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Value-at-Risk

Stéphane Crépey∗ Noufel Frikha† Azar Louzi‡ Jonathan Spence§ ¶

August 13, 2024

Abstract

Crépey, Frikha, and Louzi (2023) introduced a multilevel stochastic approximation scheme
to compute the value-at-risk of a financial loss that is only simulatable by Monte Carlo. The
optimal complexity of the scheme is in O(ε−

5
2 ), ε > 0 being a prescribed accuracy, which

is suboptimal when compared to the canonical multilevel Monte Carlo performance. This
suboptimality stems from the discontinuity of the Heaviside function involved in the biased
stochastic gradient that is recursively evaluated to derive the value-at-risk. To mitigate this
issue, this paper proposes and analyzes a multilevel stochastic approximation algorithm that
adaptively selects the number of inner samples at each level, and proves that its optimal
complexity is in O(ε−2 |ln ε|

5
2 ). Our theoretical analysis is exemplified through numerical

experiments.

Keywords. stochastic approximation, value-at-risk, nested Monte Carlo, multilevel Monte
Carlo, adaptive Monte Carlo.

MSC. 65C05, 62L20, 62G32, 91Gxx.

Introduction

The value-at-risk (VaR) is the predominant regulatory risk metric in finance [6]. It stands for the
quantile, at some confidence level, of the loss on a portfolio. The probability that a loss exceeds
the VaR expresses the chances of occurrence of large portfolio losses. Evaluating a portfolio’s
VaR is thus paramount to assess its risk. However, a large class of financial portfolios can only
be valued by Monte Carlo. This introduces a bias in the loss estimation, thereby increasing
the complexity of VaR calculation. Determining a portfolio’s future VaR is thus regarded as a
challenging task.

Following the celebrated works on VaR convexification [32, 8, 4], a nascent line of research
has adopted a stochastic approximation (SA) viewpoint to estimate the VaR [4, 2, 3, 12, 9].
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Recent developments [5, 13, 14] have focused on the nested nature of the problem. Notably,
[5] proposes a nested SA (NSA) method that couples an outer SA scheme with an inner nested
Monte Carlo scheme to compute the VaR. It is shown in [13] that such a scheme runs optimally
in O(ε−3) time, ε > 0 being a prescribed accuracy. Meanwhile, subsequently to the wide success
of multilevel Monte Carlo (MLMC) methods [29, 30, 23, 15, 11], multilevel stochastic approxima-
tion (MLSA) algorithms [20, 16] have emerged as a means to accelerate biased SA schemes such
as NSA. While the latter injects biased nested simulations directly into an iterative SA scheme,
MLSA telescopes a sequence of correlated estimate pairs of lower and lower biases, reducing the
complexity by an order of magnitude. [13] leverages this multilevel acceleration [20] to reduce
the complexity of the VaR NSA scheme of [5] to O(ε−2−δ), 1

2 ≤ δ < 1 being a small number
governed by the integrability degree of the loss. They also identify a parametrization for their
MLSA algorithm that achieves a complexity for the estimation of the expected shortfall (ES),
a risk measure closely linked to the VaR, in O(ε−2 |ln ε|2). [14] further obtains central limit
theorems for VaR and ES NSA and MLSA schemes, as well as their Polyak-Ruppert versions
that enjoy stronger numerical stability properties.

Albeit significant, the performance gain achieved by MLSA over NSA in estimating the
VaR [13] is to be nuanced. The canonical optimal complexity for multilevel techniques is of
order ε−2 [23, 20]. The suboptimality of the VaR MLSA scheme arises from its inner recursions
relying on the evaluation of a discontinuous gradient that is similar to a Heaviside (x 7→ 1x>0).
When a biased simulation of the loss falls on the opposite side of the discontinuity relative to
the exact target loss, the multilevel recursion incurs an O(1) update error. The accumulation of
these errors propagates to the final estimator, leading to the suboptimality.

Motivated by valuing a digital option with Heaviside payoff in a local volatility model, [22]
surveys multiple approaches to the above discontinuity issue in a multilevel Monte Carlo (MLMC)
context. Most techniques described therein emanate from the derivative sensitivity computation
literature and their common goal is to lower the variance of the paired estimators at each level
of the multilevel simulation. We retain three ideas that may apply to our nested SA setting.
Firstly, a natural idea is to smoothen the Heaviside payoff, but this only attains a complexity
in O(ε−2− 1

4 ) due to a large smoothing Lipschitz constant. Secondly, Malliavin calculus could be
used in conjunction with a cubic spline interpolation, which however propagates regression noises
to the final estimator. Finally, levelwise adaptive refinement of inner Monte Carlo samplings
seems to be a versatile technique that achieves the desired performance gain. It advocates to
dynamically refine the biased simulations in order to deal with the discontinuity issue [24, 28,
25]. We quickly overview this technique below.

An early example of adaptive nested Monte Carlo simulation can be traced back to [10],
who endeavor to accelerate the nested Monte Carlo root-finding algorithm of [27] for approxi-
mating the VaR. The latter algorithm combines an outer bisection method with an inner Monte
Carlo sampling of the probability that the loss exceed the VaR, and involves the evaluation of
a Heaviside centered at the VaR itself. Such a method proves however to be computationally
more demanding than the aforementioned SA approaches. The adaptive strategy of [10] involves
refining simulations for risk scenarios that are too close to the VaR, thereby reducing their prob-
ability of falling on the wrong side of the VaR threshold. Evaluating the Heaviside function at
the biased loss becomes almost equivalent to evaluating it at the true loss. [24] revisits the same
concept as [10], extending their method to the nested MLMC paradigm by adapting the number
of inner simulations at each level. [28] generalizes this methodology to a broader class of MLMC
problems.

[17] has led to similar adaptive ideas in a partial differential equation Monte Carlo approxi-
mation setting, where the Monte Carlo estimation error is assumed to be almost surely bounded.
Note that the terminology “adaptive MLMC” has also been employed in different meanings, for
adaptive path simulation [31] and importance sampling [7].
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In this article, we develop an adaptive refinement strategy to efficiently estimate the VaR
using the MLSA algorithm derived in [13]. As in MLMC, our adaptive strategy prioritizes
aligning the innovations with their target samplings relative to the discontinuities of the update
functions at the SA iterates. However, the strategy that was developed for Monte Carlo in
[24, 28] does not directly apply to our SA setting, since refining the innovations that drive an
SA scheme shifts their distributions relatively to the SA iterates, which themselves evolve from
one recursion to the next. On the one hand, this increases the risk of steering the iterates
away from the target VaR. On the other hand, it affects the original SA problem formulation,
rendering it possibly non-convex and possessing multiple stationary points. To address this issue,
we carefully incorporate a saturation factor, varying throughout the iterations, to prevent the
potential deviation of the iterates from the target VaR.

We apply our strategy to both NSA and MLSA paradigms and provide sharp L2(P)-controls.
For a prescribed accuracy ε > 0, their optimal complexities are shown to be O(ε−

5
2 |ln ε|

1
2 ) and

O(ε−2 |ln ε|
5
2 ) respectively, resulting in an order of magnitude ε

1
2 speed-up on their non-adaptive

counterparts, up to a logarithmic factor. The adaptive MLSA algorithm largely attains a com-
parable complexity order to the standard unbiased Robbins-Monro algorithm, thus demonstrat-
ing the narrowing of the performance gap between nested MLSA schemes and Robbins-Monro
schemes in the context of Heaviside-type update functions. Our numerical analyses, conducted
on a toy model as well as a more concrete financial setup, strongly support our theoretical find-
ings.

The paper is structured as follows. Section 1 recalls the problem and main results in [13]
regarding the estimation of the VaR using MLSA. Section 2 develops an adaptive refinement
strategy to enhance the efficiency of the Monte Carlo sampling that is nested within the MLSA
approach. Sections 3 and 4 exploit this strategy to reduce the complexities of NSA and MLSA and
provide subsequent L2(P)-controls and complexity rates. Section 5 presents numerical studies to
demonstrate the performance improvement resulting from the adaptive strategy.

1 Stochastic Approximation Approach

This section recalls the setting and main results in [13] on the stochastic approximation of the
VaR. They will serve as a baseline for the adaptive strategy that we develop in Section 2.

1.1 Unbiased Stochastic Approximation Algorithm

Let (Ω,F ,P) be a probability space accommodating all of the subsequent random variables. Let
X0 ∈ L1(P) be an R-valued random loss of a portfolio, defined at some time horizon τ > 0.
Following [1, 19], the VaR of X0 at some confidence level α ∈ (0, 1), denoted ξ0⋆ , is defined as

ξ0⋆ := inf
{
ξ ∈ R : P(X0 ≤ ξ) ≥ α

}
. (1.1)

As stated in [32, 8, 4], if the cdf FX0 of X0 is continuous, then ξ0⋆ is the left-end solution to

argmin
ξ∈R

V0(ξ), where V0(ξ) := ξ +
1

1− α
E[(X0 − ξ)+]. (1.2)

Moreover, V0 is convex and continuously differentiable on R, with V ′
0(ξ) =

1
1−α(FX0(ξ) − α) =

E[H(ξ,X0)], ξ ∈ R, where

H(ξ, x) = 1− 1

1− α
1x≥ξ, ξ, x ∈ R. (1.3)
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If FX0 is additionally increasing, then V0 is strictly convex and ξ0⋆ is the unique minimizer of V0:

ξ0⋆ = argminV0. (1.4)

Besides, if X0 admits a continuous pdf fX0 , then V0 is twice continuously differentiable on R,
with V ′′

0 (ξ) =
1

1−αfX0(ξ), ξ ∈ R.
When iid samples of X0 are available, [4] proposes to estimate ξ0⋆ using the unbiased SA

scheme of dynamics
ξ0n+1 = ξ0n − γn+1H(ξ0n, X

(n+1)
0 ), n ∈ N, (SA)

where (X
(n)
0 )n≥1

iid∼ X0, ξ00 is a real-valued random initialization independent of the innova-
tions (X

(n)
0 )n≥1, and (γn)n≥1 is a positive non-increasing sequence such that

∑
n≥1 γn =∞ and

limn→∞ γn = 0.
We are interested in the setting where X0 writes as a conditional expectation:

X0 = E[φ(Y, Z)|Y ]. (1.5)

Here, Y and Z are two independent random variables taking values in Rd and Rq respectively, and
φ : Rd×Rq → R is a measurable function such that φ(Y,Z) ∈ L1(P). From a financial standpoint,
Y typically models the dynamics of the portfolio’s risk factors up to the time horizon τ of the
loss, Z their dynamics beyond τ and φ(Y,Z) the subsequent future cash flows. Generally, the
risk factors Y and Z can be sampled from a model and the cash flow structure φ is known.

In the case that X0 cannot be sampled exactly, one must leverage its nested formulation to
produce suitable simulations for the SA approach.

1.2 Nested Stochastic Approximation Algorithm

Let N0 := N \ {0}. A natural idea is to approximate X0 by the nested Monte Carlo estimator

Xh :=
1

K

K∑
k=1

φ(Y,Z(k)), where h :=
1

K
∈ H =

{ 1

K ′ ,K
′ ∈ N0

}
(1.6)

and Y and (Z(k))1≤k≤K
iid∼ Z are independent. h is termed the bias parameter since it helps

control the VaR estimation bias as we clarify next. We swap X0 by Xh, h ∈ H, in the original
problem (1.2) and obtain the approximate problem

argmin
ξ∈R

Vh(ξ), where Vh(ξ) := ξ +
1

1− α
E[(Xh − ξ)+]. (1.7)

Again, assuming that φ(Y,Z) ∈ L1(P), if the cdf FXh
of Xh is continuous, then Vh is convex and

continuously differentiable on R, with V ′
h(ξ) =

1
1−α(FXh

(ξ)− α) = E[H(ξ,Xh)], ξ ∈ R, recalling
the definition (1.3). If FXh

is additionally increasing, then Vh is strictly convex and

ξh⋆ = argminVh (1.8)

is well defined and constitutes a biased estimator of ξ0⋆ . Finally, If Xh admits a continuous pdf
fXh

, then Vh is twice continuously differentiable on R, with V ′′
h (ξ) = (1− α)−1fXh

(ξ), ξ ∈ R.
Assuming FXh

continuous and increasing, ξ0⋆ can be estimated with a bias h ∈ H using the
NSA scheme of dynamics

ξhn+1 = ξhn − γn+1H(ξhn, X
(n+1)
h ), n ∈ N, (NSA)

where (X
(n)
h )n≥1

iid∼ Xh, ξh0 is a real-valued random initialization independent of the innova-
tions (X

(n)
h )n≥1 and (γn)n≥1 is a positive non-increasing sequence such that

∑
n≥1 γn = ∞ and

limn→∞ γn = 0.
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Convergence Analysis. Let H := H ∪ {0}. The global error of (NSA) writes as a sum of a
statistical and a bias errors:

ξhn − ξ0⋆ =
(
ξhn − ξh⋆

)
+ (ξh⋆ − ξ0⋆), (1.9)

Assumption 1.1 ([13, Assumptions 2.2 & 2.5]).

(i) For any h ∈ H, FXh
admits the first order Taylor expansion

FXh
(ξ)− FX0(ξ) = v(ξ)h+ w(ξ, h)h, ξ ∈ R,

for some functions v, w( · , h) : R→ R satisfying, for any ξ0⋆ ∈ ArgminV0,∫ ∞

ξ0⋆

v(ξ)dξ <∞, lim
H∋h↓0

w(ξ0⋆ , h) = lim
H∋h↓0

∫ ∞

ξ0⋆

w(ξ, h)dξ = 0.

(ii) For any h ∈ H, the law of Xh admits a continuous pdf fXh
with respect to the Lebesgue

measure. Moreover, the pdfs (fXh
)h∈H converge locally uniformly to fX0 .

(iii) For any R > 0,
inf

h∈H, ξ∈B(ξ0⋆,R)
fXh

(ξ) > 0.

(iv) The pdfs (fXh
)h∈H are uniformly bounded and uniformly Lipschitz, namely,

sup
h∈H

(∥fXh
∥∞ + [fXh

]Lip) <∞,

where [fXh
]Lip denotes the Lipschitz constant of fXh

, h ∈ H.

Remark 1.1 ([14, Remark 1.1]). [26, Propositions 5.1(a,b)] guarantee Assumptions 1.1(i,ii). The
last part of Assumption 1.1(i) reads w(ξ0⋆ , h) =

∫∞
ξ0⋆
w(ξ, h)dξ = o(1) as H ∋ h ↓ 0, ξ0⋆ ∈

ArgminV0. Assumptions 1.1(iii,iv) are natural in view of Assumption 1.1(ii) and the increasing
nature of FX0 . By Assumptions 1.1(ii,iii), for any h ∈ H and any ξh⋆ ∈ ArgminVh, V ′′

h (ξ
h
⋆ ) =

(1− α)−1fXh
(ξh⋆ ) > 0, subsequently reducing ArgminVh to a singleton {ξh⋆ }.

For any positive integer q, we let

λ̄q := inf
h∈H

λ̄h,q, (1.10)

where (λ̄h,q)h∈H,q≥1 are defined in Lemma A.2(iii).

Lemma 1.2 ([13, Proposition 2.4 & Theorem 2.7(i)]).

(i) Suppose that φ(Y,Z) ∈ L1(P), that Assumptions 1.1(i,ii) hold, and that the pdf fX0 is
positive. Then, as H ∋ h ↓ 0, for any ξh⋆ ∈ ArgminVh,

ξh⋆ − ξ0⋆ = − v(ξ0⋆)

fX0(ξ
0
⋆)
h+ o(h).

(ii) Suppose that φ(Y, Z) ∈ L2(P), that Assumption 1.1 holds, and that

sup
h∈H

E
[
|ξh0 |2 exp

( 4

1− α
kα sup

h∈H
∥fXh

∥∞|ξh0 |
)]

<∞, (1.11)

where kα = 1 ∨ α
1−α . If γn = γ1n

−β, β ∈ (0, 1], with λ̄1γ1 > 1 if β = 1, then there exists a
positive constant C <∞ such that, for any positive integer n,

sup
h∈H

E[(ξhn − ξh⋆ )2] ≤ Cγn.
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Complexity Analysis. The controls of Lemma 1.2 on the bias and statistical errors in (1.9)
result in the following complexities.

Proposition 1.3 ([13, Theorem 2.8]). Let ε ∈ (0, 1) be a prescribed accuracy. Within the
framework of Lemma 1.2(ii), setting

h =
1

⌈ε−1⌉
∼ ε and n =

⌈
ε
− 2

β
⌉

yields a global L1(P) error for (NSA) of order ε as ε ↓ 0. The corresponding computational cost
satisfies

CostβNSA ≤ Cnh−1 ∼ Cε−
2
β
−1 as ε ↓ 0,

for some positive constant C <∞ independent of ε. The minimal computational cost satisfies

Cost1NSA ≤ Cε−3 as ε ↓ 0,

and is attained for γn = γ1n
−1, i.e. for β = 1 under the constraint λ̄1γ1 > 1.

1.3 Multilevel Stochastic Approximation Algorithm

With a complexity ceiling for nested VaR estimation at O(ε−3) as achieved by (NSA), a multilevel
approach is proposed in [13] to accelerate the latter scheme. We recall below the MLSA scheme
and the associated L2(P)-control and complexity.

