N
N

N

HAL

open science

Optimized Ray-Based Method for Workspace
Determination of Kinematic Redundant Manipulators

Angelica Ginnante, Stéphane Caro, Enrico Simetti, Francois Leborne

» To cite this version:

Angelica Ginnante, Stéphane Caro, Enrico Simetti, Francois Leborne. Optimized Ray-Based Method
for Workspace Determination of Kinematic Redundant Manipulators. Journal of Mechanisms and

Robotics, 2024, 16 (11), pp.111002. 10.1115/1.4065071 . hal-04670923

HAL Id: hal-04670923
https://hal.science/hal-04670923
Submitted on 13 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-04670923
https://hal.archives-ouvertes.fr

Optimized Ray-Based Method for Workspace
Determination of Kinematic Redundant
Manipulators

Angelica Ginnante'?3, Stéphane Caro!, Enrico Simetti,
Francgois Leborne’
INantes Université, Ecole Centrale Nantes, CNRS, LS2N, UMR 6004, 1 Rue de la Nog,
44321 Nantes, France
2University of Genova, DIBRIS, 16145 Genova, ltaly
3Nimbl'Bot, 7 Avenue de Guitayne, 33610 Canéjan, France
Email: aginnante@nimbl-bot.com, Stephane.Caro@Is2n.fr, Enrico.Simetti@unige.it,

fleborne@nimbl-bot.com

ABSTRACT

Determining the workspace of a robotic manipulator is highly significant for knowing its abilities
and planning the robot application. Several techniques exist for robot workspace determination. How-
ever, these methods are usually affected by computational redundancy, like in the Monte Carlo based
method case, and their implementation can be complex. The workspace analysis of kinematic redundant
manipulators is even more complex. This paper proposes a kinematically optimized ray-based workspace
determination algorithm based on a simple idea and not affected by computational redundancy. The pro-
posed method can be applied to any serial robot but is tested only on spatial kinematic redundant robots.
The results show how the approach can correctly determine the robot workspace boundaries in a short
time. Then, the correctness and computational time of the proposed optimized ray-based method are com-
pared to pseudo-inverse Jacobian ray-based and Monte Carlo methods. The comparison demonstrates
that the proposed method has better results in a shorter time. Finally, some limitations of the proposed
algorithm are discussed.

1 Introduction

The workspace of a manipulator is the set of positions and orientations reachable by the robot end-effector [1].
Planning the robot end-effector movements and trajectories requires careful consideration of the workspace analy-
sis. As a result, the workspace of conventional robots has been the subject of numerous scientific studies through-
out the past three decades. The problem becomes more complex in the case of kinematic redundant robots [2].
Three main types of methods exist for the workspace determination of kinematic redundant robots, as described
in [2]. The first one is the geometric type, mainly applied for the workspace identification of kinematic redundant
planar robots [3]. This approach is intuitive but can not accurately describe the workspace of spatial, i.e., non-
planar, robots. The second method is the analytic one that employs the kinematic Jacobian matrix [4]. The
workspace boundaries are generated by searching for the rank deficiency of the kinematic Jacobian matrix. By
imposing the kinematic Jacobian matrix rank deficiency, a set of equations is obtained and solved to identify the
workspace boundaries. This approach can be too complex when applied to kinematic redundant robots [5]. The
third approach is the numerical one, which identifies the workspace boundaries using the robot forward kinemat-
ics. This method can be applied to any robot, redundant or not, and its solution is easily understandable [2]. It is
usually employed for the workspace analysis of spatial kinematic redundant robots. The most common method

1


user
Rectangle 

user
Rectangle 


of this third category is the Monte Carlo one [6]. The Monte Carlo method generates many random robot con-
figurations to determine the robot workspace. However, this method has several drawbacks [2, 5]. The generated
workspace can be inaccurate, especially on its boundaries [2], and the real workspace can be different from the
one obtained [5]. The coordinate transformation from joint space to workspace in the forward kinematics is non-
linear. This means that a uniform coordinate distribution in the joint space does not necessarily lead to a uniform
distribution of points in the Cartesian workspace [7]. As a result, some areas in the workspace have a low density
of points and others have a high density. Unfortunately, the low density of point areas usually corresponds to the
boundaries of the workspace [7]. On the contrary, workspace inner areas are characterized by a high density of
points, leading to high computational time waste.

In [5], the authors employed an improved version of the Monte Carlo method to calculate the robot workspace,
called Gaussian Growth. The method consists of generating a number of starting robot configurations using the
classical Monte Carlo method to obtain a seed workspace, which will be inaccurate in some areas. Then, it is
grown employing a Gaussian, or normal, random distribution, until the workspace is accurately approximated.
The algorithm takes the robot configurations for one position in the inaccurate area to populate poorly defined
workspace regions. Then, the process slightly modifies this configuration through a multivariate normal distribu-
tion to identify new configurations. So, new workspace points are identified and the poorly defined regions are
improved. In [8], the authors presented another Monte Carlo method combined with the Gaussian distribution
plus a Voxel algorithm [9] to analyze the workspace of a nine degrees of freedom kinematic redundant robot. The
obtained seed workspace is expanded by setting an accuracy threshold to describe each region accurately. Then,
a Voxel algorithm is proposed to compute the obtained workspace volume. All these methodologies based on an
improved Monte Carlo method can identify the manipulator workspace. However, they are still affected by the
Monte Carlo drawbacks, although to a lesser extent. Computing only the boundaries is enough to describe the
robot workspace and obtain its volume, but not possible with a Monte Carlo based method.

Other workspace generation algorithms employ the workspace density and the N-dimensional Euclidean motion
group SE(N). In [10], the authors formulate the workspace generation problem for kinematically redundant robots
as a diffusion process employing the Euclidean motion group SE(N) to describe the evolution of the workspace
density function. The workspace density is a powerful tool for planar serial arms with revolute joints, as shown
in [11]. The workspace density based approach can also be used for plotting the reachability map of special
situations, such as in the case of ball joints [12]. The approach described in [13] is a step forward in using
Euclidean motion group SE(N) to generate a three dimensional workspace. The authors implement a series of
convolutions to reduce the computational complexity from a spatial case to a planar one. All these techniques can
describe the reachability map, or workspace, of different robot types. However, their development could be more
complex and less intuitive.

