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1STAR IR, Università della Calabria, Via Tito Flavio, 87036 Rende (CS), Italy
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Abstract: By exploiting the absorption contrast provided by the doping of silica, we
demonstrate that X-ray microtomography is capable of retrieving the 3D spatial profile of
standard multimode glass optical fibers. © 2022 The Author(s)

1. Introduction

Glass optical fibers are conventionally characterized by means of all-optical techniques [1]. Besides the measure-
ment of residual-stress, the characterization of optical fibers mainly consists of determining the value of the re-
fractive index inside their entire volume. In particular, the refractive index profiling along the fiber axis is achieved
by means of optical tomography techniques [2]. In the spite of their effectiveness, these techniques only work in
the absence of plastic coating. This is because the latter absorbs optical radiation, thus preventing light to reach
the glass fiber, hence its characterization. This is a major drawback, since the coating and the jacket are essential
for providing to fiber devices the necessary flexibility and shielding from external perturbations.

In this context, X-ray computed micromotography (µCT) has been recently proposed as a novel, noninvasive
method for characterizing optical fibers, even in the presence of coating. In particular, Sandoghchi et al. reported
the µCT analysis of photonics crystal fibers, by exploiting the X-ray absorption contrast between glass and air [3].

Here, we perform a µCT study of standard optical fibers, whose refractive index profile is provided by either Ge
or F doping. Specifically, we apply µCT to both step-index fibers (SIFs) and graded-index fibers (GIFs). Because
of the limited spatial resolution of our experimental setup, we consider multimode fibers (MMFs), because of
their relatively wide transverse cross-section. MMFs are both timely and relevant for several emerging fiber-based
technologies, such as high-power beam delivery, space-division-multiplexed telecommunication, and biomedical
imaging or endoscopy [4, 5]. However, we underline that µCT can also be applied to: singlemode glass optical
fibers, specialty optical fibers (e.g., microstructured and multimaterial fibers), and plastic optical fibers. For GIFs,
we validate our method by comparing the results of µCT with that provided by the analysis of doping lumines-
cence.

2. Results

We carried out absorption contrast µCT of several SIFs and GIFs, whose typical 3D rendering is shown in Fig.1a
and b, respectively. In particular, we analysed both silica SIFs, whose core is undoped, while the cladding is doped
by F, and GIFs, whose cladding is made of pure silica, whereas the core is doped by Ge. Here the Ge doping is
spatially nonuniform, for imparting a parabolic profile to the core refractive index. The differences between the
µCT of SIFs and GIFs can be better appreciated by examining their single tomographic slices, which are shown
in Fig.1c and d, respectively. The µCT intensity profile along the slice diameter is shown in Fig.1e and f for a
50/125 SIF or a 50/125 GIF, respectively. As it can be seen, the µCT intensity mimics the doping concentration.
Indeed, for SIFs, the µCT intensity has a peak inside the cladding, and it is flat inside the core. To the contrary,
for GIFs the µCT intensity profile is rather flat in the cladding (besides the zone close to the interface with air),
and exhibits a parabolic profile in the core (cfr. the parabolic fit, shown by a red curve in Fig. 1f).

Therefore, we may infer that, along the fiber cross-section, the µCT intensity profile takes the shape of the
refractive index at optical frequencies. This means that µCT permits to estimate (within a multiplicative constant)
the refractive index profile of the fiber. For instance, one may determine the grading factor, say g, of GIFs.
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To verify the validity of this method, we compared values of g obtained by fitting the µCT intensity, say gµ ,
with values, say gL, from the analysis of fiber defect luminescence due to Ge inclusions. The latter are calculated
by starting from the measurements of the period (Γ) of the luminescence that is generated from the multiphoton
absorption of intense femtosecond laser pulses propagating into the fiber core [6] (see Fig. 1g). The relationship
between Γ and gL is discussed in [7]. In Fig.1h, we plot the measured values of gµ and gL for four different GIFs,
made by different manufacturers and with different core sizes. As it can be seen, a direct proportionality holds
between those two quantities. In particular, we found a linear correlation coefficient r2 = 0.94.
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Fig. 1. a,b) 3D rendering of µCT of SIFs (a) and GIFs (b). c,d) Single µCT slice of the recon-
struction in (a) and (b), respectively. e,f) µCT intensity profile along the dashed lines in (c) and (d),
respectively. The red solid line in (f) is a parabolic fit. The core region is highlighted in green. g)
Luminescence pattern of a GIF due to the excitation of Ge-related defects. The white bar is 100 µm
long. h) Correspondence between the values of gµ and gL for four different GIFs.

3. Conclusion

µCT candidates as a powerful tool for refractive index profiling of optical fibers. Here, we successfully character-
ized the index profile of standard glass multimode fibers. The method was validated for GIFs, by comparing the
results of µCT with the analysis of fiber defect luminescence. Further confirmations were obtained by comparing
the spatial profile of µCT intensity with that of energy dispersed X-ray spectroscopy. These are not shown here
and will be discussed in the presentation.
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