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Abstract

Retrieval-Augmented Neural Machine Transla-
tion (RAMT) architectures retrieve examples
from memory to guide the generation process.
While most works in this trend explore new
ways to exploit the retrieved examples, the up-
stream retrieval step is mostly unexplored. In
this paper, we study the effect of varying re-
trieval methods for several translation archi-
tectures, to better understand the interplay be-
tween these two processes. We conduct experi-
ments in two language pairs in a multi-domain
setting and consider several downstream ar-
chitectures based on a standard autoregressive
model, an edit-based model, and a large lan-
guage model with in-context learning. Our ex-
periments show that the choice of the retrieval
technique impacts the translation scores, with
variance across architectures. We also discuss
the effects of increasing the number and di-
versity of examples, which are mostly positive
across the board.

1 Introduction

Retrieval-Augmented Language Models and Trans-
lation Models are getting a lot of traction (see (Li
et al., 2022a) for a recent review). For translation
tasks, the use of retrieval-based techniques that
identify the most relevant segment(s) in a Transla-
tion Memory (TM) has long been used in profes-
sional Computer Aided Translation environments
(Bowker, 2002), where the retrieved segments pro-
vide translators with valuable suggestions. Seg-
ments closely resembling the source sentence to
be translated can also be directly edited to speed
up translation. Such ideas have also been used in
Machine Translation (MT), first in the example-
based tradition (Nagao, 1984; Somers, 1999; Carl
et al., 2004), then in the statistical-based paradigm
(Koehn and Senellart, 2010), more recently for neu-
ral machine translation (NMT).

There are several ways to take advantage of
translation examples in NMT architectures: Fara-

jian et al. (2017) use a small set of examples to
perform on-the-fly, lightweight, fine-tuning (using
both source and target sides); Bulte and Tezcan
(2019) simply concatenate the (target side of) a
handful of examples on the source side of the en-
coder, leaving the rest of their autoregressive de-
coder unchanged; Xu et al. (2023) repurpose the
edit-based architecture of Gu et al. (2019) to com-
pute new translations from existing ones with a non-
auto-regressive (NAT) decoder; finally, in-context
learning (ICL) in large language models (LLMs)
provides yet another way to seamlessly combine
TMs with text generation (see Moslem et al. (2023),
inter alia).

These studies (and several others, fully discussed
in §5) not only differ in the way they use examples
but also in the way TMs are searched, retrieved,
and filtered. This makes the direct comparison
between these proposals sometimes difficult to re-
produce and analyze. Furthermore, it also prevents
precisely assessing the computational complexity
of the complete translation pipeline.

In this paper, we perform experiments with sev-
eral representative retrieval methods that we sys-
tematically combine with multiple RAMT architec-
tures. In doing so, our main goal is not to compare
these downstream architectures, but rather to better
understand the interplay between the retrieval and
generation tasks, to make the trade-offs between
these steps explicit, and to formulate recommenda-
tions regarding future uses of TMs in NMT.

Specifically, we address the following questions:

* How much does the example selection impact
translation performance? Is one retrieval tech-
nique always better than the others, irrespec-
tive of the MT architecture, or is it necessary
to adapt the former to the latter?

* Do we need multiple examples? If so, what
makes a good set of examples? Does the di-
versity of examples help?
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» By restricting retrieval to a restricted subset
of examples based on the source domain, can
we expect better performances, even though
the quality of the best retrieved match is de-
creased?

We notably find that (a) retrieval actually matters
for edit-based and in-context learning; (b) existing
retrieval pipelines can be simplified at inference; (c)
optimizing source coverage and/or instance diver-
sity is helping, especially when the closest match
is poor.

2 Retrieval in NMT architectures

2.1 Retrieval Pipeline

In the information retrieval (IR) framework, given
a query ¢, a set of documents D is filtered and/or
ranked according to a retrieval score. The chal-
lenge is to craft a score s(q,d) that will retrieve
documents d that are relevant for a downstream
task. In MT, ¢ is a source sentence, and D is a trans-
lation memory from which we can extract relevant
(source, target) pairs (d = (x,y)). The retrieval
process can be divided into three steps (Figure 1):

1. Domain selection selects the corpus to re-
trieve examples from, typically based on do-
main/genre similarity;

2. Filtering narrows down the set of relevant
examples based on superficial comparison be-
tween the source query ¢ and each example

d.

* Filtering can use a simple similarity
score to filter TM candidates based on
some minimal threshold: Bulte and Tez-
can (2019) uses Jaccard similarity be-
tween bag-of-word representations; (Xu
et al., 2020; Bouthors et al., 2023) use an
n-gram match similarity;

* Filtering can also be controlled by the
specification of the indexing vocabulary,
which typically excludes frequent words,
thereby shortening the list of similar doc-
uments (see Appendix B.2).

