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A competition between short- and long-wavelength twist buckling instabilities has been reported in experi-
ments on thin elastic ribbons having pre-strain concentrated in a rectangular region surrounding the axis.
The wavelength of the twisting mode has been reported to either scale (i) as the width of the ribbon when
the pre-strain is large (short-wavelength case) or (ii) as the length of the ribbon when the pre-strain is small
(large-wavelength case). Existing one-dimensional rod or ribbon models can only account for large-wave-
length buckling. We derive a novel one-dimensional model that accounts for short-wavelength buckling as
well. It is derived from non-linear shell theory by dimension reduction and captures in an asymptotically
correct way both the non-convex dependence of the strain energy on the twisting strain 𝜏 (which causes
buckling in a first place) and its dependence on the strain gradient 𝜏′. The competition between short- and
long-wavelength buckling is shown to be governed by the sign of the incremental elastic modulus B0 asso-
ciated with the twist gradient 𝜏′. The one-dimensional model reproduces the main features of equilibrium
configurations generated in earlier work using 3D finite-element simulations. In passing, we introduce a
novel truncation strategy applicable to higher-order dimension reduction, that preserves positiveness of
the strain energy even when the gradient modulus is negative, B0 <0.

1. INTRODUCTION

Short-wavelength buckling driven by spatially inhomogeneous pre-strain is ubiquitous in natural phenomena and
engineering applications. The edges of maize leaves undulate due to differential growth across their width [12]; gut
tube forms loops and perversions due to a difference in strain in the tube and in the mesenteric sheet attached to
it [22]; octopuses change their texture and color by tuning the difference in strain in the outer skin and in the under-
lying layers [5]; and the formulation of human fingerprints is driven by differential strain in the skin layers [26]. A
classical engineering example exhibiting short-wavelength buckling is the wrinkling of a pre-strained layer on an
elastic foundation, where the buckling wavelength scales with the thickness of the layer, rather than the size of the
structure [1]. There is a large body of work on this problem in the literature [6, 7, 21, 13].
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Figure 1.1. Summary of the experiments [11] on thin elastic ribbons with non-uniform pre-strain, exhibiting a competition
between short- and long-wavelength instabilities. (a) Preparation of the pre-strained ribbons (see also Figure 2.1 for details):
the main parameters are the amount p of extensional pre-strain in the central region (red) and the ratio r of the width of the
central region relative to the overall width. (b) Two kinds of instabilities can be observed when the end-to-end distance is
decreased: (b1) short-wavelength instability leading to a large number of perversions (star symbols) or (b2) long-wavelength
instability leading to a single perversion in the middle.
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In this paper, we are interested in structures that exhibit both short- and long-wavelength buckling. By tuning
the geometry and the level of pre-strain in a multilayer structure, one can indeed make the two types of modes
compete. This has been known for a long time in the context of structural sandwich panels, see the discussion in
Section 8.2 of the book by Allen [1]. By gluing together two elastomeric strips, one of which is pre-stretched, the
authors of [13, 21] have designed a bi-strip in which the competition between short- and long-wavelength instabili-
ties is particularly easy to demonstrate. The endpoints of the bi-strip are initially pulled apart and when the pulling
force is decreased, the bi-strip buckles into a curly pattern whose wavelength scales either as the ribbon length
(long-wavelength buckling) or as the ribbon width (short-wavelength case). The transition between long- and short-
wavelength is governed mainly by the amount p of the initial pre-stretch and has been characterized experimentally
and using finite-element simulations in [21].

Here, we analyze a variant of the bi-strip, shown in Figure 1.1, that has been introduced in a recent paper [11].
It is made up of three ribbons arranged symmetrically and glued together, see Figure 1.1(a). The initial pre-stretch
is limited to the central strip shown in red in the figure. The behavior of this symmetric strip is similar to that of the
original bi-strip and, in particular, it exhibits a competition between short- and long-wavelength buckling governed
by the magnitude p of pre-strain, see Figure 1.1(b). Yet, the symmetric ribbon is much easier to analyze as it buckles
into a pure-twist mode, see Figure 1.1(b).

In this paper, we derive a one-dimensional model for the twist-buckling of pre-strained ribbons which we use as
a basis to analyze both the wavelength selection problem and the nonlinear features of buckling. The wavelength
selection in the buckling of pre-strained ribbons has been approached in previous work [20] using both a rectangular-
shell model and a 3D finite-elasticity model for a rectangular block: a linear bifurcation analysis has been set up
assuming infinite length, and the long- to short-wavelength transition has been interpreted as a bifurcation on the
first critical wavenumber qc, with qc = 0 in the long-wavelength case and qc > 0 in the short-wavelength case. The
one-dimensional model derived in the present paper generates this linear bifurcation analysis more easily and more
clearly, as we will see, and also exposes the non-linear features of buckling.

Deriving a one-dimensional model for pre-strained ribbons raises the following challenges:

• Dimension reduction for elastic rods or ribbons is most often approached using linear elasticity. In the linear
setting, the pre-strain enters in the one-dimensional model in the form of an effective natural curvature and
an effective natural helicity. Both of them happen to be zero for the symmetric distribution of pre-strain used
in Figure 1.1, showing that linear elasticity is inapplicable here.

• Non-linear dimension reduction has been used in recent work [11] to derive a one-dimensional energy func-
tional for a twisted ribbon of the form

Φ⋆ =�
0

ℓ 1
2 A(𝜏(S)) dS, (1.1)

where 𝜏(S) is the local twisting strain and A(𝜏) is a function generated by the dimension reduction pro-
cedure. The main result of the present paper is that the competition between short- and long-wavelength
buckling arises from the dependence of the energy on the gradient of twisting strain 𝜏′(S), which is neglected
in (1.1).

To tackle these difficulties, we carry out dimension reduction based on a method developed in our group [19], which
works in the framework of non-linear elasticity. It captures the effect of the strain gradient 𝜏′(S) by pushing dimen-
sion reduction to second-order in the small aspect-ratio parameter. The asymptotic dimension reduction method has
already been applied to thin elastic strips and tape springs [4, 16], and we extend it (i) by including pre-strain and
(ii) by proposing a novel truncation strategy for the gradient terms, described in Section 2.5 and 3.3.

The change in the truncation strategy was prompted by the fact that the one-dimensional energy functionals pro-
duced by the original version of our dimension reduction method [19, 4, 16] lack an essential smoothness property.
We realized this when we first tried generating the results shown in the present paper using the original version of
the method [19, 4, 16]: we never could reach convergence reliably in the calculation of the nonlinear equilibria. We
had never attempted to solve any equilibrium problem generated by the higher-order dimensional reduction method
before, and we believe that all the one-dimensional energies that it can generate suffer the same flaw. We expect
that the simple fix proposed in the present paper will be applicable to all of them.

In addition to non-trivial wavelength selection, an interesting feature of twist buckling in pre-strained rib-
bons is their tendency to form uniform helices separated by highly localized features called ‘perversions’ [9], where
helicity changes sign rapidly—perversions are marked using the star symbols in the post-buckled shapes sketched
in Figure 1.1(b). This localization phenomenon takes place in the post-buckled regime and is highly reminiscent
of interfaces between phases encountered in phase transformations. It has been characterized experimentally and
using finite-element simulations [13, 21, 11]. The analogy with phase transformations has been developed in [11],
where a one-dimensional model of the form (1.1) has been derived, including an explicit form of the non-convex
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potential A(𝜏) that predicts the coexistence of helical domains with opposite chiralities. In this paper, we extend
this one-dimensional model to include the gradient effect. The gradient term regularizes the non-convex poten-
tial A(𝜏) and makes it possible to predict the number of perversions, how they are arranged along the ribbon axis,
and to resolve their internal structure.

Our main contributions are as follows:

• In Section 2, we derive a one-dimensional ribbon model starting from a non-linear shell model. The model is
asymptotically exact to second order in the aspect-ratio parameter 𝛾≪1 introduced in (2.3), and captures the
dependence of the energy on the gradient of twisting strain (gradient effect).

• Using a linear bifurcation analysis, we show in Section 4 that the competition between short- and long-wave-
length instabilities is governed by the sign of the elastic gradient modulus B0 given in Equation (2.29). We
obtain a complete phase diagram for twist buckling in Figure 4.2, predicting the nature of first buckling mode
in terms of reduced parameters. The diagram is fully consistent with earlier experimental and finite-element
results.

• In Section 5, the post-buckling behavior is investigated. The one-dimensional model captures the fast local-
ization of the quasi-sinusoidal initial buckling mode into coexisting phases having almost uniform twist strain
𝜏(S) each, with alternating signs. The gradient term also helps resolving the thin interfaces between these
phases, called perversions, where the twist strain varies quickly. The analysis of these interfaces uses a
non-convex functional regularized by the gradient effect, in close analogy with our earlier work on phase
separation in elasto-capillary rods [18] and on propagating instabilities in cylindrical balloons [17].

• The one-dimensional model is derived by dimension reduction with the help of the symbolic calculation lan-
guage Wolfram Mathematica [24]. All supporting files are publicly distributed [15] and could serve as a basis
for similar derivations in the future. We also distribute the source files that generate the equilibrium solu-
tions using the open-source solver for ordinary differential equations Auto-07p [15].

2. DERIVATION OF THE ONE-DIMENSIONAL RIBBON MODEL

In this section, a one-dimensional energy functional describing a thin ribbon undergoing combined stretching and
twisting is derived in the form

Φ⋆ =�
0

ℓ
W�p, r, 𝜀; 𝜏(S), 𝜏′(S), 𝜏′′(S)� dS+ �Wb(p, r; 𝜏(S), 𝜏′(S))�0

ℓ . (2.1)

The following dimensionless quantities are used: ℓ is the ribbon length, p is the extensional pre-strain embedded
the central part of the ribbon, r is the ratio of the widths of this central part to the width of the full ribbon, 𝜀 is the
average longitudinal strain imposed by the clamps at both ends of the ribbon, S is the arc-length coordinate and 𝜏 is
the twisting strain. In terms of these quantities, we derive a strain energy W per unit length and a boundary con-
tribution �Wb�0

ℓ = Wb(ℓ) −Wb(0). The functions W(p, r, 𝜀; 𝜏, 𝜏′, 𝜏′′) and Wb(p, r; 𝜏, 𝜏′) are defined in Subsection 2.6.

The procedure for deriving the energy is adapted from our earlier work on higher-order dimension reduction for
non-linear elastic rods [19] and tape springs [16], see in particular Appendix B in [16]. The dimension reduction
procedure entails calculating the optimal values of the cross-sectional displacements in terms of the one-dimensional
twist strain 𝜏(S) and its derivatives, by solving a hierarchy of elasticity problems in the cross-section. Details of the
dimension reduction procedure can be found in the Supplementary Material [15].

Central to the derivation procedure is the assumption of scale separation,

𝜏(k)(S) =O(𝛾k), (2.2)

which states that the successive derivatives of the twisting strain 𝜏(k) = dk𝜏
dSk scale as the k-th power, 𝛾k, of the scale

separation parameter

𝛾 ≔ a
L ≪ 1. (2.3)

Here, a is the ribbon width and L is the ribbon length, in physical variables.

The dimension reduction is based on a shell model, and proceeds by identifying an order-𝛾2 approximation of
the membrane and twisting strains in the shell model in terms of the one-dimensional twisting strain 𝜏(S) and
its successive gradients, by inserting them into the strain energy of the shell model, and by carrying out a partial
integration with respect to the transverse coordinate. These steps are detailed in the upcoming subsections.
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2.1. Geometry
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Figure 2.1. Configurations of the ribbon: starting from (a) the relaxed state, (b) the ribbon is fabricated by stretching the
central part (in red) and then gluing it to the two symmetric flanks (in green) in their relaxed state. Next, (c) the end-to-
end distance is decreased by Δ =−𝜀 L, where 𝜀 is the average imposed strain along the axis. Due to the pre-strain, the planar
configuration (c) is not always stable and (d) the ribbon may undergo twist buckling.

