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Abstract. Aerial transportation in windy conditions is challenging. In
this paper, a pose-tracking task for a rigid body suspended by massless
rigid bars and quadrotors, in presence of wind, is considered. To tackle
the task, a Sliding Mode Adaptive Proportional-Integral-Derivative (SM-
APID) control is designed. The proposed technique is tested through
simulations and the performances are compared with a PID control.

Keywords: Aerial Systems, Load Transportation, Quadrotors, Sliding-
Mode, Adaptive PID

Nomenclature

FO, FQi
, FG inertial frame, ith drone frame and platform frame

e1, e2, e3 canonical base of inertial frame (O, x, y, z)
mi,mL ∈ R mass of the ith drone and load, respectively
Ri,Ro ∈ SO(3) orientation of the ith robot/load with respect to FO

g ∈ R gravity acceleration magnitude
Ωi, Ω̇i ∈ R3 angular velocity, acceleration of the robot in FQi

Ωo, Ω̇o ∈ R3 angular velocity, acceleration of the platform in FG

fi ∈ R trust force of the ith robot
mi,∈ R3 control moment of the ith robot in FQi

Ji ∈ R3×3 inertia tensor of the ith robot in FQi

mo,∈ R3 control moment of the ith robot in FQi

Jo ∈ R3×3 inertia tensor of the platform in FG

qi ∈ S2 unit vector from the drone to the load in FO

ωi ∈ R3 angular velocity of the ith link in FO

fi,w, fL,w,mL,w aerodynamic forces/moment acting on the system
vi control force of the ith robot
v⊥
i ,v

∥
i orthogonal/parallel projection of vi along qi

xL, position of frame FG

xL, position of frame FG

k0,k1 gain matrices
ri attachment point on the platform w.r.t. FG
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Fig. 1. Aerial System’ Scheme: generic architecture of an aerial system with n quadro-
tors, rigid-bars and a rigid body platform.

1 Introduction

Over the past few years, the field of aerial transportation is attracting more and
more attention from researchers. Indeed, the ability of drones to collaborate and
accomplish various tasks has several practical applications [13, 16]. Among them,
this paper focuses on rigid body transportation using a team of quadrotors and
rigid links. For mentioned task, several control techniques are proposed in the
literature, the most common range between flatness-based control [14] and geo-
metric control [8, 1].

The direction taken by the current research is to make these systems as au-
tonomous as possible. Indeed, in a recent paper [11] the authors tried to make
the aerial system independent from the Motion Capture System (MOCAP) usu-
ally employed for controlling it whereas, in another work [4], the design of a
new control strategy allowing facing wind gusts is introduced. These are indeed
recent signs of steps toward outdoor and autonomous navigation.

With this in mind, the peculiarity of the task addressed here resembles into
aerial transportation in presence of wind. Many wind models were developed so
far. Among the existing ones, to reduce the computational cost while represent-
ing the main physical peculiarities of the wind, the Dryden model is used [3].

This work should be regarded as an extension of the previous work [4, 5] which
considers a rigid body instead of a point of mass as a load. In other words, the
Sliding-Mode Adaptive PID (SM-APID) control proposed is extended to guar-
antee tracking both the position and orientation of the platform while wind gusts
are present.
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This paper is structured as follows. Section 2 recalls the main equations gov-
erning the aerial system considered in this work. Section 3 describes the control
technique used for this work. In section 4 a tracking task is assigned to the aerial
system and the control performances in presence of wind and compared with a
PID are shown. Finally, the results are summarized in Section 5.

2 System Modeling

Consider an aerial system with both n quadrotors and rigid links transporting
a rigid body load along a given trajectory; as shown in Figure 1. In a similar
fashion as in [4, 6, 15], by applying Hamilton’s principle and rearranging the
equations, one gets the equations of motion for the entire system



d

dt
xL = ẋL, (1)( n∑
i=1

miqiq
T
i +mLI

)
(ẍL + ge3)−

n∑
i=1

miqiq
T
i Ror̃iΩ̇o =

n∑
i=1

(
v
∥
i −mili||ωi||2qi + (qi · fi,w)qi −miqiq

T
i RoΩ̃

2

ori
)
+ fL,w, (2)

q̇i = ωi × qi, (3)

ω̇i =
1

li
q̂i(ẍL + ge3 −Ror̃iΩ̇o −RoΩ̃

2

ori)−
1

mili
q̂iv

⊥
i − 1

mili
q̂ifi,w, (4)

Ṙi = RiΩ̂i, (5)

mi = JiΩ̇i +Ωi × JiΩi, Ṙo = RoΩ̂o, (6)

mo = JoΩ̇o +Ωo × JoΩo −mL,w, (7)

where I identifies the identity matrix of dimension three.

