a much coarser mesh to
odel the elastic wavefield propagating in it. 
This computational speed-up however needs to consider the com-

utational effort needed to obtain the equivalent media by solving
he homogenization problem. For single-shot modelling the gain

ight not be noteworthy as the 3-D homogenization problem repre-
ents itself a heavy problem. In terms of computational complexity,
he elastostatic and Bessel’s smoothing operation scales as a power
 of the number of points in one dimension times the number of iter-
tions to solve the corresponding linear systems. Depending on the
umber of iterations, it can be comparable to the solution of the elas-
odynamics equations, even if this number of iterations seems less
onstrained than the number of time-steps resulting from the CFL
ondition for time-dependent wavefield. In any case, as long as mul-
iple simulations have to be performed in the same model, whether
t is for inversion, sensitivity analysis, or wavefield amplification
ssessment, the homogenization strategy becomes interesting. The
omogenization has to be solved only once, and all the wave prop-
gation modelling then benefit from the reduction coming from the
sage of a coarser mesh. 

We complement our numerical study by investigating the ques-
ion on how to homogenize fluid–solid coupled media. We propose
 pragmatic approach where the elastic part is homogenized sepa-
ately before being merged back with the fluid layer on the top of it.
espite lacking of the rigorous theor y suppor t of homogenization,

his approach appears numerically accurate for the 3-D extended
armousi II model we consider. 
From the perspective point of view, we will focus on the applica-

ion of this strategy in the frame of Full Waveform Inversion (FWI),
n the continuity of the preliminary work presented in Capdeville
 M étivier ( 2018 ), with several questions around parametrization

n mind: should we invert for all the coefficients of the stiffness
ensor or restrict to specific anisotropy type? Applications in the
eld of large-scale modelling for site effects in sedimentary basins

o e v aluate seismic hazard are also to be considered. 
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