Take h0 := 1
K ∈ H, M ≥ 2 an integer and L ∈ N0 a number of levels, and let

hℓ :=
h0
M ℓ

=
1

KM ℓ
∈ H, ℓ = 0, . . . , L. (1.12)

To each bias parameter hℓ, ℓ = 0, . . . , L, corresponds an approximate problem argminξ∈R Vhℓ(ξ)

to (1.2) of unique solution ξhℓ⋆ . These solutions can be telescoped into

ξhL⋆ = ξh0⋆ +
L∑
ℓ=1

ξhℓ⋆ − ξ
hℓ−1
⋆ . (1.13)

By denoting N := (Nℓ)0≤ℓ≤L a sequence of iterations amounts, the multilevel SA scheme [13, 20]
consists in approximating ξ0⋆ ≈ ξ

hL
⋆ with

ξML
N = ξh0N0

+
L∑
ℓ=1

ξhℓNℓ
− ξhℓ−1

Nℓ
, (MLSA)

where each level ℓ = 0, . . . , L is simulated independently. More precisely, once ξh0N0
is simulated

using N0 iterations of (NSA) with bias h0, at each level ℓ = 1, . . . , L, for j ∈ {(ℓ− 1), ℓ}, ξhjNℓ
is

obtained by iterating

ξ
hj
n+1 = ξ

hj
n − γn+1H(ξ

hj
n , X

(n+1)
hj

), n ∈ {0, . . . , Nℓ − 1}, (1.14)

where (X
(n)
hℓ−1

, X
(n)
hℓ

)1≤n≤Nℓ

iid∼ (Xhℓ−1
, Xhℓ) and ξ

hℓ−1

0 and ξhℓ0 are real-valued random initializa-

tions independent of the innovations (X(n)
hℓ−1

, X
(n)
hℓ

)1≤n≤Nℓ
. Crucially, at each level ℓ ∈ {1, . . . , L},

Xhℓ and Xhℓ−1
are perfectly correlated, in the sense that

Xhℓ−1
=

1

KM ℓ−1

KMℓ−1∑
k=1

φ(Y, Z(k)), Xhℓ =
1

M
Xhℓ−1

+
1

KM ℓ

KMℓ∑
k=KMℓ−1+1

φ(Y,Z(k)), (1.15)
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where (Z(k))1≤k≤KMℓ
iid∼ Z are independent of Y .

At each level ℓ = 1, . . . , L, ξhℓNℓ
and ξhℓ−1

Nℓ
are referred to as the fine and coarse approximations.

ξh0N0
is referred to as the initial (or level 0) approximation. We can infer from (1.14) that (MLSA)

correlates multiple (NSA) pairs, each pair being set with consecutive bias parameters on the
geometric scale H0 := {hℓ, ℓ ≥ 0}. The produced effect is an incremental bias correction of the
level 0 approximation of bias h0. Conversely, (NSA) can be viewed as an (MLSA) instance with
0 (higher) levels.

Convergence Analysis. The following lemma delimits three frameworks under which we later
derive L2(P)-controls and complexities for (MLSA).

Lemma 1.4 ([13, Proposition 3.2]).

(i) Assume that the real-valued random variables Xh admit pdfs fXh
that are bounded uniformly

in h ∈ H.

a. If
E
[∣∣φ(Y, Z)− E[φ(Y,Z)|Y ]

∣∣p⋆] <∞ for some p⋆ > 1, (1.16)

then, for any h, h′ ∈ H such that 0 ≤ h ≤ h′ and any ξ ∈ R,

E
[∣∣1Xh>ξ − 1Xh′>ξ

∣∣] ≤ C(h′ − h) p⋆
2(p⋆+1) ,

where C := Bp⋆E
[∣∣φ(Y,Z)−E[φ(Y, Z)|Y ]

∣∣p⋆] 1
p⋆+1 (suph∈H ∥fXh

∥∞)
p⋆

p⋆+1 , with Bp⋆ a pos-
itive constant that depends only upon p⋆.

b. Assume that there exists a non-negative constant Cg <∞ such that, for all u ∈ R,

E
[
exp

(
u
(
φ(Y, Z)− E[φ(Y,Z)|Y ]

))∣∣Y ]
≤ eCgu2 P-as. (1.17)

Then, for any h, h′ ∈ H such that 0 ≤ h < h′ and any ξ ∈ R,

E
[∣∣1Xh>ξ − 1Xh′>ξ

∣∣] ≤ 2
√
Cg(h′ − h)

(
1 + sup

h′′∈H
∥fXh′′∥∞

√
2
∣∣ln (Cg(h′ − h))∣∣).

(ii) Let Gℓ := h
− 1

2
ℓ (Xhℓ − Xhℓ−1

), define FXhℓ−1
|Gℓ=g : x 7→ P(Xhℓ−1

≤ x |Gℓ = g), g ∈
supp(PGℓ

), ℓ ≥ 1, and consider the sequence of random variables (Kℓ)ℓ≥1 given by Kℓ :=
Kℓ(Gℓ), where

Kℓ(g) := sup
x ̸=y

∣∣FXhℓ−1
|Gℓ=g(x)− FXhℓ−1

|Gℓ=g(y)
∣∣

|x− y|
, ℓ ≥ 1, g ∈ supp(PGℓ

).

Assume that (Kℓ)ℓ≥1 satisfies
sup
ℓ≥1

E[|Gℓ|Kℓ] <∞. (1.18)

Then,
sup

ℓ≥1,ξ∈R
h
− 1

2
ℓ E

[∣∣1Xhℓ
>ξ − 1Xhℓ−1

>ξ

∣∣] <∞.
Remark 1.2 ([13, Remark 3.3]). Lemma 1.4’s frameworks are ordered by strength. The Gaussian
concentration framework (1.17) holds if E[exp(u0φ(Y, Z)2)|Y ] is bounded for some u0 > 0 [21,
18]. It entails (1.16) for any p⋆ > 1 via an exponential series expansion. The framework (1.18)
relaxes [27, Assumption 1] and is computationally optimal (c.f. Proposition 1.7(iii)). It holds for
instance if FXhℓ−1

|Gℓ=g is uniformly Lipschitz in g and ℓ.
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Assumption 1.5 ([13, Assumption 3.4]). There exist positive constants C, δ0 < ∞ such that,
for any h ∈ H and any compact set K ⊂ R,

sup
ξ∈K
|fXh

(ξ)− fX0(ξ)| ≤ Ch
1
4
+δ0 .

Remark 1.3 ([13, Remark 3.5]). Assumption 1.5 holds within the framework of [26, Proposi-
tion 5.1(a)].

Theorem 1.6 ([13, Theorem 3.6]). Suppose that φ(Y, Z) ∈ L2(P), that Assumptions 1.1 and 1.5
hold, and that

sup
h∈H

E
[
|ξh0 |4 exp

( 16

1− α
kα sup

h∈H
∥fXh

∥∞|ξh0 |
)]

<∞.

Within the frameworks of Lemma 1.4, if γn = γ1n
−β, β ∈ (0, 1], with λ̄2γ1 > 2 if β = 1,

then, there exists some constant K < ∞ such that, for any positive integer L and any N =
(N0, . . . , NL) ∈ NL+1

0 ,

E
[(
ξML
N − ξhL⋆

)2] ≤ K(
γN0 +

( L∑
ℓ=1

γNℓ

)2

+
L∑
ℓ=1

γ
3
2
Nℓ

+
L∑
ℓ=1

γNℓ
ϵ(hℓ)

)
, (1.19)

where

ϵ(h) :=


h

p∗
2(1+p∗) if (1.16) holds,

h
1
2 |lnhℓ|

1
2 if (1.17) holds,

h
1
2 if (1.18) holds,

h ∈ H. (1.20)

Complexity Analysis. The global error of (MLSA) can be decomposed into a statistical and
a bias errors:

ξML
N − ξ0⋆ =

(
ξML
N − ξhL⋆

)
+ (ξhL⋆ − ξ0⋆). (1.21)

Proposition 1.7 ([13, Proposition 3.7, Lemma 3.8 & Theorem 3.9]).

(i) Suppose that Assumption 1.1(i) is satisfied. Let ε ∈ (0, 1) be a prescribed accuracy. If
h0 > ε, then, setting

L =

⌈
lnh0ε

−1

lnM

⌉
(1.22)

achieves a bias error for (MLSA) of order ε.

(ii) The computational cost of (MLSA) satisfies

CostβMLSA ≤ C
L∑
ℓ=0

Nℓ

hℓ
,

for some positive constant C <∞.

(iii) Let ε ∈ (0, 1) be a prescribed accuracy. Within the framework of Theorem 1.6, setting

Nℓ =

⌈
(Kγ1)

1
β ε

− 2
β

( L∑
ℓ′=0

h
− β

1+β

ℓ′ ϵ(hℓ′)
1

1+β

) 1
β

h
1

1+β

ℓ ϵ(hℓ)
1

1+β

⌉
, ℓ = 0, . . . , L,

8



i.e.

Nℓ =



⌈
(Kγ1)

1
β ε

− 2
β h

1
1+β

(1+ p∗
2(1+p∗)

)

ℓ

(∑L
ℓ′=0 h

1
1+β

(−β+ p∗
2(1+p∗)

)

ℓ′

) 1
β
⌉

if (1.16) holds,⌈
(Kγ1)

1
β ε

− 2
β h

3
2(1+β)

ℓ |lnhℓ|
1

2(1+β)

(∑L
ℓ′=0 h

1−2β
2(1+β)

ℓ′ |lnhℓ′ |
1

2(1+β)

) 1
β
⌉

if (1.17) holds,⌈
(Kγ1)

1
β ε

− 2
β h

3
2(1+β)

ℓ

(∑L
ℓ′=0 h

1−2β
2(1+β)

ℓ′

) 1
β
⌉

if (1.18) holds,

where K is the constant on the right hand side of (1.19), achieves a statistical error on the
estimation of ξ0⋆ of order ε. The optimal computational cost is attained when β = 1 under
the constraint λ̄2γ1 > 2, in which case

Cost1MLSA ≤ C


ε
−3+ p∗

2(1+p∗) if (1.16) holds,

ε−
5
2 |ln ε|

1
2 if (1.17) holds,

ε−
5
2 if (1.18) holds.

Remark 1.4. The advantageous framework described by (1.18) results in an optimal computa-
tional cost in O(ε−

5
2 ), which remains suboptimal compared to the canonical optimum of O(ε−2)

that is achievable by multilevel techniques [23, 20].

The next section devises a strategy to adaptively refine the inner Monte Carlo innovations
of (NSA) and (MLSA).

2 Adaptive Refinement Strategy

The suboptimality of (MLSA) is linked to the discontinuity of the gradient H (1.3) intervening
in the VaR recursion (1.14). Indeed, for n ∈ N0, if the simulated loss

X
(n)
h =

1

K

K∑
k=1

φ(Y (n), Z(k,n))

is too close to the estimate ξhn−1 but falls on the opposite side of the discontinuity of H(ξhn−1, · )
with respect to its sampling target

X
(n)
0 := E[φ(y, Z)]|y=Y (n) , (2.1)

an O(1) error is registered, lowering the overall performance of the multilevel algorithm. To
address this issue, we investigate the incorporation an adaptive refinement layer into (MLSA).

The following steps elucidate the intuition underlying the development of our adaptive re-
finement strategy. For simplicity, we consider a nested simulation Xhℓ , targeting an unbiased
simulation X0, that we want to adaptively refine given a current iterate ξ at the recursion rank n.
Assuming that Y and Z(1), . . . , Z(KMℓ) iid∼ Z were used to simulateXhℓ according to (1.6), refining
the latter to Xhℓ+1

consists in simulating additional Z(KMℓ+1), . . . , Z(KMℓ+1) iid∼ Z independently
from Y and Z(1), . . . , Z(KMℓ) and setting

Xhℓ+1
=

1

M
Xhℓ +

1

KM ℓ+1

KMℓ+1∑
k=KMℓ+1

φ(Y, Z(k)). (2.2)

A confidence based heuristic strategy.
We loosely adapt the reasonings employed in [24, Section 2.3.1] and [28, Section 3] to derive a

9



preliminary strategy. Roughly speaking, considering a refinement amount η and an iterate ξ, we
want to ensure that H(ξ,Xhℓ+η

) = H(ξ,X0) with high probability by aligning Xhℓ+η
with X0 on

the same side of the discontinuity of H(ξ, · ) at ξ. Using a conditional CLT,

Xhℓ+η
≈ N

(
X0, hℓ+ηVar(φ(Y, Z)|Y )

)
.

To achieve the desired alignment, we consider a critical value Ca corresponding to a confidence
level p ∈ (0, 1) and choose η ∈ N minimal such that |Xhℓ+η

−X0| ≤ |X0 − ξ| with confidence p,
which can be expressed as

Ca

√
hℓ+ηVar(φ(Y,Z)|Y ) ≤ |X0 − ξ|, or |X0 − ξ| ≥ Cah

1
2
ℓ+η, (2.3)

up to a modification of Ca conditionally on Y . However, this approach is impractical as X0 is
inaccessible.

We thus switch perspective and require instead that |Xhℓ+η
−X0| ≤ |Xhℓ+η

−ξ| with confidence
p, to ensure that X0 and Xhℓ+η

are on the same side relative to ξ. We then select η minimal
such that

Ca

√
hℓ+ηVar(φ(Y,Z)|Y ) ≤ |Xhℓ+η

− ξ|, i.e. |Xhℓ+η
− ξ| ≥ Cah

1
2
ℓ+η, (2.4)

allowing for a modification of Ca conditional on Y . In effect, we augment the number of in-
ner simulations of Xhℓ by η refinements until the threshold Cah

1
2
ℓ+η around ξ is crossed. [24]

views this process as estimating X0 by Xhℓ+η
in the original strategy (2.3). [25] interprets the

evaluation of the criterion (2.4) as performing a Student t-test on the null hypothesis “Xhℓ+η
= ξ”.

For more flexibility, we introduce two parameters r and θ that respectively control the strict-
ness and budgeting of the refinement strategy.

Refinement strictness.
We set r > 1 and redefine the refinement strategy as choosing η minimal such that

|Xhℓ+η
− ξ| ≥ Cah

1
r
ℓ+η. (2.5)

The parameter r allows to adjust the tendency of the strategy to refine. Larger r values impose
more strictness. Setting r = 2 retrieves the previous baseline strategy.

Refinement budgeting.
The strategy outlined above may be risky, as the refinement amount η required to satisfy (2.5)
could be excessively large, hence increasing the associated complexity. To address this, we impose
an upper limit on η at ⌈θℓ⌉:

η(ξ) = ⌈θℓ⌉ ∧min{k : |Xhℓ+k
− ξ| ≥ Cah

1
r
ℓ+k}. (2.6)

Note importantly the dependency of η on ξ. For the strategy to be computationally efficient, the
entailed number of inner simulations should, on average, be comparable to the number of inner
simulations absent the strategy. To ensure this, we relax the constant Ca to a normalization
factor c(hℓ) that is calibrated such that E[h−1

ℓ+η(ξ)] = O(h−1
ℓ ). We have

E[h−1
ℓ+η(ξ)] =

⌈θℓ⌉∑
k=0

h−1
ℓ+kP(η(ξ) = k) ≤ h−1

ℓ +

⌈θℓ⌉∑
k=1

h−1
ℓ+kP(η(ξ) = k).

From (2.6) and Assumption 1.1(iv),

P(η(ξ) = k) ≤ P
(
|Xhℓ+k−1

− ξ| < c(hℓ)h
1
r
ℓ+k−1

)
≤ 2M

1
r sup
h∈H
∥fXh

∥∞c(hℓ)h
1
r
ℓ+k.
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Extending the definition of s 7→ hs to R with hs := h0
Ms for s ∈ R, we obtain

E[h−1
ℓ+η(ξ)] ≤ C

(
h−1
ℓ + c(hℓ)

⌈θℓ⌉∑
k=1

h
1
r
ℓ+k

)
≤ C

(
h−1
ℓ + c(hℓ)h(1+θ)ℓ( 1

r
−1)

)
.

for some positive constant C < ∞. To balance the terms on the right-hand side, we normalize
with c(hℓ) = h

1
r

θℓ(r−1)−ℓ, yielding the refinement strategy

η(ξ) = ⌈θℓ⌉ ∧min{k : |Xhℓ+k
− ξ| ≥ Cah

1
r

θℓ(r−1)+k}.

This approach is essentially the same as that in [28]. The amount of inner simulations is increased

until the varying threshold Cah
1
r

θℓ(r−1)+k around ξ is crossed.

Refinement saturation.
To illustrate the strategy so far, we test it along a single dynamic (NSA) of bias hℓ:

ξhℓn+1 = ξhℓn − γn+1H
(
ξhℓn , X

(n+1)
h
ℓ+η(ξ

hℓ
n )

)
.

Unlike the Monte Carlo setting [28] where the iterate ξ remains constant across the recursions, the
iterates (ξhℓn )n≥1 above change from one step to the next. This causes the innovations (X(n)

hℓ
)n≥1

to refine to
(
X

(n)
h
ℓ+η(ξ

hℓ
n−1)

)
n≥1

, de facto solving the root finding program ξ : E[H(ξ,Xhℓ+η(ξ)
)], or

equivalently, ξ : E[1Xhℓ+η(ξ)
<ξ] − α. Since η(ξ) evolves with ξ, ξ 7→ E[1Xhℓ+η(ξ)

<ξ] is no longer
given by a cdf as it may not be monotone and could have several roots.

To address this issue, we saturate the refinement amount η for large recursion ranks n (corre-
sponding to terminal SA phases) to the maximum allowed ⌈θℓ⌉, allowing to veer into the convex
program minξ Vhℓ+⌈θℓ⌉(ξ) for n large. This is achieved by incorporating an increasing dependency
upon n into the strategy’s threshold. We refer to the definitive strategy described below and
additional comments in Remark 3.1.

The following lemma revisits the framework (1.18) to grant a flexible basis for our adaptive
refinement strategy.

Lemma 2.1. Let 0 ≤ h < h′ ∈ H. Define Gh
′
h := (h′)−

1
2 (Xh′ − Xh) and the function

F
Xh |Gh′

h =g
: x 7→ P(Xh ≤ x |Gh′h = g), g ∈ supp(P

Gh′
h
). Assume that the sequence of random

variables (Kh′
h )0≤h<h′∈H, defined by Kh′

h := Kh′
h (Gh

′
h ), where

Kh′
h (g) := sup

x̸=y

∣∣F
Xh |Gh′

h =g
(x)− F

Xh |Gh′
h =g

(y)
∣∣

|x− y|
, g ∈ supp(P

Gh′
h
),

satisfies
sup

0≤h<h′∈H
E[Kh′

h |Gh
′
h |] <∞. (2.7)

Then
sup

0≤h<h′∈H
(h′)

− 1
2 E[|1Xh′>ξ − 1Xh>ξ|] <∞.

