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1 INTRODUCTION 

Steels machining is a process which complexity 

makes subject to massive studies. The pionneer 

works of Merchant [1] started by mechanical 

analytical modellings that opened an issue to a 

variety of exhaustivity-rising studies, most shearing 

a common purpose: a quantification of the 

influences of the process parameters- often including 

the workpiece and the tool geometries and natures- 

on the sollicitations taking place during the cutting 

operation (strain, strain-rate, temperatures, friction). 

The purely analytical modellings rapidly showed 

their limits while faced to the strong couplings that 

govern the chip formation and flowing. Numerical 

approaches rapidly proved their necessity. These 

approaches can be split into three fundamental 

categories a) The classical lagrangian finite elements 

method, which has the major advantages of allowing 

a good representation of the constitutive laws and 

internal variables, but also a certain handiness and 

an excellent precision in the description of free 

surfaces. In the case of machining, these methods 

reveal yet the disadvantages of being faced to mesh 

distorsions. They imply the use of ALE methods, 

and of remeshing techniques that are undeniably 

time and resources consuming. This limits the 

possibilities of cutting simulations on long distances. 

The second drawback of these methods is related to 

the treatment of strain localisations, specifically 

important in the case of machining numerical 

simulation. b) The non-classical lagrangian finite 

elements, like the meshless [2,3] or NEM [4] 

methods. These robust methods allow to solve most 

of the problems related to meshes, but still show a 

certain difficulty for rather trivial operations, such as 

the surfaces description or the boundary conditions 

imposing. c) The eulerian approaches, among which 

X-FEM evolves [5]. In comparison with the 

previous ones, the main advantage of this method 

consists in maintaining the mesh, and taking profit 

from other techniques (the level sets [6] and the 

finite-element approximation enrichment using the 

partition of unity [7]) for surfaces representation. 

Thus, the facilities offered by calculations on 

elements are kept, but not their drawbacks, 

remeshings above all. Another important “skill” of 

the X-FEM method, due to its coupling with tle 

Level Set technique, is the fluency it offers for 

contact treatment, as will be shown in this paper. 

In spite of their qualities, all of these techniques still 

show common limitations for the problem of 

machining simulation. These limits are most related 

to the mesh rupture criteria, and the physical 

meaning of some presently used instructions (like 

kill element in the lagrangian methods). In fact, if no 

additional criteria are introduced, it is for example 

impossible to simulate chip fragmentation. While 

methods like damage including help to overcome 

this lack, they still show the withdrawal of a certain 

deficiency of experience justifications. Besides, an 

extra numerical technique is still needed to treat the 

strain localisation. 
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In the scope of this work, we present here an 

approach of contact which was implemented within 

the X-FEM/Level Set context. We extract the 

benefits of developments in such an eulerian 

framework, and discuss the possibilities of these 

developments in the direction of overcoming some 

of the major difficulties of machining simulation. 

2 DEVELOPMENTS 

2.1 Global problem 

The situation to solve deals with an incompressible 

velocity-pressure (v-p) formulation in a non-linear 

context. Figure 1 describes the geometry of the 

global problem, where (D) is a meshed background, 

(Ω) is the volume of a body described by a level set 

function, and moving in (D) with a prescribed 

velocity vd on a part (Γd) of its border (Γv), where 

velocities are imposed. The lower part (Γs) of (Γv) is 

imposed to be rolling, and the remaining part of the 

border of (Ω) is free. 
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Fig.1: global problem representation 

The system (S) gives the variational formulation of 

this problem, in terms of v and p: 

( )

( ) ( ) ( )
( )

( )( )⎪
⎪

⎩

⎪
⎪

⎨

⎧

=

∈∀=Ω−

∈∀Ω=Ω−Ω

∫

∫ ∫ ∫

Ω

Ω Ω Ω

vDfσ

vp

VvvfvpvDσ

S

dd

ad

ad

dd

Ppddiv

dddivd

**

0****

;0

;.:

Where: σd
 = deviatoric part of the Cauchy stress 

tensor, D
d
 = deviatoric part of the strain-rate tensor, 

V
0

ad and Pad are defined by: 

V
0

ad = {v|v∈(H
1
(Ω))

n
, v=0 on (Γv)} 

Pad ={p|p is “regular”} 

The Babuška-Brezzi incompressibility condition is 

fulfilled by the use of a finite element which is 

quadratic in terms of v and linear in terms of p 

(P2/P1 interpolation). 

2.2 The contact problem 

In order to perform a finite element simulation of a 

machining operation, a contact algorithm has to be 

implemented to treat the mechanical interaction 

between the moving piece and the cutting tool. This 

interaction is introduced in the previous system 

through an additional surface term: 
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In (S’), T is the contact stress and (Γc) is the piece 

border where a contact may occur. A penalisation 

method is used for the contact treatment. In such a 

framework, T is given by relation (1). 

T = - χ δ n                                                               (1) 

where χ is an arbitrary penalisation factor, which 

value has to be well chosen. n is the outward normal 

unit vector to the piece, evaluated in the old 

configuration (at the previous time-step), and δ is the 

algebraic depth of penetration of the piece in the 

tool. δ is positive when a numerical penetration 

actually takes place (figure 2). T is equivalent to an 

elastic force proportional to δ. 