We start by recalling the main steps of the experimental procedure used in [11]. The ribbon is fabricated by
assembling the three thin ribbons shown in their relaxed states in Figure 2.1a. The middle part is stretched with
extensional strain denoted as p>0. By Poisson's effect, it contracts transversally—note that the central region in red
initially overlaps the green flanks in Figure 2.1(a) and this overlap disappears after pre-stretching in Figure 2.1(b).
The resulting ribbon is then glued to the two green ribbons along their long edges. In this experiment, the gluing is
achieved by reticulating the green polymer in a mould containing the pre-strained central part, see [11] for details.
By design, the glued/molded green parts have the same thickness as the red middle part in the configuration shown
in Figure 2.1(b). We refer to the configuration Figure 2.1(b) as the reference configuration, and denote respectively
by S∈(0, L) and T ∈(−a/2,+a/2) the arc-length and the transverse coordinate in this reference configuration. The
pre-strain in this reference state is described by the function

𝜀p(T) ={{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{ p if |T| ⩽ ra

2
0 if ra

2 ⩽|T| ⩽ a
2

, (2.4)

where a is the width of the composite ribbon, r a is the width of the central part, and a is the width ratio.
Next, the terminal cross-sections of the ribbon at S=0 and S= L are clamped: both the displacement and rotation

of the terminal cross-sections are restrained. The clamps are next moved towards one another and we denote by Δ
the end-to-end shortening, see Figure 2.1(c). Depending on the end-to-end shortening Δ, on the amount of the pre-
strain p and on the geometrical and mechanical properties of the ribbon, the planar ribbon configuration may buckle
into the twisted configuration shown in Figure 2.1d.

2.2. Shell model
In the experiments, the thickness to width ratio is small, of the order t/a ∼ 1/10. We will therefore use a thin
shell model as the the starting point of the dimension reduction method. The thin shell model is presented in the
remainder of this section.

2.2.1. Shell kinematics

In our previous work on thin ribbons [4, 16], we introduced a parameterization of the ribbon mid-surface (S, T) ↦
𝒙(S, T) in the form

𝒙(S, T) = 𝒚(S) + w(S, T) 𝒅1(S) + (T + u(S, T)) 𝒅2(S) + v(S, T) 𝒅3(S). (2.5)

In the right-hand side, we use the centerline position 𝒚(S), the orthonormal frame of directors (𝒅1(S),𝒅2(S),𝒅3(S))
and the cross-sectional displacements (w,v,u) along theses directors. The centerline position 𝒚(S) and the directors
𝒅i(S) are functions of the longitudinal arc-length S only. By contrast, the cross-sectional displacement depend on
the transverse coordinate T as well. The parameterization in (2.5) uses two sets of unknowns that are well suited to
dimension reduction: on the one hand, the variables 𝒚(S) and 𝒅i(S) are defined at the centerline and will be retained
in the one-dimensional model; on the other hand, the cross-sectional displacements (w(S, T), v(S, T), u(S, T)) will
be eliminated.
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In classical rod theories, the centerline 𝒚(S) and the directors 𝒅i(S) are associated with the following one-dimen-
sional strain: axial strain 𝜀(S), bending strains 𝜅1(S) and 𝜅2(S) and twisting strain 𝜏(S). In the present work, we
limit attention to a typical ribbon configuration shown in Figure 2.1(d), such that:

1. the centerline remains straight,

2. and the axial strain 𝜀(S) is uniform.

The first assumption expresses the fact that we limit attention to twist buckling, largely ignoring the Euler buckling
modes that have been reported in [11] when the pre-strain is small, which involve bending (we will still be able to
discuss the onset of Euler buckling based on the sign of the internal force, see Equation (3.3) and Figure 4.2).

The second assumption is an approximation that cannot be justified rigorously. It simplifies the one-dimen-
sional model significantly by condensing out the unknown longitudinal displacement into a single, global degree of
freedom 𝜀. This simplification captures the nonlinear coupling at the heart of twist buckling, whereby axial strain
influences the twisting behavior, ignoring how twist buckling affects stretching in return.

Both these assumptions could be relaxed at the price of increased mathematical complexity, see the analysis in
our previous work [16].

These assumptions have the following consequences:

• The centerline is given by 𝒚(S) = (1 + 𝜀) S 𝒋3, where the uniform axial strain 𝜀 is defined as

𝜀 = −Δ
L , (2.6)

in terms of the end-to-end displacement Δ. When the ends are brought closer to one another, the end-to-end
displacement Δ >0 is counted positive and the imposed axial strain 𝜀 <0 is counted negative.

• At every point S along the centerline, the frame of directors rotates about the axis 𝒋3 of the ribbon. Denoting
the angle of rotation of the cross-sections as 𝜃(S), we have

𝒅1(S) = cos 𝜃(S) 𝒋1 + sin 𝜃(S) 𝒋2
𝒅2(S) = −sin 𝜃(S) 𝒋1 + cos 𝜃(S) 𝒋2
𝒅3(S) = 𝒋3.

(2.7)

• The one-dimensional bending strains along length and width of the ribbon are identically zero: 𝜅1(S)=𝜅2(S)=
0. The one-dimensional model will therefore be a functional of the twisting strain distribution 𝜏(S), depending
on the parameter 𝜀 (uniform axial strain) as well.

In view of this, the parameterization of the ribbon mid-surface in (2.5) can be simplified as

𝒙(S, T) = (1 + 𝜀) S 𝒋3 + w(S, T) 𝒅1(S) + (T + u(S, T)) 𝒅2(S) + v(S, T) 𝒋3, (2.8)

where the first term on right-hand side in (2.8) is the centerline position and remaining terms capture the cross-
sectional deformation associated with twisting, including the classical warping effect at leading order.

To warrant uniqueness of the above parameterization, we enforce the kinematic constraints

�
−a

2

+a
2 �u(S, T), v(S, T), w(S, T)� dT = 𝟎 and �

−a
2

+a
2 T w(S, T) dT = 0, (2.9)

as in our earlier work on dimension reduction for thin elastic rods [20] and tape springs [16]. The first equality
warrants that the centerline 𝒚(S) is the centroid of the cross-section labelled by S, i.e., 𝒚(S) = 1

a ∫−a/2
+a/2 𝒙(S, T) dT.

The second condition warrants that the angle 𝜃(S) is the average rotation of the cross-section about 𝒋3, as discussed
in Section-2(a) of [16].

We further assume that the relative rotation of any couple of tangent planes distant by at most the ribbon width
is moderate, so we can use locally the von Kármán approximation in the local frame of directors. The von Kármán
approximation yields weakly non-linear expressions for the membrane strains in terms of the cross-sectional dis-
placements (w, v, u),

ESS(S, T) = 𝜀 + 𝜀p(T) + v,S(S, T) + 1
2 (−T 𝜏(S) + w,S(S, T))2,

ETT(S, T) = −𝜈(𝜀 + 𝜀p(T)) + u,T(S, T) + 1
2 w,T

2 (S, T),

EST(S, T) = 1
2 �𝜏(S) (w(S, T) −T w,T(S, T)) + v,T(S, T) + u,S(S, T) + w,S (S, T)w,T(S, T)�.

(2.10)

The strain Eij(S, T) characterize the change in lengths measured along the mid-surface, between the undeformed
configuration in Figure 2.1(a) and the buckling configuration in Figure 2.1(d). In the right-hand side of (2.10),
commas in subscript denote a partial derivative with respect to the mid-surface coordinate listed next, and 𝜏(S) is
the twist rate,

𝜏(S) = 𝜃′(S). (2.11)
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Primes denote differentiation of the functions depending solely on the arc-length variable S, such as 𝜃(S), i.e., 𝜃′=
d𝜃/dS. The expressions of the membrane strain in (2.10) are similar to that obtained in [16], except for the presence
of the pre-strain 𝜀 + 𝜀p(T) that captures the transformation from the undeformed configuration in Figure 2.1(a) to
the planar solution in Figure 2.1(c). The strain expression in (2.10) can be justified by exactly the same argument
as in our previous work [16], which shows that they are asymptotically exact within the same scaling assumptions
as the von Kármán approximation.

The bending strains is obtained similarly and the result is exactly identical to that obtained in [16],

BSS(S, T) = −𝜏′(S) T + w,SS(S, T),
BTT(S, T) = w,TT(S, T),
BST(S, T) = −𝜏(S) + w,ST(S, T).

(2.12)

The bending strain is linear.

2.2.2. Nondimensionalization

To simplify the forthcoming calculations, we use the following set of non-dimensional variables, which bear no over-
bars in our notation:

S = S
a , u = u

a(ak)2 , 𝜃 = 𝜃
ak , E𝛼𝛽 =

E𝛼𝛽
(ak)2 ,

T = T
a , v = v

a(ak)2 , 𝜏 = 𝜏
k , B𝛼𝛽 =

B𝛼𝛽
k ,

k = 1
12(1 −𝜈2)�

t
a2 , w = w

a2 k
, 𝜀 = 𝜀

(ak)2 , p = p
(ak)2 ,

(2.13)

where t is the ribbon thickness. The twisting strain 𝜏 has been rescaled using a typical inverse length k ∼ t/a2

relevant to thin ribbons, which has been shown in previous work [4] to govern the transition from a Kirchhoff-rod-
like linear response (𝜏 ≪ k, 𝜏 ≪ 1) to an inextensible, essentially nonlinear response (𝜏 ≫ k, 𝜏 ≫ 1). When expressed
in terms of the dimensionless variables, the energy will no longer explicitly depend on the width a or thickness t of
the ribbon.

In terms of the scaled rotation 𝜃(S), the twisting strain in (2.11) takes the form

𝜏(S) = 𝜃′(S), (2.14)

where, in our notation, primes (′) applied to dimensionless functions denote differentiation with respect to the dimen-
sionless coordinate S: in the expression above, 𝜃′= d𝜃/dS.

The shell strain take exactly the same form as earlier in (2.10) and (2.12) when expressed in terms of the dimen-
sionless variables,

ESS(S, T) = 𝜀 + 𝜀p(T) + v,S(S, T) + 1
2 (−T 𝜏(S) + w,S(S, T))2

⋅ ⋅ ⋅
BSS(S, T) = −𝜏′(S) T + w,SS(S, T)

⋅ ⋅ ⋅

(2.15)

In (2.15), we have introduced the dimensionless pre-strain 𝜀p profile, see Equation (5), as

𝜀p(T) ={{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{ p if |T| ⩽ r

2

0 if r
2 ⩽|T| ⩽ 1

2 .
(2.16)

We assume that the non-scaled strain 𝜀 and pre-strain p remain small in the experiments, implying that we can use
a linearly elastic constitutive law in the shell model. By our scaling conventions in (2.13), we rescale them using a
typical strain (a k)2 ∼ (t/a)2 ≪ 1 which is small: as a result, the rescaled strains 𝜀 and p are not necessarily small,
see the numerical values used in Section 5.

2.2.3. Shell energy

We consider ribbons made up of a linear elastic material and write the non-dimensional strain energy of shell Φ as

Φ= 1
2�

0

ℓ
�

−1
2

+1
2 � 1

1 −𝜈2 �𝜈 (E𝛼𝛼)2 + (1 −𝜈) E𝛼𝛽 E𝛼𝛽� + 𝜈 (B𝛼𝛼)2 + (1 −𝜈) B𝛼𝛽 B𝛼𝛽�dSdT, (2.17)
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where we use Einstein's convention on implicit summation over repeated indices, and ℓ = L
a = 𝛾−1 ≫ 1 denotes the

length-to-width ratio, 𝜈 is Poisson's ratio of the material. With Y as the Young modulus and t as the thickness, non-
dimensional strain energy Φ = Φ/[Y t5/(12 a (1 − 𝜈2))2] derives from the (dimensional) shell strain energy Φ used
in the classical Kirchhoff plate theory, see for instance the strain energy used in equations [2.15–2.16] of [14].

2.3. Solution for the cross-sectional displacements
The cross-sectional displacements (u(S,T), v(S, T),w(S, T)) enter the shell energy (2.17) via the expressions (2.15)
of the membrane and bending strains E𝛼𝛽 and B𝛼𝛽. As they are functions of both mid-surface coordinates S and T,
we aim to eliminate them to arrive at the one-dimensional model. Following our previous line of work on variational
higher-order dimension reduction [2, 19, 3, 16], we do this by optimizing the shell energy (2.17) with respect to the
unknowns (u(S, T), v(S, T), w(S, T))being subjected to the kinematic conditions (2.9).

