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Elasto-Static Modelling and Identification of a Deployable Cable-Driven
Parallel Robot with Compliant Masts*

Zane Zaķe1 and Stéphane Caro2

Abstract— Some cable-driven parallel robots (CDPRs) can
be rapidly deployed on-site. To achieve such deployability, the
fixed frame is usually substituted by four masts. However, not
having any rigid fixture between the masts reduces the overall
stiffness of the CDPR. This paper introduces a CDPR called
Rocaspect, that has four compliant masts. The robot behavior
and accuracy is evaluated experimentally and three different
mast models are proposed.

I. INTRODUCTION

Cable-driven parallel robots (CDPRs) are a subtype of
parallel robots where rigid links are replaced by cables.
Since cables are usually lightweight and the motors are
typically mounted on the ground, therefore the only sig-
nificant mass in motion is the moving-platform (MP),
possibly with a payload. Due to this, CDPRs are be-
ing studied over increasing workspace sizes, for ex-
ample: (a) IPAnema 8 m×6 m×5 m [1]; (b) CoGiRo
16 m×11 m×6 m [2]; (c) CDPR art installation Prince’s
Tears 20.8 m×7.3 m×5.1 m [3]; Rocaspect deployed in a
large configuration of 23.3 m×19.0 m×4.0 m [4].

There are several ways to construct a CDPR. The stiffest
option is to attach the CDPR pulleys directly to the building
structure such as [2], [5], [6]. In this case it is reasonable
to assume that the robot frame does not deform in any
significant way and pulley coordinates remain the same
throughout the use of such a CDPR. Attaching the pulleys
to the building is not always feasible, therefore a rigid frame
could be built. It generally has a rectangular cuboid shape
such as in [7]–[9]. These types of CDPR structures are also
usually assumed to be rigid. While there are some deployable
CDPRs with a rectangular cuboid shape [7], [10], it is more
convenient with respect to transportation and deployment to
simply have free-standing masts such as in [11]–[14]. The
drawback for such CDPRs is of course the reduced stiffness
of the frame, since the masts are no longer interconnected.

There have been studies on CDPR stiffness that concen-
trated on quantifying the stiffness of the MP as a function of
cable elasticity [6], [8], [15]–[17]. However, to our knowl-
edge, the stiffness of the base structure itself and its effect
on the MP pose errors has not been addressed except in [4].

Some efforts should be made to identify the parameters
of the robot model and to determine the robot state when
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starting, namely to handle properly its initialization phase,
for example, by performing some measurements with a Laser
Tracker [1], [4]. However, if the robot structure deforms
and the pulleys move due to the tension in the cables, the
measured model does not match with the robot. During
the experiments described in [4] it was observed that the
masts are subject to torsion and bending due to their light
structure, which greatly affected the MP accuracy. An initial
mast model was proposed to explain the observed behavior.
However, it was not possible to perform the identification
of unknown parameters, such as the mast stiffness, at that
stage. Thus, in this paper the compliance of Rocaspect
masts is modelled, the unknown parameters are identified and
the proposed model behavior is compared to the measured
behavior. Ground truth measurements were performed using
a Leica Absolute Laser Tracker AT901-MR (Leica LT) with a
certified absolute accuracy of ±15 µm+6 µm/m for a range
of 40 m.

II. CDPR MODELLING

In this paper, a deployable CDPR named Rocaspect,
shown in Fig. 1a, is presented. It has n = 4 masts, and
each of them is an assembly of multiple pieces, as shown
in Fig. 1b. The metal beam is rigidified with three Dyneema
shrouds of 6 mm in diameter. The MP is pulled by 8 cables.

TABLE I
NOTATION USED THROUGHOUT THE PAPER

• i = 1, . . . ,n denotes the ith mast; there are n = 4 masts.
• j = 1, . . . ,o denotes the jth cable; there are o = 2 pulleys per mast.
• r = 1, . . . ,q denotes the rth shroud; there are q = 3 shrouds per mast.
• Boldface lowercase characters denote vectors; boldface uppercase

characters are matrices.
• Fb, Fmp, Fbe denote the base, MP and beam frames respec-

tively (resp.).