3 Sliding-Mode Adaptive PID

The objective of the control is to ensure that the platform tracks the desired
pose under the action of external disturbances.
Generally, the Sliding Mode (SM) control is used to guide a system under the
effect of disturbances and uncertainties. To avoid typical chattering of the SM
control, the main control command is demanded to an Adaptive PID which is
added to the SM part. The fusion of the two will enable controlling the systems
in presence of external disturbances limiting the chattering issue.

3.1 Control Structure

The control input is split into two terms [7, 18]

u = uPID + us, (8)
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where us is the supervisory control that keeps the system state within some
defined boundaries guaranteeing the stability of the dynamical system. The PID
exploits a gradient-based adaptation law for updating its gains providing robust-
ness of the control. The design of both us and uPID has been defined in [2].

3.2 Design of the Supervisory Control

The role of us is to keep the system state inside a designed constraint set

C = {x ∈ R2n| ||x|| ≤ Mx}, (9)

where x =
[
x̃, ˜̇x

]T
is the system’ state vector while Mx is a pre-specified pa-

rameter usually chosen such that Mx ≥ ||y||∞ with y representing the desired
state vector.

Its design relies on the stability of the system. Hence, to asymptotically attain
the zero-error condition, the following Lyapunov function candidate is considered

Ve =
1

2
eTΦe, (10)

where e =
[
ẽ, ˜̇e

]T ∈ R2n and ė =
[
˜̇e, ˜̈e

]T ∈ R2n are the state error vectors and

its derivative with ˜̈e and ˜̇e time derivatives of ẽ = y−x. Generally, Φ is defined
as a positive definite and symmetric matrix that springs out as the solution of
the Lyapunov equation [19, 2]

ATΦ+ΦA = −Q, (11)

where matrix Q ∈ R2n×2n is a given, positive definite symmetric matrix whereas
matrix A ∈ R2n×2n pops out by rewriting the error dynamic.

A classical strategy to reach the desired output is to exercise a control action
that strictly decreases Ve, which means that us must meet

V̇e < 0. (12)

The derivative of the Lyapunov function can be computed as follows

V̇e =
1

2
(ėTΦe+ eTΦė) ≤ −1

2
eTQe+ |eTΦB|(|u∗|+ |uPID|)− eTΦBus.

(13)

Therefore, to satisfy Eq.(13), the supervisory controller can be chosen as

us = sgn(eTΦB(|u∗|+ |uPID|). (14)

With this design, us constantly intervenes in the control process and the
presence of sgn function leads to chattering. Therefore, to adhere with its super-
visory definition and to reduce the chattering the set of constraints C is used. In
particular, the Indicator function If is introduced in the us design as follows

ũs = If us, where If =

{
1, Ve > VM ,

0, Ve ≤ VM ,
(15)
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with

VM =
1

2
λmin(Φ)(Mx − ||y||∞)2, (16)

where λmin(Φ) is the minimum eigenvalue of the Lyapunov matrix Φ [2, 19].
The introduction of the Indicator function completes its design.

3.3 PID Adaptive Laws

The APID is then supposed to steer the system under ordinary conditions (i.e.
Ve ≤ VM ). The adaptation laws are derived with the aim to reach the so-called
sliding mode S = 0 (i.e. insensitivity to external disturbances) where S is the
sliding surface defined as [18]

S = ẋ− xr = ẋ− ẏ − k1ẽ− k0

∫
ẽ dt, (17)

where xr is the so-called reference signal. To guarantee approaching the sliding
mode the Lyapunov function approach is exploited with a Lyapunov function
candidate as

