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BirdVoxDetect:
Large-Scale Detection and Classification

of Flight Calls for Bird Migration Monitoring
Vincent Lostanlen, Aurora Cramer, Justin Salamon, Andrew Farnsworth,

Benjamin M. Van Doren, Steve Kelling, and Juan Pablo Bello

Abstract—Sound event classification has the potential to advance
our understanding of bird migration. Although it is long known
that migratory species have a vocal signature of their own,
previous work on automatic flight call classification has been
limited in robustness and scope: e.g., covering few recording sites,
short acquisition segments, and simplified biological taxonomies.
In this paper, we present BirdVoxDetect (BVD), the first full-
fledged solution to bird migration monitoring from acoustic sensor
network data. As an open-source software, BVD integrates an
original pipeline of three machine learning modules. The first
module is a random forest classifier of sensor faults, trained
with human-in-the-loop active learning. The second module is a
deep convolutional neural network for sound event detection with
per-channel energy normalization (PCEN). The third module
is a multitask convolutional neural network which predicts
the family, genus, and species of flight calls from passerines
(Passeriformes) of North America. We evaluate BVD on a new
dataset (296 hours from nine locations, the largest to date for
this task) and discuss the main sources of estimation error in
a real-world deployment: mechanical sensor failures, sensitivity
to background noise, misdetection, and taxonomic confusion.
Then, we deploy BVD to an unprecedented scale: 6672 hours
of audio (approximately one terabyte), corresponding to a full
season of bird migration. Running BVD in parallel over the full-
season dataset yields 1.6 billion FFT’s, 480 billion neural network
predictions, and over six petabytes of throughput. With this
method, our main finding is that deep learning and bioacoustic
sensor networks are ready to complement radar observations
and crowdsourced surveys for bird migration monitoring, thus
benefiting conservation ecology and land-use planning at large.

Index Terms—Acoustic signal detection, audio databases, deep
learning, ecosystems, phylogeny.

I. INTRODUCTION

M IGRATORY birds are worth studying for multiple
reasons. They offer a broad range of “ecosystem

services,” such as predation, pollination, scavenging, and seed
dispersion [1]; they also offer “ecosystem disservices,” as they
carry pathogens which may infect humans (e.g., West Nile
virus) or poultry (e.g., avian influenza) [2]. Migratory birds
also have cultural value: the United Nations recognizes them
as “symbols of peace and of an interconnected planet” [3].
Conversely, humans put migratory birds at risk by introducing
predators, emitting light pollution, destroying habitats, and
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disrupting global climate [4]. In this sense, birds are excellent
bioindicators, i.e., proxies for ecosystem health [5]. As a
consequence of changes in land use and weather, each species
balances the alteration of migration routes and timing from year
to year, in ways that may be difficult to predict [6]. Thus, the
number of individuals flying over any given area may not be
extrapolated reliably from past observations alone [7]. Instead,
bird migration should be monitored with as little latency as
possible [8], in an effort to reduce biomass decline [9].

A. The promise and challenge of flight call classification

In this context, new algorithms for detection and classifica-
tion of acoustic scenes and events (DCASE) have a key role
to play [10]. Ornithologists have long pointed out that the
vocalizations made by migratory birds while in flight offer a
non-invasive monitoring tool [11]. These vocalizations, known
as flight calls, are scientifically interesting because they convey
the “vocal signature” of migratory birds [12]. In comparison to
bioacoustic sensors, radars have a longer detection range but
cannot identify species from data [13]. Meanwhile, although
direct observation is more accurate, it only describes a small
subset of biomass movements [14]. Moreover, most birds
migrate at night, which makes visual monitoring inconvenient
[15]. Thanks to the development of low-cost acoustic sensors
[16], audio signal processing is ready to serve as a complement
to other forms of measurement, especially in areas which are
rarely accessed by birdwatchers or not covered by radar.

Yet, flight calls differ from bird songs in terms of their
spectrotemporal characteristics: while songs comprise multiple
“syllables” and tend to last multiple seconds, a flight call often
consists of a single acoustic event and often lasts between 50
and 150 milliseconds [17]. Furthermore, the distance between
sensor and source is typically greater with flight calls than
with songs recorded from a handheld device, hence a lower
signal-to-noise ratio (SNR) [18]. Thus, dedicated tools are
necessary.

B. Related work

Flight calls appear as groups of pitch contours, and so flight
call classification may simply be formulated as supervised
pattern recognition in the time–frequency domains. What is
more difficult is to design the classifier so that it generalizes to

Companion website: https://www.github.com/BirdVox/lostanlen2022taslp/
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Figure 1: General flowchart of BirdVox, grouped into two
blocks. Arrow labels (a) to (f) correspond to input/output data
connections between operating blocks and are visualized as
subfigures in Figure 2.

a broad range of recording conditions. Historically, automatic
flight call recording began in the 1950s [19], with advances by
the 1990s including basic signal processing techniques, such
as narrowband energy thresholding [20], template matching
[21], and dynamic time warping [22]. These techniques have
proven occasionally useful on small-scale settings: typically, a
single recording from dusk to dawn at a single location [23].
Since then, expanding the scope of applicability of flight call
classification has motivated a progressive shift from feature
engineering to machine learning (e.g., Gaussian mixture models
[24], hidden Markov models [25], k-means [26]), and eventually
to deep learning [26]–[29].

The breakthrough of deep learning in bioacoustic event
classification around the year 2014 [30] has had lasting
effects. By the year 2016, deep convolutional neural networks
(convnets) began to consistently outperform competing systems
in the LifeCLEF challenge for bird species classification, or
BirdCLEF for short [31]. In 2018, almost every submission
to BirdCLEF was a convnet [32]; however, the organizers
did point out that the task of bioacoustic event classification
was more difficult in omnidirectional sensors (“soundscapes”)
than with handheld recorders which are pointed at the source
(“monospecies”). Since then, scaling up passive acoustic
monitoring (PAM) to large spatiotemporal scales, despite
nonuniform or nonstationary survey designs, has become a
core preoccupation of computational bioacoustics with deep
learning [33]. We refer to [34] for a review of recent advances

Figure 2: Example output of BirdVoxDetect (BVD). Brighter
colors in subfigures (a) to (c) denote larger values in the time–
frequency domain. Red regions in subfigures (d) to (f) denote
detected sensor faults. Each triangle in subfigure (e) represents
a flight call. Each blue lozenge in subfigure (f) represents a
flight call from an identifiable species.
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the field, as well as a discussion of current trends.