This optimization problem is intractable in general but can be solved in a perturbative way, thanks to the pres-
ence of the small scale separation parameter 𝛾≪1, see Equation (2.2). The higher-order dimension reduction method
does precisely this, by identifying series solutions for each one of the three unknown cross-sectional displacements
(u(S, T), v(S, T), w(S, T)) in powers of 𝛾 ≪ 1. The method is exactly similar to what the authors have previously
done in [16, 19], see Section-2 of [16] in particular. The optimization is carried out in symbolic form in the companion
Wolfram Mathematica notebook, available from the public repository [15] . Up to an error of order 𝛾2, the result is

u(S, T) = −1
6 𝜈 T3 𝜏2(S),

v(S, T) = 1
12 𝜏(S) 𝜏′(S) �T2 (1 + 𝜈) −T4 (3 −𝜈) + 8

5 T6 (1 −𝜈) − 83 + 155 𝜈
1680

+ 𝜏2(S) � 1
1920 T4 − 1

600 T6 + 1
560 T8 − 23

6451200�

+ 1
15 p�r3((((((((((((((3 r2

16 T − 5
4T3 − 15

8 T4 + T6 + 1
896(9 r4 + 42 r2 −16)))))))))))))))

+ �T − r
2�4 �T2 + 2 r T + 5

8 r2�Θ�T − r
2� −�T + r

2�4 �T2 −2 r T + 5
8 r2�Θ�T + r

2���,

w(S, T) = 𝜏′(S) � 1
560 (11 −25 𝜈) T − 1

6 (1 −2 𝜈)T3 + 1
5 (1 −𝜈) T5

+ 𝜏2(S) �− 41
4838400 T + 1

11520 T3 − 1
4800 T5 + 1

5040 T7�

+ 1
120 p�r3(((((((((((((( 3

112 T (r4 −14 r2 −22) − 5
2T2 − 5

2 T3 + T5 − r2

8 ))))))))))))))
+ �T − r

2�4 (T + 2 r) Θ�T − r
2� −�T + r

2�4 (T −2 r) Θ�T + r
2���,

(2.18)

where Θ is the Heaviside function defined by Θ(T̃) = 1 if T̃ ⩾0 and Θ(T̃) = 0 otherwise.
In view of the fundamental assumption (2.2) of scale separation, the scaled one-dimensional twisting strain 𝜏(S)

and its derivatives are respectively of order

𝜏(S) = 𝒪(𝛾0), 𝜏′(S) = 𝒪(𝛾1), 𝜏′′(S) = 𝒪(𝛾2), . . . (2.19)

These scaling assumptions are implicit in our notation: each differentiation, denoted by a prime, counts as 𝛾 as far as
scaling analysis is concerned. The solution u(S, T) in (2.18)1 therefore starts at order 𝛾0 and has a vanishing term
of order 𝛾1, while the solutions v(S, T) and w(S, T) in (2.18)2,3 start at order 𝛾1.

2.4. Second-order approximation of the strain
Next, we insert the solution (2.18) for the cross-sectional displacement into the expressions (2.15) of the membrane
and bending strains E𝛼𝛽 and B𝛼𝛽. This yields new expressions for the strain, in the form

𝒪(𝛾0) 𝒪(𝛾1) 𝒪(𝛾2)

eSS(S, T) = 𝜀 + 𝜀p(T) + 1
2 T2 𝜏2(S) + v,S − 1

2 T 𝜏(S) w,S

eTT(S, T) = −𝜈(𝜀 + 𝜀p(T)) + u,T +1
2 w,T

2

eST(S, T) = 1
2�𝜏(S) (w −T w,T) + v,T + u,S�

bSS(S, T) = −T 𝜏′(S)
bTT(S, T) = w,TT
bST(S, T) = −𝜏(S) + w,ST.

(2.20)

The strain e𝛼𝛽 and b𝛼𝛽 in equation above have been obtained by inserting the order-𝛾 solution for the displacement
in (2.18) into the original strain E𝛼𝛽 and B𝛼𝛽 in (2.15) and by truncating the result beyond order 𝛾2. In Equa-
tion (2.20), the contributions have been sorted in columns by decreasing order of magnitude. In the interest of
legibility, we have omitted the arguments S, T of the functions u(S,T), v(S, T) and w(S,T) in the right-hand sides.
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It is remarkable that the error of order 𝛾2 in the displacements (2.18) allows the strain in (2.20) to be resolved
with a smaller error, of order 𝛾3. Take the v,S term appearing in eSS, for instance: v is is given by (2.18) as a quantity
proportional to 𝜏′ (hence of order 𝛾) plus an error term of order 𝛾2. Differentiating one more time with respect to the
slow variable S entails multiplying by 𝛾≪1, so that v,S is proportional to 𝜏′′ and 𝜏′2 (hence of order 𝛾2, as indicated
by the column heading) plus an error term of order 𝛾3. A similar argument holds for all the contributions to e𝛼𝛽 and
b𝛼𝛽, and we conclude that the truncation error in (2.20) is

E𝛼𝛽 = e𝛼𝛽 + O(𝛾3),
B𝛼𝛽 = b𝛼𝛽 + O(𝛾3).

(2.21)

2.5. Ensuring positiveness of the energy

Next, we calculate the strain energy density defined in (2.17) based on the truncated version of the strains e𝛼𝛽 and
b𝛼𝛽 obtained in (2.20). Denoting the result as Φ⋆, we have

Φ⋆ = 1
2�

0

ℓ
�

−1
2

+1
2 ((((((((( 1

1 −𝜈2 �𝜈 (e𝛼𝛼)2 + (1 −𝜈) e𝛼𝛽 e𝛼𝛽� + (𝜈 (b𝛼𝛼)2 + (1 −𝜈) b𝛼𝛽 b𝛼𝛽) )))))))))dSdT. (2.22)

In view of (2.21), this approximation Φ⋆ of the shell energy Φ is exact up to an error of order 𝛾3,

Φ= Φ⋆ + 𝒪(𝛾3). (2.23)

The energy being quadratic in the strain ea𝛽 and ba𝛽, it contains not only terms of order 𝛾0, 𝛾1 and 𝛾2 but also
terms of order 𝛾3 and 𝛾4, such as for instance a v,S

2 = 𝒪(𝛾4) term coming from the expansion of the v,S term in the
trace square term (e𝛼𝛼)2 = (eSS + ⋅ ⋅ ⋅)2 = (. . . + v,S + ⋅ ⋅ ⋅)2. In all our previous work on dimensional reduction [2, 19,
3, 16], we truncated the energy Φ⋆ beyond order 𝛾2, the motivation being that terms of order 𝛾3 are comparable to
the approximation error in (2.23). Here, by contrast, we refrain from truncating the energy Φ⋆ in (2.22), and retain
the negligible terms of order 𝛾3 and 𝛾4. As we will show, this is a critically important point ensuring that the one-
dimensional model is useable in numerical simulations. Truncating the energy Φ⋆ as we did in previous work raises
severe mathematical difficulties that had escaped to us so far.

For the moment, it will suffice to note that the strain energy density Φ⋆ in (2.22) is positive,

Φ⋆ ⩾0, (2.24)

as its integrand is a sum of squares. This positiveness property would break if we were to truncate Φ⋆, by dropping
terms at order 𝛾3 and beyond.

These higher-order terms are not asymptotically correct: to determine their actual value, one would need to push
the dimension reduction procedure to higher-order. That does not mean they are useless.

2.6. One-dimensional energy obtained by integrating along the width

On inserting the displacements in (2.18) and strains in (2.20), we can obtain an explicit expression for the strain
energy density appearing in the integrand of (2.22). Integrating it along the width, we obtain the one-dimensional
energy Φ⋆[𝜏] in the form announced earlier in (2.1),

Φ⋆ [𝜏] = �
0

ℓ
W(p, r, 𝜀; 𝜏(S), 𝜏′(S), 𝜏′′(S)) dS+ �Wb(p, r; 𝜏(S), 𝜏′(S))�0

ℓ , (2.25)

where W is the one-dimensional strain energy density and Wb is the strain energy contribution from boundaries at
ribbon ends S= 0 and S= ℓ . The explicit forms for W and Wb are given below.

The boundary term [Wb]0
ℓ are produced by an additional integration by parts with respect to the arc-length S, as

we briefly explain now. Integrating (2.22) along the width first yields a one-dimensional strain energy density that
includes term of the form

�
0

ℓ
�. . . + C(p, r; 𝜏(S))𝜏(S) 𝜏′′(S) + 3 H(p, r; 𝜏(S)) 𝜏(S) 𝜏′2(S) 𝜏′′(S) + . . .� dS. (2.26)

To remove the 𝜏′′ terms, we integrate these term by part with respect to the S-coordinate. This produces a boundary
term of the form �C(p, r; 𝜏)𝜏 𝜏′+ H(p, r; 𝜏)𝜏 𝜏′3�0

𝜆 which is nothing but Wb, see (2.30). The detailed calculations can
be found in the companion notebook [15].
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The one-dimensional strain energy density W is obtained in the form

W(p, r, 𝜀; 𝜏, 𝜏′, 𝜏′′) = 1
2 �A(p, r, 𝜀; 𝜏)|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

𝛾0

+ B(p, r; 𝜏) 𝜏′2||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
𝛾2

+ F(p, r; 𝜏) 𝜏′′2 + G(p, r; 𝜏) 𝜏′4||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
𝛾4

� (2.27)

where the horizontal braces are used to group the contributions by order of magnitude, see (2.19). The energy density
A at order 𝛾0 and the coefficients B, F and G associated with the gradient effect are all polynomials in 𝜏 containing
only even powers of 𝜏,

A(p, r, 𝜀; 𝜏) = A0 + A2 𝜏2 + A4 𝜏4 F(p, r; 𝜏) = F0 + F2 𝜏2 + F4 𝜏4 + F6 𝜏6

B(p, r; 𝜏) = B0 + B2 𝜏2 + B4 𝜏4 G(p, r; 𝜏) = G0 + G2 𝜏2 + G4 𝜏4 + G6 𝜏6 + G8 𝜏8.
(2.28)

The coefficients Ai, Bi, Fi and Gi are known functions of the pre-strain p, Poisson's ratio 𝜈 and of the aspect-ratio
r—the quantities A0 and A2 have an additional dependence on the applied strain 𝜀. The expressions of the following
set of coefficients is crucial for the rest of the analysis:

A0(p, r, 𝜀) = 𝜀2 + pr (2 𝜀 + p)
A2(p, r, 𝜀) = 1

12 (24 (1 −𝜈) + 𝜀 + pr3)

A4(p, r) = 1
320

B0(p, r) = 1
420 � −71 𝜈2 + 44 𝜈 + 27 + 1

8 pr3 (1 − r2) (−25 𝜈 −3 (1 −𝜈) r2 + 11)

+ 1
64 p2 r6 (1 − r)2 (r2 + 2 r −11)�

F0(p, r) = 1 −𝜈
441 ⋅ 102 �365 𝜈2 −268 𝜈 + 50

+pr3

96 (1 − r2) (2267 𝜈 −35 (1 −𝜈) r4 + (316 −694 𝜈) r2 −881)

+ p2 r6

18432 �81 r8 −476 r6 −12258 r4 + 44800 r3 −41580 r2 + 9433��.

(2.29)

The other coefficients F2, . . . , F6, G0, . . . , G8 are given in Appendix B and can also be found in the companion
notebook [15]. This completes the definition of the integral term W in (2.25).

The boundary term in (2.25) has been obtained in the form

�Wb(p, r; 𝜏, 𝜏′)�0
ℓ = �

0

ℓ ((((((((((C(p, r; 𝜏) 𝜏 𝜏′)′|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
𝛾2

+ �H(p, r; 𝜏) 𝜏 𝜏′3�′|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
𝛾4

)))))))))dS

= �C(p, r; 𝜏) 𝜏 𝜏′+ H(p, r; 𝜏) 𝜏 𝜏′3�
0
ℓ ,

� (2.30)

where
C(p, r; 𝜏) = C0 + C2 𝜏2 + C4 𝜏4

H(p, r; 𝜏) = H0 + H2 𝜏2 + H4 𝜏4 + H6 𝜏6.
(2.31)

The expressions of the coefficients Ci = Ci(p, r, 𝜈) and Hi = Hi(p, r, 𝜈) can be found in Appendix B and in the com-
panion notebook [15].