3. Ranking uses a retrieval score such as n-gram
overlap (Xu et al., 2020), BM25 score (Gu
et al., 2018; Cheng et al., 2022), edit distance
(ED) (Bulte and Tezcan, 2019; Xu et al., 2020;
Bouthors et al., 2023), cosine similarity be-
tween ¢ and x’s embeddings (Xu et al., 2020;

Pham et al., 2020; Vilar et al., 2023). Incre-
mental ranking or Weighted Coverage can also
be used to enforce diversity when retrieving
multiple samples (Cheng et al., 2022; Agrawal
et al., 2023; Sia and Duh, 2023a).

In a final selection step, only the top-k most similar
candidates are eventually retained. Depending on
the choice of the filtering parameters, the actual
number of examples retrieved for a given query
may be strictly smaller than k. For some domains,
retrieval may even return an empty list.

2.2 Measuring Retrieval Quality

The effects of a retrieval strategy are only observed
once a translation model is trained and evaluated.
As this is an excessively costly process, we intro-
duce several aspects that define a priori the quality
of retrieved similar examples. For a single exam-
ple d, this includes its semantic relatedness with
q or the lexical overlap with the query; d’s length
also matters, as long examples may include irrel-
evant words that can hurt translation (Xu et al.,
2020), and increase the computational processing
cost. Now, looking at sets of examples, we would
also like them to cover most query words, while
remaining diverse and short on average.

To evaluate these facets, we compute the follow-
ing scores for each set of similar examples:

* Coverage is the proportion of query tokens
covered by the example tokens. It can be
defined in several ways (bag-of-word recall,
modified recall!, n-way alignment score?).

* Relevance is the proportion of contributing to-
kens from the example tokens (with the same
three underlying definitions as coverage). All
other words are deemed lexically irrelevant;
we report an average over examples.

* Length is the average number of tokens of
retrieved examples.

In the next paragraphs, we describe how these quan-
tities are controlled during retrieval.

2.3 Smoothed Longest Common Subsequence

The Levenshtein edit distance (LED) is widely
used as the ranking function in RAMT (see §2.1).

"Each source token can only be covered at most once.
*Based on an alignment graph between examples and query
that forbids swapping, as defined by Bouthors et al. (2023).
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Figure 1: High-level overview of the retrieval pipeline in fuzzy-matching.

It counts the minimum number A(z, q) of word-
level operations (deletion, insertion, replacement)
required to edit x into ¢ and then normalizes:

Az, q)

LED(z,q) =1— — =2
max(|z|, |q|)

ey

Using LED mainly selects examples that are lex-
ically similar to the source. As it penalizes non-
matching parts (in the normalizer), it may discard
long examples containing good matches in a sub-
string. Such examples can still be relevant if they
yield a high coverage of the query.

As an alternative to LED, setting the deletion
cost to zero in (1) computes the Longest Common
Subsequence (LCS) between = and ¢, which max-
imizes the coverage at the expense of relevance.
This also means that there is no penalization for
length, which can lead to long and hard-to-exploit
examples. We propose a smoothed version, namely
0-LCS, with a small non-zero deletion cost §. §-
LCS thus performs a trade-off between coverage,
relevance, and length. Details are in Appendix A.

2.4 Controlling Diversity: Contrastive
Retrieval

As is well known in the IR literature, it is unpro-
ductive to retrieve multiple identical examples. Di-
versity can help increase coverage without hurting
the relevance of individual examples. For RAMT,
a small number of diversity preserving approaches
have been proposed: Cheng et al. (2022) (Leven-
shtein distance), Agrawal et al. (2023) (n-gram
overlap) and Sia and Duh (2023b) (BM25) rely
on an iterative algorithm inspired by the Maximal
Marginal Relevance (MMR) criterion of Goldstein
and Carbonell (1998). In a nutshell, this means that
the ranking scoring function is iteratively updated
to downgrade candidate examples that are either
too similar to already selected examples or that
cover already covered words. In our experiments,
we follow Cheng et al. (2022), and after selecting
| M| matches in M, we penalize the ranking scores

of remaining candidates with the following term:

(6%
— LED(- 2
7 > LED(-, ), )
xeM
where o > 0 controls the strength of the penalty.