There exist other interesting methods based on a point-cloud representation of robot workspaces. The point-cloud
representation is useful to construct network graphs, leveraging them for real-time motion planning, particularly
in instances involving non-convex workspace shapes. In [14], the authors presents a new sampling strategy,
Workspace Importance Sampling (WIS), to tackle narrow passages in probabilistic roadmap (PRM) planning. By
tetrahedralizing the workspace and using geometric information as heuristic values, WIS guides sampling in the
configuration space. The goal is to increase the likelihood of sampling free configurations in narrow passages,
vital for capturing free space connectivity, while reducing sampling in open collision-free areas. WIS draws inspi-
ration from importance sampling in Monte Carlo integration. Another work [15] presents a novel path planning
method that integrates numerical algebraic geometry to compute geometric features and distances. This determin-
istic planner offers stronger guarantees than resolution completeness, automatically determining the appropriate
resolution for a given input space. The output is a weighted graph representing the configuration space, with
nodes as points and edges weighted by ambient space distance. Despite being computationally demanding for a
global graph-based model, its rapid feature size and distance computations can be integrated with other proposals.
The resulting graph models efficiently compute accurate shortest paths, supporting repeated calculations. How-
ever, this paper does not deal with the problematic of motion planning in robot workspaces. The goal behind the
proposed method is to show the reachable workspace for a robot end-effector simplifying the computations com-
pared to what is required for motion planning. Moreover, these techniques are not applied on complex kinematic
redundant design.


user
Rectangle 

user
Rectangle 


The workspace determination algorithm described here is an optimized ray-based method. The ray-based method
ideais presented in [16, 17, 18] to determine the interference free and wrench closure workspace and for the trajec-
tory verification of cable-driven robots. Compared to other numerical approaches like pointwise or interval-based
analysis, the ray-based approaches provide information about the interference free workspace continuity, precisely
determining interior regions [18]. Moreover, ray-based methods decrease the computational time with respect to
the other approaches [16]. The proposed workspace determination method considers more complex robotic archi-
tectures, particularly focusing on redundant ones. However, it can be employed with any robot. This workspace
determination method is based on an intuitive idea, avoids the computational redundancy that affects the Monte
Carlo based methods and identifies only the robot workspace boundaries. The resulting workspace is easy to
visualize and obtain quickly with continuous boundaries. In fact, the goal of the proposed method is to provide
as output the workspace shape fully described by its boundaries. Starting from a set of configurations inside the
workspace, the end-effector is moved from its position along several radial directions. When the end-effector
reaches the workspace boundary and stops, its position is saved. So, this new method can quickly identify the
boundaries of any robot workspace. For the moment, the proposed method is developed to identify the workspace
reachable by robot the end-effector for any orientation. The robots that test the proposed workspace determina-
tion algorithm are highly kinematic redundant [19]. They are perfect candidates as describing their workspace is
a complex problem [2].

The paper is outlined as follows. Section 2 introduces the background of the algorithm, namely the kine-
matic control algorithm used to control the robot and the employed optimization tasks. Section 3 describes the
workspace determination method proposed in this paper. Section 4 presents the family of kinematic redundant
robots employed to test the new method. Section 5 introduces the preliminary steps performed to initialize the
tests. Section 6 analyzes the obtained results testing the proposed workspace determination algorithm and com-
pares the performance with other methods. Section 7 highlights and discusses some limitations of the proposed
approach. Conclusions and future work are given in section 8.

2 Background

This section describes the kinematic control algorithm and optimization tasks employed by the workspace de-
termination algorithm. The chosen kinematic control algorithm is developed to exploit the redundancy of robotic
machines and solve several tasks simultaneously. Firstly, the kinematic control algorithm is introduced. Then, two
kinematic optimization tasks are described. These tasks prevent the robot from reaching singular configurations
where the end-effector is not at the boundary of the workspace.

2.1 Kinematic Control Algorithm

The employed kinematic control algorithm is called Task Priority Inverse Kinematic (TPIK) and is presented
in [20, 21, 22, 23]. It can find the robot configuration that solves a set of tasks with different priority levels.
Moreover, it can activate and deactivate one or more tasks without generating algorithmic discontinuities [20] to
avoid over-constraining the robotic system.

Here, some general definitions are given to describe the TPIK algorithm briefly. This paper deals with serial
robotic manipulators, so the vector named q € R" represents the joint position vector that describes the arm
configuration. The variable » is the number of joints contained in the robot. The joint velocities are grouped in
the vector q € R". A control objective is defined to represent one of the robot goals and the associated task state.
It corresponds to a scalar variable x(q) computed as a function of the robot configuration q. Two types of control
objectives exist equality and inequality. More details are given in [23]. Each control objective is associated with a
feedback reference rate X that drives x(q) to the desired point x* with the linked rate x*. Each control objective x(q)
has an activation function a’(x) € [0, 1], which states if the control objective is applicable or not at a specific time
instant. Finally, a priority level is assigned to each task based on its control objective importance. The tasks with
the highest priorities are solved first by employing the necessary robot degrees of freedom. Then, lower priority
tasks are solved if enough degrees of freedom remain. These concepts were fully described in [23].

With the previous definitions, the control action 7 taken as input by the TPIK algorithm can be defined as a
series of priority levels composed of [23]:


user
Rectangle 

user
Rectangle 


Xp = [Xl,k, i;k, ey 7-Cm,{,k is the vector of all the scalar control objective reference rates, where my is the
number of control objectives for the k™ priority level.

Ji is the Jacobian matrix associated with the vector [X| , ... , Xm, k
the k™ priority level.

A =diag(aig, ... , amk) is the activation function diagonal matrix for the k™ priority level.

]T

]T with respect to the joint velocities ¢ for

To find the system velocity reference vector q that meets all the action priority requirements, the TPIK algorithm
solves a sequence of nested minimization problems

Sk = arg R — min||Ax (X — J:Q)| |, M
qESK—1

where Si_; is the manifold of all the previous priority level solutions. The solution to the k™ priority level is
searched in the manifold of all the previous priority level solutions. The notation R — min highlights that each
minimization is performed through specific regularized space projections to implement priorities among the tasks
defined in [20]. Moreover, the TPIK algorithm uses regularized space projection to implement priorities among
all the tasks. One of the main advantages of the TPIK algorithm is the use of the activation functions for inequality
control objectives to avoid blocking degrees of freedom that lower priority level tasks could use. The complete
explanation of the TPIK algorithm solution mechanism can be found in [20].