Remark 2.1. The framework (1.18) can be viewed as a special case of (2.7) for consecutive
bias pairs on the geometric scale H0 = {hℓ, ℓ ≥ 0} ⊂ H. In (MLSA), the fine and coarse
approximations at each level are controlled by consecutive bias parameters in H0. If one is to
refine either approximation separately, the refined fine and coarse approximations are no longer
controlled by consecutive bias parameters in H0, hence the need for the generalized framework
above.
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Following the roadmap of [24, 28, 25], we define

ηnℓ (ξ) := ⌈θℓ⌉ ∧min
{
k ∈ [[0, ⌈θℓ⌉]] : |Xhℓ+k

− ξ| ≥ Caψnk,ℓ
}
, ℓ, n ∈ N0, (2.8)

with the convention min∅ = +∞, where Ca > 0, r > 1, 0 < θ ≤ 1,

ψnk,ℓ :=

u
− 1

p⋆
n h

1
r

θℓ(r−1)+k if (1.16) holds,(
ln γ

− 1
2

n h
− 1

2
(1+θ)

ℓ+k

) 1
2h

1
r

θℓ(r−1)+k if (1.17) or (2.7) holds,
(2.9)

and
un = γ1n

−δ, δ ∈ (0, 1]. (2.10)

Note the property
∑⌈θℓ⌉

k=0 ψ
n
k,ℓ ≤ Cψn0,ℓ, for some positive constant C <∞.

The constant Ca is referred to as the confidence constant [24, 28], r the refinement strictness
parameter [28, 25], θ the budgeting parameter, the n-dependent factor in (2.9) the saturation

factor, and the quantity
|Xhℓ+k

−ξ|
ψn
k,ℓ

, that our adaptive strategy seeks greedily to make large enough,
the error margin [10].

Algorithm 2.1 Adaptive refinement strategy
Require: An innovation Xhℓ , an iterate ξ, adaptive refinement parameters Ca > 0, r > 1 and

0 < θ ≤ 1, a level ℓ ≥ 1, a recursion rank n ∈ N0

1: η ← 0
2: while η < ⌈θℓ⌉ and |Xhℓ+η

− ξ| < Caψ
n
η,ℓ do

3: Refine Xhℓ+η
to Xhℓ+η+1

4: η ← η + 1
5: end while
6: return Xhℓ+η

We refer to [28, Algorithm 3.1] for an analogous refinement strategy in a MLMC setting, that
is independent of the recursion rank n.

Remark 2.2.

(i) At each level ℓ and recursion rank n, the adaptive strategy refines the simulation X(n)
hℓ

used

in (1.14) to X(n)
hℓ+η

, with the aim of escaping the region [ξ±Caψnη,ℓ] around the discontinuity
of x 7→ H(ξ, x) at x = ξ.

(ii) No refinement is applied at the level ℓ = 0, as ηn0 = 0 for all n ≥ 1.

(iii) The threshold ψnk,ℓ depends on the hyperparameters r > 1 and 0 < θ ≤ 1. The parameter
r controls the refinement strictness and θ its budgeting on the allowed refinement amount.
The threshold decreases for r and θ large. It also depends on the level ℓ and the recursion
rank n. Larger ℓ values lead to smaller thresholds while larger n values lead to larger
thresholds.

(iv) Recalling the definition (2.1), by virtue of the almost sure convergence of X(n)
hℓ

to X(n)
0 as

ℓ ↑ ∞ (by the conditional law of large numbers, under suitable assumptions), the refined
simulation X

(n)
hℓ+ηn

ℓ
(ξ)

is in theory closer to the actual simulation target X(n)
0 than X

(n)
hℓ

. It

is therefore expected that H(ξ,X
(n)
hℓ+ηn

ℓ
(ξ)
) = H(ξ,X

(n)
0 ) with high probability.
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(v) In our derivation of the adaptive refinement strategy, the confidence constant Ca took in
fact the form of Cp

√
Var(φ(Y,Z)|Y ), where Cp is a critical value of the law N (0, 1) at

some confidence level p and
√

Var(φ(Y, Z)|Y ) is the sampling standard deviation. For a
99%-confidence level, a natural choice for Ca is three standard deviations, i.e. Cp = 3. The
standard deviation can be estimated empirically. However, the ensuing convergence and
complexity analyses show that our choice of Ca constant for the adaptive strategy (2.8)
accomplishes the desired performance gain. In practice, Ca should be fine-tuned to avoid
over- or under-adapting.

3 Adaptive Nested Stochastic Approximation Algorithm

Before delving into the adaptive refinement of (MLSA), let us first investigate the influence of our
refinement strategy on (NSA), which we recall can be considered an instance of 0 level (MLSA).

Consider a bias parameter hℓ, ℓ ≥ 1, on the geometric scale H0 = {hℓ′ , ℓ′ ≥ 0}, which allows
resorting to single-echelon refinements (2.2). The adaptively refined nested SA algorithm for
estimating the VaR writes

ξ̃hℓn+1 = ξ̃hℓn − γn+1H(ξ̃hℓn , X̃
(n+1)
hℓ

), (adNSA)

where
X̃

(n+1)
hℓ

:= X
(n+1)
h
ℓ+η

(n+1)
ℓ

, η
(n+1)
ℓ := ηn+1

ℓ (ξ̃hℓn ), n ∈ N, (3.1)

and ξ̃hℓ0 is a random real-valued initialization that is independent of the innovations
(
X̃

(n)
hℓ

)
n≥1

.

Algorithm 3.1 Adaptive Nested SA for estimating the VaR
Require: K,N ∈ N0, a positive non-increasing sequence (γn)n≥1 such that

∑∞
n=1 γn = ∞ and

limn→∞ γn = 0, refinement parameters Ca > 0, r > 1 and 0 < θ ≤ 1
1: Sample ξ̃hℓ0 randomly
2: for n = 0 . . N − 1 do
3: Simulate Y (n+1) ∼ Y and Z(n+1,1), . . . , Z(n+1,KMℓ) iid∼ Z independently of Y (n+1)

4: X
(n+1)
hℓ

← 1
KMℓ

∑KMℓ

k=1 φ(Y (n+1), Z(n+1,k))

5: X̃
(n+1)
hℓ

← Refineθ,r,Ca,ℓ,n(X
(n+1)
hℓ

, ξ̃hℓn )

6: ξ̃hℓn+1 ← ξ̃hℓn − γn+1H(ξ̃hℓn , X̃
(n+1)
hℓ

)
7: end for
8: return ξ̃hℓN

Remark 3.1. Unlike [24, 28, 25], the adaptive refinement (2.8) depends on the recursion rank n.
As previously discussed, using an adaptive refinement independent of n can be viewed as seeking
a root of ξ 7→ E[H(ξ,Xhℓ+ηℓ(ξ)

)], which is not guaranteed to retrieve a problem like (1.7), as it
could have multiple roots. The introduced dependency upon n saturates the refinement amount
to ⌈θℓ⌉ for large n, aligning X(n)

hℓ+ηn
ℓ
(ξ)

with X(n)
hℓ+⌈θℓ⌉

with high probability and practically solving

the strictly convex nested SA problem minξ Vhℓ+⌈θℓ⌉(ξ) of bias parameter hℓ+⌈θℓ⌉.
This behavior can be verified by calculation. Assuming that φ(Y,Z) ∈ L1(P), by Markov’s

inequality,
P(ηnℓ (ξ) < ⌈θℓ⌉) = P

(
∃k ∈ [[0, ⌈θℓ⌉ − 1]], |Xhℓ+k

− ξ| ≥ Caψnk,ℓ
)

≤
⌈θℓ⌉−1∑
k=0

P
(
|Xhℓ+k

− ξ| ≥ Caψnk,ℓ
)

≤
⌈θℓ⌉−1∑
k=0

E
[
|Xhℓ+k

− ξ|
]

Caψnk,ℓ
→ 0 as n ↑ ∞.
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Since ηnℓ (ξ) is a discrete random variable taking values in [[0, ⌈θℓ⌉]], there exists n0(ℓ, ξ) such that,
for n ≥ n0, ηnℓ (ξ) = ⌈θℓ⌉ P-as. Thus the desired saturation effect for n large.

Of course, the iterate ξ depends on the recursion rank n. The boundedness of the iterates
in some Lp(P) space, 0 < p ≤ 2, is hence essential to retrieve the asymptotic behavior described
above. Such boundedness is established in Proposition 3.2.

3.1 Convergence Analysis

In the following, C < ∞ designates a positive constant that may change from line to line but
does not depend on ℓ or n. The proofs of the ensuing results are postponed to Appendix B.

Lemma 3.1. Let γn = γ1n
−β, β ∈ (0, 1].

(i) Assume that the real-valued random variables Xh admit pdfs fXh
that are bounded uniformly

in h ∈ H.

a. If (1.16) is satisfied, with

p⋆ > 2, r < 2 and θ ≤
p⋆
2 − 1
p⋆
2 + 1

, (3.2)

then ∣∣∣E[1Xhℓ+ηn
ℓ
(ξ)
>ξ − 1Xhℓ+⌈θℓ⌉>ξ

]∣∣∣ ≤ Ch1+θℓ un, ℓ, n ≥ 1.

b. If (1.17) is satisfied for some Cg > 0, with

h0 ≥
(8Cg
C2
a

) 1
2
r−1 , r ≤ 2 and θ ≤ 1, (3.3)

then ∣∣∣E[1Xhℓ+ηn
ℓ
(ξ)
>ξ − 1Xhℓ+⌈θℓ⌉>ξ

]∣∣∣ ≤ Ch1+θℓ γn, ℓ, n ≥ 1.

(ii) If (2.7) is satisfied with, for some υ0 > 0,

sup
0≤h<h′∈H

E
[
exp(υ0|Gh

′
h |2)

]
<∞, h0 ≥

( 2

υ0C2
a

) 1
2
r−1 , r ≤ 2 and θ ≤ 1, (3.4)

then ∣∣∣E[1Xhℓ+ηn
ℓ
(ξ)
>ξ − 1Xhℓ+⌈θℓ⌉>ξ

]∣∣∣ ≤ Ch1+θℓ γn, ℓ, n ≥ 1.

Ultimately, within the framework of either (i)a, (i)b or (ii),∣∣∣E[1Xhℓ+ηn
ℓ
(ξ)
>ξ − 1X0>ξ

]∣∣∣ ≤ Ch1+θℓ , ℓ, n ≥ 1.

Remark 3.2. Unlike [28, Lemma 3.9], the bias controls above display a dependence on n that
decays roughly in the order of the step size γn. This property will prove useful to control the
numerical error induced by the refinement strategy (2.8) in the adaptive nested scheme (adNSA).

Recalling the definition of (λ̄q)q≥1 in (1.10), the next lemma provides an adaptive counterpart
to Lemma 1.2(ii).

Proposition 3.2. Suppose that Assumption 1.1 holds. Within the frameworks of Lemma 3.1,
define

γ̃ℓn =

γn ∨ unh
1+θ
ℓ if (3.2) holds,

γn if (3.3) or (3.4) holds,
n ≥ 1, ℓ ≥ 1. (3.5)
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(i) If λ̄1γ1 > 1 when β = 1, and

sup
ℓ≥0

E
[
|ξ̃hℓ0 |

2 exp
( 4

1− α
kα sup

ℓ≥0
∥fXhℓ

∥∞|ξ̃hℓ0 |
)]

<∞,

then, there exist positive constants (Kℓ)ℓ≥1 such that supℓ≥1Kℓ <∞ and, for any positive
integers ℓ and n,

E[(ξ̃hℓn − ξ
hℓ+⌈θℓ⌉
⋆ )2] ≤ Kℓγ̃

ℓ
n.

(ii) If λ̄2γ1 > 2 when β = 1, and

sup
ℓ≥0

E
[
|ξ̃hℓ0 |

4 exp
( 16

1− α
kα sup

ℓ≥0
∥fXhℓ

∥∞|ξ̃hℓ0 |
)]

<∞,

then, there exist positive constants (Kℓ)ℓ≥1 such that supℓ≥1Kℓ <∞ and, for any positive
integers ℓ and n,

E[(ξ̃hℓn − ξ
hℓ+⌈θℓ⌉
⋆ )4] ≤ Kℓ(γ̃

ℓ
n)

2.

Remark 3.3. The above results are comparable to the non-adaptive case in Lemma 1.2(ii). The
L4(P)-control is necessary to our study of the adaptive MLSA scheme in Section 4.

3.2 Complexity Analysis

Proposition 3.2(i) provides insight into the behavior of (adNSA). Fixing ℓ ≥ 1 and run-
ning (adNSA) n times results in a global error

ξ̃hℓn − ξ0⋆ =
(
ξ̃hℓn − ξ

hℓ+⌈θℓ⌉
⋆

)
+ (ξ

hℓ+⌈θℓ⌉
⋆ − ξ0⋆),

where the first term represents the statistical error and the second the bias error.

Proposition 3.3. Suppose that Assumption 1.1(i) holds. Let ε ∈ (0, 1) be a fixed prescribed
accuracy. If h0 > ε, then setting

ℓ =

⌈
lnh0ε

−1

(1 + θ) lnM

⌉
(3.6)

achieves a bias error for (adNSA) of order ε.

Proof. By Lemma 1.2(i), the bias error of (adNSA) is of order hℓ+⌈θℓ⌉. Hence, to achieve a bias
error of order ε, we have to take ℓ such that hℓ+⌈θℓ⌉ ≤ h0

Mℓ(1+θ) ≤ ε.

Remark 3.4. According to the decomposition (1.9), if using (NSA) with a bias hℓ on the geometric
scale H0 = {hℓ′ , ℓ′ ≥ 0}, one must set

ℓ =

⌈
lnh0ε

−1

lnM

⌉
to achieve a bias error of order ε. (adNSA) requires by comparison a smaller ℓ, which in turn
translates into a less expensive, albeit biased, simulation Xhℓ that is subsequently refined. This
adjustment contributes to a reduction in the complexity of (adNSA).

The next lemma quantifies the average simulation amounts performed per iteration under
the adaptive strategy.

Lemma 3.4. Under Assumptions 1.1(ii,iv), for any positive integers n and ℓ, setting r > 1, it
holds

E
[
h−1

ℓ+η
(n)
ℓ

]
≤ C

h
−1
ℓ n

δ
p⋆ if (1.16) holds,

h−1
ℓ

√
1 + lnn+ ℓ if (1.17) or (2.7) holds.
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Proof. For n, ℓ ∈ N0, one has

E
[
h−1

ℓ+η
(n)
ℓ

]
=

⌈θℓ⌉∑
k=0

h−1
ℓ+k P

(
η
(n)
ℓ = k

)
≤ h−1

ℓ +

⌈θℓ⌉∑
k=1

h−1
ℓ+k P

(
η
(n)
ℓ = k

)
.

Let k ∈ [[1, ⌈θℓ⌉]]. By the definition (2.8) and Assumption 1.1(iv),

P(η(n)ℓ = k) ≤ P
(∣∣X(n)

hℓ+k−1
− ξ̃hℓn−1

∣∣ < Caψ
n
k−1,ℓ

)
≤ 2Ca

(
sup
h∈H
∥fXh

∥∞
)
ψnk−1,ℓ.

Thus, recalling that r > 1,

E
[
h−1

ℓ+η
(n)
ℓ

]
≤ C

(
h−1
ℓ +

⌈θℓ⌉∑
k=1

h−1
ℓ+kψ

n
k−1,ℓ

)

≤ C


h−1
ℓ

(
1 + n

δ
p⋆ h

1
r

θℓ(r−1)

∑⌈θℓ⌉
k=1 h

−1
k(1− 1

r
)

)
if (1.16) holds,

h−1
ℓ

(
1 +
√
1 + lnn+ ℓ h

1
r

θℓ(r−1)ℓ
1
2
∑⌈θℓ⌉

k=1 h
−1
k(1− 1

r
)

)
if (1.17) or (2.7) holds.

≤ C

n
δ
p⋆ h−1

ℓ if (1.16) holds,
√
1 + lnn+ ℓ h−1

ℓ if (1.17) or (2.7) holds.

Remark 3.5. Note the analogous [28, Proposition 3.1] for adaptive Monte Carlo, independent
nonetheless of the recursion rank n. The average amount of inner simulations therein is in the
order of h−1

ℓ . The saturation of our adaptive strategy for n large is responsible for expanding
these amounts by a small order depending on n. We refer to Remark 3.1 for further comments
on this dependence on n.

Proposition 3.5. Let ε ∈ (0, 1) be a prescribed accuracy.Within the frameworks of Lemma 3.1,
setting

n =

⌈ε
− 1

δ ⌉ if (3.2) holds with δ ≤ β/2,

⌈ε−
2
β ⌉ if (3.2) holds with δ ≥ β/2, or if (3.3) or (3.4) holds,

yields a statistical L1(P) error for (adNSA) of order ε, as ε ↓ 0. The corresponding computational
cost satisfies

CostadNSA ≤ CnE
[
h−1

ℓ+η
(n)
ℓ

]
∼ C


ε
− p⋆+δ

p⋆δ
− 1

1+θ if (3.2) holds with δ ≤ β/2,

ε
− 2(δ+p⋆)

βp⋆
− 1

1+θ if (3.2) holds with δ ≥ β/2,

ε
− 2

β
− 1

1+θ |ln ε|
1
2 if (3.3) or (3.4) holds,

as ε ↓ 0,

for some positive constant C <∞ independent of ε. The minimal computational cost is attained
under the constraint λ̄1γ1 > 1, with

CostadNSA ≤ C

ε
− 5p⋆+4

2p⋆ if (3.2) holds, β = 1, δ = β
2 = 1

2 and θ = p⋆/2−1
p⋆/2+1 ,

ε−
5
2 |ln ε|

1
2 if (3.3) or (3.4) holds and β = θ = 1.

Proof. The results of the proposition are a direct consequence of Proposition 3.2(i). The com-
plexity computations are standard and are therefore skipped.
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Remark 3.6. The (adNSA) framework (3.2) scores a speed-up on (NSA) when p⋆ > 4. By
comparison to Proposition 1.3, the complexities outlined above are an order of magnitude of
ε

1
2 lower than those of (NSA) for large p⋆ under the framework (3.2) and up to a logarithmic

factor under the frameworks (3.3) and (3.4). As we will see in the next section, (adNSA) serves
as a fundamental component of the adaptive MLSA scheme. Consequently, the performance
improvements noted on the former scheme should result in an acceleration of the latter.