• α Tβ =

[
αRβ

α tβ

0003 1

]
is the homogeneous transformation matrix from

Fα to Fβ .
• A−1 and A† are the inverse and the pseudo-inverse of A, resp.
• [e]× denotes the cross-product matrix of vector e.
• α a is the vector a expressed in Fα

• subscript (•)b denotes the base or world
• subscript (•)mp denotes the MP
• subscript (•)θ denotes the three elastic joint model
• subscript (•)be denotes the metal beam
• subscript (•)m denotes the mast
• subscript (•)s denotes the shroud
• subscript (•)p denotes the passive stiffness
• subscript (•)a denotes the active stiffness
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Fig. 1. Rocaspect: (a) test size of 8.3 m×6.8 m×4.0 m; (b) CAD model
of the mast with: two cables (violet and orange); the resultant forces fi j;
cable exit points Ai j; shroud upper and lower attachment points Cir and Dir ,
resp.; base point Oi; unit vectors dir along each shroud; vectors eir from
Ci3 (top point of the mast) to the remaining two upper attachment points;
mast stiffness can be modelled as three one-DoF elastic joints at Oi

In the configuration shown in Fig. 1a, the CDPR size is
8.3 m×6.8 m×4.0 m with a footprint of 56.44 m2. The MP
size is 1.0 m×1.0 m×0.5 m and its mass is 50 kg. The masts
are not fixed to the ground. To avoid them tipping over as a
result of too high tensions in the CDPR cables, the maximum
height the MP can attain is limited to 2 m.

Rocaspect has o= 2 cables per mast. The i jth cable vector
of the ith mast is expressed as:

li j =
bRmp

mpbi j +
btmp − bai j (1)

where bai j is the Cartesian coordinates vector of cable exit
point Ai j expressed in frame Fb; mpbi j is the Cartesian
coordinates vector of cable anchor point Bi j expressed in

frame Fmp; btmp and bRmp are the position vector and
rotation matrix of the MP expressed in the base frame Fb.

The static equilibrium of the MP is given by:

Wτττ +wg = 0 (2)

where wg is the MP gravity wrench, τττ is the cable ten-
sion vector, and W is the wrench matrix of the CDPR,
defined as [18]:

W =

[ bu11 . . . buno
bRmp

mpb11 × bu11 . . . bRmp
mpbno × buno

]
(3)

where bui j is the unit vector of li j, namely bui j =
li j

||li j ||2
.

The pulleys on Rocaspect have a non-negligible size,
thus pulley kinematics are taken into account in the control
scheme, but not detailed here due to the limited space. Please
refer to [6], [9], [19]–[21] for the expression of the unit
vector bui j.

III. MODELLING OF THE ROCASPECT MASTS

As described in [4], having a light mast structure can
unfortunately lead to significant cable exit point displace-
ment, especially if shroud tensions are not well managed.
Consequently, since the cable exit point coordinates no
longer correspond to the nominal ones, the accuracy of the
MP is negatively affected. In this section several models are
proposed to describe the mast top displacement. Note that
throughout the paper when referring to beam only the metal
beam is considered; and when referring to mast the assembly
of the metal beam and shrouds is considered.

A. Three joint model (3R model)

Here, a slightly simplified version of the model proposed
in [4] is presented. The mast shown in Fig. 1b can be
modelled as an ideal infinitely rigid beam with three per-
pendicular and intersecting elastic joints at its base. Thus,
the displacement δci3 of the top of the ith mast Ci3 due to
the resultant wrench δwi is described as:

δci3 = Cθ iδwi (4)

where Cθ i is the Compliance matrix, which is expressed as:

Cθ i = JiK−1
θ i JT

i (5)

Ji is the mast Jacobian matrix expressed for the top of the
mast Ci3 as follows:

Ji =

[ #        »
OiCi3 × i #        »

OiCi3 × j #        »
OiCi3 ×k

i j k

]
(6)

with i, j and k being the unit vectors along xb, yb, and zb
axes, resp., of the base frame Fb shown in Fig. 1a. Oi is the
bottom of the mast, as depicted in Fig. 1b. The matrix Kθ i
is the (3×3) diagonal joint stiffness matrix of the ith mast.