2.2 Optimization tasks

The TPIK algorithm employs a task related to the robot end-effector velocity to perform the optimized ray-based
workspace determination. However, the TPIK algorithm also includes two kinematic optimization tasks to avoid
blocking in singular configurations. These tasks are based on the kinematic indices: dexterity and manipulability.
These indices are related to the kinematic Jacobian matrix J. for the robot end-effector velocity

(= m ~J.(a)q = E’((‘;))] . @)

where t = [pT, coT} i € R9 is the robot end-effector twist, with p € R? and @ € R? the linear and angular velocity
vectors of the end-effector, respectively. Since the kinematic Jacobian matrix J, contains non-homogeneous terms,
i.e., linear and angular ones, it must be weighted before computing the kinematic performance indices. This
weighing uses the characteristic length L introduced in [24] to solve the absence of dimensional homogeneity.
The computation of L is proposed in [25]. Then, the rows associated with the linear velocities of the end-effector
in J, are divided by L for the revolute joints. The weighted kinematic Jacobian matrix is written as J,,.

Dexterity

The dexterity M(J,,) characterizes the kinematic performance of a manipulator in a given configuration [26].
In [23], the analytical expression of 1 is computed using the Frobenius norm of J,,

m

, 3
Yl (Jw) YZ(JW) ( )

nJdw) =

where m, which represents the number of rows of J,,, is the dimension of the task space and

i = y/trace(J,J\}) and v, = 4/ trace[(J,,J,, ) 1] 4)

4


user
Rectangle 

user
Rectangle 


The index mn is bounded between 0 and 1. The higher m, the better the robot dexterity. The robot reaches an
isotropic posture when M = 1. The smaller m, the worse the robot dexterity and the closer to a singularity.
Moreover, 1 can be defined as the ratio between the smallest and the highest singular values of J,, indicating how
close the manipulability hyper-ellipsoid is to being a hyper-sphere [27]. The derivative of the skill as a function
of the joint variables is described in [23],

an oyl 1dp
~ U —— 4+ —=—=, 5
dq; n<a%’ 1 T2 a%) ®)

where

871 1 BJI
e ﬁtrace Jw . (7

(6)
ad o,
al; = Y]—ztrace —J an“[ (JWJVTV)Z}.
The dexterity Jacobian matrix Jy as a function of the joint variables is
— | o n
=33 (7)

Manipulability
The manipulability is an index that measures the kinematic abilities of the robotic system through its weighted
Jacobian matrix J,, [28]. The manipulability of a manipulator is defined as

p=/det(J,J)), ®)

and amounts to the product of all the singular values of J,,. The higher the manipulability value, the larger the
manipulability hyper-ellipsoid and the better the kinematic performance of the mechanism [29]. It should be noted
that the manipulator reaches a kinematic singularity when u reaches zero. The derivative of the manipulability as
a function of the joint variables is explained in [30] and used in [31]:

ou _ 9J +
a—qi =u trace{ 3, J. } 9)

The manipulability Jacobian matrix J, as a function of the joint variables is

Juo= g2, (10)

3 Proposed workspace Determination Method

This section describes the workspace determination procedure proposed in this paper. The core idea is to identify
the workspace boundaries rapidly without losing time collecting points inside it. After initializing the robot
in a starting configuration, the end-effector is moved along a set of linear displacement vectors with a target
twist t, employing the TPIK algorithm. These vectors radiate from the end-effector initial position along different
directions. To avoid the robot getting stuck in a singular configuration inside the workspace, two tasks for the

5


user
Rectangle 

user
Rectangle 


Table 1: Details about task name, category, type, and hierarchy level in end-effector velocity action .27, symbol (E)
for equality control objective and (I) for inequality

Task name Category Type o
End-Effector Velocity action oriented  E nd
Dexterity optimization I 2rd
Manipulability optimization I 2rd

kinematic optimization, based on dexterity 1 and manipulability y, are included in the TPIK algorithm. If the
actual rates of | and y, i.e. 1} and [, are over the desired threshold € yinematic, it means that the TPIK algorithm is
still optimizing the robot configuration and the end-effector position is not saved.

When 1 and 1 are lower than € yinematic and the 2-norm of the end-effector velocity ||t||> goes under a selected
threshold € yelocity, it means that the end-effector has reached the workspace boundary and its position is saved.
Afterwards, the robot is again set to the starting configuration and the end-effector is moved along another vec-
tor. After the end-effector has been moved along all the displacement vectors, the robot is initialized in a new
starting configuration and moved along all the displacement vectors again. This process is repeated several times,
starting from different configurations to obtain enough points to describe the boundary of the whole workspace.
Algorithm 1 sums up the workspace determination procedure. Table 1 collects the tasks employed by the TPIK
algorithm for the workspace generation and their hierarchical priority levels. The algorithm is developed in C++.
The method presented in this section was developed to determine the robot workspace reachable by the end-
effector for any orientation.

4 Family of Robots Under Study

This section describes the three Nimbl’Bot robots employed for testing the proposed workspace determination
algorithm. First, the mechanism that composes and actuates the robots is described. Then, some initialization
steps necessary to run the process are presented.

4.1 Mechanism description

The mechanism, called NB-module, developed and patented by the company Nimbl’Bot [32] is used as a case
study in this paper. Here, the NB-module is presented. It comprises two closed kinematic chains, one internal and
one external, actuated by two motors. So, it is a two degrees of freedom mechanism. The internal kinematic chain

Algorithm 1 Workspace determination algorithm

Require: Several starting configurations and a set of displacement vectors along different directions. The thresh-
0ldS € kinematic and € velocity for 1 and jr and end-effector twist t, respectively. The target end-effector twist t;.

1: for i := 1 — number of starting configurations do

2 for k := 1 — number of displacement vectors do

3 Initialize robot in i configuration.

4 while 1 and it > € kinematic d0

5: while End-effector twist |[t|[2 > € veocity dO
6 Move end-effector along k™ vector with t,.
7 end while

8 end while

9: Save end-effector position.