V =
1

2
S2. (18)

Again, requiring that S(t) → 0 for t → ∞ coincide with reducing V . Con-
sequently, the gradient method is employed to choose the gains which take di-
rections of maximum slope over V . Now, the common expression for a PID
controller is

uPID = KP ẽ+KI

∫
ẽ dt+KD

˜̇e, (19)

using the gradient method and the chain rule, it is possible to obtain the adap-
tation laws for the control gain matrices KP , KI and KD

K̇P,ii =− γ
∂SṠ
∂KP

= −γ
∂SṠ

∂uPID

∂uPID

∂KP
= −γSẽ, (20a)

K̇I,ii =− γ
∂SṠ
∂KI

= −γ
∂SṠ

∂uPID

∂uPID

∂KI
= −γS

∫
ẽ dt, (20b)

K̇D,ii =− γ
∂SṠ
∂KD

= −γ
∂SṠ

∂uPID

∂uPID

∂KD
= −γS ˜̇e, (20c)

where minus is placed opposite to the energy flow V and γ ∈ R+ is called learning
rate1.

Hence, the behaviour of the controller can be resumed as follows: if us = 0,
the PID gains adapt themselves to decrease V to zero (i.e. reach the sliding
mode) whereas if us ̸= 0, the PID gains are not able to decrease V and then
also Ve under VM .

1 To avoid cumbersome notation, the subscripts ii (emphasizing the diagonal structure
of the gain matrices) have been inserted only on the left-hand side of the equation,
intending the derivative operation to be carried out component-wise, as is typical in
the literature [12].
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3.4 Design of the Parallel Components

The parallel component is chosen to track the desired pose pdes = (xdes
L , Rdes

o ) of

the load, in other words it is necessary to define v
∥
i s.t. p −→ pdes while t −→ ∞.

Consider the load Equation (2). Then, it is possible to derive v
∥
i as

v
∥
i = mili||ωi||2qi+ tiqi+miqiq

T
i (ẍL+ ge3+RoΩ̃

2

oρi−Roρ̃iΩ̇o)− (qi · fi,w)qi,
(21)

where ti represent the tension along the ith link. To find the tensions to be
applied along the links, it is enough to refer to the platform dynamics described
as

Wt+we = 0 where W =

[
q1 q2 . . . qn

r̃1q1 r̃2q2 . . . r̃nqn

]
, (22)

is the so-called wrench matrix whereas t is the vector of the tensions components
along the rigid-bars and we is the external wrench vector containing all the
external forces, moments and inertial terms. A common solution to Eq. (22)
relies on the use of the pseudo-inverse

t = −W†we, (23)

where W† = WT (WWT )−1 is the W pseudo-inverse.
Observe that we takes the role of the control actions uf and um therefore,
Eq.(23) becomes

t = −diag(Ro)W
†
[
RT

o uf

um

]
, (24)

wherewdes = [RT
o uf , um]T which represents the action necessary to compensate

for the external forces, disturbances and then correct the tracking error.

3.5 Design of the Orthogonal Components

The normal component is chosen to reach the desired configuration of the sys-
tem [1, 17], in other words it becomes necessary to define v⊥

i s.t. qi −→ qdes
i

while t −→ ∞. In particular, the direction and angular velocity errors, are de-
fined as follows

eqi
= qdes

i × qi and eωi
= ωi + q̂2

iω
des
i , (25)

whereas, the desired angular acceleration is

ω̇i = −Kqi
eqi

−Kωi
eωi

− (qi · ωdes
i )q̇i − q̂2

i ω̇
des
i , (26)

for positive gains Kqi and Kωi . Now, rearranging equations of motion and using
Eq.(26) yields to the expression for the normal component v⊥

i [10]

v⊥
i = mLliq̂i(−Kqi

eqi
−Kωi

eωi
−(qi·ωdes

i )q̇i−q̂2
i ω̇

des
i )− mi

mL
q̂2
i

n∑
j=1, j ̸=i

tjqj+q̂2
i fi,w.

(27)
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Fig. 2. Simulation: two phases of the simulation with the SM-APID control are de-
picted. One at the time t = 2 s where the wind, depicted as red arrows, is acting on
the quadrotors and platform whereas, in the second image, one sees the attitude of the
system when the wind is not present anymore namely at t = 16 s.

3.6 Quadrotor’s Attitude Control

To fully control the overall system, the attitude control of each quadrotor must
be included. However, due to space limitations, the equations are not reported
as they are well known in the literature; the reader is referred to [4, 9].