3. MAIN FEATURES OF THE ONE-DIMENSIONAL MODEL

This section discusses the qualitative features of the one-dimensional energy derived in (2.27). The energy is com-
posed of terms of order 𝛾0, 𝛾2 and 𝛾4: the leading-order terms, the second-order terms capturing the gradient effect
and the fourth-order terms are discussed in Sections 3.1, 3.2 and 3.3, respectively. Further, Section 3.4 presents the
variational derivation of the equilibrium boundary-value problem.

3.1. Leading-order energy is non-convex

The strain energy density at order 𝛾0 has been obtained in recent work [11]. It is given by (2.27) and (2.29)1 as

Φ⋆|𝛾0 = �
0

ℓ 1
2 A(p, r, 𝜀; 𝜏(S)) dS

= �
0

ℓ 1
2 �A0(p, r, 𝜀) + A2(p, r, 𝜀) 𝜏2(S) + A4(p, r) 𝜏4(S)� dS.

(3.1)

In the remainder of this section, we briefly recall the main mathematical features of the function A(p,r, 𝜀;𝜏) reported
in [11] and their connection with twist buckling.
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A necessary condition for Φ⋆|𝛾0 to be a convex functional of 𝜏 is that its second derivative is positive at the
particular point 𝜏 = 0:

∂2A(p, r, 𝜀; 𝜏)
∂𝜏2 �

𝜏=0
= A2(p, r, 𝜀)

= 2 (1 −𝜈) + 𝜀 + r3 p
12 .

(3.2)

When the imposed average strain 𝜀 is compressive enough, 𝜀<−(r3 p+24(1−𝜈)), the necessary condition ∂2A/∂𝜏2⩾
0 is not satisfied, implying that Φ⋆|𝛾0 is not convex with respect to 𝜏. At the critical point when 𝜀 = 0, the planar
configuration 𝜏 ≡ 0 becomes unstable with respect to twist perturbations and twist buckling takes place.

The the right-hand side of (3.2) is the tangent twist modulus, and has three contributions:

• The term 2 (1 − 𝜈) is the non-dimensional twist stiffness for a thin ribbon, akin to the twist stiffness of a
Kirchhoff rod. It is always positive, hence stabilizing with respect to twist perturbations.

• The term 𝜀/12 captures the coupling between longitudinal applied strain and twisting. It is destabilizing
when 𝜀 is more and more compressive (i.e., negative).

• The term r3 p/12 captures the effect of inhomogeneous pre-stress across the width. This term is positive
(since p >0 in the central region) and enhances the stability of the ribbon. A key feature of this term is that
for large enough values of the pre-strain p, the twist instability may take place before Euler buckling as the
ribbon's end-to-end distance decreases (that is, when 𝜀 decreases): although the r3 p/12 term stabilizes the
ribbon for fixed end-to-end distance (i.e., fixed 𝜀), it is instrumental for the twist instability to win over the
Euler instability in at least some range of values of 𝜀.

The competition between twist and Euler buckling is discussed in detail [11]. With N = ∂W
∂𝜀 (p, r, 𝜀; 𝜏 ≡ 0) = 𝜀 + r p as

the internal longitudinal force in the ribbon, the critical load for Euler buckling is given in an infinitely long ribbon
by the condition N = 0, thus giving the critical strain for Euler buckling as

𝜀Euler
⋆ = −pr. (3.3)

In the present work, we limit attention to twisted configurations arising before Euler buckling sets in, for 𝜀 >𝜀Euler.

Figure 3.1. Plots of important the energy terms appearing in (2.27–2.29), for Poisson's ratio 𝜈=1/2. (a) Scaled energy per unit
length A(p, r, 𝜀; 𝜏)/2 at leading order versus 𝜏 for width ratio r = 2/3 and scaled pre-strain p=−145.58: the profile is convex
for moderate end-to-end shortening (scaled axial strain 𝜀=−50, blue curve) and becomes non-convex for more severe end-to-
end shortening (𝜀=−70, red curve); the loss of convexity (onset of twist buckling) takes place at 𝜀= −55.1348. (b) Incremental
gradient modulus B0 = B(p, r= 2/3;𝜏= 0) evaluated in the planar configuration (𝜏= 0) as a function of pre-strain p. Later in
this paper, we will connect the change of sign in B0 to the transition from long- to short-wavelength buckling. (c) Fourth-order
term F0(p, r) > 0 is always positive. This warrants that the overall energy remains positive against very short-wavelength
perturbations (q→∞), even when the second-order gradient modulus B0 is negative.
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As shown in Figure 3.1(a), for given values of 𝜀, p and r, the quadratic potential in (3.1) has a single minimum
𝜏=0 in the convex case A2(p, r, 𝜀)⩾0. In the non-convex case, A2(p,r, 𝜀)<0, a pitchfork bifurcation takes place and
the central equilibrium 𝜏 =0 becomes a local maximum (unstable equilibrium) with two symmetric minima 𝜏 =±𝜏⋆

(stable equilibria), where

𝜏⋆ = (−A2)
2 A4

� . (3.4)

By Equation (2.29)3, the coefficient A4 (and, thus, the argument of the square root) is always positive.
The analysis of twist buckling proposed in [11] is based on the leading-order energy Φ⋆|𝛾0 and bears the same

limitations as highlighted in the classical analysis of a non-convex elastic bars by Ericksen [10]. It accounts for a
bifurcation on the unsigned value 𝜏⋆ of the order parameter, see (3.4), but cannot predict (i) how the sign of 𝜏(S)
is distributed in space (local handedness of the helical buckling pattern), nor (ii) the existence of smooth transition
regions, known as perversions [9], that connect ‘phases’ having opposite signs of 𝜏. In the leading-order model, these
perversions are rendered as points of discontinuity where 𝜏(S) flips sign (see §3.7 in [11]), and there is no control on
the number of such discontinuities nor on their distribution in space.

3.2. Gradient effect is captured by second-order terms

Our main contribution is to account for this gradient effect by including the higher-order terms in the one-dimen-
sional model (2.27), in line with previous work analyzing localized deformations in slender structures such as the
necking of elastic bars [2] or elasto-capillary cylinders [18] and propagating bulges in cylindrical balloons [17, 25].
The gradient effect appears at order 𝛾2 in the one-dimensional energy, see (2.27) and (2.30),

Φ⋆|𝛾2 = �
0

ℓ 1
2 B(p, r; 𝜏) 𝜏′2 dS+ �C(p, r; 𝜏) 𝜏 𝜏′�0

ℓ (3.5)

Taking this regularization into account will enable us to resolve the inner structure of perversions and to predict
their distribution along ribbon length, see Section 5. The gradient effect in Φ⋆|𝛾2 has been derived in Section 2. Even
though the dimension reduction procedure which we have used warrants asymptotic correctness in principle, we
have introduced two simplifying approximations along the way that break asymptotic correctness at order 𝛾2:

• we have neglected the longitudinal variations of the axial strain 𝜀(S) in Section 2.2,

• the cross-sectional displacements produced by dimension reduction satisfy the clamping conditions (u,v,w)=
0 in an average sense only, but not for all values of the transverse coordinate T. This incompatibility between
the boundary conditions applicable to the shell model which we started from, and those which the dimension
reduction procedure can ultimately handle point to the presence of boundary layers forming near the clamps.
Accounting for boundary layers through effective boundary conditions is an active topic of research, both in
the context of higher-order dimension reduction and homogenization [23], and we will ignore this difficulty.

We assume that these approximations do not significantly affect the analysis of twist buckling. The influence of
boundary layers, in particular, can be expected to be limited to vicinity of the clamps.

In the unbuckled configuration, the gradient modulus (i.e., the coefficient in factor or 𝜏′2/2 in the energy) is given
by B(p, r; 𝜏 =0)= B0. This quantity is plotted in Figure 3.1(b) and appears to change sign depending on the amount
of pre-strain p. Negative gradient moduli B0 < 0 are commonly encountered in higher-order dimension reduction,
including in the linear setting—see the illustration examples in [19, 16] for instance: they are considered inconsis-
tent as they make any equilibrium solution unstable with respect to infinitesimal, short-wavelength oscillations.
In Appendix A, we indeed calculate the energy Φ⋆|𝛾0 + Φ⋆|𝛾2, truncated at order 𝛾2, of a solution having a harmonic
twist angle distribution 𝜃(S) = sin (q S)/q and show that (Φ⋆|𝛾0 + Φ⋆|𝛾2) →−∞ when the modulation becomes very
short-wavelength (q → ∞), whenever B0 < 0. This is contradictory, since the strain energy cannot be less than its
value (0) in the relaxed configuration shown in Figure 2.1(a).

We show that this is a truncation issue, and fix it by including non-asymptotic terms of order 𝛾4 in the energy,
as discussed in Section 3.3 below.

We will also show that the sign of B0 governs the competition between short- and long-wavelength buckling, see
Section 4. To the best of our knowledge, this is the first time that negative values of the tangent gradient modulus
B0 are connected to a real phenomenon and not just viewed as an undesirable outcome of higher-order dimension
reduction or homogenization.

3.3. Non-asymptotic fourth-order terms ensure positiveness

The fourth-order terms in the energy (2.27) take the form

Φ⋆|𝛾4 = �
0

ℓ 1
2 �F(p, r; 𝜏) 𝜏′′2 + G(p, r; 𝜏) 𝜏′4�dS+ �H(p, r; 𝜏) 𝜏 𝜏′3�0

ℓ . (3.6)
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They are not asymptotically exact, as noted as the end of Section 2.5. They ensure positiveness of the energy,
see (2.24). In particular, it is shown in Figure 3.1(c) that the coefficient F0 = F(p, r; 𝜏 = 0) is positive for the range
of parameter values considered in this paper, r ∈ [0, 1], 𝜈 ∈ [0, 1/2] and p ∈ [0, 1]. The minimum value of F0 is
calculated in the Supplementary material [15] and it is found positive.

The positiveness brought about by the Φ⋆|𝛾4 terms is instrumental in making the one-dimensional model usable
in numerical simulations. It comes with a price, however, which is to increase the maximum order of differentiation
in the energy, from 1 (𝜏′ term present in the expression Φ⋆|𝛾2) to 2 (𝜏′′ term in the expression of Φ⋆|𝛾4). In terms of
the primary kinematic variable 𝜃, the order of differentiation is 3 (𝜏′′=𝜃′′′), implying that the equilibrium problem
will be of order 6, and not just 4 as as for the truncated (but dysfunctional) energy Φ⋆|𝛾0 + Φ⋆|𝛾2).