10: end for

11: end for



user
Rectangle 

user
Rectangle 


Il

=l

y
(a) 3D view and rotation angles (b) Front view and design

Fig. 1: NB-module representation in the home pose with rotation angles and design parameters [23]

is passive and ensures the strength of the entire design. The external kinematic chain is the active one, actuated by
the two motors and shown Fig. 1a. It comprises the yellow and orange platforms and the blue and green hollow
cylinders, both cut by an oblique plane. The green tube rotates around the vertical axis of the yellow platform
when the first motor actuates it. This corresponds to the first joint and its angle is called g;. The blue tube rotates
around the vertical axis of the orange platform when the second motor actuates it. This corresponds to the second
joint and its angle is called g,. The rotation of these two tubes is entirely independent and continuous. Figure 1b
shows the design parameters of the NB-module. The variable r indicates half the height of the NB-module, set
to 0.07 m for the rest of this paper. The variable a represents the slope of the oblique plane that cuts the two tubes,
set to 15° for the rest of this paper. For more details, the NB-modules are described in [23, 33].

4.2 Description of the robots under analysis

Several NB-modules can be attached serially to generate different kinematic redundant manipulators. In this
paper, the workspace of three different robots is analyzed. The first robot, called NB-R1, is shown in Fig. 2.
It comprises six NB-modules serially attached and has twelve degrees of freedom. The second robot, shown in
Fig. 3, is called NB-R2. It has ten NB-modules and can be divided into three main regions: the shoulder (three
NB-modules), the elbow (four NB-modules) and the wrist (three NB-modules). In total, it has twenty degrees

Wrist Elbow
lo Elbow
ly’ 52(”‘/l2 11/'1:)\61
Shoulder Wrist Shoulder

Fig. 3: Robot NB-R2 formed of Fig. 4: Robot NB-R3 formed of
Fig. 2: Robot NB-R1 formed of ten NB-modules plus two links /; ten NB-modules plus two links /;
six NB-modules and [, and [, and two offsets B; and 3,


user
Rectangle 

user
Rectangle 


Table 2: Robot design details

NB-module half height » 0.07 m
NB-module slope o 15°
Link lengths /; and I, 0.2 m

Offsets B and B, -45°

of freedom. These three regions are connected by two links /; and /, of length equal to 0.2 m. The third robot,
represented in Fig. 4, is organized as the second one, i.e., with ten NB-modules and two links. It is called NB-R3.
So, it has twenty degrees of freedom too. However, two angular offsets 3; and 3, are inserted between the link /;
and the first elbow NB-module and between the second link [, and the first wrist NB-module. The length of
both the links /; and [, is equal to 0.2 m and the offsets ; and B, equal to -45°. Table 2 summarizes the robot
dimensions.

S Test description

Before applying the workspace determination algorithm, a rule to initialize the robot has to be defined. A
uniform random generation is employed to obtain the starting configurations in this case. Considering one NB-
module, the values of the motor positions ¢g; and ¢, are randomly generated. These values are applied to all the
NB-modules included in one robot. So, each NB-module in the robot is initialized in the same configuration.
After several tests, this type of initialization was selected because it generated the most uniform point distribution
on the workspace boundaries. The generated points were not uniformly distributed if all the NB modules were
randomly initialized with different joint angle values. Figure 5 shows the end-effector position distribution for
several starting configurations using the random or proposed initialization. The randomly generated points are
located in the upper area of the workspace, while the proposed initialization is distributed uniformly at the starting
point.

Then, the robot end-effector is moved along a set of displacement vectors. In the simulation, a total of 14 unit
vectors are used. The first six vectors are oriented along the positive and negative direction of axes X, ¥ and 7,

0.8 08~

0.6 0.6~

E 04 E o04-
(3] [S¥) R
. \.!
02 02-
05 -0.5
0 0
-0.6 X [m] 206 . X [m]
04 02 0 0p g4 o4 08 04 02 0 o7 o, 0 05
y [m] y [m]
(a) Random initialization (b) Proposed initialization, all NB-module are initialized with

the same pair of joint values

Fig. 5: Comparison between random and proposed initialization for robot starting configurations. The purple
points are the starting end-effector position generated through the two methods.


user
Rectangle 

user
Rectangle 


0.5~

0.5 -

Fig. 6: Representation of the NB-R2 and displacement vectors applied to the robot end-effector position. %y is
the base frame and ¥, is the end-effector frame.

0.5~

0.5 ] - 1
Fig. 7: Representation of the NB-R2 with ¢ = 135° and displacement vectors applied to the end-effector position
rotated of the same ¢. 7y is the base frame, 7, is the base frame rotated of ¢ around z9p = z; and ¥, is the end-
effector frame.

respectively,
+1 0 0
\71’2: 0 s \_;374: +1 s ‘_”5,6: 0. (11)
0 0 +1

-c [ -c i
Vi=|-c|, V§=|-c|,V9o=|c]|, Vio= ,
-C -C -C -C
i : (12)
-C c -C c
Vit= €|, Vi2= |C|,VI3= | C|, Vi4a= |C|,
c | ¢ | c c|

where ¢ is equal to 1/y/3. The displacement vectors applied to the end-effector are shown in Fig. 6. These 14
vectors are chosen for the simulation to move the robot uniformly in all directions. In the future, more analysis
could be done to identify if more or fewer displacement vectors give better results. To ensure a uniform point
distribution on the whole workspace, the displacement vectors are rotated around axis 7; oriented as the base
frame axis 7y and applied to the end-effector frame origin, as shown in Fig. 7. The rotation angle equals the
azimuth angle ¢ of the transformation matrix between the base and end-effector frames. The azimuth angle ¢
can be obtained using the notation presented in [33]. Table 3 provides the test implementation details and values.

9


user
Rectangle 

user
Rectangle 


Table 3: Implementation details Table 4: Machine details

€ kinematic ~ 107° CPUs number 4
€velocity 1072 m/s CPU model  Intel Core i7 10th Gen, 1.30GHz
It 0.14 m/s Language C++

Table 4 gives the machine details used for the simulations.