The table below recaps the differences between (NSA) and (adNSA).

Algorithm NSA adNSA

Bias parameter h ∼ ε hℓ ∼ ε
1

1+θ ⇔ ℓ ∼ |ln ε|
(1 + θ) lnM

Iterations amount n ∼ ε−
2
β n ∼


ε−

1
δ if (3.2) holds with δ ≤ β/2,

ε
− 2

β if (3.2) holds with δ ≥ β/2,

or if (3.3) or (3.4) holds,

Optimal complexity CostNSA ≤ Cε−3

CostadNSA ≤

C

ε
− 5p⋆+4

2p⋆ if (3.2) holds,

ε−
5
2 |ln ε|

1
2 if (3.3) or (3.4) holds.

Table 3.1. Comparison of (NSA) and (adNSA). ε ∈ (0, 1) designates the prescribed accuracy.
The postulates refer to Propositions 1.3 and 3.5.

4 Adaptive Multilevel Stochastic Approximation Algorithm

Recalling that (MLSA) telescopes multiple paired (NSA) schemes, the previous development
on (adNSA) provides a framework for the extension of the adaptive refinement strategy to the
multilevel paradigm. We define the adaptive multilevel SA (adMLSA) estimator for the VaR as

ξ̃ML
N = ξh0N0

+

L∑
ℓ=1

ξ̃hℓNℓ
− ξ̃hℓ−1

Nℓ
, (adMLSA)

where N := (N0, . . . , NL) ∈ NL+1
0 represents the number of iterations at each level. Each level

ℓ = 0, . . . , L is simulated independently. As detailed in Remark 2.2(ii), the level 0 estimator is
not refined, resulting in N0 iterations of (NSA). Each of the remaining levels ℓ = 1, . . . , L is
obtained as follows: after initializing (ξ̃

hℓ−1

0 ξ̃hℓ0 ), for each n = 0, . . . , Nℓ−1, once the components
of (X(n+1)

hℓ−1
, X

(n+1)
hℓ

) have been simulated according to (1.15), X(n+1)
hℓ−1

and X
(n+1)
hℓ

are separately

refined as in (3.1), relative to the fine and coarse iterates ξ̃hℓ−1
n and ξ̃hℓn , into X̃(n+1)

hℓ−1
and X̃(n+1)

hℓ

respectively. These refined innovations are then injected into separate single updates of (adNSA)
to obtain the next iterates (ξ̃

hℓ−1

n+1 , ξ̃
hℓ
n+1).
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Algorithm 4.1 Adaptive Multilevel SA for estimating the VaR

Require: A number of levels L ≥ 1, a bias parameter h0 = 1
K ∈ H, M ≥ 2, N0, . . . , NL ∈ N0,

a positive non-increasing sequence (γn)n≥1 such that
∑∞

n=1 γn = ∞ and limn→∞ γn = 0,
refinement parameters Ca > 0, r > 1 and 0 < θ ≤ 1

1: Sample ξh00 randomly
2: ξh0N0

← NSA(h0, N0)
3: for ℓ = 1 . . L do
4: Set hℓ ← h0

Mℓ

5: Sample (ξ̃
hℓ−1

0 , ξ̃hℓ0 ) randomly
6: for n = 0 . . Nℓ − 1 do
7: Simulate Y (n+1) ∼ Y and Z(n+1,1), . . . , Z(n+1,KMℓ) iid∼ Z independently of Y (n+1)

8: X
(n+1)
hℓ−1

← 1
KMℓ−1

∑KMℓ−1

k=1 φ(Y (n+1), Z(n+1,k))

9: X
(n+1)
hℓ

← 1
MX

(n+1)
hℓ−1

+ 1
KMℓ

∑KMℓ

k=KMℓ−1+1 φ(Y
(n+1), Z(n+1,k))

10: for j = ℓ− 1 . . ℓ do
11: X̃

(n+1)
hj

← Refineθ,r,Ca,j,n(X
(n+1)
hj

, ξ̃
hj
n )

12: ξ̃
hj
n+1 ← ξ̃

hj
n − γn+1H(ξ̃

hj
n , X̃

(n+1)
hj

)
13: end for
14: end for
15: end for
16: ξ̃ML

N ← ξh0N0
+
∑L

ℓ=1 ξ̃
hℓ
Nℓ
− ξ̃hℓ−1

Nℓ

17: return ξ̃ML
N

4.1 Convergence Analysis

Below, C < ∞ designates a positive constant that may change from line to line but does not
depend on L. The proofs of the following results are postponed to Appendix B.

The next result guarantees stronger error controls for (adMLSA) comparatively with its non-
adaptive counterpart, Lemma 1.4, for (MLSA).

Lemma 4.1. Let γn = γ1n
−β, β ∈ (0, 1].

(i) Assume that the real-valued random variables Xh admit pdfs fXh
that are bounded uniformly

in h ∈ H.

a. If (1.16) is satisfied, with

r < 2 and θ ≤
1− 1

p⋆+1

1 + 1
p⋆+1

, (4.1)

then
E
[∣∣∣1Xhℓ+ηn

ℓ
(ξ)
>ξ − 1X0>ξ

∣∣∣] ≤ Ch(1+θ) p⋆
2(p⋆+1)

ℓ .

b. If (1.17) is satisfied for Cg > 0, with

h0 ≥
(4Cg
C2
a

) 1
2
r−1 , r ≤ 2 and θ ≤ 1, (4.2)

then
E
[∣∣∣1Xhℓ+ηn

ℓ
(ξ)
>ξ − 1X0>ξ

∣∣∣] ≤ C√hℓ
1+θ(

1 ∨
√
|lnhℓ|

)
.
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(ii) if (2.7) is satisfied with, for some υ0 > 0,

sup
h∈H

E
[
exp(υ0|Gh0 |2)

]
<∞, h0 ≥

( 1

υ0C2
a

) 1
2
r−1 , r ≤ 2 and θ ≤ 1, (4.3)

then
E
[∣∣∣1Xhℓ+ηn

ℓ
(ξ)
>ξ − 1X0>ξ

∣∣∣] ≤ C√hℓ
1+θ

.

Remark 4.1.

(i) Although the frameworks of Lemmas 3.1 and 4.1 are similar, Lemma 3.1’s are stronger.

(ii) Comparatively with the non-adaptive frameworks of Lemma 1.4, the variance controls
for (adMLSA) display an extra exponentiation in 1+ θ, which should bring the algorithm’s
statistical error faster to 0.

The main convergence result follows. Its proof is deferred to Appendix C.

Theorem 4.2. Suppose that φ(Y, Z) ∈ L2(P), that Assumptions 1.1 and 1.5 hold, and that

sup
ℓ≥0

E
[
|ξ̃hℓ0 |

4 exp
( 16

1− α
kα sup

ℓ≥0
∥fXhℓ

∥∞|ξ̃hℓ0 |
)]

<∞.

Within the frameworks of Lemma 3.1, if γn = γ1n
−β, β ∈ (0, 1], with λ̄2γ1 > 2 if β = 1,

then there exists a positive constant K < ∞ such that, for any positive integer L and any
N = (N0, . . . , NL) ∈ NL+1

0 ,

E
[(
ξ̃ML
N − ξ

hL+⌈θL⌉
⋆

)2] ≤ K(
γN0 +

( L∑
ℓ=1

γ̃ℓNℓ

)2

+

L∑
ℓ=1

γNℓ
(γ̃ℓNℓ

)
1
2 +

L∑
ℓ=1

γ̃ℓNℓ
ϵ̃(hℓ)

1+θ

)
, (4.4)

where (γ̃ℓn)ℓ≥1,n≥1 are defined in (3.5) and

ϵ̃(h) :=


h

p⋆
2(1+p⋆) if (3.2) holds,

h
1
2 |lnh|

1
2 if (3.3) holds,

h
1
2 if (3.4) holds,

h ∈ H. (4.5)

Remark 4.2. Similarly to Theorem 1.6, the upper L2(P) estimate for the statistical error of
(adMLSA) contains four terms: the first term governs the level 0 simulation and the remaining
three control the drifts and martingales arising in the multilevel linearization (C.7). The first
difference with (MLSA) lies in the inclusion of γ̃ℓn, which stems from the controls of Proposi-
tion 3.2. Additionally, the final term exhibits an extra exponentiation in 1 + θ, resulting in an
accelerated convergence rate compared to (MLSA).

The convergence rate speed-up, shown in the previous theorem, translates a significant per-
formance gain that should reflect in the complexity of (adMLSA), as we clarify next.

4.2 Complexity Analysis

Throughout, C <∞ denotes a positive constant that may change from line to line but remains
independent of L. We consider ε ∈ (0, 1) a prescribed accuracy for (adMLSA).

Approximating ξ0⋆ by ξ̃ML
N results in a global error that decomposes into a statistical and a

bias errors:
ξ̃ML
N − ξ0⋆ =

(
ξ̃ML
N − ξ

hL+⌈θL⌉
⋆

)
+ (ξ

hL+⌈θL⌉
⋆ − ξ0⋆). (4.6)
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Proposition 4.3. Suppose that Assumption 1.1(i) holds. Let ε ∈ (0, 1) be a fixed prescribed
accuracy. If h0 > ε, then setting the number of levels to

L =

⌈
lnh0ε

−1

(1 + θ) lnM

⌉
(4.7)

achieves a bias error for (adMLSA) of order ε.

Proof. Lemma 1.2(i) guarantees that the bias error is of order hL+⌈θL⌉, thus we must choose L
so that hL+⌈θL⌉ ≤ h0

ML(1+θ) ≤ ε.

Remark 4.3. In view of Propositions 4.3 and 1.7(i), to achieve an identical bias error order,
(adMLSA) requires significantly less levels than (MLSA). In fact, for θ = 1, (adMLSA) re-
quires half as many levels as (MLSA) to achieve a bias error of order ε. This property alone
makes (adMLSA) much faster than (MLSA). It is linked to the fact that, for a given num-
ber of levels L, (adMLSA) achieves a bias error of order h1+θL , an order of magnitude hθL lower
than (MLSA) that scores an order of hL.

Proposition 4.4. Suppose that Assumptions 1.1(ii,iv) hold. By setting r > 1, the average
complexity of (adMLSA) satisfies

CostadMLSA ≤ C


∑L

ℓ=0
N

1+ δ
p⋆

ℓ
hℓ

if (1.16) holds,
√
L
∑L

ℓ=0
Nℓ
hℓ

+
∑L

ℓ=0
Nℓ

√
lnNℓ
hℓ

if (1.17) or (2.7) holds.

Proof. The average complexity of the adaptive multilevel SA algorithm satisfies

CostadMLSA ≤ C E
[ N0∑
n=1

1

h
η
(n)
0

+
L∑
ℓ=1

Nℓ∑
n=1

1

h
ℓ+η

(n)
ℓ

∨ 1

h
ℓ−1+η

(n)
ℓ−1

]
.

Invoking Lemma 3.4 concludes the proof.

Remark 4.4. Without the saturation factor in the refinement strategy, the computational cost
would be lowered to O

(∑N
ℓ=0

Nℓ
hℓ

)
, similar to both (MLSA) and the adaptive MLMC algo-

rithm [28]. However, omitting the saturation factor would adversely affect the convergence
of the statistical error (4.4). See Remark 3.1 for further comments on the necessity to saturate
the refinements.

Theorem 4.5. Let Ca > 0, r > 1 and 0 < θ ≤ 1 and suppose that Assumptions 1.1 and 1.5
hold. Let ε ∈ (0, 1) be a prescribed accuracy.

(i) If (3.2) holds, then setting Nℓ =
⌈
(Kγ1)

1
δ ε−

2
δ

(∑L
ℓ′=0 h

(3(1+θ)−2δ)p2⋆+(2(1+θ)+δ(1+3θ))p⋆+2δ(1+θ)

2(1+p⋆)(δ+(1+δ)p⋆)

ℓ′

) 1
δ
h

((5+3θ)p⋆+4+2θ)p⋆
2(1+p⋆)(δ+(1+δ)p⋆)

ℓ

⌉
if δ < β,⌈

(Kγ1)
1
β ε

− 2
β

(∑L
ℓ′=0 h

− (2β−(1+θ))p⋆+(2β−(1+θ)δ)
2(1+p⋆)(δ+(1+β)p⋆)

p⋆

ℓ′

) 1
β
h

(2+(3+θ)p⋆)p⋆
2(1+p⋆)(δ+(1+β)p⋆)

ℓ

⌉
if δ ≥ β,

(4.8)
0 ≤ ℓ ≤ L, where K is the constant on the right-hand side of (4.4), yields an average
complexity satisfying

Costβ,δ,θadMLSA ≤ C


ε
− 2(δ+p⋆)

δp⋆

(∑L
ℓ=0 h

(3(1+θ)−2δ)p2⋆+(2(1+θ)+δ(1+3θ))p⋆+2δ(1+θ)

2((1+δ)p⋆+δ)(1+p⋆)

ℓ

) p⋆+δ+p⋆δ
p⋆δ if δ < β,

ε
− 2(δ+p⋆)

βp⋆

(∑L
ℓ=0 h

− (2β−(1+θ))p⋆+(2β−(1+θ)δ)
2(1+p⋆)(δ+(1+β)p⋆)

ℓ

) p⋆+δ+p⋆β
p⋆β if δ ≥ β.

This complexity is optimal if δ < β, for all θ ∈
(
0, p⋆/2−1

p⋆/2+1

]
, as long as δ → β = 1:

Cost1,→1,θ
adMLSA ≤ Cε

−2− 2
p⋆ .
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(ii) If (3.3) holds, then setting

Nℓ =

⌈
(Kγ1)

1
β ε

− 2
β

( L∑
ℓ′=0

h
− 2β−(1+θ)

2(1+β)

ℓ′ |lnhℓ′ |
1+θ

2(1+β)

) 1
β

h
3+θ

2(1+β)

ℓ |lnhℓ|
1+θ

2(1+β)

⌉
, 0 ≤ ℓ ≤ L,

where K is the constant on the right-hand side of (4.4), leads to an average complexity
satisfying

Costβ,θadMLSA ≤ Cε
− 2

β |ln ε|
1
2

( L∑
ℓ=0

h
− 2β−(1+θ)

2(1+β)

ℓ |lnhℓ|
1+θ

2(1+β)

) 1+β
β

,

which is minimized for β = θ = 1, in which case

Cost1,1adMLSA ≤ Cε
−2 |ln ε|

7
2 .

(iii) If (3.4) holds, then setting

Nℓ =

⌈
(Kγ1)

1
β ε

− 2
β

( L∑
ℓ′=0

h
− 2β−(1+θ)

2(1+β)

ℓ′

) 1
β

h
3+θ

2(1+β)

ℓ

⌉
, 0 ≤ ℓ ≤ L,

where K is the constant on the right-hand side of (4.4), gives an average complexity of

Costβ,θadMLSA ≤ Cε
− 2

β |ln ε|
1
2

( L∑
ℓ=0

h
− 2β−(1+θ)

2(1+β)

ℓ

) 1+β
β

,

which is minimized for β = θ = 1, whereby

Cost1,1adMLSA ≤ Cε
−2 |ln ε|

5
2 .

Proof. Define

ϕL(Nℓ) :=

N
1+ δ

p⋆
ℓ if (3.2) holds,

Nℓ(
√
L+
√
lnNℓ) if (3.3) or (3.4) holds.

Following [24, 13], a heuristic proxy for the upper estimate in (4.4) is K
∑L

ℓ=1 γ̃
ℓ
Nℓ
ϵ̃(hℓ)

1+θ.
To determine the optimal number of iterations N0, . . . , NL, we optimize the complexity while
constraining the aforementioned term to ε2:

minimizeN0,...,NL>0
∑L

ℓ=0 ϕL(Nℓ)h
−1
ℓ ,

subject to
∑L

ℓ=0 γ̃
ℓ
Nℓ
ϵ̃(hℓ)

1+θ = K−1ε2.

We can check easily that, with the obtained solutions, the remaining terms in the upper esti-
mate (4.4) are of order ε2.

Remark 4.5.

(i) Within the frameworks of Theorems 4.5(ii,iii), (adMLSA) scores a significant performance
gain over (MLSA) and retrieves the canonical multilevel performance [23, 20] of order ε−2,
up to a logarithmic factor.

(ii) As for the framework of Theorem 4.5(i), it requires that p⋆ > 1 +
√
5 ≈ 3.24 to be faster

than (MLSA). This suggests to take p⋆ sufficiently large, recalling that a large class of
portfolio payoffs are Lp⋆(P)-integrable for any p⋆ > 2. Note that, asymptotically as p⋆ ↑ ∞,
Cost1,→1,θ

adMLSA = O(ε−2) while Cost1MLSA = O(ε−
5
2 ), retrieving the same overperformance

reported above.
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The table below compares (MLSA) and (adMLSA).

Algorithm MLSA adMLSA

L2(P)-control
h2L +

∑L
ℓ=0 γNℓ

ϵ(hℓ) h
2(1+θ)
L +

∑L
ℓ=0 γ̃

ℓ
Nℓ
ϵ̃(hℓ)

1+θ

(Decomposition (1.21), (Decomposition (4.6),

Lemma 1.2(i) and Theorem 1.6) Lemma 1.2(i) and Theorem 4.2)

Number of levels
L =

⌈h0ε−1

lnM

⌉
L =

⌈ h0ε
−1

(1 + θ) lnM

⌉
(Proposition 1.7(i)) (Proposition 4.3)

Optimal complexity

CostMLSA ≤ CostadMLSA ≤

C


ε
−3+ p∗

2(1+p∗) if (1.16) holds,

ε−
5
2 |ln ε|

1
2 if (1.17) holds,

ε−
5
2 if (1.18) holds.

C


ε
−2− 2

p⋆ if (3.2) holds,

ε−2 |ln ε|
7
2 if (3.3) holds,

ε−2 |ln ε|
5
2 if (3.4) holds.