C. Contributions

In this article, we present the first complete solution to
bird migration monitoring from acoustic sensor network data.
For that purpose, we develop a system which is resilient to
real-world confounding factors, including mechanical sensor
failures, spatiotemporal variations of background noise, and
confusions between species of the same family. Practically
speaking, we estimate the flight call activity of nocturnally
migrating songbirds (Passeriformes) over the course of a full
migration season, from August to December, and over an area
of 1000 km2 in the U.S. Northeast. The unprecedented scale
of this study suggests that automatic flight call classification
is ready to transform bird migration monitoring.

Our main finding is that this is possible after training the
system on a single night within the season, amounting to
less than 1% of the acquired audio. In order to efficiently
generalize to the remaining 99%, it is necessary to integrate
state-of-the-art solutions to multiple research topics in audio
signal processing and machine learning: efficient annotation,
background noise reduction, context-adaptive sound event
detection, and hierarchical sound event classification.

Our main contribution is BirdVoxDetect (BVD), a novel
end-to-end pipeline for the detection and classification of avian
flight calls at the terabyte scale, which we release as open-
source software. Figure 1 outlines the original components of
BVD, both in signal processing and machine learning. As an
example, Figure 2 presents the intermediate outputs of each
stage in the BVD pipeline, given a full night of bird migration.

The originality of our method is that it does not only evaluate
these components in isolation but also in combination. BVD is
not a proof of concept but a ready-to-use automation tool for
computational bioacoustics: it runs as a single command on
audio files of arbitrary length and returns a table of flight calls,
each associated to a timestamp and a species. Furthermore,
BVD produces calibrated estimates of probability; warns the
user if the file contains an audible sensor fault; and falls back
to higher taxonomical levels (i.e., family, order) if the detected
flight call does not belong to the list of target species.

The second contribution of this paper resides in the release
of the largest annotated dataset for flight call classification to
date: BirdVox-296h dataset, or 296h for short. BirdVox-296h is
disjoint from the training set of BVD and accounts for 5% of
the full-season dataset. With 296h, we evaluate the scalability
of BVD from training on a few gigabytes of isolated clips to
deploying on a terabyte of continuous audio from dusk to dawn
over nine recording locations. The second largest, named BUK,
is 50 hours long [35]. In addition to 296h, we release a derived
dataset for flight call classification (i.e., 14SD-1.1) as well as
the datasets we used for training BVD: 222k for detection
and ANAFCC-v2 for classification. Figure 3 summarizes the
data curation and annotation process for this paper; a complete
description is made available as supplementary material.

In the last section of this paper, we demonstrate the value of
our main contribution for animal ecology. For this purpose, we
run BVD on the full-season dataset (6671 hours); i.e., of the

order of one terabyte of input and six petabytes of throughput.
The predictions of BVD offer a new insight on Passeriformes
of the U.S. Northeast: namely, that the per-species migration
timing may be reconstructed from flight calls alone. To
confirm this insight, we conduct a cross-modal comparison
between BVD predictions and crowdsourced observations—
i.e., eBird1. The results, published in [36], suggest a positive
correlation between the two modalities (R2 = 0.71). In this
article, we discuss the implications of these results for audio
signal processing and machine learning. Specifically, we stress
that our protocol reflects the “non-ideal” nature of large-
scale bioacoustic surveys: opportunistic sampling of recording
locations, audible sensor faults, missing values, nonuniform and
nonstationary noise, class imbalance, and annotation uncertainty.
Despite these challenges, BVD remains sufficiently robust
to produce meaningful predictions, as made evident by the
temporal alignment with citizen science data. Hence, BVD
is the first successful example of fully automated flight call
monitoring from an acoustic sensor network; and one of the
first regarding terabyte-scale deep learning for passive acoustic
monitoring in general.

II. AUDIO SIGNAL PROCESSING

A. Per-channel energy normalization (PCEN)

In order to reduce the influence of background noise and
improve the generalization of deep convolutional networks
across recording conditions, we apply a background noise
reduction procedure known as per-channel energy normalization
(PCEN) [37]. PCEN is particularly well-suited to the detection
and classification of flight calls, which are short and rapidly
modulated in frequency, whereas the background noise (insects,
vehicle traffic) is broadband and locally stationary.

Let E(t, f ) be the mel-frequency spectrogram of some
audio recording, with t and f denoting discrete time and mel
frequency respectively. We define a low-pass filter φ T with a
cutoff frequency equal to T−1. PCEN applies adaptive gain
control and dynamic range compression to E, yielding:

PCEN(t, f ) =

(
E(t, f )(

ε +(E
t∗φ T )(t, f )

)α
+δ

)r

−δ
r, (1)

where the quantities ε , α , δ , and r are constants and the
notation (x

t∗y) denotes a convolution over the time dimension.
In practice, we construct φ T as a first-order IIR filter, like so:

M(t, f ) =(E
t∗φ T )(t, f )

=sE(t, f )+(1− s)M(t − τ, f ), (2)

where the constant s is the weight of the associated autoregres-
sive process (AR(1)) and τ = 1.5ms is the hop size of the mel-
frequency spectrogram. The recursive implementation above
is more computationally efficient than FFT-based convolution
while having a smaller memory footprint. Following Proposition
IV.1 from [38], we define s in terms of τ and T , as:

s =

√
1− cos

2πτ

T

(√
3− cos

2πτ

T
−
√

1− cos
2πτ

T

)
. (3)

1Official website of eBird: https://ebird.org/
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Figure 3: Diagram of the full-season dataset and its subsets. Solid and dashed lines denote labeled and unlabeled audio
respectively. Black and purple lines denote training and evaluation subsets respectively. Rectangles and ellipses denote full-length
acoustic scenes and isolated audio clips respectively.

In this paper, we set T = 60ms, ε = 10−6, α = 0.8, δ = 10,
and r = 0.25. A previous publication on bioacoustic sensor
networks [29] has reported that this choice of parameters
Gaussianizes the distributions of normalized spectrogram
magnitudes, consistently across sensors. This is in contrast
with the original publication on PCEN [37], in which the
proposed default parameters are optimized for automatic speech
recognition in a noisy indoor environment, but inadequate for
flight call detection.