4 Study Case

In this section, an aerial system with three quadrotors and rigid-bars is con-
sidered. The aim consists in tracking an elliptical trajectory while orienting the
platform in presence of wind. Hence, Figure 2 is intended to give an idea of the
task the system has to fulfil and how it behaves in the presence and absence
of wind. As a general comment, it is evident how, in presence of the wind, the
drones’ attitude is such that they resist it. In fact, their orientation is completely
different when the wind disappears. Furthermore, because of wind, tracking er-
rors are expected to be affected by greater variations (wider oscillations of the
profiles) since wind changes direction continuously.

Regarding the simulation data, the mass of the platform is mL = 0.5 kg,
its length, width and height are 0.7m, 0.5m and 0.2m, respectively while its
inertia matrix is Jo = diag(0.15, 0.15, 0.17) kgm2. Bar lengths are li = 1m (mass-
less). Quadrotors’ masses are mi = 1.15kg while Ji = diag(0.1, 0.1, 0.14)kgm2.
The attachment points on the platform are d1 = [−0.35,−0.25, 0]m, d2 =
[−0.35, 0.25, 0]m and d3 = [0.35, 0.25, 0]m. The initial conditions, necessary
to replicate the results are xL(0) = [0.75, 0, 0.5], Ωi(0) = Ωo(0) = ẋL(0) =
ωi(0) = [0, 0, 0] while the bar directions are q1(0) = [sin 60, 0,− cos 60], q2(0) =
[0,− sin 60,− cos 60] and q3(0) = [− sin 60, 0,− cos 60] whereas Ro(0) = −I and
Rdes

o = I. Wind actions on the system are generated by using the Dryden model,
in analogy with the works [3, 4]. Here, the maximum wind velocities are 6m/s
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along the x-y plane and 2m/s along the z direction, respectively. The forces and
moments acting on the objects depend on their shapes.
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Fig. 3. Pose Errors: a comparisons between the position (a)-(b) and orientation (c)-(d)
errors of the platform using the PID and SM-APID control. Observe that angles ψ, ϕ
and θ represent the yaw, pitch and roll angles of the platform respectively.

The entire simulation lasts 20s and in the middle of the simulation, the wind
is suddenly removed to see the behaviour of the control and the reaction of the
system. This should simulate the appearance and disappearance of the wind as
experienced in practice.

Since the task resembles in tracking the desired pose, the interest in the
simulation results, for the proposed SM-APID and PID controls, lies in the
tracking pose errors reported in Fig.3.

Firstly, it is evident that the errors for both the position and orientation are
always smaller in the case of the SM-APID control. This is then a clear evidence
of the superior robustness of the proposed method w.r.t. the classical PID com-
monly used.

Secondly, from the PID graphs (a)-(c) one can see that, when the wind dis-
appears at t = 10s onward, the PID recover as much as possible the accumulated
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error on both sides, i.e., position and orientation. However, even if the error is
reduced, the system undertakes a sudden manoeuvre that can be considered un-
safe for certain types of tasks. This behaviour is not so pronounced in the case of
SM-APID. Indeed, when the wind disappears, the gains stabilize and the errors
tend to 0.

Finally, it is worth remembering that to achieve acceptable performances with
a PID, the gains must be tuned iteratively. Thus, the ability to adjust gains au-
tomatically turns out to be an effective strategy that combines robustness and
practicality. However, it should be pointed out that, as stated in Sec.3.3, if the
external disturbance is not sufficiently bounded, gain adaptation may not be
prompt enough. In that case, the typical sliding mode would be activated guar-
anteeing the desired robustness at the price of introducing chattering.

5 Conclusion

In this paper, the design of the SM-APID was presented for an aerial system
transporting a rigid body in presence of wind. The proposed control is guaranteed
to asymptotically follow the desired pose in presence of bounded disturbances.
Its performances were compared with the well-known PID control. The obtained
results not only confirmed the superiority of SM-APID over PID but provide
further motivation to invest in hardware allowing testing this technique through
experimental validation.