In this case, following the 14 vectors is repeated 580 times. So, the starting number of robot configurations is 580
and the total number of obtained points on the workspace boundaries is 8120. With fewer repetitions, there were
not enough points to correctly identify the boundaries for the analyzed robots. In the case of more repetitions, no
substantial change was seen in the boundary identification quality. So, the repetition number is set to 580 times,
obtaining enough points on all the boundary areas and limiting the time consumption. This amount of points
allows for identifying the smaller NB-R2 and the bigger NB-R1/3 workspaces. There is no rule to identify the
best repetition number, obtained by testing the process several times and checking the result quality. In fact, a
larger number of points could be necessary to detect the workspace of robots with bigger dimensions.

6 Workspace determination results

Firstly, this section presents and discusses the results obtained using the kinematically optimized ray-based
method. Then, its performance is compared with the results obtained using pseudo-inverse Jacobian ray-based
and Monte Carlo methods.

6.1 Proposed optimized ray-based method results

Figure 8 shows three views of the NB-R1 workspace. The colors are assigned to the points on the base of their
height along axis z and help the visual identification of the workspace. The graph on the left shows the vertical
section, defined by the yz-plane, of the NB-R1 workspace. Then, on the right, the upper graph shows a 3D view
of the complete NB-R1 workspace and the lower one presents a 3D view of the inner boundaries. The NB-R1
workspace boundaries are uniformly and continuously identified and can be easily visualized. This workspace is
symmetric around the z axis. Figure 9 shows three views of the NB-R2 workspace. The graph on the left shows
the vertical section, defined by the yz-plane, of the NB-R2 workspace. Then, on the right, the upper graph shows

Fig. 8: Generated points describing robot NB-R1 workspace using the proposed optimized ray-based method.
The graph on the left shows a vertical section of the workspace in yz-plane. The graph on the upper right shows
the complete workspace. The graph on the lower right shows the internal boundary view.

10


user
Rectangle 

user
Rectangle 


-0.5 <,

Fig. 9: Generated points describing robot NB-R2 workspace using the proposed optimized ray-based method.
The graph on the left shows a vertical section of the workspace in yz-plane. The graph on the upper right shows
the complete workspace. The graph on the lower right shows the internal boundary view.

-0.5

-1.5 -1

Fig. 10: Generated points describing robot NB-R3 workspace using the proposed optimized ray-based method.
The graph on the left shows a vertical section of the workspace in yz-plane. The graph on the upper right shows
the complete workspace. The graph on the lower right shows the internal boundary view.

a 3D view of the complete NB-R2 workspace and the lower one presents a 3D view of the inner boundaries.
Again, the NB-R2 workspace is uniformly, continuously detected, and symmetric around the z axis. In this case,
the total workspace is bigger than for the NB-R1, thanks to the higher number of NB-modules and the presence
of two links /1 and /,. Finally, Fig. 10 shows three views of the NB-R3 workspace. The graph on the left shows
the vertical section, defined by the yz-plane, of the NB-R3 workspace. Then, on the right, the upper graph shows
a 3D view of the complete NB-R3 workspace, and the lower one presents a 3D view of the inner boundaries of
the workspace. The NB-R3 workspace has a similar volume to the NB-R2 one since both robots have the same
number of modules and link lengths. However, the NB-R3 workspace is not symmetric as in the two previous
cases because of the two offsets 3; and 3. The workspace distribution is moved along the positive side of axis y
since B; and P, are rotated about the axis x of a negative value. The workspace maintains its symmetry with
respect to the yz-plane since there is no offset about the axis y. The NB-R3 workspace boundaries are, in general,
uniformly and continuously identified. In fact, the workspace shape can be easily visualized. Nevertheless, the

11


user
Rectangle 

user
Rectangle 


Table 5: Comparison of optimized ray-based, pseudo-inverse Jacobian ray-based and Monte Carlo methods in
workspace determination

Robot Method Number of points ~ Time Boundary comments
Optimized ray-based 8120 6.4 min  Uniform and continuous
NB-RI  Pseudo-inverse Jacobian ray-based 8120 47 min  Internal partially wrong
Monte Carlo 500000 26 min Lower and internal missing
Optimized ray-based 8120 0.8 min  Uniform and continuous
NB-R2  Pseudo-inverse Jacobian ray-based 8120 0.7min  Internal partially wrong
Monte Carlo 500000 26 min  Lower and internal missing
Optimized ray-based 8120 45 min  Uniform and continuous
NB-R3  Pseudo-inverse Jacobian ray-based 8120 3.7min  Internal partially wrong
Monte Carlo 500000 26 min  Lower and internal missing

1.5+ P
N o mar
£ 05+ o e
e
07 NATe g e
-0.5+
'1-5\/
-0.5
0.5 v
y [m] Tos 0.5 " x [m]

Fig. 12: Robot configuration, black lines, and linear Jacobian matrix singular vectors, magenta lines, for the NB-
R2 in one point on its workspace boundaries

12


user
Rectangle 

user
Rectangle 


inner boundaries are rougher and not perfectly described. This happens because, despite the presence of the
kinematic optimization tasks, the robot reaches singular configurations inside the workspace, not reaching the real
boundary. This behavior does not appear with the other robots and is probably due to the presence of B; and 3.
More analysis will be done on this point in the future. Table 5 provides the total time to determine the three robot
workspaces.

As previously described, the robots are initialized in a specific way to obtain a uniform distribution of points
around the entire workspace. Figure 11 shows the workspace of the NB-R1 when the robot starting configurations
are generated initializing all the joints with different random values. As a result, few points describe the workspace
lower part, being more concentrated in the upper part. This phenomenon proves the utility of initializing the robot
configuration in the proposed way.

Figure 12 shows the NB-R2 robot configuration in black for a specific position on its workspace boundary and the
linear Jacobian matrix singular vectors in magenta. The magnitude of the singular vectors tangent to the workspace
boundary differs from zero, while the magnitude of the singular vector aligned to the robot configuration is zero.
This means the robot has lost one degree of freedom in the linear task space, reaching a singular configuration.
The end-effector can no longer move in the zero singular vector direction since it has reached the workspace
boundary. The magnitude of at least one singular vector is always equal to zero on the points that compose the
workspace boundaries of NB-R1, NB-R2 and NB-R3.