In the rest of this paper, we refer to the output of PCEN
by the abbreviation “PCEN-gram”. Figure 2b illustrates an
example PCEN-gram. We refer to [38], [39] for more details
on PCEN.

B. Median filtering

With the aim of detecting audible sensor faults in the full-
season dataset, we lower the dimensionality of the PCEN-gram
by subsampling it in time and mel-frequency. Specifically, we
compute the median of the PCEN-gram over non-overlapping
windows of duration 30 minutes, for each mel-frequency
subband f independently. Furthermore, we subsample the mel–
frequency axis by a factor of 12, thus reducing the number of
subbands f from 120 down to 10. We call “sensor fault features”
the resulting time–frequency representation, in which the time
axis is sampled at a rate of two frames per hour. Extracting
sensor fault features on the full-season dataset results in 12k
feature vectors, i.e., one every half-hour segment. Figure 2c
illustrates an example output of median filtering.

III. SENSOR FAULT DETECTION

The prolonged deployment of autonomous acoustic sensor
networks exposes them to faults [40]. Some of them (e.g.,
power losses) halt a sensor node and cause missing data.
Others (e.g., humidity) do not affect uptime but degrade the
quality of acquired audio content. If the degradation is severe,
flight calls are no longer audible: hence, the detection and
classification pipeline is no longer a reliable predictor of actual

flight call activity. Yet, prior publications on bioacoustics for
bird migration monitoring have neglected the eventuality of
sensor faults. In this section, we present the automatic sensor
fault detector of BVD; i.e., a random forest classifier trained
with an active learning paradigm. In the functional diagram of
Figure 1, the sensor fault detector corresponds to block (d).

A. Random forest classifier

We manually label two half-hour segments in the dataset:
one in which a sensor fault is present and the other in which
no sensor fault is present. With scikit-learn v0.20.1 [41], we
train a random forest classifier (with 100 decision trees) on
the corresponding two feature vectors. Unlike neural networks,
random forest are well-suited to the active learning paradigm
since they able to learn from limited labeled data and can be
retrained efficiently.

B. Active learning for efficient audio annotation

Because the classifier described above is trained on a tiny
dataset (two examples), it does not generalize well to unseen
recording conditions. To improve accuracy, it is necessary
to refine the decision boundary between classes, and thus
label more examples. However, the annotation of sensor faults
from bioacoustic recordings is a particularly tedious task.
Furthermore, the relatively rare proportion of sensor faults
in full-season (estimated between 1% and 5% of the audio
data) causes a class imbalance problem, which hampers the
statistical generalization of the classifier.

We address the issue of annotation efficiency in the sensor
fault detection task by adopting an active learning paradigm. In-
stead of annotating audio segments drawn uniformly at random
in full-season, we execute an algorithm which iteratively queries
the human annotator with the most informative unlabeled
example. Here, the informativeness of an example is defined
according to the prediction confidence of the random forest
classifier.
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We apply the active learning algorithm of [42], known as
“alternate confidence sampling”, onto the full-season dataset.
In 90% of the iterations, the algorithm queries the human with
the unlabeled example with least confidence, that is, the one
closer to the decision boundary of the classifier. Alternatively,
in one every ten iteration, the algorithm queries the human with
a high-confidence example: specifically, one example drawn
uniformly at random among the pool of unlabeled examples
whose confidence exceeds a fixed probability threshold of 85%.

The human annotator labels examples progressively, as
queried by the active learning algorithm. Conversely, the
random forest classifier is retrained after the labeling of every
example, and thus becomes progressively more discriminative.
This human-in-the-loop machine learning procedure is repeated
until the classifier reaches a satisfying generalization power. In
practice, two annotators (AF and VL of the authors) labeled
100 half-hour segments in full-season.

C. Qualitative evaluation with t-SNE embedding

We propose to shed light on the active learning process de-
scribed above by visualizing a t-distributed stochastic neighbor
embedding (t-SNE) of the full-season dataset [43]. The t-SNE
algorithm learns a nonlinear mapping from a feature space in
dimension ten to a embedding space in dimension two. In doing
so, t-SNE minimizes the Kullback-Leibler divergence between
the joint probability distribution of examples in the feature
space and that of examples in the embedding space. Therefore,
spatial proximity in the 2-D embedding space denotes acoustical
similarity in terms of median PCEN-gram features. We use the
implementation of scikit-learn with all parameters set to their
default values as of v0.20.1.

Figure 4 illustrates the outcome of t-SNE embedding. In the
left column, we represent unlabeled examples as black dots
and labeled examples in color: green square for positives (i.e.,
absence of sensor fault) and red squares for negatives (i.e.,
presence of sensor fault). In the right column, we represent
the predictions of the sensor fault detector over all examples,
be them labeled or unlabeled: darker shades of red (vs. green)
denote a greater predicted probability that a sensor fault is
present (resp. absent) in the corresponding audio excerpt. We
repeat the display at different stages of the active learning
process: initialization (top), with 10 labeled examples (center),
and with 100 labeled examples (bottom).

We observe in Figure 4c (left) that the distribution of labeled
examples is not uniform over the t-SNE map. Instead, it is
concentrated on the regions of least confidence of the sensor
fault detector: the top-left and bottom-right corners of the
scatter plot in our case, appearing in pale green in Figure 4b
(right). Moreover, we observe on Figure 4a (right) that the
decision boundary of the sensor fault detector appears as a
rectilinear color gradient at the initialization. In contrast, we
observe on Figures 4b (right) and 4c (right) that the decision
boundary becomes progressively sharper and nonlinear as the
number of labeled examples increases. These observations
provide qualitative evidence that the proposed active learning
process accelerates the convergence of the sensor fault detector
as a function of training set size.

(c) with 100 labeled samples

(b) with 10 labeled samples

(a) with 2 labeled samples

Figure 4: Visualization of sensor fault features with t-SNE.
Left column: human expert annotation. Red lozenges (resp.
green squares) denote the presence (resp. absence) of a sensor
fault in the corresponding audio excerpt. Unlabeled examples
are denoted as small black dots. Right column: machine
listening prediction by a random forest classifier trained on
sensor fault features in dimension ten. Darker shades of red (vs.
green) denote a greater predicted probability that a sensor fault
is present (resp. absent) in the corresponding audio excerpt.