The resultant wrench δwi is defined as:

δwi =

[
fi

mi

]
=

[
∑

o
z=1 fiz

∑
o
z=1(

baiz − bci3)× fiz

]
(7)

with fi j = τi j(vi j + ui j), vi j is the unit vector of
#        »
Ai jFi j.

The displacement δci3 is a (6× 1) vector, where the first



three components define the translational displacement vec-
tor δcTi3 of point Ci3 and the last three components are those
of the rotation displacement vector δcRi3 of the mast top.

B. Beam Model

The beam used in this assembly is a straight hollow metal
beam with a square cross-section, as shown in Fig. 2. Since
it is fixed only on the bottom and forces are applied to it on
the top, it can be modelled as a simple cantilever beam. The
compliance matrix of such a beam is defined as [22]–[24]:

Cbe =



L
EA 0 0 0 0 0
0 L3

3EIz
0 0 0 L2

2EIz

0 0 L3

3EIy
0 − L2

2EIy
0

0 0 0 L
GJ 0 0

0 0 − L2

2EIy
0 L

EIy
0

0 L2

2EIz
0 0 0 L

EIz


(8)

where E is the Young’s modulus, G is the shear modulus,
A is the cross-sectional area, L is the length of the beam,
Iy and Iz are components of the moment of inertia I; J is the
polar moment of inertia. Given the shape of the beam shown
in Fig. 2, the following equations are used:

Iy = Iz =
s4

out

12
− s4

in
12

(9)

J =
soutL(s2

out +L2)

12
(10)

A = s2
out − s2

in (11)

where sout is the beam width, sin is the hollow width.
Matrix Cbe is expressed in the beam frame Fbe, where the

beam is aligned with the xbe axis. To express it in the world
frame Fb, an augmented rotation matrix bRaug

be is defined in
the following way:

bRaug
be =

[bRbe 03
03

bRbe

]
(12)

where

bRbe =

0 0 −1
0 1 0
1 0 0

 (13)
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Fig. 2. Metal beam

The compliance matrix of the ith beam can then be
expressed in Fb:

Cbi =
bRaug

be Cbe
beRaug

b (14)

and the displacement δci3 due to the resultant wrench δwi
is defined as:

δci3 = Cbiδwi (15)

C. Complete Mast Model

In this section, the complete mast model is proposed. As
represented in Fig. 3, each mast is like a parallel robot on
its own with four legs, where three legs are the shrouds and
one leg is the metal beam. The displacement δci3 of the top
of the ith mast Ci3 due to the resultant wrench δwi is now
defined as:

δci3 = K†
miδwi (16)

where K†
mi is the pseudo-inverse of the mast stiffness matrix

Kmi, which takes into account the stiffness of shrouds and
the metal beam. For a parallel arrangement such as in Fig. 3,
the total stiffness of the mast Kmi is simply the sum of the
leg stiffness matrices Kil [24]:

Kmi =
4

∑
l=1

Kil (17)

The fourth leg is the beam defined in Section III-B. Its
corresponding stiffness matrix takes the form:

Ki4 = C−1
bi (18)

The other three legs are shrouds and can be considered as
a CDPR, for which the elasto-static modelling is described
in [6], [8], [15]. The relationship between the mast top
displacement and the wrench exerted on it is thus defined as:

δwi = Ksiδci3 (19)

where Ksi is the stiffness matrix of the three shroud system.
The static equilibrium for the mast top Ci3 is defined as:

Wsiτττsi +δwi = 0 (20)

where τττsi is the shroud tension vector and Wsi is the shroud
wrench matrix defined as:

Wsi =

[ bdi1 . . . bdiq
bei1 × bdi1 . . . beiq × bdiq

]
(21)
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Fig. 3. Schematic of the mast taking into account the three shrouds and
the metal beam. S and U stand for spherical and universal joints, resp.



where beir is a vector pointing from point Ci3 to the shroud
attachment points Cir; and bdir is the unit vector of each
shroud as shown in Fig. 1b.