3.4. Variational derivation of equilibrium equations

In the next sections, we predict equilibrium configurations of the ribbon based on the one-dimensional model for
same clamped boundary conditions as in the experiments [11],

𝜃(0) = 0, 𝜃(ℓ) = 0. (3.7)

The longitudinal displacement imposed by the clamps is taken into account via the mean axial strain 𝜀, see (2.6).
The equilibrium equations for the ribbon are now derived by deriving the Euler–Lagrange stationarity condi-

tion of the one-dimensional energy Φ⋆ in (2.25). For any configuration 𝜃(S) satisfying the kinematical boundary
conditions (3.7), we consider a kinematically admissible perturbation 𝛿𝜃(S), such that 𝛿𝜃(0) = 𝛿𝜃(ℓ) = 0. The first
variation of the strain energy Φ⋆ in (2.25) takes the form

𝛿Φ⋆ = �
0

ℓ
�∂W

∂𝜏 𝛿𝜏 + ∂W
∂𝜏′ 𝛿𝜏′+ ∂W

∂𝜏′′ 𝛿𝜏′′�dS+ �∂Wb
∂𝜏 𝛿𝜏 + ∂Wb

∂𝜏′ 𝛿𝜏′�
0

ℓ
, (3.8)

where 𝛿𝜏 = 𝛿𝜃′ denotes the increment of twisting strain, see (2.14). After two integrations by parts, we get

𝛿Φ= �
0

ℓ ((((((((((((∂W
∂𝜏 − d

dS �∂W
∂𝜏′�+ d2

dS2 � ∂W
∂𝜏′′�))))))))))))𝛿𝜏 dS+ ��∂Wb

∂𝜏 + ∂W
∂𝜏′ − d

dS� ∂W
∂𝜏′′��𝛿𝜏 + �∂Wb

∂𝜏′ + ∂W
∂𝜏′′�𝛿𝜏′�

0

ℓ
. (3.9)

We identify the internal twisting moment M(S) as the quantity in factor of 𝛿𝜏(S) in the integral term,

M = ∂W
∂𝜏 − d

dS
∂W
∂𝜏′ + d2

dS2
∂W
∂𝜏′′. (3.10)

Using 𝛿𝜏 = 𝛿𝜃′ and integrating by parts one more time, one can rewrite 𝛿Φ as

𝛿Φ= −�
0

ℓ dM
dS 𝛿𝜃 dS+ �M 𝛿𝜃 + �∂Wb

∂𝜏 + ∂W
∂𝜏′ − d

dS � ∂W
∂𝜏′′��𝛿𝜏 + �∂Wb

∂𝜏′ + ∂W
∂𝜏′′�𝛿𝜏′�

0

ℓ
. (3.11)

This first variation has to be zero for any perturbation 𝛿𝜃 satisfying 𝛿𝜃(0) = 𝛿𝜃(ℓ) = 0. This leads to the balance of
twisting moments in the interior

dM
dS = 0, (3.12)

and the two boundary conditions, applicable at both S= 0 and S= ℓ ,

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{
{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{
{
{ �∂Wb

∂𝜏 + ∂W
∂𝜏′ − d

dS� ∂W
∂𝜏′′��

S=0,ℓ
= 0,

�∂Wb
∂𝜏′ + ∂W

∂𝜏′′�
S=0,ℓ

= 0.
(3.13)

Along with the kinematic boundary conditions (3.7), the differential equation (3.12), the constitutive law (3.10) and
the static boundary conditions (3.13) make up a well-posed boundary-value problem: the differential equation for
𝜃(S) is of order 6 and there are 3 boundary conditions at each end. The balance of twisting moments in (3.12) takes
the same form as in the twisting of classical bars. The constitutive relation (3.10), however, corrects the constitutive
relation M = ∂W/∂𝜏 applicable to classical bars with higher-order corrections. The boundary conditions (3.13) are
not present in the twisting of classical bars, and arise because the order of the equilibrium equation has increased
from 2 (classical bars) to 6 here. As discussed in Section 3.3, the order 6 breaks down into 2+2+2, where the first 2
is the order of the classical bar model, the second 2 comes from the fact that we include the gradient effect, and the
final 2 is an additional fee for retaining the terms of order 𝛾4 ensuring positiveness. As discussed in Section 3.2, the
boundary conditions (3.13) are not asymptotically exact as we ignore the boundary layers forming near the clamp.
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Yet, these boundary-value problem are derived variationally, which makes them mathematically consistent.
The boundary-value problem derived above is used in Section 4 to set up a linear bifurcation analysis addressing

the wavelength selection, and in Section 5 to analyze the post-buckled solutions numerically.

4. ONSET OF BUCKLING IN AN INFINITELY LONG RIBBON

This section addresses the competition of short- and long-wavelength buckling sketched in Figure 1.1. We carry
out a linear bifurcation analysis of the one-dimensional model. Considering an infinitely long ribbon, and thus
ignoring the boundary conditions (3.7) and (3.13), we identify the bifurcation points at which new solution branches
emerge from the planar configuration 𝜏 ≡ 0, and compute the associated critical end-to-end distance 𝜀 and critical
wavenumber q. In this infinite-length setting, we postulate that the long-wavelength case corresponds to a van-
ishing first critical wavenumber q = 0, and the short-wavelength case to a non-vanishing first critical wavenumber
q >0. This postulate will be confirmed in Section 5 by numerical simulations of finite-length ribbons.

4.1. Linearized equilibrium about a planar configuration

For given applied strain 𝜀, we consider the planar configuration of ribbon shown in Figure 2.1(c), whose twisting
strain is identically zero, 𝜏 ≡ 0. We denote as 𝜏(S) the perturbation to the twist about the planar state and derive
an expansion of the strain energy density to order |𝜏|2. In view of (2.25–2.27), the quadratic terms in the expansion
are given by

W = 1
2 �A0 + A2 𝜏2 + B0 𝜏′2 + F0 𝜏′′2�. (4.1)

The constitutive relation (3.10) then yields a linear approximation of the internal moment M as

M = A2 𝜏 − B0 𝜏′′+ F0 𝜏(4), (4.2)

and the equilibrium (3.12) is linearized as

F0
d5𝜏
dS5 − B0

d3𝜏
dS3 + A2

d𝜏
dS = 0. (4.3)

4.2. Long- versus short-wavelength instabilities

The bifurcation equation (4.3) has constant coefficients and we can limit attention to modes that depend harmoni-
cally on the arc-length S: using complex notations, we set the mode as 𝜃(S)=𝜃0 eiqS, hence 𝜏(S)=𝜃′(S)= iq𝜃0 eiqS,
where q is the wavenumber and 𝜃0 the amplitude of the mode. Inserting into (4.3), we get

q2 𝜃0 (F0(p, r) q4 + B0(p, r) q2 + A2(p, r, 𝜀)) = 0. (4.4)

The factor q2 yields a double root q=0 which corresponds to (i) a uniform rigid-body rotation about the axis (constant
𝜃(S)), and (ii) a uniform twist (helical) mode (linear 𝜃(S), constant 𝜏(S)). Both these modes are prevented by the
clamps at long ribbon ends, so we discard the overall q2 factor in (4.4). We also discard the 𝜃0 factor, whose vanishing
yields to modes that are identically zero.

Observing that the only dependence of the remaining factor on the imposed strain 𝜀 takes place through the A2
term, we insert the expression (2.29) of A2 into the linear bifurcation condition (4.4) and get

𝜀(q) = −�pr3 + 12 �2 (1 −𝜈) + B0(p, r) q2 + F0(p, r) q4��. (4.5)

This dispersion relation connects the critical stretch 𝜀(q) and the wavenumber q. It is plotted in the form of a
parametric curve in the plane (q,−𝜀(q)) in Figure 4.1(a,b). In the experiments, the imposed strain 𝜀 is progressively
decreased, i.e., the quantity (−𝜀) increases. The instability that appears first therefore corresponds to the minimum
of −𝜀(q) with respect to q, i.e., to the left-most point on the dispersion curve shown by a green star in the figures.

The sign of the incremental gradient modulus B0 sets the concavity of the curve at the intersection q=0 with the
horizontal axis, and two scenarios are possible depending on the sign of B0:

• When the incremental gradient modulus is positive, B0 >0, as illustrated in Figure 4.1(a), the left-most point
on the bifurcation curve (red curve) is the ‘tip’, having q⋆ = 0 (green star). The planar configuration is then
expected to be stable for −𝜀 < −𝜀⋆ and becomes unstable with respect to a long-wavelength mode at −𝜀 = −𝜀⋆.
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Indeed, we postulate that the critical wavelength q⋆ = 0 found in this infinite-length setting will give rise
to a critical wavelength comparable to the ribbon length in a finite-length setting. This will be confirmed
numerically in Section 5.

• When the incremental gradient modulus is negative, B0 <0, as illustrated in Figure 4.1(b), the left-most point
on the bifurcation curve (red curve) lies on the ‘hump’ overhanging the horizontal axis and having q⋆ > 0
(green star). The planar configuration is then expected to be stable for −𝜀 <−𝜀⋆ and to become unstable with
respect to a short-wavelength mode at −𝜀 = −𝜀⋆. In our scaled units, q⋆ = 𝒪(1), corresponds to wavenumber
q⋆ = 𝒪(1/a), i.e., to a wavelength comparable to the width of the ribbon. In this short-wavelength case, the
critical strain 𝜀⋆ (green star) differs from the critical strain 𝜀(0) associated with slowly-varying perturbations.

The wavelength selection is discussed above based on the one-dimensional model. It is mathematically similar to the
wavelength selection proposed in [20] based on a two-dimensional plate model and a three-dimensional rectangular
block. The one-dimensional model delivers a simpler picture which highlights the key role played by the incremental
gradient modulus B0.

Figure 4.1. Wavelength selection in the linear bifurcation analysis of an infinitely long ribbon using the one-dimensional
model (2.25), for a width ratio r = 2/3 and Poisson's ratio 𝜈 = 0.5. (a) Curve of marginal stability predicted by Equation (4.5)
in a case of moderate pre-strain, p = 95: the incremental gradient modulus is positive, B0 > 0, and the first unstable mode is
long-wavelength (q⋆ = 0, green star). (b) Case of larger pre-strain, p= 145.58: the incremental gradient modulus is negative,
B0 <0, and the first unstable mode is short-wavelength (q⋆ =O(1), green star). The predictions of a plate model adapted from
Section 4 in [20] are included (black curves) and agree closely with the predictions of the one-dimensional model, especially
in the limit q → 0 of slowly varying twist. (c) Wavenumber at instability as a function of pre-strain p, as given by (4.6)1: the
critical modes at particular values p= 95, p= 145.58 and p= 500 are plotted using an arbitrary amplitude; the first two plots
for p= 95, p= 145.58 correspond to the modes identified in parts (a) and (b) of this figure.

An analytical prediction for the first critical wavelength q⋆ and applied axial strain 𝜀⋆ can be obtained by solving
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the extremality condition 𝜀′(q⋆)=0. Using the expression of 𝜀(q) in (4.5) and recalling F0>0, see Figure 3.1c, we get

q⋆ = {{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{

0 if B0 >0 (long-wavelength)
−B0

2 F0
� if B0 <0 (short-wavelength)

𝜀⋆ = −(pr3 + 24 (1 −𝜈)) +{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{ 0 if B0 >0

3 B0
2

F0
if B0 <0.

(4.6)

These expressions have been used to position the green stars in Figure 4.1(a,b) and to generate the green curve in
Figure 4.1(c).

Figure 4.1(c) echoes experimental results from prior work, see for instance Figure 5a in [13]: as we increase pre-
strain p in the ribbon, the first unstable wavenumber q increases, meaning that the wavelength of the first unstable
mode decreases. The dependence of wavelength on the width and thickness of the ribbon discussed in [13, 21] can
be accounted for by reverting to the unscaled set of variables using (2.13).

4.3. Buckling diagram

The phase diagram in Figure 4.2 summarizes the results of the linear bifurcation analysis and shows the nature of
the first critical mode as a function of the width-ratio parameter r and of the scaled pre-strain p, for a given Poisson's
ratio 𝜈 = 0.5. Different values of Poisson's ratio in the range 0 ⩽𝜈 ⩽0.5 lead to a similar diagram (data not shown).

Figure 4.2. Phase diagram of an infinitely long ribbon having Poisson's ratio 𝜈 = 0.5, as predicted by a linear bifurcation
analysis of the one-dimensional model (background colors and black curves) and comparison to the 3D finite-element sim-
ulations reported in [11] (symbols): the buckling pattern is shown in terms of the width ratio r and the scaled pre-strain
p. The boundary between Euler (red) and long-wavelength twist buckling (white) is known from previous work [11], see
Equation (4.7). The boundary between long-wavelength (white) and short-wavelength (green) is novel and corresponds to a
change of sign in the incremental gradient modulus B0. The ribbons with parameters corresponding to points fℓ and fs are
investigated in Section 5.

The boundary between the red domain (Euler buckling) and the white domain (long-wavelength twist buckling)
has been identified in previous work [11] based on the leading-order energy Φ⋆|𝛾0. It can be found by equating the
critical strain for Euler buckling, given by (3.3) as 𝜀Euler

⋆ = −p r, and the critical strain for long-wavelength twist
buckling, given by (4.6) as 𝜀twist

⋆ = −(pr3 + 24 (1 −𝜈)). This yields

pr (1 − r2) = 24 (1 −𝜈). (4.7)

Euler buckling occurs first if 𝜀Euler
⋆ >𝜀twist

⋆ , that is if pr(1 − r2) <24(1 −𝜈) (red region in the phase diagram).

By taking into account the gradient effect, the higher-order one-dimensional model proposed in this paper can
also predict the transition from long- to short-wavelength twist buckling. Specifically, the analysis in Section 4.2
shows that the transition takes place along the curve with equation B0(p, r) = 0, with B0(p, r) given in (2.29).
This curve is included in the phase diagram in Figure 4.2 (upper solid curve). Short-wavelength twist buckling is
expected to take place above this curve, something which we will confirm using a numerical post-buckling analysis
of the one-dimensional model later in Section 5. The position of the boundary B0 = 0 in the phase diagram agrees
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well with the 3D finite-element simulations reported in [11] for r = 1/3 and r = 2/3 (symbols): in the finite-element
simulations, a single perversion has been obtained whenever the condition B0 >0 holds (dark disks), whereas mul-
tiple perversions have been obtained whenever B0 <0 (red triangles).