(Proposition 1.7(iii)) (Theorem 4.5)

Table 4.1. Comparison of (MLSA) and (adMLSA). ε ∈ (0, 1) designates a prescribed accuracy.

4.3 Heuristics

In view of Proposition 3.5 and Theorem 4.5, to compute the VaR efficiently, we need to set
θ = p⋆/2−1

p⋆/2+1 within the framework (3.2) and θ = 1 within the frameworks (3.3) and (3.4). Note
that θ ≈ 1 for p⋆ large enough within the framework (3.2).

The choice r = 1+ 1
θ together with the assumption θ ≈ 1 lead to thresholds (2.9) of the form

ψnk,ℓ = h
θ

1+θ

ℓ+kwn ≈ h
1
2
ℓ+kwn,

where wn is the saturation factor. Complementing [25], under this choice of r and θ, our strategy
can be seen as conducting consecutive Student t-tests on the null hypotheses “Xhℓ+k

= ξ”,
0 ≤ k ≤ ⌈θℓ⌉, until the earliest rejection.

5 Financial Case Studies

In the ensuing numerical studies, we illustrate the performance gap closure between (MLSA)
and (SA) that is made possible by adopting our adaptive refinement strategy. To this end, we re-
visit the VaR use cases already handled by (SA), (NSA) and (MLSA) in [13, Sections 4 & 5]. The
implementations for the below case studies can be found at github.com/azarlouzi/ada_mlsa.

Confidence Constant Estimation. In the following applications, we tune the confidence
constant Ca appearing in (2.9) on a grid. Remark 2.2(v) however suggests a different treatment
for this constant.

Denote σ =
√

Var(φ(Y, Z)|Y ) the sampling standard deviation and σh, h = 1
K ∈ H, its

empirical approximation given by

σh =
( 1

K

K∑
k=1

φ(Y,Z(k))2 −X2
h

) 1
2
. (5.1)
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An alternative refinement strategy would incorporate an estimation of Ca in (2.9) by Cpσhℓ+k
at

the refinement step k, where Cp is set to 3 to retrieve a 99%-confidence level on the closeness
between Xhℓ+k

and X0.
We term σ-(adNSA) and σ-(adMLSA) the (adNSA) and (adMLSA) versions where Ca is

estimated by (Cpσhℓ+k
)0≤k≤⌈θℓ⌉. For comparative purposes, these versions are run as well and

their performances are reported and discussed in subsequent analyses.

5.1 European Option

We succinctly recall here the setting of [13, Section 4]. We refer to the developments therein for
rigorous derivation of the ensuing statements.

Consider a European option of maturity T = 1 and payoff x 7→ −x2, on an underlying asset
following a standard Brownian motion dynamic (Wt)0≤t≤1. The risk-free rate is null and pricing
is performed under P. The option’s value at time t ∈ [0, 1] is

Vt = E[−W 2
1 |Wt],

and its associated loss at a horizon τ ∈ (0, 1) is

X0 = V0 − Vτ .

We are interested in retrieving the VaR ξ0⋆ of this loss at some confidence level α ∈ (0, 1).

Analytical and Simulation Formulas. Let φ : R2 → R,

φ(y, z) := −
(√
τy +

√
1− τz

)2
, y, z ∈ R.

On the one hand,
X0

L
= −1− E[φ(Y,Z)|Y ] = τ(Y 2 − 1),

where Y and Z are independent and of law N (0, 1). X0 can thus be simulated exactly, hence
the benchmarking unbiased SA scheme [4] is applicable to estimate the VaR.

On the other hand, for a bias parameter h = 1
K ∈ H, X0 can be approximated by

Xh = −1− 1

K

K∑
k=1

φ(Y,Z(k)),

where Y, Z(1), . . . , Z(K) iid∼ N (0, 1). We can then apply (NSA), (MLSA), (adNSA), σ-(adNSA),
(adMLSA) and σ-(adMLSA) on this basis to approximate the VaR.

Finally, the VaR ξ0⋆ at level α has an analytical form:

ξ0⋆ = τ
(
F−1

(1− α
2

)2
− 1

)
, (5.2)

where F is the standard Gaussian cdf. Its evaluation will help assess the estimation errors of the
aforementioned SA schemes.

Numerical Results. We conduct below a performance comparison of the different SA schemes
discussed in this paper. We set the confidence level to α = 97.5% and the time horizon to τ = 0.5,
which yields ξ0⋆ ≈ 2.012 via (5.2).

To minimize complexity, all algorithms are run with β = 1 and their respective theoretical
optimal iterations amounts. (SA), (NSA), (adNSA) and σ-(adNSA) are run with γn = 1/(100+
n). (MLSA), (adMLSA) and σ-(adMLSA) are run with M = 2 under the framework (3.2)
with p⋆ = 11 and δ = 0.95. We set θ = p⋆/2−1

p⋆/2+1 and r = 1 + 1
θ for the adaptive schemes, as
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recommended in Section 4.3. Identical h0 parametrization was applied to (adNSA), σ-(adNSA),
(MLSA), (adMLSA) and σ-(adMLSA), and identical γn parametrization was applied to (MLSA),
(adMLSA) and σ-(adMLSA). Further parametrizations of the adaptive and multilevel schemes,
obtained via a grid search, are described in Table 5.1. The subsequent level amounts computed
via (1.22), (3.6) and (4.7) are reported in columns L, ℓad and Lad. For (adNSA) and (adMLSA),
the iterations amounts scaling factor C (e.g. C = (Kγ1)

1
δ for (adMLSA) as per (4.8)) and the

confidence constant Ca were jointly optimized by grid search, which led to the choices C = 2
and Ca = 0.5 for (adNSA) and C = 700 and Ca = 12 for (adMLSA). As for σ-(adNSA)
and σ-(adMLSA), we use the critical value Cp = 3 with scaling factors C = 2 and C = 700
respectively.

ε h0 ℓad
1
32

1
16 1

1
64

1
32 1

1
128

1
32 2

1
256

1
32 2

1
512

1
32 3

ε h0 L γn

1
32

1
16 1 2

2.5×103+n

1
64

1
32 1 2

4×103+n

1
128

1
32 2 0.75

9×103+n

1
256

1
32 3 0.25

104+n

1
512

1
32 4 0.09

104+n

ε h0 Lad γn

1
32

1
16 1 2

2.5×103+n

1
64

1
32 1 2

4×103+n

1
128

1
32 2 0.75

9×103+n

1
256

1
32 2 0.25

104+n

1
512

1
32 3 0.09

104+n

Table 5.1. Parametrizations of (adNSA) and σ-(adNSA) (left), (MLSA) (center) and (adMLSA)
and σ-(adMLSA) (right), by prescribed accuracy.

Root-mean-square errors (RMSEs) relative to the true ξ0⋆ and corresponding average execu-
tion times over 200 runs, for a prescribed accuracy ranging in { 1

32 ,
1
64 ,

1
128 ,

1
256 ,

1
512}, are graphed

for each algorithm on a logarithmic scale in Figure 5.1. Figure 5.2 plots the average execu-
tion times against the prescribed accuracies themselves to illustrate the achieved complexities.
The slopes fitted on these curves, shown in dashed lines in Figures 5.1 and 5.2, are reported in
Table 5.2.
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Figure 5.1. Performance comparison of the different SA schemes.
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Figure 5.2. Complexity comparison of the different SA schemes.
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SA scheme NSA σ-adNSA adNSA MLSA adMLSA σ-adMLSA SA

RMSE −3.01 −2.89 −2.61 −2.77 −2.04 −1.84 −2.05

Accuracy ε −2.98 −2.89 −2.69 −3.05 −2.18 −2.06 −2.00

Table 5.2. Reported slopes in Figures 5.1 and 5.2.

[13, Section 4.3] already provides a thorough discussion on (SA), (NSA) and (MLSA). We
retain here that (MLSA) scores a partial gain on the performance gap between (SA) and (NSA).

The novelties here are the adaptive schemes. On Figure 5.1, (adNSA) and σ-(adNSA) achieve
comparable performances, outperforming (NSA) by a margin that seems to widen for smaller
accuracies. (adNSA) seems to be slightly outperforming σ-(adNSA), which can be attributed to
the overhead computation performed by σ-(adNSA) to recompute the confidence constant Ca.
(adMLSA) and σ-(adMLSA) show to be significantly outperforming (MLSA): for a target RMSE
of order 10−2, (adMLSA) and σ-(adMLSA) run on average in 0.2s while (MLSA) runs in 2s,
achieving a 10 fold speed-up over their non-adaptive counterpart. σ-(adMLSA) seems to slightly
outperform (adMLSA), which can be explained by the precision brought by the recomputation
of the standard deviation σ, in spite of the entailed overhead computational time. However, this
overperformance remains slim, recalling that the calibrated confidence constant Ca for (adMLSA)
needs not be readjusted on the whole accuracy range once it has been optimized on a couple of
accuracies, thus eliminating any additional upstream fine-tuning.

Eventually, an examination of the fitted slopes highlights that (adNSA) and σ-(adNSA)
achieve the theoretical complexity exponents predicted by Proposition 3.5. It also demonstrates
that (adMLSA) and σ-(adMLSA) achieve the quadratic complexity anticipated by Theorem 4.5(i)
for p⋆ large. The performances of these schemes match that of (SA) that assumes the exact
simulatability of the true loss X0.

5.2 Interest Rate Swap

The following setting is recapitulated from [13, Section 5].
We consider a swap, of strike K̄, maturity T and nominal N̄ , each leg being worth 1 at

inception, issued at par on some underlying interest (or FX) rate (St)0≤t≤T following a Black-
Scholes model with risk neutral drift κ̄ and constant volatility σ̄. At the coupon dates 0 < T1 <
· · · < Td = T , the swap remunerates the cash flows ∆Ti(STi−1 − K̄), where ∆Ti = Ti − Ti−1,
T0 = 0. The risk-free rate is r̄ and the risk neutral probability measure is P.

For t ∈ [0, T ], let it be the integer such that t ∈ [Tit−1, Tit) if t ∈ [0, T ), and +∞ otherwise.
The fair value of the swap at time t ∈ [0, T ] is

Pt = N̄ E
[ d∑
i=it

e−r̄(Ti−t)∆Ti(STi−1 − K̄)

∣∣∣∣St].
The loss on a short position on the swap at a time horizon τ ∈ (0, T1) is

X0 = e−r̄τPτ .

We are interested in computing the VaR ξ0⋆ of this loss at some confidence level α ∈ (0, 1).

Analytical and Simulation Formulas. On the one hand,

X0
L
= N̄AS0

(
exp

(
− σ̄2

2
τ + σ̄

√
τU

)
− 1

)
, where A :=

d∑
i=2

e−r̄Ti∆ie
κ̄Ti−1
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and U ∼ N (0, 1). This allows simulating X0 exactly, hence the availability of (SA) to approxi-
mate the VaR.

On the other hand, X0 satisfies

X0
L
= E[φ(Y,Z)|Y ], (5.3)

where Y ∈ R is independent of Z = (Z1, . . . , Zd−1) ∈ Rd−1, with

Y := exp
(
− σ̄2

2
τ + σ̄

√
τU0

)
,

Z1 := exp
(
− σ̄2

2
(T1 − τ) + σ̄

√
T1 − τU1

)
,

Zi := exp
(
− σ̄2

2
∆i + σ̄

√
∆iUi

)
, 2 ≤ i ≤ d− 1,

φ(y, z) := N̄S0

d∑
i=2

e−r̄Ti∆ie
κ̄Ti−1

(
y
i−1∏
j=1

zj − 1

)
, y ∈ R, z = (z1, . . . , zd−1) ∈ Rd−1,

and (Ui)0≤i≤d−1
iid∼ N (0, 1). The nested Monte Carlo averaging (1.6) is thus available to ap-

proximate (5.3), hence the applicability of (NSA), (adNSA), σ-(adNSA), (MLSA), (adMLSA)
and σ-(adMLSA) to approximate the VaR.

Finally, the VaR ξ0⋆ at level α is available analytically:

ξ0⋆ = N̄AS0

(
exp

(
F−1(α)σ̄

√
τ − σ̄2

2
τ
)
− 1

)
, (5.4)

where F is the standard Gaussian cdf. The output of this formula will serve as a benchmark for
the outcomes of the aforementioned algorithms.

Numerical Results. For the case study, we set S0 = 1%, r̄ = 2%, κ̄ = 12%, σ̄ = 20%,
T = 1year, ∆Ti = 3months, τ = 7days and α = 85%. We use the 30/360 day count fraction
convention. (5.4) yields ξ0⋆ ≈ 219.64.

We run all algorithms at their theoretical optimums, with β = 1 and the corresponding
optimal iterations amounts. The learning rate γn = 100/n is employed for (SA) and γn = 50/n
for (NSA), (adNSA) and σ-(adNSA). For (adNSA), σ-(adNSA), (MLSA), (adMLSA) and σ-
(adMLSA), we adopt the framework (3.2) with the exponent p⋆ = 8, the geometric step M =

2 and the exponent δ = 0.95 for un. As suggested in Section 4.3, we set θ = p⋆/2−1
p⋆/2+1 and

r = 1 + 1
θ . For every prescribed accuracy ε ∈ { 1

32 ,
1
64 ,

1
128 ,

1
256 ,

1
512}, we tune h0 (governing the

number of levels L for (MLSA), ℓad for (adNSA) and σ-(adNSA), and Lad for (adMLSA) and σ-
(adMLSA)) and the learning rate (γn)n≥1 for (MLSA), (adMLSA) and σ-(adMLSA) on suitable
grids. Table 5.3 lists these parametrizations by prescribed accuracy. The iterations amounts
scaling factor C and adaptive refinement confidence constant Ca are tuned on grids. We retain
C = 80 for (adMLSA) and σ-(adMLSA), Ca = 100 for (adMLSA), C = 2 for (adNSA) and σ-
(adNSA) and Ca = 300 for (adNSA). We eventually set the critical value Cp = 3 for σ-(adNSA)
and σ-(adMLSA).
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ε h0 ℓad
1
32

1
8 2

1
64

1
16 2

1
128

1
16 2

1
256

1
16 3

1
512

1
16 4

ε h0 L γn

1
32

1
8 2 6

10+n

1
64

1
16 2 20

500+n

1
128

1
16 3 21

103+n

1
256

1
16 4 20

2×103+n

1
512

1
16 5 21

3×103+n

ε h0 Lad γn

1
32

1
8 2 6

10+n

1
64

1
16 2 20

500+n

1
128

1
16 2 21

103+n

1
256

1
16 3 20

2×103+n

1
512

1
16 4 21

3×103+n

Table 5.3. Parametrizations of (adNSA) and σ-(adNSA) (left), (MLSA) (center) and (adMLSA)
and σ-(adMLSA) (right), by prescribed accuracy.

The joint evolution of the RMSE and average execution time over 200 runs of each SA scheme,
for an accuracy ε looping through { 1

32 ,
1
64 ,

1
128 ,

1
256 ,

1
512}, are plotted on a logarithmic scale on

Figure 5.3. Figure 5.4 showcases the average execution times against the prescribed accuracies.
Table 5.4 reports the regressed slopes on these curves as depicted in dashed lines on Figures 5.3
and 5.4.
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Figure 5.3. Performance comparison of the different SA schemes.
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Figure 5.4. Complexity comparison of the different SA schemes.

SA scheme NSA σ-adNSA adNSA MLSA adMLSA σ-adMLSA SA

RMSE −3.52 −4.10 −3.86 −3.93 −2.60 −2.75 −1.66

Accuracy ε −3.00 −2.90 −2.78 −2.90 −1.96 −2.05 −2.00

Table 5.4. Reported slopes in Figures 5.3 and 5.4.

We refer to [13, Section 5.3] for extended comments on (SA), (NSA) and (MLSA).
Similar comments to the previous case study are applicable here. For smaller accuracies,

(adNSA) and σ-(adNSA) score a speed-up with respect to (NSA) as do (adMLSA) and σ-
(adMLSA) with respect to (MLSA). The performance margins between (adNSA) and σ-(adNSA)
on the one hand and (adMLSA) and σ-(adMLSA) on the other hand are rather slim. (adNSA)
and (adMLSA) remain preferable as they do not require recomputing Ca once it has been fine-
tuned on a couple of prescribed accuracies.

Although further fine-tuning may be required, the fitted slopes already indicate that the
adaptive multilevel schemes are approaching the desired quadratic complexity.

Conclusion

For a prescribed accuracy ε ∈ (0, 1), the canonical ε−2 multilevel complexity order is retrieved, up
to a logarithmic factor, for an MLSA scheme with a Heaviside-type update function. This is made
possible by adopting an adaptive refinement strategy on the innovations driving the multilevel
algorithm’s inner nested schemes. Our strategy allows to fulfill the closure of the performance
gap that resides between nested MLSA and unbiased Robbins-Monro schemes for Heaviside-type
update functions. The performance gain achieved by adaptive MLSA on its regular counterpart
is significant in practice, attaining a ten fold speed-up in certain cases and expected to increase
exponentially with smaller prescribed accuracies.
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A potential future line of research could involve applying a Polyak-Ruppert averaging [14]
to (adMLSA) to promote greater numerical stability. We could also explore extending our find-
ings on adaptive refinement to include triply nested X-value adjustment estimations [25].

A Auxiliary Results

The proof of the following result is included in the preliminary steps of [13, Proposition 3.2] and
is therefore omitted.

Lemma A.1.

(i) Assume that there exists p ≥ 1 such that E[|φ(Y,Z)− E[φ(Y,Z)|Y ]|p] <∞. Then, for any
h, h′ ∈ H,

E[|Xh −Xh′ |p] ≤ C|h− h′|
p
2 .

(ii) Assume that there exists Cg > 0 such that E
[
exp

(
u
(
φ(Y,Z)− E[φ(Y,Z)|Y ]

))∣∣Y ]
≤ eCgu2

P-as for all u ∈ R. Then, for any h, h′ ∈ H and any u ∈ R,

E
[
exp

(
u(Xh −Xh′)

)∣∣Y ]
≤ exp

(
Cgu

2|h− h′|
)

holds P-as.