IV. FLIGHT CALL DETECTION

This section presents our deep learning system for species-
agnostic avian flight call detection; i.e., a convolutional neural
network (CNN) taking a PCEN-gram representation as its input.
In the functional diagram of Figure 1, this corresponds to block
(e).

A. PCEN-based convolutional neural network

Drawing inspiration from prior research on urban sound
classification [44] and species classification from clips of
flight calls [28], we build a CNN with three convolutional
layers and two fully connected layers. The first (resp. second)
convolutional layer consists of 24 (resp. 48) kernels of size
5×5, a rectified linear unit (ReLU) activation function, and
a strided max-pooling operator of shape 4 × 2; that is, 4
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time frames and 2 frequency bands. The third convolutional
layer consists of 48 kernels of size 5× 5, a ReLU, and no
pooling. The first fully connected layer contains 64 hidden units,
followed by a ReLU. Lastly, the second fully connected layer
maps those 64 hidden units to a single output unit, followed
by a sigmoid nonlinearity.

The input to BVD is a PCEN-gram excerpt with 120 rows
and 104 columns, hence a duration of approximately 150ms.
During training, we apply batch normalization to this matrix
(but not to deeper layers), thus bringing its coefficients to null
mean and unit variance.

B. Data augmentation

We augment the 222k dataset with three kinds of digital audio
effects: pitch shifting, time stretching, and the combination of
pitch shifting and time stretching. We draw the pitch interval
at random from a normal distribution with null mean and
half-unit variance, as measured in semitones according to the
12-tone equal temperament. Furthermore, we draw the time
stretching factor at random from a log-normal distribution with
parameters µ = 0 and σ = 0.05. The rationale behind these
hyperparameters is to avoid ”over-augmenting” a clip such
that it would no longer be recognizable as pertaining to the
target species. For this matter, an expert ornithologist (AF)
determined that these augmentations would keep the flight calls
within their plausible frequency and temporal ranges.

Such a randomization procedure allows to augment any
given audio example more than once. Specifically, we draw ten
instances of pitch shifting, ten instances of time stretching, and
ten instances of pitch shifting and time streching in combination.
This corresponds to 31 versions of each audio example in
total: i.e., one original version and 30 augmentations. After
augmenting each of the 189k examples in the training set
of BirdVox-222k, we obtain a dataset of 31× 189k = 5.9M
examples. Although these examples could be generated on
the fly from the 189k original examples, we have found data
augmentation to be a computational bottleneck if repeated
across epochs and hyperparameter settings. Thus, we simply
store all augmented examples before training; i.e., 633 gigabytes
of data on disk.

C. Training

We train the detector on the augmented training subset of
222k via the Adam optimizer, an variation of stochastic gradient
descent. We leave the hyperparameters of Adam to their default
values: i.e., a learning rate of 10−3, decay rates of β1 = 0.9
and β2 = 0.999, and a denominator offset of ε̂ = 10−7 [45].

We formulate the flight call detection task as binary
classification and choose binary cross-entropy as objective
function. Similarly to [46], we regularize this objective function
by penalizing the L2 norm of the synaptic weights in the
penultimate layer, with a multiplicative factor set to 10−3.

To implement the training procedure efficiently, we use
the pescador Python package, which offers utility functions
for shuffling and streaming heterogeneous data2. For each of

2Documentation of pescador: https://pescador.readthedocs.io

the 299 segments and the 31 augmentations, we construct a
“stream”: that is, an infinite generator which yields positive and
negative examples with equal probability. At the beginning of
each epoch, pescador draws one augmentation uniformly at
random (out of 31) for each of the 299 segments. We then
define batches by “multiplexing” the streams corresponding
to these 299 segment–augmentation pairs, so that each stream
contributes one and only one example per batch. In this way,
each batch reflects the acoustical diversity of the full-night
dataset. We repeat the process 100 times per epoch, thus
yielding 29.9k examples per epoch in total. Note that this
number roughly corresponds to the number of flight calls in
the training set.

On every epoch, we draw an augmentation for each of the
available segments and multiplex the corresponding streamers.
Thus, different epochs contain the same original audio material
but vary stochastically in terms of augmentations. Furthermore,
we guarantee that the spatiotemporal density of negatives
matches that of positives. We run Adam for 24 hours on
a GPU and checkpoint the model with lowest validation loss.

D. Evaluation

After training on 222k, we evaluate the detector on 296h.
Note that 222k and 296h arise from the same recording
locations but are disjoint in time. Furthermore, 222k was
constructed from a single night of data acquisition whereas
296h is more diverse, as it involves recordings between August
and November 2015.

We run BVD on each of the annotated two-hour segments in
296h according to a hop duration of 50 ms, thus producing an
event detection function at a rate of 20 Hz. We select local peaks
in the detection function above some fixed absolute threshold
τ ∈]0,1[. Then, we compare the set of detected peaks to the
human-provided checklist of flight call timestamps. We define
matching pairs between detected events and a reference event if
their timestamps are within 500 ms of each other. We optimize
the cardinality of this matching while guaranteeing that each
reference peak matches a single detected peak at most, and vice
versa. For this purpose, we solve a bipartite graph matching
problem via the match_events function of the mir_eval
Python package [47]. This operation yields a number of true
positives, false positives, and false negatives. We convert these
integer counts into information retrieval metrics: precision,
recall, and F1-score. We repeat the process for sweeping values
of the threshold parameter τ to derive a precision–recall curve.

E. Results

Figure 5 summarizes out results. First, we evaluate a flight
call detection system that does not rely on deep learning, but
purely on feature engineering. Under the names of “Tseep” and
“Thrush”, this system has long served in research on the flight
calls of sparrows, warblers and thrushes respectively [20]. We
re-implement these detectors in Python, with help from the
original authors. At the optimal threshold, the F1-score is equal
to 3%. As shown on Figure 5 (curve A), this low F1-score can
be explained by a low precision; that is, a large proportion of
false positives in comparison with true positives.
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Figure 5: Precision–recall curves of BirdVoxDetect (BVD)
for the 296h dataset. Each dot on the curve denotes a different
value of the BVD threshold.