Ksi can be expressed from (19) using (20) as:

Ksi =−∂ (Wsiτττsi)

∂ci3
=−∂Wsi

∂ci3
τττsi −Wsi

∂τττsi

∂ci3
= Kai +Kpi

(22)
Thus, the stiffness matrix Ksi consists of two parts Kai

and Kpi. The former is usually named active or controllable
stiffness, because it depends on the tensions in the shrouds.
The latter is named passive or inherent stiffness, because
it depends on the cable elasticity (Young’s modulus). Note
that Ksi depends on the shroud tensions, therefore additional
tension sensors are required to use this model.

Shroud elasticity is modelled according to the linear spring
model so that:

τττsi = Kkiδ lsi (23)

where Kki is a diagonal matrix containing the elastic coeffi-
cients kir for each shroud, δ lsi is the vector of shroud length
variations. Using (21) and (23), the passive stiffness Kpi takes
the following form:

Kpi = −WsiKki
∂ lsi

∂ci3
= WsiKkiWT

si =

q

∑
r=1

kir

(
Dir Dir[eir]

T
×

[eir]×Dir [eir]×Dir[eir]
T
×

) (24)

with Dir =
bdir

bdT
ir.

It was shown in [6] that Dyneema ropes have a progressive
spring characteristic. That is, the elastic coefficients kir are
not constant, but instead depend on the tension in the ropes
and can be modelled as a polynomial of a second degree:

kir =
k0ir + k1irτsir + k2irτ

2
sir

lsir
(25)

Active stiffness can be written as [8]:

Kai =−
q

∑
r=1

τsir

lsir

(
−Eir Eir[eir]×

−[eir]×Eir

[
lsir[

bdir]×+[eir]×Eir

]
[eir]×

)
(26)

with Eir = I3 −Dir and I3 is the (3×3) identity matrix.

IV. IDENTIFICATION

In this section the identification of the unknown parame-
ters necessary for the proposed models is presented.

A. Shroud elasticity

To determine the elasticity of the Dyneema shrouds, a
new unused shroud was installed on a test bench shown
in Fig. 4b. The length of the shroud between its winding
grips was 0.5 m. The load is increased by tightening the nut
on a threaded rod. A small plate attached to the shroud at
0.5 m mark changes its height as the shroud elongates due
to the load and pushes on the needle of the digital indicator,
which then measures the elongation. The pulling force was
repeatedly increased and decreased as shown in Fig. 4a. Two
sets of measurements were performed: from 50 kg to 400 kg

(blue curves) and from 0 kg to 300 kg (green curves). Firstly,
there is a significant difference between loading (solid curve)
and unloading (dashed curve) the shroud. Secondly, the
average curve is not a straight line, but indeed a polynomial
curve. Thus, as discussed in [6], the Dyneema ropes appear
to have a non-linear spring characteristic.

Using the recorded measurements, it is possible to identify
the stiffness coefficients defined in (25). To do that, let the
stiffness coefficients be the components of a vector xs so
that xs = [k0 k1 k2]. Then the relation between the applied
force and the shroud elongation can be obtained from (23)
and (25) as:

Asexs = bse (27)

where Ase = 1/l0[δ lse τseδ lse τ2
seδ lse], bse = τse, ls0 = 0.5 m

is the initial length of the shroud, and δ lse and τse are the
eth elongation and force measurement.

Ase and bse are concatenated into As and bs, resp. Then xs
is obtained by minimizing the residual of the equation system
Asxs = bs and it is xs = [935353.664; 144.320; −0.000465].

