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Abstract
We briefly summarize more than fifteen years of intense research in 2D materials (2DM)-based
spintronics, which has led to an in-depth understanding of fundamental spin transport
mechanisms, novel functionalities in magnetic tunnel junctions and spin orbit torque devices, and
the formidable and unprecedented capability of proximity effects to make graphene a spin active
material. Although the portfolio of functional 2DM-based devices and related heterostructures is
continuously increasing, we outline key technological challenges that are still impeding practical
spintronic applications in spin-logics and non-volatile memory technologies. We conclude by
mentioning current and future directions which will maintain the momentum of the field of
ultracompact spintronics based on 2DM and van der Waals heterostructures.

1. Progress over more than a decade

In 2007, Tombros et al [1] reported the first spin
valve behavior and nonlocal spin transport measure-
ment in graphene supported onto silicon oxide, with
an estimated spin diffusion length of about 2 µm
at room temperature. From such finding, it became
clear that graphene was the ideal material to convey
spin information over ultralong distances at techno-
logically relevant temperatures [2, 3]. A roadmap was
established in 2015 [4] pointing towards the needs
to understand the origin and nature of spin trans-
port and relaxation, the use of proximity effect to
make graphene magnetic or to manipulate the spin
degree of freedom by using strong spin–orbit coup-
ling materials, as well as to design functional devices
such as spin field effect transistors and switches,
spin sensors, or spin-active components in memory
technologies.

After years of research and progress, the found-
ations of spin transport in 2DM and van der Waals
heterostructures have been established, including
the role of internal degrees of freedom such as
pseudospin in spin relaxation [5–8], or the universal

spin diffusion length in polycrystalline graphene of
varying grain morphologies [9, 10]. Importantly, as
anticipated by Yang and co-workers [11, 12], the role
of proximity effects in modifying the spin-dependent
properties of graphene has become cornerstone. As
a matter of fact, spin-transport measurements in
bilayer graphene have evidenced a strong spin-charge
coupling due to a large induced exchange interac-
tion by the proximity of an interlayer antiferromag-
net (CrSBr) [13], with exchange splitting in order of
20 meV (corresponding to exchanging field in order
of 170 Tesla), while the magnetized graphene persists
up to the Néel temperature of CrSBr (TN ∼ 132 K).
Progress has beenmade on growing high temperature
2D magnets with scalable method such as molecular
beam epitaxy technique, but still efforts are required
to achieve high-quality and large scale materials [14–
16]. Heterostructures of graphene and chromium tri-
halide magnetic insulators (CrI3, CrBr3, and CrCl3)
have been found tomanifest unprecedented gate tun-
ability. The graphene becomes highly hole-doped due
to charge transfer from the nearbymagnetic insulator
which can bemodulated upon switching themagnetic
states of the nearest CrI3 layers [17].
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On the other hand, interfacing graphene with
strong spin–orbit coupling materials such as trans-
ition metal dichalcogenides has been shown not only
to manifest in giant spin transport anisotropy, related
to peculiar spin textures induced by proximity effects
[18–20], but also provides the necessary (room tem-
perature) charge-to-spin conversion efficiency for
generating pure spin currents in the spin Hall effect
regime [21–25] or demonstration of spin field effect
transistor [26, 27] and multifunctional spin logic
gates [28]. The large quantity of 2DMs allows for
an almost infinite number of possible stacking and
combinations, also harnessing the formation ofmoiré
superlattices and the knob of twist angle as a resource
to fine-tune spin–orbit coupling parameters for a
desired spin device functionality [29–31].

The search for suited 2DMs combination to
enhance spin transfer capability, as for instance
manifested through the spin torque effect, has also
experienced substantial progress. On the theoretical
side, advances have revealed novel features unique
to 2DMs [32–35], whereas experiments have star-
ted to produce significant torque efficiencies, which
will serve as basis for further development [36–39].
Layered materials such as WTe2 [40–43] or TaIrTe4
[44, 45] with reduced symmetries are also generating
unconventional spin–orbit torques.

2. Key challenges

A perspective of the potential advantages brought
by graphene, 2DM and related van der Waals het-
erostructures to improve non-volatile magnetic
random-access memories (MRAMs), such as spin-
transfer torque MRAM and next-generation spin–
orbit torque MRAM was published in 2022 [46].
MRAM is emerging for enabling low-power tech-
nologies, which are expected to spread over large
markets from embedded memories to the Internet of
Things.