Then, we evaluate a version of the detector without PCEN
nor data augmentation, by training the same CNN architecture
on batch-normalized log-mel-spectrograms from 222k. At the
optimal threshold, we obtain an F1-score of 5%: see curve B
in Figure 5. Artificial data augmentation, as described above,
brings the F1-score of the deep convolutional network to 15%
at the optimal threshold: see curve C. Replacing the log-
mel-spectrogram representation by a PCEN-gram considerably
improves F1-score up to 52% at the optimal threshold: see
curve D. However, contrary to a previous publication [29],
introducing context adaptation in the convolutional neural
network (CA-CNN) is not beneficial across the whole precision–
recall diagram: see curve E. Our CA-CNN relies on long-
term summary statistics of the PCEN-gram as descriptors of
“context”, i.e., of the spectral envelope of background noise.
These descriptors are passed to a small auxiliary branch of the
deep learning pipeline, whose output can be interpreted as a
slowly time-varying threshold. This kind of context adaptation
proved beneficial for generalizing across recording conditions
between dusk and dawn in the full-night dataset [29]. Yet, the
comparison of curves D and E in Figure 5 shows that the
same approach does not allow generalization across recording
conditions between September and other months in the 296h
dataset. There is no logical contradiction between the previous
finding and the current one: together, they suggest that the
hourly scale (full-night) and the monthly scale (full-season)
induce different kinds of acoustical nonstationarities. With
these two evaluations in mind, we keep model D as our flight
call detector of choice and release it publicly as part of the
BVD v1.0 open-source package.

We also evaluate BirdNET [48] on BirdVox-296h. At the
optimal threshold, we report a precision of 0.6%, a recall of

1.3%, and an F-score of 0.006%. This poor result is consistent
with a previous publication [29], which evaluated a state-of-
the-art birdsong detector [49] and found it to perform near
the chance level on species-agnostic flight call detection. It
simply shows that birdsong and flight calls are different kinds
of acoustic signals, as we have already noted in the introduction.
However, we should note that the BirdNET project is evolving
rapidly since its original publication and that future versions
of the software may perform better than the first published
version on the task of flight call detection and classification3.

V. SPECIES CLASSIFICATION

This section presents our deep learning system for multilevel
taxonomic avian flight call classification. Similarly to the
detector in the previous section, the classifier is a CNN taking
a 120-band PCEN-gram as its input. Because the detector and
classifier share a common input representation, we may pass
positive clips from the detector to the classifier directly in the
PCEN-gram domain instead of the waveform domain, without
having to recompute PCEN. In the functional diagram of Figure
1, the classifier corresponds to block (f).

A. Multitask taxonomical neural network

The architecture of our multilevel taxonomic classifier corre-
sponds to a non-hierarchical multitask model (abbreviated Non-
H. MT) presented in prior species classification research [50].
Although this prior publication reported that a hierarchically
structured classifier (TaxoNet) achieved the best classification
performance on its evaluation dataset, we were not able to
replicate the results with the new data and now find that the
non-hierarchical multitask model performs best.

The architecture of the classifier is similar to that of BVD,
as it also composes three convolutional layers and two fully
connected layers, with no bias weights for any layer. Before the
first layer, we perform batch normalization on the PCEN-gram
to stabilize and accelerate training [51]. The three convolutional
layers are identical in shape to those of BVD, except that their
numbers of kernels per layer are 24, 48, and 48 respectively.

The first fully connected layer contains 64 hidden units,
followed by a ReLU. Lastly, the second fully connected layer
maps those 64 hidden units to 15 output units followed by
a softmax nonlinearity corresponding to 14 species and an
“other” (i.e. out-of-vocabulary) species class. The second fully
connected layer also maps its 64 hidden units to 5 output units
followed by a softmax nonlinearity corresponding to 4 families
and an ”other” family class, and single output unit followed
by a sigmoid nonlinearity corresponding to Passeriformes or
non-Passeriformes (order-level classification).

We note that there are no guarantees that the outputs of the
model are hierarchically consistent. For example, the classifier
can simultaneously predict Cardinalidae at the family level
and White-throated sparrow at the species level even though
white-throated sparrows are not cardinals. Since we do not
have any guarantee of hierarchically consistency, we propose
a method for selecting candidates which have this guarantee.

3Official website of BirdNET: https://birdnet.cornell.edu/
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Hierarchical consistency could be incorporated directly in the
model by modeling joint class likelihoods instead of marginal
class likelihoods, but we leave this question as future work.

B. Hierarchical consistency

A simple decision rule for automatic classification is to select
the class with the largest output probability for each level in
our taxonomy. However, this does not ensure that these class
candidates are hierarchically consistent. In order to improve the
robustness of the multilevel taxonomic classifier, we propose
a method to ensure (top-down) hierarchical consistency for
predictions. We define a procedure that, from a set of output
probabilities for each taxon, produces class candidates that
are hierarchically consistent. First, we select the class for the
coarsest taxon (order, in this case) that has the largest output
probability. If this probability is greater than a threshold of 0.5,
we select this class as the taxon’s candidate; otherwise, we
select “other”. Then, for each subsequent taxon, we select the
class with the largest output probability that is also a taxonomic
child of the previous taxon’s candidate. If this probability is
greater than a threshold of 0.5, then we select this class for this
taxon’s candidate; otherwise, we select “other”. Once we obtain
a candidate for the finest taxon, we complete the collection of
class candidates for each taxon.

C. Training

To train and validate the classifier, we present an updated
version of the BirdVox American Northeast Avian Flight Call
Classification (BirdVox-ANAFCC, or ANAFCC for short)
Dataset [50], which we refer to as ANAFCC-v2 4 . This
dataset aggregates isolated flight calls from different data
sources: BirdVox-full-night, CLO-43SD, CLO-SWTH, CLO-
WTSP [26], the Macaulay Library [52], Xeno-Canto [53], and
Old Bird [54]5. More information on ANAFCC-v2 is made
available as supplementary material.

We train the model to minimize a uniformly weighted
summation of categorical cross-entropy for the species-level
outputs, categorical cross-entropy for the family-level outputs,
and binary cross-entropy loss for the order-level output. This
multitask training method presented in prior species classifica-
tion research [50] improves species classification performance
over species-only training. We train the models using the Adam
optimizer with initial learning rate set to 10−4. We also apply
L2 regularization on the synaptic weights of the linear layers,
using a multiplicative factor of 10−5 for the first linear layer
and using a factor of (Ck/43) ·10−5 for each output layer for
level k of the taxonomy with Ck classes. The output layer
regularization factor is chosen so that each synaptic weight for
the output layer is the same as in the original method [12].