As can be seen in Fig. 4a, the obtained polynomial model

(a)

Tightening nut

Tension sensor

Digital indicator

Winding grips

Plate

(b)

Fig. 4. Cable tensile test bench: (a) two measurement sets, the average
curve and the polynomial model; (b) test bench



must pass through (0,0), which does not correspond exactly
to the average curve. Indeed, possibly another definition of
the nonlinear spring characteristic could be envisaged such as
in [25], [26], where the hysteresis is also taken into account.

B. Mast Model Identification

To identify the stiffness coefficients for each of the models,
multiple experiments were done by varying the parameters
shown in Table II. Shroud pretension was set while the MP
was on a support. Then the MP was lifted by the CDPR to the
initial pose bpp = [2.65m; 2.5m; 1.6m; 0◦; 0◦; 0◦] and the
cable exit point Ai j coordinates were measured by Leica LT.
Then the trajectory shown in Fig. 5a was executed multiple
times per experiment, while measuring the displacement of
mast 1 and then the displacement of the MP. As can be
seen in Fig. 5b, there is a large difference of mast top C13
coordinates along xb and yb depending on the pretension
in the shrouds. Furthermore, no matter the pretension, the
point C13 moves, however the trajectory is almost identical
for 1200 N and 800 N pretension, and still very similar with
400 N pretension. Likewise, changing the mass of the MP
slightly affects mast top position and trajectory.

1) 3R Model Identification: In this model the unknowns
are the diagonal elements of matrix Kθ i. Equation (4) can
be rewritten using (5) as:

Aθexθ = bθe (28)

where xθ = [kθ1 kθ2 kθ3] is the vector of joint stiffness
coefficients; bθe = δci3 and

Aθe =

Ji11 ∑
6
α=1 Jiα1δwiα · · · Ji13 ∑

6
α=1 Jiα3δwiα

...
. . .

...
Ji61 ∑

6
α=1 Jiα1δwiα · · · Ji63 ∑

6
α=1 Jiα3δwiα

 (29)

where Ji11 . . .Ji63 are the components of Ji, and δwiα is
the αth component of δwi.

Matrix Aθe and vector bθe is filled for each eth point
of the trajectory shown in Fig. 5 and then concatenated
into Aθ and bθ , resp. Finally, the equation Aθ xθ = bθ is
solved for xθ . Note that mast stiffness determined with this
model is constant and does not take into account the variation
of pretension in shrouds. Thus, the identification was done
separately for each pretension shown in Table II and the
results are shown in Table III. The obtained kθ3 values were
negative in most experiments, hence it is concluded that the
mast is not twisting and those values are not meaningful.

TABLE II
PARAMETERS CHANGED DURING TESTS

Test Nr. MP mass, kg Shroud pretension, N Masts

1 and 2 50 and 24 1200 mast 1
3 50 800 mast 1
4 50 400 mast 1
5 and 6 50 and 24 0 (slack shrouds) mast 1
7 50 shrouds detached mast 1
8 50 1200 all
9 50 0 (slack shrouds) all
10 50 shrouds detached all

2) Beam Model Identification: The known values are:
L = 3.651 m, sout = 0.1 m, sin = 0.094 m. Young modulus E
and shear modulus G are assumed to be unknown. Equa-
tion (15) is expressed in the form Abeexbe = bbee, where Abee
takes the following form:

Abee =
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δwi5 0
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L2

2Iz
δwi4 0

L
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L
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L
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δwi5 0

0 L
J δwi6


(30)
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Fig. 5. Trajectories: (a) trajectory of the MP; (b) trajectory of the top of
mast 1 depending on shroud tensions

TABLE III
IDENTIFIED STIFFNESS MATRIX Kθ i ELEMENTS

Test Nr. kθ1, N/m kθ2, N/m Test Nr. kθ1, N/m kθ2, N/m

1 and 8 271430 230527 2 260912 248326
3 243201 237652 4 219668 218580
5 and 9 51224 52847 6 42110 56700
7 and 10 75562 63079