In the phase diagram in Figure 4.2, the boundaries separating the orange, white, and green regions have a min-
imum each, implying that there exists two minimum pre-strain, denoted as pℓ and ps for long- and short wavelength
instabilities, respectively, below which the ribbon cannot buckle to a long- or short-wavelength mode, irrespective
of the value of the width ratio r∈[0,1]. The minimum pre-strain for long-wavelength buckling can be calculated as
p=36 3� (1−𝜈) and occurs for r =1/ 3� =0.578. There is no simple closed-form expression of the coordinates of the
minimum on the upper curve, but they can be found numerically as p= 125.49 and r = 0.75 for 𝜈 = 0.5.

In the next section, we complement the above linear bifurcation analysis of an infinitely long ribbon by post-
buckling simulations of a finite-length ribbon.

5. SIMULATIONS OF FINITE-LENGTH RIBBONS IN THE POST-BUCKLING REGIME

This section presents numerical results for finite-length ribbons, both near the onset of buckling and far in the post-
buckling regime. The simulations are based on the non-linear one-dimensional model (2.25). Specifically, we solve
the boundary-value problem made up of the equilibrium equation (3.12), the higher-order constitutive law (3.10)
and the boundary conditions (3.7) and (3.13), using the arc-length continuation method implemented in the Auto-07p
library. The Auto-07p command files are distributed in the repository [15].

The analysis of finite-length ribbons in the post-buckled regime carried out in the present section complements
the analysis of the infinite-length ribbon at the onset of instability from the previous section.

All post-buckling simulations use Poisson's ratio 𝜈 =1/2. The non-dimensional variables in (2.13) are calculated
with the physical dimensions of ribbon a = 18mm and t = 2mm. The other parameters vary and are specified later.
In Subsection 5.1, the case of preferred long-wavelength buckling is considered (in the sense of the linear bifurcation
analysis from Section 4, i.e., with parameters such that B0 > 0) and in Subsection 5.2 the case of preferred short-
wavelength buckling is considered (for B0 < 0). In both cases, we compare a nonlinear solution having a single
perversion to one having 12-perversions (these 12 perversions corresponds to the first critical wavenumber in the
short-wavelength case, for the particular ribbon properties used in the simulations). When B0 >0 (Subsection 5.1),
we find that 1-perversion solutions are energetically favorable, while when B0 < 0 (Subsection 5.2) 12-perversion
solutions are favored at least at the onset of buckling.

5.1. Case of preferred long-wavelength deformations

In Figure 5.1, we simulate a finite-length ribbon having aspect-ratio ℓ = L/a = 300/18, pre-strain p = 459.27 and
width-ratio r = 1/3: the linear bifurcation analysis from Section 4, applicable to the infinite-length case, predicts
long-wavelength buckling as B0(p, r) =0.018 >0 (given that the aspect-ratio ℓ =300/18 ∼ 15 is quite large, one can
expect that this prediction still holds).
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Figure 5.1. Bifurcation diagram: twist buckling of a finite-length ribbon whose short edges are progressively brought closer
to one another (the quantity −𝜀 on the horizontal axis increases), as predicted by the one-dimensional model (black curve).
Ribbon parameters are aspect-ratio ℓ = L/a = 300/18, scaled pre-strain p = 459.27, and width ratio r = 1/3, corresponding
to B0 = 0.018 > 0 (preferred long-wavelength case, symbol fℓ in Figure 4.2). The prediction (3.4) ignoring the gradient effect
is included for comparison (red dotted curve). We use the mean-square twist ‖𝜏‖rms as a measure of the buckling amplitude
on the vertical axis, see (5.1). Three-dimensional views of the equilibrium configurations are included for specific values
of the imposed axial strain: −𝜀 = 20 (unbuckled), −𝜀 = (20, 30, 50, 80, 110). The onset of instability is at −𝜀 = 29.043. In the
buckling mode, the twist strain 𝜏 changes sign once in the middle of the ribbon, and this smooth feature evolves into a localized
perversion in the post-buckled regime (star symbols)

Figure 5.2. Formation of phases having uniform twisting strain 𝜏(S)=±𝜏⋆(𝜀) in the post-buckled regime (plateaus in super-
imposed red, yellow and blue curves) by progressive localization from the initial sinus-like buckling mode (black and green
curves). The plot shows the distribution of scaled twisting strain 𝜏(S)/𝜏⋆(𝜀) along the centerline for applied strains 𝜀=−29.1,
−50,−80 and −110 corresponding to the 3D plots shown in Figure 5.1 using the same parameters as in Figure 5.1. The twisting
strain 𝜏(S) is scaled by the optimum value 𝜏⋆(𝜀) predicted by the leading-order model in (3.4). Note that the various curves
are rescaled using increasing values 𝜏⋆(𝜀) as we go deeper into the post-buckling regime: unlike in Figure 3.1(a), the ampli-
tudes in this plot do not convey the real buckling amplitude. By the clamping conditions in (3.7), the average of 𝜏(S) = 𝜃′(S)
over the length of the ribbon is always zero.

We use the root mean square twist ‖𝜏‖rms to measure of the amplitude of buckling in the bifurcation diagram,

‖𝜏‖rms = �1
ℓ �

0

ℓ
𝜏2(S) dS�

1
2. (5.1)

This buckling amplitude is plotted in Figure 5.1 versus the scaled end-to-end shortening (−𝜀). The instability sets
in at −𝜀=29.043 in the simulations and the solution bifurcates into a solution that is invariant by mirror symmetry
about the plane perpendicular to the axis passing through the midpoint S = ℓ /2. The invariance by translation is
lost, however. For all buckled solutions, starting with the small-amplitudes ones, the twisting strain 𝜏(S) changes
sign once at the midpoint S= ℓ /2 (star symbol for −𝜀 = 30 in Figure 5.1; curves in Figure 5.2).
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Figure 5.3. Comparison of the solution branches having a single perversion (np = 1) and 12 perversions (np = 12) in the
preferred long-wavelength case. (a) Prediction of the critical scaled end-to-end shortening −𝜀⋆(np) as a function of np predicted
by the dispersion relation −𝜀⋆(q) for an infinite ribbon with q = π (np + 1)/ℓ , see Equations (4.5) and (5.2). (b) Bifurcation
diagram showing the branches with np=1 and np=12 perversion(s). On the vertical axis, we show the difference in the energy
Φ⋆ of the computed solution, as given by (2.25), and of the planar solution Φplanar = 1

2�𝜀2 +rp(2𝜀+ p)�ℓ . For each branch, the
mid-surface is plotted in 3D for 𝜀= −110, and colored in red for 𝜏<0, in white for 𝜏≈ 0 and in blue for 𝜏>0.

As we progress along the bifurcated branch by reducing the end-to-end distance further, the twisting rate 𝜏(S)
tends to become uniform in both halves of the ribbon (helices having opposite chiralities in the 3D plots in Figure 5.1
for −𝜀 ⩾ 50; plateaus in the red, yellow and blue overlapping curves in Figure 5.2) and a single perversion emerges
as the gradient of twist localizes at the midpoint (star symbol in Figure 5.1; region of large gradient 𝜏′(S) near
S=ℓ /2 in Figure 5.2). Deeper in the post-buckled regime (−𝜀⩾50), the uniform value of the unsigned twisting strain
|𝜏| in each one of the phases is close to the optimum one, 𝜏⋆, predicted by the leading-order model in Equation (3.4)
(horizontal dashed lines in Figure 5.2). The phenomenon is highly reminiscent of phase separation [8].

The small residual discrepancy on the value of ‖𝜏‖rms (from numerical simulations of the full one-dimensional
model, black curve in Figure 5.1) and 𝜏⋆ (from leading-order model, red dotted curve) can be attributed to the finite
size of the boundary layers near the endpoints and at the perversion (steep regions in Figure 5.2).

The bifurcation diagram in Figure 5.1 shows the first bifurcated branch only, but there are others, corresponding
to larger wavenumbers at the onset of buckling. They give rise to a larger number of perversions. With np as number
of perversions, the np = 12 branch is included in the buckling diagram in Figure 5.3(b). The branch bifurcates from
the planar configuration at a slightly larger value −𝜀⋆(np = 12) = 31.148 of the scaled end-to-end shortening than
the single perversion, which has −𝜀⋆(np =1)=29.043. This suggests that the solution with a single perversion (first
buckling mode) is the only one that connects with a stable section of the fundamental branch. This is consistent with
the fact that the branch having a single perversion has everywhere lower energy than that having 12 perversions,
see Figure 5.3(b). All these results point to the fact that the single-perversion solution is preferred. For a definitive
statement, one could characterize the stability of the branches corresponding different number of perversions, some-
thing we have not undertaken.

Based on the the infinitely-long ribbon calculations in Subsection 4.2, an accurate estimate of the critical end-to-
end distance −𝜀⋆(np) as a function of the number of perversions np can be obtained by setting the wavenumber of
the mode as

q(np) = π np + 1
ℓ (5.2)

in the dispersion relation (4.5) derived in Section 4. This yields the estimates −𝜀⋆(np =1)≈29.04 and −𝜀⋆(np =12)≈
31.02 obtained graphically in Figure 5.3(a), which provide accurate approximations to the critical loads −𝜀⋆(np =
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1) = 29.04 and −𝜀⋆(np = 12) = 31.14 found in the nonlinear simulation in Figure 5.3(b). The approximation in (5.2)
captures in a reasonably way the buckling modes produced by the simulations, which are approximately sinusoidal,
see the case np = 1 in Figure 5.2 (black curve).

Remark 5.1. An additional complication arises with the sine-like approximation 𝜏=𝜏0sin(q(np)S) underlying (5.2)
when np is even, as the average of 𝜏 is then non-zero, in contradiction with the clamped boundary conditions (3.7).
The numerical simulations suggest that for even values of np the incipient buckling mode is then a sine function
having a modulated amplitude, whose wavenumber is still reasonably well approximated by (5.2). For more details
on modulated amplitude 𝜏(S), see supplementary material [15].

To sum up, the post-buckling analysis shows that the solution having a single perversion (np =1) is favored for a
scaled pre-strain p = 459.27 and with ratio r = 1/3. This is consistent with the results of the linearized bifurcation
analysis of an infinitely long ribbon in Section 4 (point fℓ in Figure 4.2).

5.2. Case of preferred short-wavelength deformations

In this section, we repeat the post-buckling analysis using this time a width ratio r=2/3 and a pre-strain p=145.58,
corresponding to the symbol fs in Figure 4.2. For these parameter values, the linear bifurcation analysis in Section 4
predicts short-wavelength buckling as B0=−1.19×10−2<0. In the simulations, we switch to a larger aspect-ratio ℓ =
L/a=500/18 to ensure that a significant number of perversions are included. The results are shown in Figure 5.4.
The first bifurcation from the fundamental branch takes place at −𝜀 = 54.98 and produces a solution having np =12
perversions.

Figure 5.4. Bifurcation diagram showing the solution branch having np =12 perversions that first bifurcates from the planar
solution in the short-wavelength case. Simulation parameters are ℓ = 500/18, r = 2/3 and p = 145.58, corresponding to the
symbol fs in Figure 4.2 (short-wavelength case). Same plot as in Figure 5.1, the 3D plots are produced for −𝜀= 50 (unbuckled)
and −𝜀= (60,70,85).

In Figure 5.4, the discrepancy between the root-mean-square value of the twist ‖𝜏‖rms from the nonlinear sim-
ulations (black curve) and the optimum value 𝜏⋆ that ignores the gradient effect (dotted red curve) is significantly
worse than in the long-wavelength case (Figure 5.1). Indeed, in the short-wavelength case, the perversions end up
covering a significant fraction of the ribbon length. The plateaus in 𝜏(S), which were visible earlier in Figure 5.2,
no longer form clearly, even deep in the post-buckled regime (data not shown). For −𝜀=60, the twist-gradient terms
amount to as much as 22.9% of the energy Φ⋆ − Φplanar that is released by buckling, and to an even larger fraction
near the onset of buckling. This, together with the discrepancy seen in Figure 5.4, points to the fact that the size
effects ignored by the leading-order model are no longer negligible.