D. Evaluation

To evaluate the flight call classifier, we present a new
version of the BirdVox 14 Species Dataset [50], which we
refer to as 14SD-v1.1. A derivative of 296h, 14SD comprises

4Download BirdVox-ANAFCC-v2: https://zenodo.org/records/5950000
5Official website of Old Bird, Inc.: https://www.oldbird.org
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Figure 6: Evaluation of hierarchical consistency on the
14SD-v1.1 dataset, a derivative of BirdVox-296h. Species-
specific F1-scores are ordered (downward) and grouped (in
blue brackets) by family. The row “other” represents the F1-
score of out-of-vocabulary examples while the row “overall”
corresponds to a micro-averaged F1-score across all examples
in the dataset.

roughly 14k isolated clips of flight calls alongside their human
annotations. In comparison with the previous version (v1.0),
the updated version (v1.1) addresses some edge cases regarding
the alignment of clip boundaries. We evaluate the predictions
with vs. without enforcing hierarchical consistency, based on
class-wise and overall F1 score, as shown in Figure 6.

E. Results

We observe that hierarchical consistency (HC) across taxo-
nomical orders is most often beneficial to species classification.
Figure 6 shows that the F1 score with HC (green) is above the
F1 score without HC (red) on all but three species. Moreover,
HC is not only beneficial to species in the taxonomy, but also to
correct classification of the out-of-taxonomy sounds (“other”).
Overall, HC brings the average F1 score of the species classifier
from 66.71% to 72.82%.

Figure 7 shows the confusion matrix between predicted
classes and the ground truth in BirdVox-14SD-1.1. We observe
that this matrix has a block structure: most of the off-diagonal
confusions level correspond to different species of the same
taxonomical family. Figure 8 summarizes the effect of HC on
species classification. We observe that flight calls within the
taxonomy are confused with the “other” class more often, as
indicated in the rightmost column. Such confusions induced
by HC suggest that the family classifier tends to produce
comparably more false negatives, an effect worthy of future
investigation. Despite this shortcoming, HC generally has a net
positive effect on the confusion matrix of the species classifier.
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VI. APPLICATION TO BIRD MIGRATION MONITORING

The sections above have focused on the evaluation of
individual components in BirdVoxDetect: sensor fault detection,
flight call detection, and species classification. It remains to
be seen how the system operates once these elements are
integrated within a given application.

A. Terabyte-scale deployment

We run BirdVoxDetect on all recordings from the BirdVox-
full-season dataset. This dataset contains 6,671 hours of audio;
which, given a hop length of τ =1.5 ms, translates to

6671×3600
15 ·10−3 ≈ 1.6 ·109 (4)

instances of Fast Fourier Transform (FFT). The convolutional
neural network in BirdVoxDetect predicts event detection
function at a rate of 20 Hz, hence a total of 6671×3600×20≈
4.8 ·108 predictions. Furthermore, the number of synapses in
the first layer of BirdVoxDetect is equal to 128×104×24 ≈
3.2 · 106. Because each synapse is encoded over 32 bits, or
four bytes, the throughput of our computation is at least
(3.2 · 106)× 4× (4.8 · 108) ≈ 6.1 · 1015 bytes; i.e., around six
petabytes. Lastly, the output contains 6671×3600×20×4 ≈
1.921 ·109 bytes; i.e., around two gigabytes. These numbers
demonstrate the need for parallelization over hundreds of cores.
For this purpose, we use the high-performance computing
facility of New York University6.

B. Estimation of peak migration timing

We detect 233,124 flight calls on the full-season dataset.
We aggregate the flight call counts of BirdVoxDetect across
four taxonomical families: American Sparrows (Passerellidae),
Cardinals (Cardinalidae), Thrushes (Turdidae), and New World
Warblers (Parulidae). For each night in the full-season dataset,
we estimate the call rate of each family at each recording
location by dividing the flight call count by the duration of the
available audio data, excluding sensor faults (see Section III).
Furthermore, we average the local estimates of call rate across
all active sensors in the bioacoustic sensor network on any
given night. For each family, we use the R package “mgcv” to
fit the resulting time series with a generalized additive model
(GAM). We draw 10k independent examples from the GAM’s
so as to generate independent migration trajectories for each
family and derive 95% confidence interval for the timing of
peak migration.

To corroborate our findings, we compare them with a
different modality of ecological observation: namely, checklists
from the eBird citizen science platform [55]. We download the
eBird Basic Database (February 2021 version) and use the “auk”
R package to filter it in space (Tompkins County, New York,
USA), and in time (from 1 August to 30 November, 2015).
We calculate daily reporting frequency by dividing number
of complete checklists in which the focal taxon was reported
by total number of complete checklists submitted on that day.
Similarly to our acoustics-based model, we fit a GAM on the

6Link: https://sites.google.com/nyu.edu/nyu-hpc
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time series of daily reporting frequency for each family, draw
10k independent examples, and derive 95% confidence intervals
for timing of peak migration. We refer to [36] for more details
on our procedure of eBird data collection and GAM fitting.

Figure 9 (c) confirms that the temporal profile of flight call
activity, as estimated via BirdVoxDetect, is consistent with
current knowledge about migration ecology. In particular, the
relatively late timing of Passerellidae in the fall migration
season appears both on acoustic data and on citizen science
data. Yet, the two modalities are not perfectly aligned. This
is partly due to the lower spatial coverage of the bioacoustic
sensor network and to technical limitations throughout the
computational pipeline, but also to the fact that eBird captures
diurnal in-habitat observations whereas BirdVoxDetect captures
nocturnal flight calls. Still, the results show that our proposed
end-to-end pipeline opens the door to acoustic-based migration
monitoring at an unprecedented scale. Acoustic monitoring
complements existing monitoring approaches such as citizen
science and radar-based monitoring, which can lead to more
robust overall migration monitoring [36].

VII. CONCLUSION

The emerging field of machine listening for bird migration
monitoring has the potential to elucidate some long-lasting
questions in avian population ecology and inform conservation
science efforts. In this paper, we have presented BirdVoxDetect,
a full-fledged system for the detection and classification of flight
calls from a bioacoustic sensor network. We have integrated
state-of-the-art components in signal processing and machine
learning, such as per-channel energy normalization (PCEN)
and deep convolutional neural networks (CNN). We have also
developed novel elements such as a sensor fault detector trained
with active learning and a rule-based algorithm for “hierarchical
consistency” in classifying living organisms. Our paper has
shown that, once all elements are composed, BirdVoxDetect
produces a daily log of flight call counts that, in the case of the
most vocal species, align with observations on the ground. We
have released BirdVoxDetect as open-source software. Since
this release, a community of flight call enthusiasts has adopted
these tools and is currently using them to ease the process of
nocturnal bird migration monitoring.