(a) (b) (c)

Fig. 6. Mast displacement measurement and simulation: each shroud has a pretension of (a) 1200 N and (b) 400 N; (c) no shrouds

xbe = [E G] and bbee = δci3. Once again the Abee and bbee
of each experiment e are concatenated info Abe and bbe,
resp., and the equation Abexbe = bbe is solved for xbe. We
obtained Enoshroud = 6.55e10 Pa and E1200N = 1.55e11 Pa. The
identified shear modulus G value was negative, which is
not surprising given that in (30) it can be clearly seen that
the mast must be under torsion to compute G. Thus the
following formula is used: G= E/(2(1+ν)), where for steel
the Poisson’s ratio is ν = 0.3.

C. Comparison of the mast models

Here the mast displacement is estimated using the three
stiffness models and compared with the measured displace-
ment. To estimate the displacement, the following measure-
ments were used: MP pose, cable and shroud tensions. Tests
4, 8 and 10 are shown in Fig. 6. The displacement is shown
with respect to the nominal point, which is the C13 coordinate
when the MP is in the initial pose. Hence δw1 is the
difference between the wrench at this initial pose and the
wrench computed at every step.

The 3R and beam models give nearly identical results
when there is pretension in the shrouds in Figs. 6a and 6b.
Indeed, both are estimating perfectly the straight diagonal
displacement segment, while not estimating enough ampli-
tude in the wing-like segments. The complete model adds the
missing amplitude on the wing-like segments, however the
straight segment is estimated with a little skew and overall
the estimation appears to be compressed along the diagonal.
When comparing the 3R model to the beam model, the only
difference can be seen in Fig. 6c, where the shroud model
provides a slightly skewed estimation. Overall, all three
models estimate trajectories very similar to the measured one.
The little differences could be from, for example, identifying
shroud elasticity on a short length of 0.5 m instead of the
full length, or not modelling the joint clearance at the beam
assembly point. Thus, based on these preliminary results, the
3R model could be preferred for further use, as it appears
to have the best behavior and is very simple. However, the
best evaluation of these models can be done by implementing
them in a control scheme such as shown in Fig. 7. In this

IGM CDPR

Mast Compliance
δaTij

Desired
lij τ , τs

Aij

A∗

ij
Internal qij
position

controlMP pose
MP pose

Fig. 7. Control scheme taking into account mast compliance

approach cable anchor points are recomputed at every step,
like it is for the pulley model, for example.

V. CONCLUSIONS

It appears that when designing a deployable CDPR a
choice needs to be made whether to favor deployability or
accuracy. Indeed, a very compact and lightweight structure
may not guarantee a high accuracy due to loss of rigidity.
Conversely, a very accurate CDPR cannot be lightweight and
easily deployable. However, one can improve the accuracy
of a robot by improving the model. The deployable CDPR
named Rocaspect has a lightweight structure, consisting of
four separate masts. In this paper, the mast top displacement
was studied and three models were proposed. The stiffness
coefficients for each of the models were identified to then
evaluate the models. Overall all models show a promising
behavior, while some fine-tuning might be necessary.

It was shown that the amount of pretension greatly affects
the mast top coordinates. Indeed, there is a 10 cm difference
between the mast coordinates without shrouds and the ones
with the highest pretension. On the other hand, mast top
displacement during MP trajectory stays under 2 cm given
sufficient pretension. Therefore, to improve the accuracy of
Rocaspect, shroud length and pretension need to be main-
tained, preventing changes like shroud creep. This can be
done by doing regular tightening of shrouds and measuring
their tensions,for example. Once knowledge of nominal co-
ordinates and pretension is ensured, the displacement around
the nominal points can be effectively estimated using one of
the models.

The future work includes the implementation of the
proposed models in the control scheme and evaluation of
Rocaspect accuracy.
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