In Figure 5.5(a), we repeat the argument from Section 5.1 that predicts the critical end-to-end shortening based
on the dispersion relation (4.5). The critical strain from dispersion relations turns to be −𝜀=54.98, which very close
to the critical value −𝜀 = 54.98 observed in the non-linear simulations, see Figure 5.5(c,d). The dispersion relation
can predict the number of perversions as well: equating q⋆ from (4.6) with the wavenumber q(np) from (5.2), we
calculate np ≈ 12, in agreement with the non-linear simulations.
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Figure 5.5. Comparison of the solution branches having a single perversion (np = 1) and 12 perversions (np = 12) in the pre-
ferred short-wavelength case. (a,b) Same plots as in Figure 5.3. (c) Close-up view near the onset of buckling. The energy of the
solution is lower with np=12 perversions (red curves) than with a single perversion (np=1, black) immediately after buckling,
up to −𝜀<55.7, in agreement with the linear bifurcation analysis. Deeper in the post-buckled regime, the configuration with a
single perversion becomes energetically favorable. (d) Breaking up the energy release associated with buckling into a leading-
order contribution 1

2∫0
ℓ A(𝜏) dS − Φplanar (dotted lines) and a contribution 1

2∫0
ℓ B(𝜏) dS coming from the gradient 𝜏′ (dashed

lines) reveals that the lower energy of the solution having np = 12 perversions, immediately above the buckling threshold,
can be attributed to the gradient term, which is significantly more negative (red dashed curve). The leading-order terms, by
contrast, remain comparable (dotted curves).

The competition between the solutions having np = 1 or np = 12 perversions is illustrated in Figure 5.5(b–d).
Immediately above the buckling threshold, the solution with np = 12 is energetically favorable, as could be antici-
pated from the linear bifurcation analysis. In Figure 5.5(c), the difference is attributed to the energy contribution
coming from the strain gradient: with B0 <0 (for the set of parameters chosen here), the more perversions there are,
the more negative the twist-gradient contribution 1

2∫0
ℓ B(𝜏) 𝜏′2 dS≈ 1

2∫0
ℓ B0 𝜏′2 dS is.

On further decreasing the separation ends, the energy of the 1-perversion solution becomes lowers than that of
the 12-perversions solution, see Figure 5.5(d). The figure only shows the data for np = 1 and np = 12 and a similar
cross-over is expected to take place with different numbers of perversions. In such conditions, we expect that there
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exist multiple stable equilibria in competition. Which one is obtained in experiments depends on multiple factors,
including the details of the loading history.

To sum up, for r=2/3 the short-wavelength twist buckling predicted in the phase diagram in Figure 4.2 has been
confirmed in post-buckling simulations of ribbons having finite length. In this short-wavelength regime, the ribbon
state with wavelength predicted by the linear bifurcation analysis has lowest energy early in the early post-buckled
regime. Soon after, there are multiple equilibria in competition.

6. CONCLUSION

We have presented in Section 2.6 a one-dimensional energy Φ⋆[𝜏] which captures the linear and non-linear features
of twist buckling in pre-strained ribbons. The competition between short-wavelength and long-wavelength buckling
has been shown to be governed by the sign of the gradient modulus B0(p, r), given in closed analytical form in
Equation (2.29). This provides a simple answer to the question of wavelength selection and rationalizes the depen-
dence of the buckling mode on experimental parameters (cross-section geometry, pre-strain level) reported in earlier
work [21, 13, 20]. It is not surprising that shorter wavelengths are favored when B0<0, as the energy cost associated
with rapid variations of 𝜏 at perversions (gradient term 1

2 ∫B0 𝜏′2 dS) becomes negative. It is still surprising that
the gradient term, which has been treated as a small correction in the dimension reduction procedure, plays a key
role in the wavelength selection—upon reflection, this has to do with the fact that the leading-order model obtained
in Equation (1.1) and in the previous work [11] is degenerate—it cannot select a wavelength—, so that wavelength
selection relies entirely on how the leading-order model is regularized.

To the best of our knowledge, this is the first time in the context of both higher-order homogenization and dimen-
sion reduction that a negative gradient modulus B0 is connected to an observable behavior (namely, short-wavelength
buckling) and not discarded as an undesirable mathematical oddity. This has been made possible by a novel trun-
cation strategy, presented in Section 2.5, that keeps the dimensionally-reduced energy smooth, even when B0 <
0—see the positivity property discussed in Section 2.5, which in more accurate but technical terms is known as
lower semicontinuity. Together, an improper truncation strategy used in earlier work (including ours) and a neg-
ative gradient modulus B0 < 0 conspire to break this essential smoothness property and to make higher-order one-
dimensional energies useless. We hope that our work clarifies the following important point: it is not necessarily
the negative gradient modulus B0 <0 that must be blamed for the deficiencies of the dimensionally reduced/homog-
enized model, but the underlying truncation procedure.

Concretely, the boundary-value equilibrium problem derived variationally from the one-dimensional energy
rarely converged when we used the naïve truncation approach from earlier work. These difficulties disappeared
immediately when we switched to the truncation procedure introduced in Section 2.5. In the future, it will be inter-
esting to try to adapt this truncation procedure to other higher-order models produced by dimension reduction,
as they display the same deficiencies. The new truncation procedure comes with a fee: as discussed in Sections 3.2
and 3.3, the highest-order terms in the energy are not the asymptotically correct ones, of the form ∫0

ℓ 1
2 B 𝜏′2 dS,

but non-asymptotic ones, of the form ∫0
ℓ 1

2 �F 𝜏′′2 + G 𝜏′4�dS, which are required to preserve positiveness. As a
result, the equilibrium equation (3.12), when expressed in terms of the kinematic variable 𝜃(S), is not just of order
4 but 6, see (2.14) and (4.2), which makes it more difficult to solve numerically—this issue is not really signif-
icant, however, in one-dimensional setting studied here.

We proceed to briefly discuss two additional limitations of our approach. First, the reduction approach assumes
that the twisting strain 𝜏(S) evolves on a longitudinal length-scale much larger than the width a. This separation-
of-scale assumption is not satisfied around perversions, where 𝜏(S) varies quickly, especially in the deep post-
buckled regime: perversions may not be captured accurately by the one-dimensional model. We note that in the
related problem of bulges propagating in cylindrical balloons [17], the same limitations applies in principle but
the predictions of the dimensionally reduced model were actually found to be highly accurate. Second, the one-
dimensional model involves cumbersome mathematical expressions, see Appendix B. In future work, we will explore
variants of the truncation methods that preserve asymptotic correctness and positiveness of the energy while making
the algebra simpler.

Although the one-dimensional model allows in principle the ribbon ends to rotate about the ribbon axis, we have
not explored this possibility. We leave it to future work to investigate the new solutions and instabilities that result
from the interplay between rotation and translations of the ends. By rotating the ends, it is in particular possible to
create and remove perversions.
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APPENDIX A. DEFICIENCIES OF THE PREVIOUS TRUNCATION METHOD
In Section 2.5, we proposed a novel truncation method, in which a second-order expansion of the optimal strain
determined by dimension reduction is inserted into the shell energy, after which no additional truncation of the
energy takes place. The energy produced by this procedure contains non-asymptotic fourth-order terms that warrant
positiveness. In previous work, these fourth-order terms were discarded and we highlight in this Appendix the
severe drawbacks associated with this truncation.

We work with the energy truncated beyond order 𝜀2 and consider loading conditions corresponding to a short-
wavelength instability (B0 < 0, green region in the phase diagram in Figure 4.2). We show that the truncated
energy can be made infinitely large and negative when small-amplitude, short-wavelength twisting perturbations
are included on top of the planar configuration. This shows that the energy functional is unbounded from below,
in a small ‘neighborhood’ around the planar configuration.

By way of illustration, we use the loading and material parameters p = 400, 𝜈 = 1/2, r = 2/3 and 𝜀 = −10. The
parameters fall inside the green region in phase diagram in Figure 4.2 and give B0=−0.50. For a given ribbon length
ℓ , we pick a large integer n ≫ q ≫ 1 and consider the following configuration

𝜃(S) = 1
q sin (q S), (A.1)

where
q = 2 πn

ℓ . (A.2)

For n ≫ q ≫ 1, this is a small-amplitude, short-wavelength perturbation on top of the planar configuration, as
announced. The kinematic boundary conditions (3.7) are satisfied, so it makes sense to evaluate the energy of this
configuration. The twisting strain is given by 𝜏(S) = cos (q S).

• The boundary contributions to the energy can be written as
�Wb(p, r; 𝜏, 𝜏′)�0

ℓ = �C(p, r; 𝜏) 𝜏 𝜏′�0
ℓ . (A.3)

They vanish, as 𝜏′(S) = q Sin(q S) = 0 at both S= 0 and S= ℓ = 2𝜋n/q.
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• The truncated strain energy per unit length is given, on average, as

1
ℓ �Φ⋆|𝛾0 + Φ⋆|𝛾2� = q

2 n 𝜋 �
0

2n𝜋
q 1

2�A(p, r, 𝜀; 𝜏) + B(p, r; 𝜏)� dS

= 21034257523
414720 − 31657868810803 q2

251418359808000

(A.4)

This average strain energy decreases without limit when the wavenumber q increases. As a result, small amplitude,
short-wavelength ribbon configurations can have a negative energy. This is contradictory as the completely relaxed,
ribbon state shown in Figure 2.1(a) has zero energy.

APPENDIX B. DETAILED EXPRESSIONS OF THE HOMOGENIZED CONSTANTS

In this Appendix, we provide the detailed expressions of the second and fourth order terms entering into the one-
dimensional strain energy density, as obtained in the companion Mathematica notebook. We note that the some-
what cumbersome fourth-order terms are not asymptotically exact. The coefficients are listed below and can also be
output from the supplementary Mathematica file when required.

The coefficients entering the strain energy terms at second-order are

B2 = 1
1512 ⋅ 102�−(38 + 75 𝜈) + 1

192 pr3 (5 r6 −27 r4 + 63 r2 −41)�

B4 = − 1
399168 ⋅ 103

C0 = 1
210 �(4 −11 𝜈) (1 −𝜈) − 1

96 pr (1 − r2) (155 𝜈 −12 (1 −𝜈) r4 + (9 −93 𝜈) r2 + 83)

− 1
192 p2 r4 (1 − r)3 (12 r − r2(r + 3) + 4)�

C2 = 1
302400�34 + 67 𝜈 − 1

256 pr (15 r8 −84 r6 + 210 r4 −164 r2 + 23)�

C4 = 1
199584 ⋅ 103 .