Beyond the technical aspects of BirdVoxDetect, it is worth
stressing that the problem of flight call monitoring encompasses
eleven orders of magnitude in terms of time scales: from a
few microseconds for a digital audio sample up to millions of
seconds for a full season. Figure 10 illustrates some of these
time scales. Meanwhile, prior research on machine listening for
the detection and classification of flight calls was carried out
over four or five orders of magnitude: that is, up to one to ten
seconds of time scale at most. With this paper, we aim to fill
this gap in research by providing large-scale open audio datasets
with expert annotation: BirdVox-full-season, BirdVox-296h, and
BirdVox-14SD-v1.1. These datasets enable the development of
a new generation of computational tools for species-specific
monitoring of bird migration at large spatiotemporal scales.
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Figure 10: Timescales of bird migration monitoring with bioacoustic sensor networks. Blue triangles represent natural time
scales, whereas black vertical lines represent our design choices.
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I. DATASETS

A. Deployment of a bioacoustic sensor network

In 2015, we placed nine bioacoustic sensors in residential
areas surrounding the town of Ithaca, NY, USA. All sensors
in our deployment setting correspond to the same hardware
specification: namely, the Recording and Observing Bird
Identification Node (ROBIN) developed by the Cornell Lab
of Ornithology. Each ROBIN comprises a Knowles EK23132
microphone element, an analog-to-digital converter, a Raspberry
Pi Model B single-board computer, a solid-state memory card,
and a battery. The microphone element is omnidirectional and
has an approximately flat sensitivity of 53±5 dB between 2
and 10 kHz; that is, the frequency range of flight calls [1]. The
microphone element sits at the bottom of a small horn-shaped
enclosure oriented upwards. In turn, this enclosure sits inside
a hard plastic housing, whose purpose is to reject lateral sound
sources, such as insects or car engines1.

The analog-to-digital converter encodes the monophonic
signal recorded by the microphone into a linear pulse-code
modulation sequence at a sample rate of 24 kHz and a sample
depth of 16 bits. The single-board computer streams this
sequence under the form of 20-second buffers, which are
progressively appended to a lossless audio file in FLAC format.
This acquisition procedure is repeated every night from dawn
to dusk between August 3rd, 2015 and December 8th, 2015.
This corresponds to roughly 1,500 hours of audio per sensor,
and thus 13,500 hours for the entire sensor network. However,
due to intermittent failures of sensing hardware, only 6,671
hours were successfully retrieved.

Figure 2 presents the spatial distribution of sensors in
Tompkins County, NY, USA. We observe that the availability of
audio data varies starkly across sensor locations between 107
and 1,356 hours, with a median of 834 hours. Furthermore, the
sensor network does not follow a simple geographical pattern,
such as a uniform linear array or a rectangular grid.

B. Expert annotation of flight calls

For this purpose, we divide all recordings in the full-season
dataset into two-hour segments. The starting times of these
segments are expressed in Coordinated Universal Time (UTC)
and range from 6 p.m. to 6 a.m. in increments of two hours.

1For more information on the design of bioacoustic sensors for bird migration
monitoring, visit: http://www.oldbird.org

The local time in Ithaca, NY, corresponds to Eastern Standard
Time (UTC-05:00) in winter and Eastern Daylight Time (UTC-
04:00) in summer. In addition, for each nocturnal recording in
full-season, we extract the audio segment corresponding to the
two hours preceding sunrise. To determine the time of sunrise
on any given day, we rely on open data from Ithaca Tompkins
Regional Airport (KITH).

To form a representative evaluation dataset for BirdVoxDe-
tect, we select 150 two-hour segments at random within the
full season. Among them, 100 segments are synchronized to
the hours of local time, ranging between 6 p.m. and 6 a.m,
while the remaining 50 correspond to the two hours preceding
sunrise. We assign a larger relative proportion to the latter
because the density of flight calls is highest shortly before
dawn [2].

In 2018 and 2019, an expert ornithologist (AF of the authors)
annotated each of these 150 segments by means of the Raven
Pro sound analysis software2. The annotation task consisted in
pinpointing and labeling every flight call in the time–frequency
domain. It took 570 hours to complete this first round of
annotation. A second round of annotation, conducted in 2021,
revealed that two segments were not admissible for nocturnal
flight call detection because they had mistakenly been extracted
after sunrise. After excluding these two segments, we obtained
148 segments, corresponding to 296 hours of audio.

The resulting annotation files comprise over 100 distinct
sound categories. We filter out categories corresponding to
non-animal sounds (e.g., alarm, rain), invertebrate sounds
(katydid), non-bird sounds (frog, coyote), and non-passeriforme
bird sounds (Caspian Tern, Green Heron). Then, we focus
on a list of 14 birds of interest: four American sparrows, one
cardinal, two thrushes, and seven New World warblers (see
Figure 1). Outside of these four families, we aggregate all flight
calls from Passeriformes under a common catch-all category:
“other Passeriformes”, e.g., American Goldfinch, Baltimore
Oriole, Golden-crowned Kinglet. Furthermore, we build catch-
all categories for each of the four passerine families of interest.
For example, “other American Sparrows” includes eight species,
e.g., Field Sparrow. Likewise, “other Cardinals” includes three
species, e.g., Indigo Bunting; “other Thrushes” includes four
species, e.g., Veery; and “other New World Warblers” includes
16 species, e.g., Magnolia Warbler.

2Official website of Raven: https://ravensoundsoftware.com.



TRANSACTIONS IN AUDIO, SPEECH, AND LANGUAGE PROCESSING, SUBMITTED JANUARY 2024, REVISED JUNE–AUGUST 2024. ACCEPTED VERSION 2

Passerines
(Passeriformes)

American Tree Sparrow

Chipping Sparrow

Savannah Sparrow

White-throated Sparrow

Rose-breasted Grosbeak

Gray-cheeked Thrush

Swainson’s Thrush

American Redstart

Bay-breasted Warbler

Black-throated Blue Warbler

Canada Warbler

Common Yellowthroat

Mourning Warbler

Ovenbird

American
Sparrows
(Passerellidae)

Cardinals
(Cardinalidae)

Thrushes
(Turdidae)

New World 
Warblers
(Parulidae)

ORDER FAMILY SPECIES

Figure 1: Taxonomy of labels in the 296h dataset. The
coarse, medium, and fine level of the taxonomy correspond
to order, family, and species respectively. Species within the
same bracket belong to the same family of the Passeriformes
order.