Similarly to [13], we define, for h ∈ H, µ ≥ 0 and a positive integer q, the Lyapunov function
Lµh,q : R→ R+ by

Lµh,q(ξ) =
(
Vh(ξ)− Vh(ξh⋆ )

)q
exp

(
µ
(
Vh(ξ)− Vh(ξh⋆ )

))
, ξ ∈ R. (A.1)

The following lemma states some important properties of Lµh,q.

Lemma A.2 ([13, Lemma 3.2]). Denote kα = 1 ∨ α
1−α , µh,q = q2∥V ′′

h ∥∞ and L̄h,q = Lµh,qh,q ,
h ∈ H, q ∈ N0. Under Assumption 1.1, for any h ∈ H, µ ≥ 0 and q ≥ 1,

(i) Lµh,q is twice continuously differentiable on R and

(Lµh,q)
′(ξ) = qV ′

h(ξ)L
µ
h,q−1(ξ) + µV ′

h(ξ)L
µ
h,q(ξ), ξ ∈ R. (A.2)

(ii) for any ξ ∈ R,

L̄h,q(ξ) ≤ kqα |ξ − ξh⋆ |q exp
( q2

1− α
kα sup

h∈H
∥fXh

∥∞|ξ − ξh⋆ |
)
.

(iii) for any ξ ∈ R,

V ′
h(ξ)(L

µ
h,q)

′(ξ) ≥ λµh,qL
µ
h,q(ξ), where λµh,q :=

3

8
qV ′′

h (ξ
h
⋆ ) ∧ µ

V ′′
h (ξ

h
⋆ )

4

4[V ′′
h ]

2
Lip
.

Let λ̄h,q := λ
µh,q
h,q . Then infh∈H λ̄h,q > 0.

(iv) for any ξ ∈ R,
|(Lµh,q)

′′(ξ)| ≤ ηµh,q
(
Lµh,q(ξ) + L

µ
h,q−1(ξ)

)
,

where

ηµh,q := (q ∨ µ)∥V ′′
h ∥∞ + k2αµ(µ ∨ 2) + q(2µ ∨ (q − 1))

(3k2α[V ′′
h ]

2
Lip

V ′′
h (ξ

h
⋆ )

3
∨
3∥V ′′

h ∥2∞
V ′′
h (ξ

h
⋆ )

)
.

Besides, introducing η̄h,q := η
µh,q
h,q , one has |λ̄h,q|2 ≤ η̄h,q and suph∈H η̄h,q <∞.

(v) for any ξ ∈ R,

(ξ − ξh⋆ )2q ≤ κh,q
(
Lµh,q(ξ) + L

µ
h,2q(ξ)

)
, where κh,q :=

3q

V ′′
h (ξ

h
⋆ )
q
∨
32q[V ′′

h ]
2q
Lip

V ′′
h (ξ

h
⋆ )

4q
.

Moreover, suph∈H κh,q <∞.
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B Proofs of the Auxiliary Convergence Results

Throughout, C < ∞ denotes a positive constant that may change from line to line but is
independent of n and ℓ.

Proof of Lemma 2.1. The proof is similar to [13, Proposition 4.2(ii)]. We have

E
[∣∣1Xh′>ξ − 1Xh>ξ

∣∣]
= P(Xh′ ≤ ξ < Xh) + P(Xh ≤ ξ < Xh′)

= P(Xh + (h′)
1
2Gh

′
h ≤ ξ < Xh) + P(Xh ≤ ξ < Xh + (h′)

1
2Gh

′
h )

= P(Xh − (h′)
1
2 (Gh

′
h )

− ≤ ξ < Xh) + P(Xh ≤ ξ < Xh + (h′)
1
2 (Gh

′
h )

+)

= E
[
F
Xh|Gh′

h
(ξ + (h′)

1
2 (Gh

′
h )

−)− F
Xh|Gh′

h
(ξ)

]
+ E

[
F
Xh|Gh′

h
(ξ)− F

Xh|Gh′
h
(ξ − (h′)

1
2 (Gh

′
h )

+)
]

= E
[
F
Xh|Gh′

h
(ξ + (h′)

1
2 (Gh

′
h )

−)− F
Xh|Gh′

h
(ξ − (h′)

1
2 (Gh

′
h )

+)
]

≤
(

sup
0≤h1<h2∈H

E[Kh2
h1
|Gh2h1 |]

)
(h′)

1
2 .

Proof of Lemma 3.1. By (2.8) and the law of total probability,

P(Xhℓ+ηn
ℓ
(ξ)
≤ ξ)− FXhℓ+⌈θℓ⌉

(ξ)

=

⌈θℓ⌉∑
k=0

P(Xhℓ+k
≤ ξ, ηnℓ (ξ) = k)− P(Xhℓ+⌈θℓ⌉ ≤ ξ, η

n
ℓ (ξ) = k)

=

⌈θℓ⌉−1∑
k=0

E
[(
1Xhℓ+k

≤ξ − 1Xhℓ+⌈θℓ⌉≤ξ
)
1ηnℓ (ξ)=k

]
.

(B.1)

(i) a. For k ∈ [[0, ⌈θℓ⌉ − 1]], given that

{Xhℓ+k
≤ ξ < Xhℓ+⌈θℓ⌉} ⊔ {Xhℓ+⌈θℓ⌉ ≤ ξ < Xhℓ+k

} ⊂ {|Xhℓ+k
−Xhℓ+⌈θℓ⌉ | ≥ |Xhℓ+k

− ξ|} (B.2)

and that, by (2.8) under the condition (1.16),

{ηnℓ (ξ) = k} ⊂
{
|Xhℓ+k

− ξ| ≥ Cau
− 1

p⋆
n h

1
r

θℓ(r−1)+k

}
, (B.3)

by Markov’s inequality and Lemma A.1(i),∣∣E[(1Xhℓ+k
≤ξ − 1Xhℓ+⌈θℓ⌉≤ξ

)
1ηnℓ (ξ)=k

]∣∣
≤ E

[(
1Xhℓ+k

≤ξ<Xhℓ+⌈θℓ⌉
+ 1Xhℓ+⌈θℓ⌉≤ξ<Xhℓ+k

)
1{

|Xhℓ+k
−ξ|≥Cau

− 1
p⋆

n h
1
r
θℓ(r−1)+k

}]
≤ P

(
|Xhℓ+k

−Xhℓ+⌈θℓ⌉ | ≥ |Xhℓ+k
− ξ|, |Xhℓ+k

− ξ| ≥ Cau
− 1

p⋆
n h

1
r

θℓ(r−1)+k

)
≤ C−p⋆

a unh
− p⋆

r

θℓ(r−1)+k E[|Xhℓ+k
−Xhℓ+⌈θℓ⌉ |

p⋆ ]

≤ Cunh
− p⋆

r

θℓ(r−1)+kh
p⋆
2
ℓ+k.

31



Using the previous inequality, (B.1) and the condition (3.2) on r then on θ,∣∣P(Xhℓ+ηn
ℓ
(ξ)
≤ ξ)− FXhℓ+⌈θℓ⌉

(ξ)
∣∣

≤ Cunh
− p⋆

r

θℓ(r−1)h
p⋆
2
ℓ

⌈θℓ⌉−1∑
k=0

h
( 1
2
− 1

r
)p⋆

k

≤ Cunh−θℓp⋆(1− 1
r
)+ p⋆ℓ

2
+θℓp⋆(

1
2
− 1

r
)

≤ Cunh1+θℓ .

(B.4)

(i) b. Let k ∈ [[0, ⌈θℓ⌉ − 1]] and λ > 0. By (B.2), (B.3), the definition (2.8) in the case of (1.17),
Markov’s exponential inequality and Lemma A.1(i),∣∣E[(1Xhℓ+k

≤ξ − 1Xhℓ+⌈θℓ⌉≤ξ
)
1ηnℓ (ξ)=k

]∣∣
≤ P

(
|Xhℓ+k

−Xhℓ+⌈θℓ⌉ | ≥ |Xhℓ+k
− ξ|, |Xhℓ+k

− ξ
∣∣ ≥ Cah 1

r

θℓ(r−1)+k

(
ln γ

− 1
2

n h
− 1

2
(1+θ)

ℓ+k

) 1
2
)

≤ exp
(
− Caλh

1
r

θℓ(r−1)+k

(
ln γ

− 1
2

n h
− 1

2
(1+θ)

ℓ+k

) 1
2
)
E[exp(λ|Xhℓ+k

−Xhℓ+⌈θℓ⌉ |)]

≤ 2 exp
(
− Caλh

1
r

θℓ(r−1)+k

(
ln γ

− 1
2

n h
− 1

2
(1+θ)

ℓ+k

) 1
2 + Cgλ

2hℓ+k
)
.

Minimizing the above upper bound with respect to λ yields

∣∣E[(1Xhℓ+k
≤ξ − 1Xhℓ+⌈θℓ⌉≤ξ

)
1ηnℓ (ξ)=k

]∣∣ ≤ 2 exp

(
−
C2
ah

2
r

θℓ(r−1)+k ln γ
− 1

2
n h

− 1
2
(1+θ)

ℓ+k

4Cghℓ+k

)
.

In view of the condition (3.3) on h0, r and θ, one gets

∣∣E[(1Xhℓ+k
≤ξ − 1Xhℓ+⌈θℓ⌉≤ξ

)
1ηnℓ (ξ)=k

]∣∣ ≤ 2
(
γnh

1+θ
ℓ+k

)C2
ah

2/r−1
0

8Cg
M−2θℓ(1− 1

r )+ℓ

≤ 2γnh
1+θ
ℓ+k .

Therefore, recalling (B.1),∣∣P(Xhℓ+ηn
ℓ
(ξ)
≤ ξ)− FXhℓ+⌈θℓ⌉

(ξ)
∣∣ ≤ Cγnh1+θℓ . (B.5)

(ii) For k ∈ [[0, ⌈θℓ⌉ − 1]], via the definition (2.8) in the case of (2.7), Markov’s exponential
inequality and the condition (3.4) on h0, r and θ,∣∣E[(1Xhℓ+k

>ξ − 1Xhℓ+⌈θℓ⌉>ξ

)
1ηnℓ (ξ)=k

]∣∣
≤ P

(
|Xhℓ+k

−Xhℓ+⌈θℓ⌉ | ≥ |Xhℓ+k
− ξ|, |Xhℓ+k

− ξ
∣∣ ≥ Cah 1

r

θℓ(r−1)+k

(
ln γ

− 1
2

n h
− 1

2
(1+θ)

ℓ+k

) 1
2
)

≤ P
(∣∣Ghℓ+k

hℓ+⌈θℓ⌉

∣∣ ≥ Cah 1
r

θℓ(r−1)+kh
− 1

2
ℓ+k

(
ln γ

− 1
2

n h
− 1+θ

2
ℓ+k

) 1
2
)

≤ exp
(
− υ0C2

ah
2
r

θℓ(r−1)+kh
−1
ℓ+k ln γ

− 1
2

n h
− 1+θ

2
ℓ+k

)
E
[
exp

(
υ0
∣∣Ghℓ+k

hℓ+⌈θℓ⌉

∣∣2)]
≤

(
sup

0≤h<h′∈H
E
[
exp(υ0|Gh

′
h |2)

])(
h1+θℓ+kγn

) 1
2
υ0C2

ah
2
r−1

0 M−2θℓ(1− 1
r )+ℓ

≤ Cγnh1+θℓ+k .

Thus, by (B.1), ∣∣P(Xhℓ+ηn
ℓ
(ξ)
≤ ξ)− FXhℓ+⌈θℓ⌉

(ξ)
∣∣ ≤ Cγnh1+θℓ . (B.6)

Eventually, we decompose

P(Xhℓ+ηℓ(ξ)
≤ ξ)− FX0(ξ) =

(
P(Xhℓ+ηn

ℓ
(ξ)
≤ ξ)− FXhℓ+⌈θℓ⌉

(ξ)
)

︸ ︷︷ ︸
=:An

ℓ

+
(
FXhℓ+⌈θℓ⌉

(ξ)− FX0(ξ)
)

︸ ︷︷ ︸
=:Bℓ

.
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By (B.4)–(B.6) and Assumption 1.1(i),

|Anℓ | ≤ Cγ1h1+θℓ , Bℓ = −
v(ξ0⋆)

fX0(ξ
0
⋆)
hℓ+⌈θℓ⌉ + o(hℓ+⌈θℓ⌉),

hence the final result.

Proof of Proposition 3.2. In this proof, we omit the superscript µ from the Lyapunov function
Lµh,q and denote instead Lh,q. For any ℓ ≥ 0, let (F̃hℓn )n≥0 be the filtration defined by F̃hℓ0 = σ(ξ̃hℓ0 )

and F̃hℓn = σ(ξ̃hℓ0 , X
(1)
hℓ+⌈θℓ⌉

, . . . , X
(n)
hℓ+⌈θℓ⌉

), n ≥ 1.

For ℓ ≥ 1 and n ≥ 1, define

vnℓ (ξ) := E
[
H
(
ξ,Xhℓ+ηn

ℓ
(ξ)

)]
= 1− 1

1− α
P
(
Xhℓ+ηn

ℓ
(ξ)
≥ ξ

)
, ξ ∈ R. (B.7)

The dynamics (adNSA) rewrite

ξ̃hℓn+1 = ξ̃hℓn − γn+1V
′
hℓ+⌈θℓ⌉

(ξ̃hℓn )− γn+1r
hℓ
n+1 − γn+1e

hℓ
n+1, (B.8)

where

rhℓn+1 := vn+1
ℓ (ξ̃hℓn )− V ′

hℓ+⌈θℓ⌉
(ξ̃hℓn ), (B.9)

ehℓn+1 := H(ξ̃hℓn , X̃
(n+1)
hℓ

)− vn+1
ℓ (ξ̃hℓn ). (B.10)

By Lemma 3.1,

|rhℓn+1| =
1

1− α
∣∣P(Xh

ℓ+ηn+1
ℓ

(ξ)
≤ ξ)|ξ̃hℓn

− P(Xhℓ+⌈θℓ⌉ ≤ ξ)|ξ̃hℓn

∣∣ ≤ Chℓ+⌈θℓ⌉ũn+1, (B.11)

where

ũn+1 :=

un+1 if (1.16) holds,

γn+1 if (1.17) or (2.7) holds.
(B.12)

Let q ≥ 1. In the spirit of [13, Theorem 3.3], we test the Lyapunov Lhℓ+⌈θℓ⌉,q along the
dynamics (B.8). Using a second order Taylor expansion,

Lhℓ+⌈θℓ⌉,q(ξ̃
hℓ
n+1) = Lhℓ+⌈θℓ⌉,q

(
ξ̃hℓn − γn+1V

′
hℓ+⌈θℓ⌉

(ξ̃hℓn )− γn+1r
hℓ
n+1 − γn+1e

hℓ
n+1

)
= Lhℓ+⌈θℓ⌉,q(ξ̃

hℓ
n )− γn+1L′hℓ+⌈θℓ⌉,q

(ξ̃hℓn )(V ′
hℓ+⌈θℓ⌉

(ξ̃hℓn ) + rhℓn+1 + ehℓn+1)

+ γ2n+1H(ξ̃hℓn , X̃
(n+1)
hℓ

)2
∫ 1

0
(1− t)L′′hℓ+⌈θℓ⌉,q

(tξ̃hℓn+1 + (1− t)ξ̃hℓn ) dt.

(B.13)

It follows from Lemmas A.2(iii,iv), (A.2) and (B.11) that

Lhℓ+⌈θℓ⌉,q(ξ̃
hℓ
n+1) ≤ Lhℓ+⌈θℓ⌉,q(ξ̃

hℓ
n )

(
1− λµhℓ+⌈θℓ⌉,q

γn+1 + Cµ∥V ′
hℓ+⌈θℓ⌉

∥∞hℓ+⌈θℓ⌉γn+1ũn+1

)
− γn+1L′hℓ+⌈θℓ⌉,q

(ξ̃hℓn )ehℓn+1 + Cq∥V ′
hℓ+⌈θℓ⌉

∥∞hℓ+⌈θℓ⌉γn+1ũn+1Lhℓ+⌈θℓ⌉,q−1(ξ̃
hℓ
n )

+ ηµhℓ+⌈θℓ⌉,q
γ2n+1H(ξ̃hℓn , X̃

(n+1)
hℓ

)2

×
∫ 1

0
(1− t)

(
Lhℓ+⌈θℓ⌉,q(tξ̃

hℓ
n+1 + (1− t)ξ̃hℓn ) + Lhℓ+⌈θℓ⌉,q−1(tξ̃

hℓ
n+1 + (1− t)ξ̃hℓn )

)
dt.

(B.14)
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The mean value theorem guarantees that, for any t ∈ [0, 1], there exists ahℓn (t) ∈ R such that

Vhℓ+⌈θℓ⌉(tξ̃
hℓ
n+1 + (1− t)ξ̃hℓn ) = Vhℓ+⌈θℓ⌉(ξ̃

hℓ
n ) + tV ′

hℓ+⌈θℓ⌉
(ahℓn (t))(ξ̃hℓn+1 − ξ̃

hℓ
n ). (B.15)

Besides, from (1.3),
|ξ̃hℓn+1 − ξ̃

hℓ
n | = γn+1|H(ξ̃hℓn , X̃

(n+1)
hℓ

)| ≤ kαγn+1, (B.16)

with kα = α
1−α ∨ 1. Applying the triangle inequality to (B.15) and using (B.16),

Vhℓ+⌈θℓ⌉(tξ̃
hℓ
n+1+(1−t)ξ̃hℓn )−Vhℓ+⌈θℓ⌉(ξ

hℓ+⌈θℓ⌉
⋆ ) ≤ Vhℓ+⌈θℓ⌉(ξ̃

hℓ
n )−Vhℓ+⌈θℓ⌉(ξ

hℓ+⌈θℓ⌉
⋆ )+k2αγn+1. (B.17)

Using the inequality ex ≤ e1x≤1 + xqex1x>1 ≤ e(1 + xqex), x ∈ R, and the very definition of
Lh,q,

Lµh,0(ξ) ≤ e
(
1 + µqLµh,q(ξ)

)
, ξ ∈ R, h ∈ H, µ ≥ 0, q ≥ 0. (B.18)

Thus, by (B.17) and (B.18),

Lhℓ+⌈θℓ⌉,q(tξ̃
hℓ
n+1 + (1− t)ξ̃hℓn )

≤
(
Vhℓ+⌈θℓ⌉(ξ̃

hℓ
n )− Vhℓ+⌈θℓ⌉(ξ

hℓ+⌈θℓ⌉
⋆ ) + k2αγn+1

)q
× exp

(
µ
(
Vhℓ+⌈θℓ⌉(ξ̃

hℓ
n )− Vhℓ+⌈θℓ⌉(ξ

hℓ+⌈θℓ⌉
⋆ ) + k2αγn+1

))
≤ 2q−1 exp

(
µk2αγn+1

)(
Lhℓ+⌈θℓ⌉,q(ξ̃

hℓ
n ) + k2qα γ

q
n+1Lhℓ+⌈θℓ⌉,0(ξ̃

hℓ
n )

)
≤ σµq

(
Lhℓ+⌈θℓ⌉,q(ξ̃

hℓ
n ) + γqn+1

)
,

(B.19)

with
σµq := 2q−1 exp(µk2αγ1)

(
(1 + eµqk2qα γ

q
1) ∨ ek2qα

)
≥ 2q−1.