6.2 Comparison with the pseudo-inverse Jacobian ray-based method results

As explained, the TPIK algorithm employs two kinematic optimization tasks to improve the robot configuration
and avoid getting stuck in a singularity while moving the robot end-effector. Here, the optimization tasks are not
used to compare with the optimized ray-based method. Since the optimization tasks are disabled, the remain-
ing task is related to the end-effector velocity based on the pseudo-inverse kinematic Jacobian matrix. So, the
non-optimized ray-based method is named pseudo-inverse Jacobian ray-based. Figure 13 shows the generated
points for the NB-R1 workspace without the optimization tasks. Some of the generated points did not reach the
workspace boundary, resulting inside the workspace. Most of these points are close to the upper area of the inter-
nal boundaries. Here, the robot almost reached the workspace boundary but stopped in a singular configuration.
Similar behavior can be seen for the NB-R2 using the pseudo-inverse Jacobian ray-based method, as shown in
Fig. 14. Figure 15 shows the workspace boundaries of the NB-R3 for the pseudo-inverse Jacobian ray-based
method. Some final end-effector positions were already returned by the algorithm inside the workspace for the
NB-R3 optimized test, as shown in Fig. 10. However, in the case of no optimization, more final positions are
returned inside the workspace and further from the boundaries.

0.8

0.6

0.2

-0.
X [m

o ©

Fig. 13: Internal boundary view of points describing Fig. 14: Internal boundary view of points describing
NB-R1 workspace obtained with pseudo-inverse Jaco- NB-R2 workspace obtained with pseudo-inverse Jaco-
bian ray-based bian ray-based

13


user
Rectangle 

user
Rectangle 


Fig. 15: Internal boundary view of points describing NB-R3 workspace obtained with pseudo-inverse Jacobian
ray-based

The only advantage of the pseudo-inverse Jacobian ray-based method is that it takes less time to run. Table 5
shows the time comparison between the optimized and pseudo-inverse Jacobian ray-based ray-based tests. How-
ever, the time difference is slight and also affected by stopping the process earlier for some configurations. In the
end, it is better to employ the optimization tasks to avoid getting the points inside the workspace.

6.3 Comparison with Monte Carlo method results

Here, the optimized ray-based method performance is compared to the Monte Carlo one. In the Monte Carlo
case, 500000 random configurations were generated. This high number is chosen to obtain the vastest workspace
area possible for each robot. Higher numbers were used for the Monte Carlo test and similar results were always
obtained. So, the random configuration number was set to 500000 to reduce the computational time. Table 5 com-
pares the results of optimized ray-based and Monte Carlo methods for each robot. In all cases, the optimized ray-
based performance is better. The computational time of the Monte Carlo method for the three Nimbl’Bot robots is
the same since the process only requires generating random robot configurations and saving the end-effector po-

1 : : : : : 2
0.8
— 06
£
W
04r
02r
0 . g I I I ! L L
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 15 1 05 0 05 1 15
y [m] y [m]

Fig. 16: Comparison between points describing NB-
R1 workspace generated with optimized ray-based and
Monte Carlo methods. Blue-green points are gener-
ated with the optimized ray-based method. Red-yellow
points are generated with the Monte Carlo method.

Fig. 17: Comparison between points describing NB-
R1 workspace generated with optimized ray-based and
Monte Carlo methods. Blue-green points are gener-
ated with the optimized ray-based method. Red-yellow
points are generated with the Monte Carlo method.

14


user
Rectangle 

user
Rectangle 


1.5

-0.5

-1.5 -1 -0.5 0 0.5 1 1.5 2

y [m]

Fig. 18: Comparison between points describing NB-R1 workspace generated with optimized ray-based and Monte
Carlo methods. Blue-green points are generated with the optimized ray-based method. Red-yellow points are
generated with the Monte Carlo method.

sitions. Figure 16 shows a section of the NB-R1 workspace generated using the Monte Carlo method, red-yellow
points, together with the workspace generated using the optimized ray-based method, green-blue points. The point
colors are related to the height along axis z. The upper external boundaries were correctly identified. However, the
lower and internal boundaries are entirely ignored and the real robot workspace can not be reconstructed. On the
contrary, the proposed optimized ray-based workspace determination algorithm can identify the correct NB-R1
boundaries in less than ten minutes using only 8120 points. Figure 17 shows the NB-R2 workspace generated
using the Monte Carlo method. Figure 18 shows the NB-R3 workspace generated using the Monte Carlo method.
The same considerations made for the NB-R1 can be done in these other two cases. The Monte Carlo method can
not generally be used for workspace determination. In fact, some groups of points are more likely to be selected
than others. This behavior results in a wrong identification of some boundaries.

The comparison presented here clearly shows how the proposed workspace determination algorithm has better
performance than a simple Monte Carlo method. However, it is known that random sampling in joint space,
translated to task coordinates, can yield a subpar representation. So, the Monte Carlo method could be improve
through the use of adaptive sampling techniques. One example of these techniques is the one presented in [34]
that takes advantage of the algebraic nature of the point cloud, defining the workspace area. Future works will
address this point to improve the methods comparison.

7 Discussion about the proposed workspace determination algorithm

This section highlights some limitations of the proposed workspace determination algorithm. The first major
limitation is the need for prior knowledge about the analyzed manipulator workspaces. So, there is no way to
ensure the correctness of the result obtained by this algorithm. However, one way to check the result correctness
is by plotting some robot configuration for each workspace. Figure 19 shows the NB-R1 robot CAD model plotted
using the ROS RViz tool in two different configurations with the end-effector on the detected boundaries. The
obtained workspace points are shown in magenta. Trying to move the robot further, reaching a position outside this
workspace is impossible. So, the correctness of the workspace detection is demonstrated by testing. Figures 20
and 21 show the NB-R2 and NB-R3 robot CAD models, respectively, in two different configurations with the
end-effector on the detected boundaries. The obtained workspace points are shown in magenta. ROS RViz tool
is again employed to plot the robots and their workspaces. The same test can be performed to prove the result
fidelity.

The proposed algorithm correctly identified the inner boundaries of the previous robot workspaces. However,
the inner boundary detection can lead to errors when the number of NB-modules increases. Figure 22 shows a
Nimbl’Bot robot composed of 12 NB-modules. No link or offset is inserted between the NB-modules. This robot

15


user
Rectangle 

user
Rectangle 


(a) Robot on external boundaries (b) Robot on internal boundaries

Fig. 19: NB-R1 robot configuration on two collected points by the workspace determination algorithm. Obtained
workspace points highlighted in magenta.