The coefficients at fourth order are

F2 = 1
(1 −𝜈2) 18162144 ⋅ 103 �F20 + 1

384 pr3 (1 − r2) F21 + 1
512 p2 r6 F22�

F20 = 38688 𝜈4 −53352 𝜈3 + 601431 𝜈2 + 742432 𝜈 + 175304
F4 = 1

(1 −𝜈2) 163459296 ⋅ 104 ×�239 𝜈3 −239 𝜈2 + 2706 𝜈 + 1833 −

pr3 (1 − r2)
12288 (105 r10 −1785 r8 + 18690 r6 −98570 r4 + 255589 r2 −378317)�

F6 = 211
(1 −𝜈2) 66691392768 ⋅ 105

G0 = 1
(1 −𝜈2) 11346799464 ⋅ 104 �G00 − 1

3072 pr3 (1 − r2)G01 + 1
36864 p2 r6 (1 − r)2G02

+ 1
294912 p3 r9 (1 − r)3 G03 + 3

8388608 p4 r12 (1 − r)4 G04�
G00 = 4106878205 𝜈4 −2881076420 𝜈3 + 3541082920 𝜈2 + 939320762 𝜈 + 311567294

G2 = G20 − pr3 (1 − r2)
196608 G21 − p2 r6 (1 − r)2

786432 G22 − p3 r9 (1 − r)3

4194304 G23

G20 = 2354948525 𝜈3 −2100214260 𝜈2 + 425446473 𝜈 −423403490

G4 = 1
2235228720012288 (1 −𝜈2) ⋅ 106((((((((((((G40 + pr3 (1 − r2)

8192 G41 + p2 r6 (1 − r)2

131072 G42))))))))))))
G40 = 2642285920 𝜈2 −2026907108 𝜈 + 383369127
G6 = 1

462692345042543616 (1 −𝜈2) ⋅ 107�408799133 𝜈 −120028728 + 3
524288 pr3 G61�

G8 = 1242599
5552308140510523392 (1 −𝜈2) ⋅ 108

H0 = 1
190702512 (1 −𝜈2) ⋅ 103((((((((((((H00 + pr3 (1 − r2)

3072 H01 + p2 r6 (1 − r)2

73728 H02 + p3 r9 (1 − r)3 𝜈
294912 H03))))))))))))

H00 = 932138 𝜈4 −276512 𝜈3 + 2294332 𝜈2 + 2716787 𝜈 + 520436

H2 = 1
233419874688 (1 −𝜈2) ⋅ 104 ((((((((((((H20 + pr3 (1 − r2)

12288 H21 + p2 r6 (1 − r)2

98304 𝜈 H22))))))))))))
H20 = 2460858 𝜈3 + 139473 𝜈2 + 2990527 𝜈 + 2170322

H4 = 1
45616912653312 (1 −𝜈2) ⋅ 105((((((((((((281828 𝜈2 + 97754 𝜈 + 156351 + pr3 (1 − r2) 𝜈

131072 H41))))))))))))
H6 = 9733 𝜈

11495461988634624 (1 −𝜈2) ⋅ 106
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16542680 35265370 −597450 −47687990
−1455300 −4694550 −3780630 12892530
−22050 177135 1114260 −1269345

0 36015 −72030 36015 ))))))))))))))))))
))))))))))))))))))
))))))))))))))))))
)))))))

)

)

((((((((((((((((((
((((((((((((((((((
((
(
( 1

𝜈
𝜈2

𝜈3 ))))))))))))))))))
))))))))))))))))))
))
)
)

;

H21 =

((((((((((((((((((
((((((((((((((((((
((((((((((((((((((
((((((((((((((((((
(((((((((((((((

(

( 1
r2

r4

r6

r8

r10

r12 ))))))))))))))))))
))))))))))))))))))
))))))))))))))))))
))))))))))))))))))
)))))))))))))))

)

)T

(((((((((((((((((
((((((((((((((((((
(((((((((((((((((
((((((((((((((((((
(((((

(

( 405177507 213140601 659829952
−273735819 187436244 493276243
105568470 −213733275 −754858895
−20016990 75470640 381621450

1911735 −10503885 −99464610
−112455 −1448580 12856515

0 513135 −513135 )))))))))))))))))
))))))))))))))))))
)))))))))))))))))
))))))))))))))))))
)))))

)

)

((((((((((((((((((
((((((
(
( 1

𝜈
𝜈2 ))))))))))))))))))

))))))
)
)

;

H02 =

(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((

(

( 1
r
r2

r3

r4

r5

r6

r7

r8

r9

r10 )))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))

)

)T

((((((((((((((((((
((((((((((((((((((
(((((((((((((((((
((((((((((((((((((
((((((((((((((((((
((((((((((((((((((
(((((((((((((((((
(((((

(

( 16651530 3487957 17847679
33303060 6975914 35695358
−7432740 110314713 253998201
−48168540 −52212088 −24194956

−75600 −30105518 −216174908
48017340 23450652 689940

−25871580 −16642734 78367740
1845900 −5880 −6806940
922950 5078745 −8485155

0 −561750 561750
0 −280875 280875 ))))))))))))))))))

))))))))))))))))))
)))))))))))))))))
))))))))))))))))))
))))))))))))))))))
))))))))))))))))))
)))))))))))))))))
)))))

)

)

((((((((((((((((((
((((((
(
( 1

𝜈
𝜈2 ))))))))))))))))))

))))))
)
)

;

G01 =

((((((((((((((((((
((((((((((((((((((
((((((((((((((((((
((((((((((((((((((
(((((((((((((((

(

( 1
r2

r4

r6

r8

r10

r12 ))))))))))))))))))
))))))))))))))))))
))))))))))))))))))
))))))))))))))))))
)))))))))))))))

)

)T

((((((((((((((((((
(((((((((((((((((
((((((((((((((((((
(((((((((((((((((
(((((

(

( −37056466835 −440865665917 551744017305 −928871364565
43959053632 208396376414 −121451262900 44743988810

−19086355715 −86478631435 89361711075 39042719975
−1921392900 54346488000 −109600627500 59335917900
3914084475 −24357330375 40931947875 −20488701975

−1125211500 4777698450 −6179762400 2527275450
114604875 −343814625 343814625 −114604875 ))))))))))))))))))

)))))))))))))))))
))))))))))))))))))
)))))))))))))))))
)))))

)

)

((((((((((((((((((
((((((((((((((((((
((
(
( 1

𝜈
𝜈2

𝜈3 ))))))))))))))))))
))))))))))))))))))
))
)
)

;

(G21; H41) =

(((((((((((((((((
(((((((((((((((((
((((((((((((((((((
(((((((((((((((((
((((((((((((((((((
((((((((((((((((

(

( 1
r2

r4

r6

r8

r10

r12

r14 )))))))))))))))))
)))))))))))))))))
))))))))))))))))))
)))))))))))))))))
))))))))))))))))))
))))))))))))))))

)

)T

((((((((((((((((((
((((((((((((((((((
((((((((((((((((((
((((((((((((((((((
(((((((((((((((

(

(

((((((((((((((((((
((((((((((((((((((
((((((((((((((((((
((((((((((((((((((
(((((((((((((((

(

( −4282442995193 18678820465282 −31380035648345
1615791655423 −3646723160894 4895166992815

−1102085913005 3516905287210 −3468342996125
1559496090075 −6833414052150 7505562946875

−1205695944075 4736914071750 −4529781542475
502338068925 −1677807013050 1349496305325

−111510543375 301438471950 −189927928575
10429043625 −20858087250 10429043625 ))))))))))))))))))

))))))))))))))))))
))))))))))))))))))
))))))))))))))))))
)))))))))))))))

)

)

((((((((((((((((((
((((((
(
( 1

𝜈
𝜈2 ))))))))))))))))))

))))))
)
)

;

((((((((((((((((((
((((((((((((((((((
((((((((((((((((((
((((((((((((((((((
(((((((((((((((

(

( 270678919
375726271

−753317645
586163355

−255694155
67913085

−10362735
779625 ))))))))))))))))))

))))))))))))))))))
))))))))))))))))))
))))))))))))))))))
)))))))))))))))

)

)

))))))))))))))))))
))))))))))))))))))
))))))))))))))))))
))))))))))))))))))
)))))))))))))))

)

)

24 WAVELENGTH SELECTION IN PRE-STRAINED RIBBONS



G41 =

(((((((((((((((((
((((((((((((((((((
(((((((((((((((((
((((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((

(

( 1
r2

r4

r6

r8

r10

r12

r14

r16 )))))))))))))))))
))))))))))))))))))
)))))))))))))))))
))))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))

)

)T

(((((((((((((((((
((((((((((((((((((
((((((((((((((((((
((((((((((((((((((
((((((((((((((((((
((((((((((((

(

( −345591960729 1130500161659
114401942346 −224306992888

−157467666930 261006696020
291841373250 −589895376000

−271979561700 523095553050
149046335550 −260020450200
−49875313950 76368190500

9601341750 −12428262000
−827701875 827701875 )))))))))))))))))

))))))))))))))))))
))))))))))))))))))
))))))))))))))))))
))))))))))))))))))
))))))))))))

)

)

((((((((( 1
𝜈 ))))))))); G61 =

((((((((((((((((((
(((((((((((((((((
((((((((((((((((((
((((((((((((((((((
((((((((((((((((((
((((((((((((((((((
(((((((((((((((((
((((((((((((((((((
((((((((

(

( 1
r2

r4

r6

r8

r10

r12

r14

r16

r18

r20 ))))))))))))))))))
)))))))))))))))))
))))))))))))))))))
))))))))))))))))))
))))))))))))))))))
))))))))))))))))))
)))))))))))))))))
))))))))))))))))))
))))))))

)

)T

(((((((((((((((((
((((((((((((((((((
((((((((((((((((((
((((((((((((((((((
((((((((((((((((((
((((((((((((((((((
((((((((((((((((((
((((

(

( 1788369267803
−2489202835658
1792168200075

−3256263530520
4522599504150

−3955998217500
2308238959950
−914519251800
239868003375
−38074286250

2814186375 )))))))))))))))))
))))))))))))))))))
))))))))))))))))))
))))))))))))))))))
))))))))))))))))))
))))))))))))))))))
))))))))))))))))))
))))

)

)

(G02; H22) =

((((((((((((((((((
(((((((((((((((((
((((((((((((((((((
(((((((((((((((((
((((((((((((((((((
(((((((((((((((((
((((((((((((((((((
(((((((((((((((((
((((((((((((((((((
((((((((((((((((((
((

(

( 1
r
r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12 ))))))))))))))))))
)))))))))))))))))
))))))))))))))))))
)))))))))))))))))
))))))))))))))))))
)))))))))))))))))
))))))))))))))))))
)))))))))))))))))
))))))))))))))))))
))))))))))))))))))
))

)

)T

(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(

(

(

(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(

(

( 56080803699 −176546411266 312740176130
112161607398 −353092822532 625480352260
−6325529499 136497711228 353107968855
−58099219596 6465240988 −165500404550
18299360322 −211033659700 −43447028620
2071005840 102434967612 −78110940690

−41791663350 215595739176 −186658072170
13216103460 −59168257260 51198179550
19585590255 −70219706130 53257128750
−4272826950 12519313800 −8246486850
−3661700175 9310230300 −5648530125

450084600 −900169200 450084600
225042300 −450084600 225042300 )))))))))))))))))

)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)

)

)

((((((((((((((((((
((((((
(
( 1

𝜈
𝜈2 ))))))))))))))))))

))))))
)
)

;

(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(

(

( 8427907
16855814
213305268
96641922

−395355057
−75486436
287111872
−429660

−88682895
5390910
14143500
−1305990
−652995 )))))))))))))))))

)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)

)

)

)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)

)

)

G22 =

(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
((((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
((((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
((

(

( 1
r
r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14 )))))))))))))))))
)))))))))))))))))
)))))))))))))))))
))))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
))))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
))

)

)T

(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
((((((((((((

(

( 981678423081 −3010525867061
1963356846162 −6021051734122
−548040698397 −720676924587
−259719721356 1548221436948
1623146721249 −2893968378165
−784142087346 1344229595522
−2421064585773 5500409459581

855726643800 −1651333697160
1420292646675 −2828256962055
−392685952050 673939376250
−446408034975 738407805975

91092122100 −128940065100
72289282275 −91213253775
−8747477550 8747477550
−4373738775 4373738775 )))))))))))))))))

)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
))))))))))))

)

)

((((((((( 1
𝜈 ))))))))); G42 =

(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((

(

( 1
r
r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

r16 )))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))

)

)T

(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
((((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
((((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
((

(

( 255331900357
510663800714

−214006240113
−69066740140
564542538517

−259552867626
−904075547793
351477437640
666083203695

−217807439850
−291973117275

77277885300
77632041375

−15364682550
−11488435875

1352458800
676229400 )))))))))))))))))

)))))))))))))))))
)))))))))))))))))
))))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
))))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
))

)

)

(F22, G04, G23, H03) =

(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
((((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
((((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((

(

( 1
r
r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 )))))))))))))))))
)))))))))))))))))
)))))))))))))))))
))))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
))))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))

)

)T

(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((

(

( 26431 4360025503 −181956550249 −403647
0 17440102012 −545869650747 −1210941

−91091 −36665388722 516977012578 11543160
0 82409090252 −726374589074 12233056

140998 −66643705279 −291552964707 −43423998
0 3230350072 1278917648879 27154398

−193622 , 10914067460 , −165805724820 , −1235504
161280 −1474516360 −569033268204 −2553384
−45461 −680302319 117172111713 226677

0 63744652 130315694931 75559
1465 16920718 −27612876270 0

0 787644 −13767265890 0
0 196911 1876084875 0
0 0 625361625 0 )))))))))))))))))

)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))

)

)

;
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