Plugging the upper bounds (B.16) and (B.19) into (B.14),

Lhℓ+⌈θℓ⌉,q(ξ̃
hℓ
n+1) ≤ Lhℓ+⌈θℓ⌉,q(ξ̃

hℓ
n )

×
(
1− λµhℓ+⌈θℓ⌉,q

γn+1 +
(
Cµ∥V ′

hℓ+⌈θℓ⌉
∥∞hℓ+⌈θℓ⌉γn+1ũn+1 + ζµhℓ+⌈θℓ⌉,q

γ2n+1

))
+

(
Cq∥V ′

hℓ+⌈θℓ⌉
∥∞γn+1ũn+1hℓ+⌈θℓ⌉ + ζ

µhℓ+⌈θℓ⌉,q

hℓ+⌈θℓ⌉,q
γ2n+1

)
Lhℓ+⌈θℓ⌉,q−1(ξ̃

hℓ
n )

− γn+1L′hℓ+⌈θℓ⌉,q
(ξ̃hℓn )ehℓn+1 + ζµhℓ+⌈θℓ⌉,q

γq+1
n+1,

(B.20)

where
ζµh,q :=

1

2
ηµh,qk

2
α

(
(γ1σh,q + σh,q−1) ∨ σh,q

)
, (B.21)

Via the tower law property,

E[L′hℓ+⌈θℓ⌉,q
(ξ̃hℓn )ehℓn+1] = E

[
L′hℓ+⌈θℓ⌉,q

(ξ̃hℓn )E[ehℓn+1|F̃
hℓ
n ]

]
and

E[ehℓn+1|F̃
hℓ
n ] = E

[
H
(
ξ̃hℓn , X

(n+1)
h
ℓ+ηn+1

ℓ
(ξ̃

hℓ
n )

)∣∣∣F̃hℓn ]
− E

[
H
(
ξ,X

(n+1)
h
ℓ+ηn+1

ℓ
(ξ)

)]
|ξ̃hℓn

= E
[ ⌈θℓ⌉∑
k=1

H
(
ξ̃hℓn , X

(n+1)
hℓ+k

)
1
ηn+1
ℓ (ξ̃

hℓ
n )=k

∣∣∣∣F̃hℓn ]
−

⌈θℓ⌉∑
k=1

E
[
H
(
ξ,X

(n+1)
hℓ+k

)
1ηn+1

ℓ (ξ)=k

]
|ξ̃hℓn

= 0,

so that (ehℓn )n≥1 is a
(
(F̃hℓn )n≥1,P

)
-martingale increment sequence.
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Hence, by taking the expectation on both sides of the inequality (B.20),

E[Lhℓ+⌈θℓ⌉,q(ξ̃
hℓ
n+1)] ≤ E[Lhℓ+⌈θℓ⌉,q(ξ̃

hℓ
n )]

×
(
1− λµhℓ+⌈θℓ⌉,q

γn+1 +
(
Cµ∥V ′

hℓ+⌈θℓ⌉
∥∞hℓ+⌈θℓ⌉γn+1ũn+1 + ζµhℓ+⌈θℓ⌉,q

γ2n+1

))
+
(
Cq∥V ′

hℓ+⌈θℓ⌉
∥∞hℓ+⌈θℓ⌉γn+1ũn+1 + ζµhℓ+⌈θℓ⌉,q

γ2n+1

)
E[Lhℓ+⌈θℓ⌉,q−1(ξ̃

hℓ
n )]

+ ζµhℓ+⌈θℓ⌉,q
γq+1
n+1.

(B.22)
(i) In the following steps, we provide sharper upper estimates for E[L̄hℓ+⌈θℓ⌉,1(ξ̃

hℓ
n )] and E[L̄hℓ+⌈θℓ⌉,2(ξ̃

hℓ
n )].

Step 1. Inequality on E[L̄hℓ+⌈θℓ⌉,1(ξ̃
hℓ
n )].

Taking q = 1 and µ = µhℓ+⌈θℓ⌉,1 in (B.22) and (B.18),

E[L̄hℓ+⌈θℓ⌉,1(ξ̃
hℓ
n+1)] ≤ E[L̄hℓ+⌈θℓ⌉,1(ξ̃

hℓ
n )]

×
(
1− λ̄hℓ+⌈θℓ⌉,1γn+1 +

(
C(1 + e)µhℓ+⌈θℓ⌉,1∥V

′
hℓ+⌈θℓ⌉

∥∞hℓ+⌈θℓ⌉γn+1ũn+1 + (1 + eµhℓ+⌈θℓ⌉,1)ζ̄hℓ+⌈θℓ⌉,1γ
2
n+1

))
+
(
Ce∥V ′

hℓ+⌈θℓ⌉
∥∞hℓ+⌈θℓ⌉γn+1ũn+1 + (1 + e)ζ̄hℓ+⌈θℓ⌉,1γ

2
n+1

)
.

(B.23)
Observe now that

(eµqh,q + 1)ζ̄h,q ≥ η̄h,q c̄h,q,

where, using Lemma A.2(v) and (B.21),

cµh,q := (eµq + 1)
ζµh,q
ηµh,q

= 2−1(eµq + 1)(σµq ∨ (γ1σ
µ
q + σµq−1))k

2
α >

1

2
, c̄h,q := c

µh,q
h,q .

Therefore, recalling that |λ̄h,q|2 ≤ η̄h,q by Lemma A.2(iv), for any integer n,

1− λ̄h,qγn+1 +
(
C(1 + e)µh,q∥V ′

h∥∞hγn+1ũn+1 + (1 + eµqh,q)ζ̄h,qγ
2
n+1

)
≥ 1− λ̄h,qγn+1 + (1 + eµqh,q)ζ̄h,qγ

2
n+1

≥ 1−
√
η̄h,qγn+1 + η̄h,q c̄h,qγ

2
n+1

≥ 1− 1

4c̄h,q
≥ 1

2
> 0.

Hence, iterating n times the inequality (B.23),

E[L̄hℓ+⌈θℓ⌉,1(ξ̃
hℓ
n )] ≤ E[L̄hℓ+⌈θℓ⌉,1(ξ̃

hℓ
0 )]Π

hℓ+⌈θℓ⌉,1
1:n

+
(
Ce∥V ′

hℓ+⌈θℓ⌉
∥∞ + (1 + e)ζ̄hℓ+⌈θℓ⌉,1

) n∑
k=1

(hℓ+⌈θℓ⌉ũkγk ∨ γ2k)Π
hℓ+⌈θℓ⌉,1

k+1:n ,
(B.24)

where

Πh,qk:n :=
n∏
j=k

(
1− λ̄h,qγj +

(
C(1 + e)µh,q∥V ′

h∥∞hγj ũj + (1 + eµqh,q)ζ̄h,qγ
2
j

))
, q ≥ 1, (B.25)

with the convention
∏

∅ = 1.
We employ similar lines of reasoning to those in the proof of [13, Theorem 3.1]. Omitting

some technical details,
E[L̄hℓ+⌈θℓ⌉,1(ξ̃

hℓ
n )] ≤ Kℓ,1

(
γn ∨ hℓ+⌈θℓ⌉ũn

)
, (B.26)

under the constraint λ̄1γ1 > 1 if β = 1, for some constants (Kℓ,1)ℓ≥1 satisfying supℓ≥1Kℓ,1 <∞.
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Step 2. Inequality on E[L̄hℓ+⌈θℓ⌉,2(ξ̃
hℓ
n )].

We now take q = 2 and µ = µhℓ+⌈θℓ⌉,2 in (B.22) and use (B.26) to obtain

E[L̄hℓ+⌈θℓ⌉,2(ξ̃
hℓ
n+1)]

≤ E[L̄hℓ+⌈θℓ⌉,2(ξ̃
hℓ
n )]

×
(
1− λ̄hℓ+⌈θℓ⌉,2γn+1 +

(
Cµhℓ+⌈θℓ⌉,2∥V

′
hℓ+⌈θℓ⌉

∥∞hℓ+⌈θℓ⌉γn+1ũn+1 + ζ̄hℓ+⌈θℓ⌉,2γ
2
n+1

))
+
(
2C∥V ′

hℓ+⌈θℓ⌉
∥∞hℓ+⌈θℓ⌉γn+1ũn+1 + ζ̄hℓ+⌈θℓ⌉,2γ

2
n+1

)
E[Lhℓ+⌈θℓ⌉,1(ξ̃

hℓ
n )]

+ ζ̄hℓ+⌈θℓ⌉,2γ
3
n+1

≤ E[L̄hℓ+⌈θℓ⌉,2(ξ̃
hℓ
n )]

×
(
1− λ̄hℓ+⌈θℓ⌉,2γn+1 +

(
Cµhℓ+⌈θℓ⌉,2∥V

′
hℓ+⌈θℓ⌉

∥∞hℓ+⌈θℓ⌉γn+1ũn+1 + ζ̄hℓ+⌈θℓ⌉,2γ
2
n+1

))
+ 2Ce4Kℓ,1∥V ′

hℓ+⌈θℓ⌉
∥∞

(
2βhℓ+⌈θℓ⌉γ

2
n+1ũn+1 + 2υh2ℓ+⌈θℓ⌉γn+1ũ

2
n+1

)
+ ζhℓ+⌈θℓ⌉,2

(
2υe4Kℓ,1hℓ+⌈θℓ⌉γ

2
n+1ũn+1 + (1 + 2βe4Kℓ,1)γ

3
n+1

)
,

where

υ :=

δ if (1.16) holds,

β if (1.17) or (2.7) holds,

Iterating n times the previous inequality yields

E[L̄hℓ+⌈θℓ⌉,2(ξ̃
hℓ
n )] ≤ E[L̄hℓ+⌈θℓ⌉,2(ξ̃

hℓ
0 )]Π̃

hℓ+⌈θℓ⌉,2
1:n

+
(
2Ce4Kℓ,1∥V ′

hℓ+⌈θℓ⌉
∥∞(2β + 2υ) + ζ̄hℓ+⌈θℓ⌉,2(1 + e4Kℓ,1(2

β + 2υ))
)

×
n∑
k=1

(hℓ+⌈θℓ⌉γ
2
kũk ∨ h2ℓ+⌈θℓ⌉γkũ

2
k ∨ γ3k)Π̃

hℓ+⌈θℓ⌉,2

k+1:n ,

(B.27)

where

Π̃h,qk:n :=
n∏
j=k

(
1− λ̄h,qγj +

(
Cµh,q∥V ′

h∥∞hũjγj + ζ̄h,qγ
2
j

))
, q ≥ 1. (B.28)

Similar computations to those in the proof of [13, Theorem 3.1] yield

E[L̄hℓ+⌈θℓ⌉,2(ξ̃
hℓ
n )] ≤ Kℓ,2

(
γ2n ∨ h2ℓ+⌈θℓ⌉ũ

2
n

)
, (B.29)

with supℓ≥1Kℓ,2 <∞.

Step 3. Conclusion.
Combining (B.26) and (B.29) with the conclusion of Lemma A.2(v) completes the proof.

(ii) Using similar arguments to the previous point, we obtain the sharp upper estimate

E[L̄hℓ+⌈θℓ⌉,4(ξ̃
hℓ
n )] ≤ Kℓ,4

(
γ4n ∨ h4ℓ+⌈θℓ⌉ũ

4
n

)
, (B.30)

with supℓ≥1Kℓ,4 <∞. Considering Lemma A.2(v), the inequalities (B.29) and (B.30) yield the
sought upper estimate.

Proof of Lemma 4.1. We calculate

E
[∣∣∣1Xhℓ+ηn

ℓ
(ξ)
>ξ − 1X0>ξ

∣∣∣] =

⌈θℓ⌉∑
k=0

E
[∣∣1Xhℓ+k

>ξ − 1X0>ξ

∣∣1ηnℓ (ξ)=k] ≤ Aℓ +Bℓ,
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where

Aℓ := E
[∣∣1Xhℓ+⌈θℓ⌉>ξ

− 1X0>ξ

∣∣],
Bℓ :=

⌈θℓ⌉−1∑
k=0

E
[∣∣1Xhℓ+k

>ξ − 1X0>ξ

∣∣1ηnℓ (ξ)=k]. (B.31)

We analyze Aℓ and Bℓ separately.

(i) a. Step 1. Study of Aℓ.
Using Lemma 1.4(i)a,

Aℓ ≤ Ch
(1+θ) p⋆

2(p⋆+1)

ℓ .

Step 2. Study of Bℓ.
Letting k ∈ [[0, ⌈θℓ⌉−1]], one has, via the definition (2.8), Markov’s inequality and Lemma A.1(i),

E
[∣∣1Xhℓ+k

>ξ − 1X0>ξ

∣∣1ηnℓ (ξ)=k]
≤ P

(
|Xhℓ+k

−X0| ≥ |Xhℓ+k
− ξ|, |Xhℓ+k

− ξ| ≥ Cau
− 1

p⋆
n h

1
r

θℓ(r−1)+k

)
≤ C−p⋆

a unh
− p⋆

r

θℓ(r−1)+k E[|Xhℓ+k
−X0|p⋆ ]

≤ Cunh
− p⋆

r

θℓ(r−1)+kh
p⋆
2
ℓ+k.

Thus, by (B.31),

Bℓ ≤ Cunh
− p⋆

r

θℓ(r−1)h
p⋆
2
ℓ

⌈θℓ⌉−1∑
k=0

h
( 1
2
− 1

r
)p⋆

k ≤ Cγ1h−θℓp⋆(1− 1
r
)+ p⋆ℓ

2
+θℓp⋆(

1
2
− 1

r
)
≤ Ch

(1+θ) p⋆
2(p⋆+1)

ℓ ,

where we used the condition (4.1) on r then on θ.

(i) b. Step 1. Study of Aℓ.
Lemma 1.4(i)b entails

Aℓ ≤ C
√
hℓ

1+θ(
1 +

√
|lnhℓ|

)
.

Step 2. Study of Bℓ.
Let k ∈ [[0, ⌈θℓ⌉ − 1]] and λ > 0. By the definition (2.8), Markov’s exponential inequality and
Lemma A.1(ii),

E
[∣∣1Xhℓ+k

>ξ − 1X0>ξ

∣∣1ηnℓ (ξ)=k]
≤ P

(
|Xhℓ+k

−X0| ≥ |Xhℓ+k
− ξ|, |Xhℓ+k

− ξ
∣∣ ≥ Cah 1

r

θℓ(r−1)+k

(
ln γ

− 1
2

n h
− 1

2
(1+θ)

ℓ+k

) 1
2
)

≤ exp
(
− Caλh

1
r

θℓ(r−1)+k

(
ln γ

− 1
2

n h
− 1

2
(1+θ)

ℓ+k

) 1
2
)
E[exp(λ|Xhℓ+k

−X0|)]

≤ 2 exp
(
− Caλh

1
r

θℓ(r−1)+k

(
ln γ

− 1
2

n h
− 1

2
(1+θ)

ℓ+k

) 1
2 + Cgλ

2hℓ+k
)
,

where we used the inequality exp(|x|) ≤ exp(x) + exp(−x), x ∈ R. Minimizing the above upper
bound with respect to λ yields

E
[∣∣1Xhℓ+k

>ξ − 1X0>ξ

∣∣1ηnℓ (ξ)=k] ≤ 2 exp

(
−
C2
ah

2
r

θℓ(r−1)+k ln γ
− 1

2
n h

− 1
2
(1+θ)

ℓ+k

4Cghℓ+k

)
.

In view of the condition (4.2) on h0, r and θ,

E
[∣∣1Xhℓ+k

>ξ − 1X0>ξ

∣∣1ηnℓ (ξ)=k] ≤ 2(γnh
1+θ
ℓ+k)

1
2

C2
ah

2/r−1
0

4Cg
M−2θℓ(1− 1

r )+ℓ

≤ 2
√
γ1h

1+θ
ℓ+k .
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Eventually, (B.31) yields
Bℓ ≤ C

√
hℓ

1+θ
.

(ii) Step 1. Study of Aℓ.
Consequently from Lemma 2.1,

Aℓ ≤ C
√
hℓ

1+θ
.

Step 2. Study of Bℓ.
For simplicity, we denoteGh the random variable such thatXh = X0+h

1
2Gh. For k ∈ [[0, ⌈θℓ⌉−1]],

via the definition (2.8) and Markov’s exponential inequality and recalling the condition (4.3) on
h0, r and θ,

E
[∣∣1Xhℓ+k

>ξ − 1X0>ξ

∣∣1ηnℓ (ξ)=k]
≤ P

(
|Xhℓ+k

−X0| ≥ |Xhℓ+k
− ξ|, |Xhℓ+k

− ξ
∣∣ ≥ Cah 1

r

θℓ(r−1)+k

(
ln γ

− 1
2

n h
− 1

2
(1+θ)

ℓ+k

) 1
2
)

≤ P
(
|Ghℓ+k

| ≥ Cah
1
r

θℓ(r−1)+kh
− 1

2
ℓ+k

(
ln γ

− 1
2

n h
− 1+θ

2
ℓ+k

) 1
2
)

≤ exp
(
− υ0C2

ah
2
r

θℓ(r−1)+kh
−1
ℓ+k ln γ

− 1
2

n h
− 1+θ

2
ℓ+k

)
E
[
exp(υ0G

2
hℓ+k

)
]

≤
(
sup
h∈H

E[exp(υ0G2
h)]

)(
h1+θℓ+kγn

) 1
2
υ0C2

ah
2
r−1

0 M−2θℓ(1− 1
r )+ℓ

≤ C
√
γ1h

1+θ
ℓ+k .