(a) Robot on external boundaries (b) Robot on internal boundaries

Fig. 20: NB-R2 robot configuration on two collected points by the workspace determination algorithm. Obtained
workspace points highlighted in magenta.

(a) Robot on external boundaries (b) Robot on internal boundaries

Fig. 21: NB-R3 robot configuration on two collected points by the workspace determination algorithm. Obtained
workspace points highlighted in magenta.

16


user
Rectangle 

user
Rectangle 


Fig. 22: Nimbl’Bot robot composed of 12 NB-modules

Fig. 24: Configuration of 12 NB-module robot on point

Fig. 23: Vertical section in yz-plane of points describing jnside the workspace which does not belong to the
workspace of 12 NB-module robot boundaries

can touch its base. Figure 23 shows the vertical sections in yz-plane of the generated workspace points for the 12
NB-module robots. The workspace of the 12 NB-module robot has some internal boundaries that are bounded
between y ~ [—0.2,0.2] m and z ~ [0,0.5] m, shown in Fig. 23. However, some other points are collected above
and below the internal boundaries inside the workspace. These points are not part of the workspace boundaries.
However, the robot NB-modules reached their limits when moving towards these points. So, the robot was in a
configuration that could not be escaped and the end-effector positions were collected as part of the boundaries.
Figure 24 shows the 12 NB-module robot configuration to reach one of the points collected inside the workspace
that are not part of the actual boundaries. The first modules of the robot reach the maximum allowed tilt and
the robot can no longer move along the desired direction or escape from the singular configuration. However,
the robot could reach the same end-effector linear position with another configuration and move toward it. This
algorithm limitation can generate problems in correctly identifying the manipulator workspaces. Further studies
on this problem will be done to improve the workspace determination process.

17


user
Rectangle 

user
Rectangle 


8 Conclusions

This paper presented a new algorithm for the workspace determination of robotic manipulators. The workspace
determination process was evaluated on three kinematic redundant robots. However, it can also be applied to
non-redundant manipulators. This process employs the TPIK algorithm and kinematic optimization tasks, namely
dexterity and manipulability, for the workspace determination. It is not affected by computational redundancy, like
the Monte Carlo based methods, and identifies only the workspace boundaries. The performed tests emphasized
the process ability to detect the complete workspace boundaries in a small amount of time. It always took less
than ten minutes to produce one workspace. The process lasted less than one minute for the smallest robot, e.g.,
NB-R2. Moreover, using the kinematic optimization tasks allowed for maintaining better kinematic configurations
while moving and prevented the manipulator from ending in singular configurations inside the workspace. In the
NB-R3 robot case, the generated map identifies the workspace inner boundaries with less accuracy. However,
the workspace shape is perfectly identifiable from the obtained results. The optimized ray-based method results
are compared with the ones obtained through pseudo-inverse Jacobian and Monte Carlo methods. The proposed
optimized ray-based workspace determination algorithm is faster, more accurate and requires fewer points than
the Monte Carlo one. Finally, two main limitations of the proposed algorithm are discussed. First, there is no
prior knowledge about the analyzed robot workspaces. So, it is not possible to determine the result correctness.
However, a process was explained to check the obtained results. The second limitation appears when the number
of NB-modules that compose the design grows. Over 12 NB-modules, the workspace inner boundaries present
some errors because the robot remained stuck in some internal configurations.

Future work will address the workspace determination for a specific end-effector orientation. This is important
when planning the workpiece placement inside the robot reachable area. Then, additional steps should be added
to the workspace determination process to escape the inner boundary identification limitation. The point distribu-
tion obtained from the Monte Carlo method will be improved developing some adaptive sampling techniques to
compare the improved results with the method proposed in this paper. Finally, a point interpolation and surface
generation method will be developed to plot the identified workspace surfaces.

Acknowledgements
This work was supported by the ANRT (Association Nationale de la Recherche et de la Technologie) grant
CIFRE n° 2020/1051 and Nimbl’bot (https://nimbl-bot.com/).

References

[1] Dombre, E., and Khalil, W., (2004). Modeling, identification and control of robots. Butterworth-Heinemann.

[2] Du, Z.-c., Ouyang, G.-Y., Xue, J., and Yao, Y.-b., 2020. “A review on kinematic, workspace, trajectory
planning and path planning of hyper-redundant manipulators”. In Proceedings of 10th Institute of Electri-
cal and Electronics Engineers International Conference on Cyber Technology in Automation, Control, and
Intelligent Systems, IEEE, pp. 444-449.

[3] Yahya, S., Moghavvemi, M., and Mohamed, H. A., 2011. “Geometrical approach of planar hyper-redundant
manipulators: Inverse kinematics, path planning and workspace”. Simulation Modelling Practice and The-
ory, 19(1), pp. 406-422.

[4] Bohigas, O., Manubens, M., and Ros, L., 2012. “A complete method for workspace boundary determination
on general structure manipulators”. IEEE Transactions on Robotics, 28(5), pp. 993—-1006.

[5] Peidro, A., Reinoso, é., Gil, A., Marin, J. M., and Pay4, L., 2017. “An improved monte carlo method based
on gaussian growth to calculate the workspace of robots”. Engineering Applications of Artificial Intelligence,
64, pp. 197-207.

[6] Guan, Y., and Yokoi, K., 2006. “Reachable space generation of a humanoid robot using the monte carlo
method”. In Proceedings of International Conference on Intelligent Robots and Systems, IEEE, pp. 1984—
1989.

[7] Li, L., Shang, J., Feng, Y., and Yawen, H., 2018. “Research of trajectory planning for articulated industrial
robot: a review”. Computer engineering and applications, 54(5), pp. 36-50.

18


user
Rectangle 

user
Rectangle 


[8] Zhao, Z., He, S., Zhao, Y., Xu, C., Wu, Q., and Xu, Z., 2018. “Workspace analysis for a 9-dof hyper-
redundant manipulator based on an improved monte carlo method and voxel algorithm”. In Proceedings of
International Conference on Mechatronics and Automation, IEEE, pp. 637-642.