Due to the varying distance between the sensor and the
source, some of the flight calls are too faint to be confidently
labeled in terms of species, even to an expert ear. However,
they may be identifiable at a coarser taxonomic level. In
those instances, automatic species classifiers can only be
evaluated against the human ground truth up to a certain level
of granularity [3]. For this reason, we release three variants of
the annotation, respectively denoting order, family, and species.

We name BirdVox-296h (or “296h” for short) resulting subset
of BirdVox-full-season. For the sake of research reproducibility,
we upload BirdVox-296h to Zenodo3. To this date, BirdVox-
296h is the largest open dataset of avian flight calls from an
acoustic sensor network with expert species annotation.

C. Data curation: BirdVox-full-night and 222k datasets

We train BirdVoxDetect, or BVD for short, on a new dataset
of 222k audio clips for species-agnostic flight call detection,
which is derived from the BirdVox-full-night dataset. BirdVox-
full-night (or “full-night” for short) comprises 62 hours of
audio in total, as recorded on the night of September 23rd,
2017 by six different sensors. This night corresponds to a time
of peak migration over the acoustic sensor network, as made
evident by radar imagery [4]. In 2017, an expert ornithologist
(AF of the authors) spent 102 hours annotating each of these
six recordings and found 35k flight calls from passeriformes.

3Data repository of BirdVox-296h: https://zenodo.org/record/4603643

To make BirdVox-222k (or “222k” for short), we extract
35k audio clips from full-night, each lasting two seconds
and centered around one annotated flight call. We group
these 35k audio clips into 352 segments, each of them of
size 100, according to their spatiotemporal contiguity in the
sensor network. Then, we run a pretrained flight call detector
on BirdVox-full-night: this detector combines spherical k-
means (SKM) and a support vector machine (SVM). Two
previous studies [5], [2] have shown that this detector achieves
competitive flight call detection results in the “shallow learning”
category, as opposed to deep learning. We use the false alarms
of this shallow detector as a source of challenging negatives
for the spatiotemporal region corresponding to each segment.
By design, the negative-to-positive ratio varies between 1 and
9 depending on the segment, but is always integer.

Furthermore, we count the spatiotemporal temporal distribu-
tion of flight calls per sensor location and per two-hour segment
within the full night. Following this coarse spatiotemporal
estimate, we extract audio clips at random within the time
regions containing no flight calls. Combining the 35k positive
clips (centered around one flight call) and the 187k negative
clips (containing no flight call) yields the 222k dataset.

We divide 222k into a training set and a validation set,
following a 85% / 15% random partition. Contrary to prior
research on full-night, we do not perform “leave-one-sensor-
out” cross-validation but a simple shuffle split without regard
for sensor location. Indeed, in this article, we are not primarily
interested in the generalization ability of BVD from one sensor
to another but from one night of audio acquisition (full-night)
to several months (full-season). The training subset of 222k
amounts to 299 segments or 189k samples.

D. Data curation: BirdVox-ANAFCC-v2 dataset

An expert ornithologist (AF of the authors) verified and
re-annotated each clip and aligned each flight call precisely
at the center of its corresponding clip. We map the resulting
annotations onto our taxonomy as shown in Figure 1. This
new version of ANAFCC, v2.0, contains additional flight calls
from full-night which did not appear in v1.0 release4.

In order to better match our heterogeneous development set
to data found in realistic acoustic monitoring scenarios, we
create training and validation subsets by finding a suitable
partition of the ANAFCC-v2 data sources that is appropriately
sized and have species distributions similar to that of the 296h
dataset. To do this, we first pose the task of allocating data
sources to the validation set as a knapsack problem [6] where
we treat individual data sources as items. In the case of full-
night we also treat clips from different recording units as
separate sources. Each item has a weight corresponding to the
number of annotated audio clips from the data source contains.
We set the knapsack size according to our desired validation
set size and the find the optimal knapsack using the dynamic
programming algorithm implemented in Google OR-Tools [7].
We obtain optimal knapsacks for knapsack sizes corresponding
to between 15–30% of the total number of examples, giving
us a candidate set of appropriately sized validation subsets.

4Download BirdVox-ANAFCC-v2: https://zenodo.org/records/5950000



TRANSACTIONS IN AUDIO, SPEECH, AND LANGUAGE PROCESSING, SUBMITTED JANUARY 2024, REVISED JUNE–AUGUST 2024. ACCEPTED VERSION 3

Given the data sources of a validation subset, we map all
to the corresponding training subset. Finally, from this set of
appropriately sized candidate partitions, we select the partition
where the species distribution of both subsets are most similar
to that of 296h. More precisely, we choose the partition with
the lowest average Jensen-Shannon divergence between the
species distributions of the split subsets and 296h.

II. SUPPLEMENTARY FIGURES

Figure 1 shows the taxonomy of labels in the 296h dataset.
Figure 2 shows a map of sensor locations in the full-season
dataset, with total duration of available audio per sensor. Figure
3 shows a calendar of recordings with uptime and audible
sensor faults, as predicted by BirdVoxDetect. Figure 4 shows
a functional diagram of our proposed convolutional neural
network (convnet) for flight call detection.
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Figure 2: Map of sensor locations in the full-season dataset. The map shows the surroundings of Ithaca, NY, USA, over
an area of roughly 1.000 km2, i.e. 40 km from West to East and 25 km from North to South. The area of each orange dot is
proportional to the total duration of available audio in the corresponding sensor.
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Figure 3: Calendar of recordings in the full-season dataset, organized by month (x-axis) and by uptime (y-axis). Every
red (resp. green) rectangle represents a faulty (resp. non-faulty) recording, as determined by our random forest classifier. We
observe that sensor faults affect all eight of the nine sensors intermittently and tend to span across consecutive nights.
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Figure 4: Functional diagram of the convolutional neural network for flight call detection in BirdVoxDetect. Grey tensors
represent intermediate computations and blue regions represent receptive fields of convolutional layers.