 
Fig.2: The contact penalisation 

In the X-FEM context, the penalisation method is 

based on the Level Set technique. The evaluation of 

δ is simply performed by evaluating the level set 

associated to the tool on the Gauss-points located on 

the piece border (2). This technique offers a major 

advantage: the search for the elements in the front 

border is no longer necessary, and so for the 

surfaces’ normals calculation. These normals are 

simply given by the level sets functions derivation 

(3). In relation (3), due to the closure of the piece 

and tool when a contact happens, we approximate n 

by the opposite vector to the tool’s outward unit 

normal (ntool). This approximation is besides 

expected to prevent from numerical inconsistancies. 

δ (xt+∆t
) = -lstool (x

t 
+ v

t+∆t ∆t)                                  (2) 



ntool = ∇ lstool (x
t 
+ v

t+∆t ∆t)                                      (3) 

A Newton-Raphson iteration scheme is needed to 

linearize the problem. The contact algorithm loops 

on the piece-border points and iterates the resolution 

until all penetrations come to a negative value (≤0). 

The piece motion, which is traduced into a domain 

transport by level sets propagation, is then possible 

at convergence. This motion is fulfilled by a separate 

algorithm that operates in 3 steps [6]: 

- Extension of the known velocity from the border of 

the moving body (iso-zero of the level set) to the 

whole domain ; 

- Propagation of the level set with respect to this 

velocity field ; 

- Reinitialisation of the level set so to conserve a 

function of a signed distance. 

3  VALIDATION TESTS AND RESULTS 

3.1 Homogeneous test 

The first validation test (Signorini problem) 

consisted in putting into contact a moving body and 

a rigid obstacle. This is actually a simple 

compression test. Excellent solutions are obtained 

even with coarse meshes.  

3.2 Squeeze-test 

The moving material is a thin sample subjected to a 

shearing compression with the rigid obstacle (Figure 

3). vy is fixed to 0 on (Γd). The validation is made on 

one time step, starting from a quasi-contact situation. 

Figure 4-a shows the results in terms of velocity. 

When the contact is established, the velocity 

solution is checked to be parabolic in an horizontal 

section of the moving body (figure 4-b). 

 
Fig.3: The squeeze-test  

   
Fig.4.a. Velocity field for the 

squeeze-flow problem 

Fig.4.b. Velocity field in a 

section of the moving body 

The analytical solution in terms of pressure is given 

by the Hele-Shaw solution. If y is the coordinate in 

the vertical direction then: 

Pa = 12µVd(L²-y²)/h
3
                                               (4) 

We verify the good concordance of the analytical 

and calculated solutions on the contact border of the 

moving body (figure5). 
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Fig.5. Analytical and calculated pressure comparison 

3.3 Drop crush 

Becoming quite simple to solve since the previous 

calculations are verified, the test of a drop entering 

into contact with a smooth surface is the first test 

including both the algorithm of level sets 

propagation and of contact treatment. Although the 

solution is strongly conditioned by a good 

adjustment of the penalty factor, perfectly realistic 

profiles are obtained for this problem (figures 6-7-8, 

where the imposed velocity is vd=vdx=0.4m/s). 
 

      
 

Fig. 6: Drop border deformation on the contact interface 
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Fig. 7 : Velocity field evolution for the crushing drop test 

(from left to right: time t = 0.01 s; t = 0.03 s; t = 0.07 s) 

3.4 Machining test 

The machining operation includes a moving piece 

and a tool. We proceed to a simplified modelling of 

the machining operation: The tool is modelled by a 

stationary rigid body, and the piece by a Newtonian 

fluid which moves towards the tool with a 

prescribed velocity, imposed far from the contact 

surface. The piece and the tool are initially in 

contact. Satisfying results are obtained for this 

Newtonian flow. We note that even when adjusting 

the viscosity and the penalty factor (figure 8), no 

similarity can be obtained with the real behaviour of 

the machined material (i.e. a steel workpiece, 

ordinarily modelled by laws such as the Johnson-

Cook plasticity model as in [8,9]). The shearing can 

be observed to produce a strain rate and a pressure 

elevation at the tool tip (figure 9), but no localisation 

could be induced in the band where the velocity 

direction changes under contact effects. At this stage 

and with the used constitutive law, only qualitative 

validations can be performed. Large improvements 

can now be obtained through the implementation of 

a machined steel adapted constitutive law. 

 
Fig. 8: Deformed material (t = 0.01 s and t = 0.39 s) and 

velocity field (t = 0.39 s) for the newtonian fluid (vd=1m/s) 

 

4 CONCLUSION 

We presented here an original implementation of the 

contact treatment based on the coupling of X-FEM 

with the Level Set method. This approach was 

proved to simplify the simulation of a chip removing 

operation. Up to now, this is the main advantage 

obtained in this research context. Other 

improvements are needed to overcome some 

drawbacks of the use of X-FEM, which are the 

disadvantages of the Eulerian approaches in general: 

they are related to the use of constitutive laws for 

metals which imply the transport of internal 

variables. Nevertheless, the coupling of X-FEM with 

the finite element approximation enrichment should 

allow to apprehend the deformation localisation 

from the cut material constitutive law, without 

losing the quality of the FEM solution, this 

constitutes a challenging result for this research axis. 
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