[9] Ferndndez-Sarria, A., Martinez, L., Veldzquez-Marti, B., Sajdak, M., Estornell, J., and Recio, J., 2013. “Dif-
ferent methodologies for calculating crown volumes of platanus hispanica trees using terrestrial laser scanner
and a comparison with classical dendrometric measurements”. Computers and electronics in agriculture, 90,
pp. 176-185.

[10] Wang, Y., and Chirikjian, G. S., 2004. “Workspace generation of hyper-redundant manipulators as a diffusion
process on se (n)”. IEEE Transactions on Robotics and Automation, 20(3), pp. 399—408.

[11] Dong, H., Du, Z., and Chirikjian, G. S., 2013. “Workspace density and inverse kinematics for planar serial
revolute manipulators”. Mechanism and Machine Theory, 70, pp. 508-522.

[12] Dong, H., Fan, T., Du, Z., and Chirikjian, G. S., 2015. “Inverse kinematics of discretely actuated ball-
joint manipulators using workspace density”. In Proceedings of International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference, Vol. 57144, American Society of
Mechanical Engineers, p. VOSCT08A039.

[13] Han, Y., Pan, J., Xia, M., Zeng, L., and Liu, Y.-J., 2021. “Efficient se (3) reachability map generation via
interplanar integration of intra-planar convolutions”. In Proceedings of International Conference on Robotics
and Automation, IEEE, pp. 1854—-1860.

[14] Kurniawati, H., and Hsu, D., 2004. “Workspace importance sampling for probabilistic roadmap plan-
ning”. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat.
No. 04CH37566), Vol. 2, IEEE, pp. 1618-1623.

[15] Edwards, P. B., Baskar, A., Hills, C., Plecnik, M., and Hauenstein, J. D., 2023. “Output mode switching for
parallel five-bar manipulators using a graph-based path planner”. In 2023 IEEE International Conference on
Robotics and Automation (ICRA), IEEE, pp. 9735-9741.

[16] Abbasnejad, G., Eden, J., and Lau, D., 2019. “Generalized ray-based lattice generation and graph repre-
sentation of wrench-closure workspace for arbitrary cable-driven robots”. IEEE Transactions on Robotics,
35(1), pp. 147-161.

[17] Zhang, Z., Cheng, H. H., and Lau, D., 2020. “Efficient wrench-closure and interference-free conditions
verification for cable-driven parallel robot trajectories using a ray-based method”. IEEE Robotics and Au-
tomation Letters, 5(1), pp. 8-15.

[18] Cheng, H. H., and Lau, D., 2022. “Ray-based cable and obstacle interference-free workspace for cable-
driven parallel robots”. Mechanism and Machine Theory, 172, p. 104782.

[19] Chirikjian, G. S., and Burdick, J. W., 1994. “A hyper-redundant manipulator”. IEEE Robotics & Automation
Magazine, 1(4), pp. 22-29.

[20] Simetti, E., and Casalino, G., 2016. “A novel practical technique to integrate inequality control objectives and
task transitions in priority based control”. Journal of Intelligent & Robotic Systems, 84(1-4), pp. 877-902.

[21] Simetti, E., Casalino, G., Aicardi, M., and Wanderlingh, F., 2018. “Task priority control of underwater
intervention systems: Theory and applications”. Ocean Engineering, 164, pp. 40-54.

[22] Simetti, E., Casalino, G., Aicardi, M., and Wanderlingh, F., 2019. “A task priority approach to cooperative
mobile manipulation: Theory and experiments”. Robotics and Autonomous Systems, 122, p. 103287.

[23] Ginnante, A., Caro, S., Simetti, E., and Leborne, F., 2023. “Kinetostatic optimization for kinematic redun-
dancy planning of nimbl’bot robot”. Journal of Mechanisms and Robotics, pp. 1-20.

[24] Angeles, J., 1992. “The design of isotropic manipulator architectures in the presence of redundancies”. The
International Journal of Robotics Research, 11(3), pp. 196-201.

[25] Khan, W. A., and Angeles, J., 2005. “The kinetostatic optimization of robotic manipulators: The inverse and
the direct problems”. Journal of Mechanical Design, 128(1), pp. 168—178.

[26] Angeles, J., and Lépez-Cajuin, C. S., 1992. “Kinematic isotropy and the conditioning index of serial robotic
manipulators”. The International Journal of Robotics Research, 11(6), pp. 560-571.

[27] Pond, G., and Carretero, J. A., 2006. “Formulating jacobian matrices for the dexterity analysis of parallel
manipulators”. Mechanism and Machine Theory, 41(12), pp. 1505-1519.

[28] Yoshikawa, T., 1985. “Manipulability of robotic mechanisms”. The international journal of Robotics Re-

19


user
Rectangle 

user
Rectangle 


search, 4(2), pp. 3-9.

[29] Angeles, J., 2003. Fundamentals of robotic mechanical systems: theory, methods, and algorithms. Springer.

[30] Park, J., 2000. “Analysis and control of kinematically redundant manipulators: An approach based on
kinematically decoupled joint space decomposition”. PhD Thesis, POSTECH.

[31] Marani, G., Kim, J., Yuh, J., and Chung, W. K., 2002. “A real-time approach for singularity avoidance
in resolved motion rate control of robotic manipulators”. In Proceedings of International Conference on
Robotics and Automation, Vol. 2, IEEE, pp. 1973-1978.

[32] Dufau, L., March 23, 2021. Articulated robot arm. US patent 10,953,554 https://uspto.report/
patent/grant/10, 953, 554. Online accessed 23 January 2023.

[33] Ginnante, A., Leborne, F., Caro, S., Simetti, E., and Casalino, G., 2021. “Design and kinematic analysis of a
novel 2-dof closed-loop mechanism for the actuation of machining robots”. In Proceedings of International
Design Engineering Technical Conferences and Computers and Information in Engineering Conference,
Vol. 85444, American Society of Mechanical Engineers.

[34] Di Rocco, S., Eklund, D., and Géfvert, O., 2022. “Sampling and homology via bottlenecks”. Mathematics
of Computation, 91(338), pp. 2969-2995.

20


user
Rectangle 

user
Rectangle 