2.5 Integrating TMs in Translation

In our comparisons, we consider three NMT ar-
chitectures with variants. The first, called Neural
Fuzzy Augmentation (NFA), implements the au-
toregressive approach of Bulte and Tezcan (2019),
with minor variants. The second, TM-LevT, is edit-
based and mostly follows Xu et al. (2023), as re-
cently extended by Bouthors et al. (2023) to handle
multiple matches. The third is based on in-context
learning (ICL) with large LMs, using the causal
BLOOM LM (BigScience et al., 2022) and the
HuggingFace Transformer library® to run the ex-
periments. We provide full details regarding these
architectures in Appendix C. At a high level, the
most important distinction is between the autore-
gressive generative approaches of NFA and ICL,
which both use an enriched context comprising the
source sentence and additional source and/or target
matches, and TM-LevT, which tries to reuse, via an
editing process, subparts of the retrieved matches.
Another major difference is between ICL, which
inputs the source side of matches for decoding, and
the other two approaches, which do not need it
during generation. This notably impacts the com-
putational cost of encoding the context.

3 Data and Metrics
3.1 Data

We consider two translation directions, from En-
glish to French (en-fr) and from German to En-
glish (de-en), and experiment with multiple do-
mains. This allows us to study a wide range of
settings, with a varying density of matches: our
datasets include ECB, EMEA, Europarl, GNOME,
JRC-Acquis, KDE4, PHP, Ubuntu, OpenSubtitles,

Shttps://github.com/huggingface/transformers.
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and Koran® (statistics in Tables 1 and 2). For en-fr,
these datasets reproduce the setting of (Xu et al.,
2020). > For de-en, we reuse the data prepared by
Koehn and Knowles (2017) with the split of Aha-
roni and Goldberg (2020).° The most favorable
situation is to translate in a narrow domain with
large TMs, ensuring that multiple good matches
can be found (e.g. JRC-Acquis and EMEA). How-
ever, in a narrow domain, the TM can sometimes
be small (e.g., Ubuntu), and this is where other
related domains can also help. On the other end of
this spectrum, Europarl or News-Commentary are
thematically very diverse and good matches much
harder to find.

For each dataset D, we compute a density score
based on the number of connected components
(NCCQ) in a similarity graph I". Two translation
examples are linked in I if their similarity score (1)
is greater than 0.4:

_ 1-NCC(D)

density(D) =1 =D

3)
In high-density domains, it is thus easier to retrieve
relevant translation examples (see Tables 1 and 2).

Note that these data are not ideal. First, for some
domains, the corresponding data may be included
in the very large corpora used to train LLMs. In
our experiments with BLOOM, which is trained on
the ROOTS corpus (Laurencon et al., 2022), this
is the case for JRC-Acquis, Wikipedia, Europarl,
TEDTalks (en-fr).”

Furthermore, the en-fr test sets have been se-
lected based on the existence of at least one close
example in the same domain, using the standard
LED to compute similarities. More precisely, the
1,000 instances in test-0.6 always have at least one
match with similarity greater than 0.6, for test-0.4
the nearest match has a similarity comprised be-
tween 0.4 and 0.6 (details in (Xu et al., 2020)).8

This design allows us to focus on the effect of
retrieval quality (medium vs high-scoring matches)
on translation scores. It however yields absolute
scores that do not compare with what would be
obtained with a fully randomized selection process.
For a more realistic evaluation, we use the de-en

“These data can be downloaded from the OPUS website
(https://www.opus.nlpl.eu) (Tiedemann, 2012).

3Splits from https://github.com/jitao-xu/tm-levt.

SThis is the rest-de test set.

"For these domains, the ICL scores have been disregarded.

8As we use our own reimplementation of edit distances,

we have observed rare cases where these conditions were not
exactly met.

data, which, however, cover fewer domains. In
general, our experiments are more thourough with
en-fr data as this language pair was used to select a
subset of interesting configurations to be then also
tested for de-en.

As a last word of caution, we observe that some
domains are much easier to translate than others:
JRC-Acquis is very repetitive, which yields BLEU
scores in the high 70’s; NewsCommentary, on the
other hand barely achieves BLEU scores higher
than 20. Averaged results should be looked at with
care - only per-domain scores can tell the full story
(Appendix E).

3.2 Metrics

We report BLEU scores (Papineni et al., 2002)
computed by SacreBLEU (Post, 2018),° as well
as COMET-22'0 scores (Rei et al., 2022) using the
official implementation. Additionally, we use the
multi-reference sentence BLEU scores between the
target side of examples, and the translation out-
put'!, averaged over corpora, to evaluate the copy
rate of systems, i.e. their ability to recopy subparts
of the retrieved examples.

3.3 Implementation and Parameters

We use in-house, open-source!? libraries that im-
plement the various retrieval methods explored in
this paper. Details regarding parameter settings are
in Appendix B. For translation architectures, refer
to Appendix C.

In our experiments, we contrast three strategies
for domain selection: in-domain, out-of-domain,
no-selection. Regarding filtering (step 2 in Fig-
ure 1), we compare n-gram matching (NGM),
BM25, and no filter. NGM filters out examples
unless they share a common n-gram ¢ with the
source q of relative length greater than a threshold
T (e.g. % > 7). As for BM25, we only retain the
L best BM25 candidates.