All in all, via (B.31),
Bℓ ≤ C

√
hℓ

1+θ
.

C Proof of Theorem 4.2

For any ℓ ≥ 0, let (F̃hℓn )n≥0 be the filtration defined by F̃hℓ0 = σ(ξ̃hℓ0 ) and
F̃hℓn = σ(ξ̃hℓ0 , X

(1)
hℓ+⌈θℓ⌉

, . . . , X
(n)
hℓ+⌈θℓ⌉

), n ≥ 1.
Following (B.8), the dynamics (adNSA) can be decomposed into

ξ̃hℓn − ξ
hℓ+⌈θℓ⌉
⋆ =

(
1− γnV ′′

0 (ξ
0
⋆)
)
(ξ̃hℓn−1 − ξ

hℓ+⌈θℓ⌉
⋆ )− γnghℓn − γnρhℓn − γnrhℓn − γnehℓn , (C.1)

where (ehℓn )n≥1 and (rhℓn )n≥1 are defined in (B.9)–(B.10) and

ghℓn :=
(
V ′′
hℓ+⌈θℓ⌉

(ξ
hℓ+⌈θℓ⌉
⋆ )− V ′′

0 (ξ
0
⋆)
)
(ξ̃hℓn−1 − ξ

hℓ+⌈θℓ⌉
⋆ ), (C.2)

ρhℓn := V ′
hℓ+⌈θℓ⌉

(ξ̃hℓn−1)− V
′′
hℓ+⌈θℓ⌉

(ξ
hℓ+⌈θℓ⌉
⋆ )(ξ̃hℓn−1 − ξ

hℓ+⌈θℓ⌉
⋆ ). (C.3)

Iterating (C.1),

ξ̃hℓn − ξ
hℓ+⌈θℓ⌉
⋆ = (ξ̃hℓ0 − ξ

hℓ+⌈θℓ⌉
⋆ )Π1:n −

n∑
k=1

γkΠk+1:ng
hℓ
k −

n∑
k=1

γkΠk+1:nρ
hℓ
k

−
n∑
k=1

γkΠk+1:nr
hℓ
k −

n∑
k=1

γkΠk+1:ne
hℓ
k ,

(C.4)

where

Πk:n =

n∏
j=k

(
1− γjV ′′

0 (ξ
0
⋆)
)

(C.5)
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with the convention
∏

∅ = 1.
Given that γk ↓ 0 as k ↑ ∞, there exists k0 ≥ 0 such that for j ≥ k0, (1 − γjV ′′

0 (ξ
0
⋆)) > 0.

Hence, using the inequality 1 + x ≤ exp(x), x ∈ R, for n large enough,

|Πk:n| = |Πk:k0−1|
n∏

j=k0∨k

(
1− γjV ′′

0 (ξ
0
⋆)
)

≤ |Πk:k0−1| exp
(
− V ′′

0 (ξ
0
⋆)

n∑
j=k0∨k

γj

)

≤ C exp

(
− V ′′

0 (ξ
0
⋆)

n∑
j=k

γj

)
(C.6)

where C = 1 ∨max1≤k≤k0 |Πk:k0−1| exp
(
V ′′
0 (ξ

0
⋆)

∑k−1
j=k0∧k γj

)
, with the convention

∑
∅ = 0.

According to (adMLSA) and the decomposition (C.4),

ξ̃ML
N − ξ

hL+⌈θL⌉
⋆ = ξ̃h0N0

− ξh0⋆ +
L∑
ℓ=1

(
ξ̃hℓNℓ
− ξhℓ+⌈θℓ⌉

⋆ −
(
ξ̃
hℓ−1

Nℓ
− ξhℓ−1+⌈θ(ℓ−1)⌉

⋆

))
= ξ̃h0N0

− ξh0⋆ +

L∑
ℓ=1

(
ξ̃hℓ0 − ξ

hℓ+⌈θℓ⌉
⋆ − (ξ̃

hℓ−1

0 − ξhℓ−1+⌈θ(ℓ−1)⌉
⋆ )

)
Π1:Nℓ

−
L∑
ℓ=1

Nℓ∑
k=1

γkΠk+1:Nℓ
(ghℓk − g

hℓ−1

k )−
L∑
ℓ=1

Nℓ∑
k=1

γkΠk+1:Nℓ
(ρhℓk − ρ

hℓ−1

k )

−
L∑
ℓ=1

Nℓ∑
k=1

γkΠk+1:Nℓ
(rhℓk − r

hℓ−1

k )−
L∑
ℓ=1

Nℓ∑
k=1

γkΠk+1:Nℓ
(ehℓk − e

hℓ−1

k ).

(C.7)

We study each term in the above decomposition separately.

Step 1. Study of ξ̃h0N0
− ξh0⋆ .

Following Remark 2.2(ii), no refinement is applied at level 0, so that by Lemma 1.2(ii),

E
[(
ξ̃h0N0
− ξh0⋆

)2] ≤ CγN0 .

Step 2. Study of
∑L

ℓ=1

(
ξ̃hℓ0 − ξ

hℓ+⌈θℓ⌉
⋆ − (ξ̃

hℓ−1

0 − ξhℓ−1+⌈θ(ℓ−1)⌉
⋆ )

)
Π1:Nℓ

.
By assumption, supℓ≥0 E[|ξ̃

hℓ
0 |2] <∞, and according to Lemma 1.2(i), (ξh⋆ )h∈H is bounded. Hence

supℓ≥0 E[(ξ̃
hℓ
0 − ξ

hℓ+⌈θℓ⌉
⋆ )2]

1
2 ≤ supℓ≥0 E[|ξ̃

hℓ
0 |2]

1
2 + suph∈H |ξh⋆ | < ∞. Besides, by (C.6) and [14,

Lemma A.1(ii)], lim supn↑∞ γ−1
n |Π1:n| = 0 under the condition λ̄2γ1 > 2. Hence,

E
[( L∑

ℓ=1

(
ξ̃hℓ0 − ξ

hℓ+⌈θℓ⌉
⋆ − (ξ̃

hℓ−1

0 − ξhℓ−1+⌈θ(ℓ−1)⌉
⋆ )

)
Π1:Nℓ

)2] 1
2

≤ 2 sup
ℓ≥0

E[(ξ̃hℓ0 − ξ
hℓ+⌈θℓ⌉
⋆ )2]

1
2

L∑
ℓ=1

|Π1:Nℓ
| ≤ K

L∑
ℓ=1

γNℓ
.

Step 3. Study of
∑L

ℓ=1

∑Nℓ
k=1 γkΠk+1:Nℓ

(ghℓk − g
hℓ−1

k ).
Recalling that, by Lemma 1.2(i), (ξh⋆ )h∈H is bounded, there exists a compact set K ⊂ R such

that ξ
hℓ+⌈θℓ⌉
⋆ ∈ K for any ℓ ≥ 0. From Lemma 1.2(i) and Assumptions 1.1(iv) and 1.5,∣∣V ′′
0 (ξ

0
⋆)− V ′′

hℓ+⌈θℓ⌉
(ξ
hℓ+⌈θℓ⌉
⋆ )

∣∣ ≤ 1

1− α

(
[fX0 ]Lip|ξ

hℓ+⌈θℓ⌉
⋆ − ξ0⋆ |+ sup

ξ∈K

∣∣fX0(ξ)− fXhℓ+⌈θℓ⌉
(ξ)

∣∣)
≤ K

(
hℓ+⌈θℓ⌉ + h

1
4
+δ0

ℓ+⌈θℓ⌉
)
≤ Kh((

1
4
+δ0)∧1)(1+θ)

ℓ .
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Consequently from (C.2), Proposition 3.2(ii) and the above inequality,

E
[∣∣ghℓn ∣∣2] 1

2 ≤ |V ′′
0 (ξ

0
⋆)− V ′′

hℓ+⌈θℓ⌉
(ξ
hℓ+⌈θℓ⌉
⋆ )|E[(ξ̃hℓn−1 − ξ

hℓ+⌈θℓ⌉
⋆ )2]

1
2 ≤ Kh((

1
4
+δ0)∧1)(1+θ)

ℓ (γ̃ℓn)
1
2 .

(C.8)
Recalling (C.6), under the condition λ̄2γ1 > 2 if β = 1, by [14, Lemma A.1(i)],

E
[( L∑

ℓ=1

Nℓ∑
k=1

γkΠk+1:Nℓ
(ghℓk − g

hℓ−1

k )

)2] 1
2

≤
L∑
ℓ=1

Nℓ∑
k=1

γk|Πk+1:Nℓ
|
(
E
[∣∣ghℓk ∣∣2] 1

2 + E
[∣∣ghℓ−1

k

∣∣2] 1
2
)

≤ K
L∑
ℓ=1

h
(( 1

4
+δ0)∧1)(1+θ)

ℓ

Nℓ∑
k=1

γk(γ̃
ℓ
k)

1
2 |Πk+1:Nℓ

|

≤ K
L∑
ℓ=1

h
(( 1

4
+δ0)∧1)(1+θ)

ℓ (γ̃ℓNℓ
)
1
2 .

Using that
∑∞

ℓ=1 h
2(1+θ)δ0∧ 3

4
ℓ <∞, the Cauchy-Schwarz inequality and the definition (4.5),

E
[( L∑

ℓ=1

Nℓ∑
k=1

γkΠk+1:Nℓ
(ghℓk − g

hℓ−1

k )

)2] 1
2

≤ K
( L∑
ℓ=1

γ̃ℓNℓ
h

1
2
(1+θ)

ℓ

) 1
2
( L∑
ℓ=1

h
2(1+θ)δ0∧ 3

4
ℓ

) 1
2

≤ K
( L∑
ℓ=1

γ̃ℓNℓ
ϵ̃(hℓ)

1+θ

) 1
2

.

(C.9)

Step 4. Study of
∑L

ℓ=1

∑Nℓ
k=1 γkΠk+1:Nℓ

(ρhℓk − ρ
hℓ−1

k ).
Taking into account the fact that V ′

hℓ+⌈θℓ⌉
(ξ
hℓ+⌈θℓ⌉
⋆ ) = 0 and Assumption 1.1(iv), a first order

Taylor expansion yields∣∣V ′
hℓ+⌈θℓ⌉

(ξ̃hℓn−1)− V
′′
hℓ+⌈θℓ⌉

(ξ
hℓ+⌈θℓ⌉
⋆ )(ξ̃hℓn−1 − ξ

hℓ+⌈θℓ⌉
⋆ )

∣∣
=

∣∣∣(ξ̃hℓn−1 − ξ
hℓ+⌈θℓ⌉
⋆ )

∫ 1

0

(
V ′′
hℓ+⌈θℓ⌉

(tξ̃hℓn−1 + (1− t)ξhℓ+⌈θℓ⌉
⋆ )− V ′′

hℓ+⌈θℓ⌉
(ξ
hℓ+⌈θℓ⌉
⋆ )

)
dt
∣∣∣

≤
[fXhℓ

]Lip

2(1− α)
(ξ̃hℓn−1 − ξ

hℓ+⌈θℓ⌉
⋆ )2.

Hence, by the definition (C.3) and Proposition 3.2(ii) (which applies since λ̄2γ1 > 2 if β = 1),

E
[∣∣ρhℓn ∣∣2] 1

2 ≤
suph∈H [fXh

]Lip

2(1− α)
E[(ξ̃hℓn − ξ

hℓ+⌈θℓ⌉
⋆ )4]

1
2 ≤ Kγ̃ℓn.

Recalling (C.6) and that λ̄2γ1 > 2 if β = 1 by assumption, via [14, Lemma A.1(i)]

E
[( L∑

ℓ=1

Nℓ∑
k=1

γkΠk+1:Nℓ
(ρhℓk − ρ

hℓ−1

k )

)2] 1
2

≤
L∑
ℓ=1

Nℓ∑
k=1

γk|Πk+1:Nℓ
|
(
E
[∣∣ρhℓk ∣∣2] 1

2 + E
[∣∣ρhℓ−1

k

∣∣2] 1
2
)

≤ K
L∑
ℓ=1

Nℓ∑
k=1

γkγ̃
ℓ
k|Πk+1:Nℓ

| ≤ K
L∑
ℓ=1

γ̃ℓNℓ
.
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Step 5. Study of
∑L

ℓ=1

∑Nℓ
k=1 γkΠk+1:Nℓ

(rhℓk − r
hℓ−1

k ).
Using the inequalities (B.11) and (C.6) and recalling that λ̄2γ1 > 2 if β = 1, by [14, Lemma A.1(i)],

E
[( L∑

ℓ=1

Nℓ∑
k=1

γkΠk+1:Nℓ
(rhℓk − r

hℓ−1

k )

)2] 1
2

≤
L∑
ℓ=1

Nℓ∑
k=1

γk|Πk+1:Nℓ
|
(
E
[∣∣rhℓk ∣∣2] 1

2 + E
[∣∣rhℓ−1

k

∣∣2] 1
2
)

≤ K
L∑
ℓ=1

Nℓ∑
k=1

γkγ̃
ℓ
k|Πk+1:Nℓ

| ≤ K
L∑
ℓ=1

γ̃ℓNℓ
.

Step 6. Study of
∑L

ℓ=1

∑Nℓ
k=1 γkΠk+1:Nℓ

(ehℓk − e
hℓ−1

k ).
Note that the random variables

(∑Nℓ
k=1 γkΠk+1:Nℓ

(ehℓk − e
hℓ−1

k )
)
ℓ≥1

are independent with zero

mean and that, at each level ℓ ≥ 1, (ehℓk − e
hℓ−1

k )k≥1 are
(
F̃hℓk

)
k≥1

-martingale increments. There-
fore

E
[( L∑

ℓ=1

Nℓ∑
k=1

γkΠk+1:Nℓ
(ehℓk − e

hℓ−1

k )

)2]
=

L∑
ℓ=1

Nℓ∑
k=1

γ2k |Πk+1:n|2 E[(ehℓk − e
hℓ−1

k )2].

From (B.10), (B.7) and (1.3),

E[(ehℓn − e
hℓ−1
n )2] = E

[
Var

(
H(ξ̃hℓn , X̃

(n+1)
hℓ

)−H(ξ̃
hℓ−1
n , X̃

(n+1)
hℓ−1

)
∣∣F̃hℓn )]

≤ E
[(
H(ξ̃hℓn , X̃

(n+1)
hℓ

)−H(ξ̃
hℓ−1
n , X̃

(n+1)
hℓ−1

)
)2]

≤ 1

(1− α)2
(
E
[∣∣∣1

X̃
(n+1)
hℓ

>ξ̃
hℓ
n
− 1

X0>ξ̃
hℓ
n

∣∣∣]
+ E

[∣∣∣1
X0>ξ̃

hℓ
n
− 1

X0>ξ̃
hℓ−1
n

∣∣∣]
+ E

[∣∣∣1
X0>ξ̃

hℓ−1
n
− 1

X̃
(n+1)
hℓ−1

>ξ̃
hℓ−1
n

∣∣∣]).
On the one hand, for j ∈ {ℓ− 1, ℓ}, by the tower law property and Lemma 4.1, recalling (4.5),

E
[∣∣∣1

X̃
(n+1)
hj

>ξ̃
hj
n
− 1

X0>ξ̃
hj
n

∣∣∣] = E
[
E
[∣∣∣1

X̃
(n+1)
hj

>ξ̃
hj
n
− 1

X0>ξ̃
hj
n

∣∣∣ ∣∣∣ F̃hjn ]]
≤ Cϵ̃(hℓ)1+θ.

On the other hand, by Assumption 1.1(iv) and Lemmas 1.2(i) and 3.2, recalling that λ̄1γ1 =
λ̄2
2 γ1 > 1,

E
[∣∣∣1

X0>ξ̃
hℓ
n
− 1

X0>ξ̃
hℓ−1
n

∣∣∣] = E
[
1
ξ̃
hℓ
n <X0≤ξ̃

hℓ−1
n

+ 1
ξ̃
hℓ−1
n <X0≤ξ̃

hℓ
n

]
= E

[∣∣FX0(ξ̃
hℓ
n )− FX0(ξ̃

hℓ−1
n )

∣∣] ≤ (
sup
h∈H
∥fXh

∥∞
)
E
[(
ξ̃hℓn − ξ̃

hℓ−1
n

)2
]
1
2

≤ K
(
E
[(
ξ̃hℓn − ξ

hℓ+⌈θℓ⌉
⋆

)2
]
1
2 +

∣∣ξhℓ+⌈θℓ⌉
⋆ − ξhℓ−1+⌈θ(ℓ−1)⌉

⋆

∣∣+ E
[(
ξ̃
hℓ−1
n − ξhℓ−1+⌈θ(ℓ−1)⌉

⋆

)2
]
1
2
)

≤ K
(
h1+θℓ + (γ̃ℓn)

1
2
)
.

Combining the previous results and invoking [14, Lemma A.1(i)], recalling that λ̄2γ1 > 2 if β = 1,

E
[( L∑

ℓ=1

Nℓ∑
k=1

γkΠk+1:n(e
hℓ
k − e

hℓ−1

k )

)2]

≤ K
( L∑
ℓ=1

Nℓ∑
k=1

γ2k(γ̃
ℓ
k)

1
2 |Πk+1:n|2 +

L∑
ℓ=1

ϵ̃(hℓ)
1+θ

Nℓ∑
k=1

γ2k |Πk+1:n|2
)

≤ K
( L∑
ℓ=1

γNℓ
(γ̃ℓNℓ

)
1
2 +

L∑
ℓ=1

γNℓ
ϵ̃(hℓ)

1+θ

)
.
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