References

1. Bullo, F., Lewis, A.D.: Geometric control of mechanical systems: modeling, analy-
sis, and design for simple mechanical control systems. Springer, Texts in Applied
Mathematics (2005). https://doi.org/10.1007/978-1-4899-7276-7

2. Chang, W.D., Yan, J.J.: Adaptive robust pid controller design based on a slid-
ing mode for uncertain chaotic systems. Chaos, Solitons & Fractals (2005).
https://doi.org/https://doi.org/10.1016/j.chaos.2004.12.013

3. Cole, K., Wickenheiser, A.: Spatio-temporal wind modeling for uav simulations.
arXiv (2019). https://doi.org/arXiv:1905.09954

4. Di Paola, V., Goldsztejn, A., Zoppi, M., Caro, S.: Design of a sliding mode-adaptive
proportional-integral-derivative control for aerial systems with a suspended load
exposed to wind gusts. Journal of Computational and Nonlinear Dynamics (2023).
https://doi.org/doi.org/10.1115/1.4062324

5. Di Paola, V., Ida’, E., Zoppi, M., Caro, S.: A preliminary study of factors influenc-
ing the stiffness of aerial cable towed systems. ROMANSY, Springer International
Publishing (2022). https://doi.org/10.1007/978-3-031-06409-8-29

6. Di Paola, V.: Contributions to open problems on cable driven robots
and persistent manifolds for the synthesis of mechanisms. Univer-
sity of Genova and Ecole Centrale de Nantes, Doctoral Thesis (2023).
https://doi.org/https://hdl.handle.net/11567/1153244

7. Hsueh, Y.C., Su, S.F.: Supervisory controller design based on lyapunov stable
theory. 2007 IEEE International Conference on Systems, Man and Cybernetics
(2007). https://doi.org/10.1109/ICSMC.2007.4413948



10 Di Paola V. et al.

8. Lee, T.: Geometric control of quadrotor uavs transporting a cable-suspended
rigid body. IEEE Transactions on Control Systems Technology (2014).
https://doi.org/10.1109/TCST.2017.2656060

9. Lee, T., Leok, M., McClamroch, N.: Geometric tracking control of a quadrotor
uav on se(3). Proceedings of the IEEE Conference on Decision and Control (2010).
https://doi.org/10.1109/CDC.2010.5717652

10. Lee, T., Sreenath, K., Kumar, V.: Geometric control of cooperating multiple
quadrotor uavs with a suspended payload. 52nd IEEE Conference on Decision
and Control (2013). https://doi.org/10.1109/CDC.2013.6760757

11. Li, Z., Erskine, J., Caro, S., Chriette, A.: Design and control of a variable
aerial cable towed system. IEEE Robotics and Automation Letters (2020).
https://doi.org/10.1109/LRA.2020.2964165

12. Noordin, A., Mohd Basri, M.A., Mohamed, Z., Mat Lazim, I.: Adaptive pid
controller using sliding mode control approaches for quadrotor uav attitude
and position stabilization. Arabian Journal for Science and Engineering (2021).
https://doi.org/10.1007/s13369-020-04742-w

13. Ollero, A., Siciliano, B.: Aerial Robotic Manipulation. Springer Tracts in Advanced
Robotics (2019). https://doi.org/https://doi.org/10.1007/978-3-030-12945-3

14. Sreenath, K., Kumar, V.: Dynamics, control and planning for cooperative manip-
ulation of payloads suspended by cables from multiple quadrotor robots. Robotics:
Science and Systems IX (2013). https://doi.org/10.15607/RSS.2013.IX.011

15. Taeyoung Lee, Melvin Leok, N.H.M.: Global Formulations of La-
grangian and Hamiltonian Dynamics on Manifolds: A Geometric Ap-
proach to Modeling and Analysis. Springer International Publishing (2017).
https://doi.org/https://doi.org/10.1007/978-3-319-56953-6

16. Tognon, M., Franchi, A.: Theory and Applications for Control of Aerial Robots
in Physical Interaction Through Tethers. Springer Tracts in Advanced Robotics
(2020). https://doi.org/https://doi.org/10.1007/978-3-030-48659-4

17. Wu, G., Sreenath, K.: Variation-based linearization of nonlin-
ear systems evolving on so(3) and S2. IEEE Access (2015).
https://doi.org/10.1109/ACCESS.2015.2477880

18. Yuri, S., Christopher, E., Leonid, F., Arie, L.: Sliding Mode
Control and Observation. Birkhäuser, New York, NY (2014).
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