Aspects such as the fundamental properties of
atomically smooth interfaces, the reduced material
intermixing, the crystal symmetries and the prox-
imity effects were described as pivotal drivers for
disruptive MRAM at advanced technology nodes.
However, improving the technology readiness level is
facingmany technical challenges, some concerning all
applications using 2DMs. First, despite IMEC’s suc-
cessful co-integration of large-scale WS2 (two mono-
layer thick) with magnetic materials (in a MRAM
stack) in CMOS-compatible fab environments [46],
optimizing engineering processes remains time-
consuming and resources-intensive tasks. This is not
easily affordable, evenwithin the frame of a large scale
project such as the Graphene Flagship.

Second, the diversity of potential 2DMs to be
implemented is so large that a preliminary bench-
marking is necessary to streamline material develop-
ments efforts by focusing on the most promising can-
didates. This is crucial, for instance, in significantly
reducing the drive current required to switch a mag-
netic material within the MRAM stack. To achieve
this, there is a demand for intensive, realistic simula-
tions to identify the most suitable material assembly,
and experimental verification on a broad set of para-
meters (compounds, thicknesses, thermal budgets) is
necessary.

On the technology side, the large-scale synthesis
and transfer of 2DMs remain two hurdles for fur-
ther progress. As many advances have been realized
in the mastering of catalytic vapor deposition growth
techniques, the transfer from metallic to insulating
or magnetic substrates comprise serious technical
difficulties. The preservation of the integrity of as-
grownmaterials during the transfer process is crucial.
Measurements performed on WS2-based stack, were
found to maintain the MRAM operation. However,
the device did not display a significant gain in switch-
ing while the torque effect could not be detected [46].

3. Next steps and future directions

Beyond MRAM, other incipient applications are
being explored [30]. Spin logic and multiplexer
devices using graphene have been explored, using
drift currents, the gate dependence of spin life-
times or spin accumulation. Spin communication
and interconnects over long distances is also pos-
sible, circumventing the capacitive coupling of the
charge-based counterparts, a challenge being also
tackled with the transfer of magnons in 2D magnets
[47–49]. Combining functionalities of 2D mater-
ials, can open the way of novel magneto-optic
devices, for instance by leveraging excitonic trans-
itions in 2D (magnetic) semiconductors [50–53], as
demonstrated in graphene-transition dichalcogen-
ides heterostructures [54, 55].

Among the vast class of novel magnetic mater-
ials that have emerged during recent years [56],
one notes the discovery of altermagnets [57, 58],
which are materials (such as RuO2 and MnTe) with
collinear antiferromagnetic order possessing no net
magnetization, but exhibiting spin split bands with
alternating spin polarization both in real and recip-
rocal spaces. These materials (especially their two-
dimensional forms [58]) enlarge the portfolio of
enabling structures that could be combined with
other 2DMs and help develop disruptive technologies
of ultralow power and fast magnetization switching.
Similarly, multiferroic van derWaals heterostructures
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(such as FeCl2/Sc2CO2) present interesting perspect-
ive for novel types of nonvolatile electrically switch-
able spintronic devices [59–61].

On the theoretical side, to accelerate the search
for upper performance of given metrics (such as the
spin–orbit torque efficiency), more modelling and
simulation efforts are required. Such efforts should be
supported by artificial intelligence techniques to elab-
orate automatically structural and energetic models
of the many possible heterostructures under consid-
eration. Furthermore, the recourse to methodolo-
gies able to cope with interface disorder and struc-
tural imperfections are mostly desired to describe
the reality of real materials. The building of mod-
els shall retain the ab-initio accuracy while reducing
computational costs through machine learning tech-
niques, whereas linear scaling transport methodolo-
gies provide scaling capability of simulation of multi-
million atomic (and disordered) structures [62].

Other directions which are emerging include
topological spintronics, which finds its origin in the
use of novel resources such as the orbital Hall effect
and related orbitronics effects [34, 63, 64], nontrivial
spin textures [65, 66] and the use of 2D magnetic
materials to design ultra-compact spin active build-
ing blocks [30, 67, 68], which could further improve
performances at single device level.

The feedback between experimental observations
and advanced modelling is fundamental to progress
the field and eventually demonstrate superior per-
formances of 2DMs and van der Waals heterostruc-
tures in practical spintronic devices. This will be key
to further stimulate new efforts in technology plat-
forms or in large scale industries, already engaged into
non-volatile memory technology business.
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