Finally, regarding ranking, we compare various
definitions of the edit distance (ED) (see §2.3) with
BM25.

Computational issues In our experiments below,
we mostly analyze retrieval results. However, note
that each retrieval pipeline yields specific training

9signature: nrefs:1|case:mixed|eff:no|tok:13a|
smooth:exp|version:2.1.0;

%Unbabel/wmt22-comet-da

"Brevity penalty (BP) is removed.

Phttps://github.com/SYSTRAN/fuzzy-match
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domain ECB EME Epp GNO JRC KDE News PHP TED Ubu Wiki all
size 195k 373k 2.0M 55k 503k 180k 151k 16k 159k 9k 803k 4.4M
avglength 292 16.7 26.6 94 288 105 264 145 177 52 196 18.6
density % 87.1 969 493 8596 86.76 84.18 11.60 63.59 53.78 16.89 5525 62.8

Table 1: Number of samples, average length of tokenized sentences, density for training sets (en-fr).

domain it  kor law med sub all

size 223k 18k 467k 248k 500k 1.46M
mean length 9.6 204 280 155 8.1 16.3
density % 532 514 586 695 742 61.4

Table 2: Number of samples, average length of tok-
enized sentences, density for training sets (de-en).

and inference computational costs. Domain selec-
tion always speeds up the subsequent steps, with
a very strong impact when the target domains are
small. Regarding filtering, NGM has an algorith-
mic complexity O(Zlog(nf)) for a single query
using suffix array — with ¢ the average sentence
length and n the TM size — whereas BM25’s com-
plexity is O(n|q|). Finally, regarding ranking, ED
calculation takes (O(nf|q|)), so again, linear w.r.t.
n for one query.

4 [Experiments

4.1 Comparing Retrieval Techniques

We first measure how much a change in the retrieval
technique actually affects the instances that are
eventually retrieved. For this, we compute bag-of-
word coverage, relevance, and length (introduced in
§2.2). We compare a baseline NGM filter using the
LED ranker, as used in Bouthors et al. (2023), with
filter-free pipelines. The corresponding results for
all testsets are in Table 3. LED yields the highest
relevance, while J-LCS and contrastive ranking
yield a higher coverage. Overall, changing the
retrieval technique does impact the set of instances
that are used in training and inference.

4.2 Interactions Between Retrieval and
Translation

In this section, we look at the interactions between
retrieval and translation and systematically vary
the retrieval component for the three architectures
of §2.5. Notably, we compare two filters (NGM
and BM25) during training and also contrast with
a filter-free version in inference. We also vary the
edit costs and the number of retrieved examples.

4.2.1 Architectures Comparison

Neural fuzzy augmentation We observed, in
preliminary results, that NFA is insensitive to the
retrieval setting at training time. We only report
results for a model trained on the baseline setting
NGM+LED (7 = 0.3), then used in inference in a
filter-free setting.

| ranker | test-0.4  test-0.6  test-de |
NGM+LED 1-1 | 55.1 64.3 -
NGM+LED 3-1 | 54.8 63.9 -
NGM+LED 3-2 | 54.8 64.2 -
NGM+LED 3-3 | 54.9/446 64.3/457 41.6
BM25 54.7/446 64.2/456 -
BM25. 54.7/446 64.2/456 -
LED 54.9/447 64.4/457 41.7
6-LCS 54.8/446 64.3/457 419
6-LCS. 54.8/446 64.3/457 41.8

Table 4: Average BLEU (/cOMET (x100)) scores for
en-fr (11 domains) and de-en (5 domains) using
NFA models. k;-k; in NGM+LED denotes a model
trained with k; examples, while inference uses k;;
< denotes contrastive ranking.

Results in Table 4 are very consistent and hardly
vary across domains (see Table 13 in Appendix E)
and language pairs. This is a first important result
that somehow consolidates observations already
performed for this model, which seems to be robust
with respect to variations in the retrieval strategy.

Edit-based techniques Regarding edit-based ap-
proaches, we train Multi-Levenshtein Transformer
(TM3-LevT) on the same dataset, comparing a set of
retrieval settings and both NGM and BM25 filters.
We report the following results in Table 5:

* The setting used in the original TM3-LevT pa-
per: NGM+LED (7 = 0.3) both at training
and inference time.

* The best-performing train and inference set-
ting pairs, as identifiable in Appendix D, for
NGM and BM25 filters separately.

* We evaluate our best overall training pipeline
(BM25+LED) on a filter-free setup with vary-
ing ED costs (using § = 0.1).
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filter NGM (7 = 0.3) - . » - - -
ranker LED LED LED 5-LCS 5-LCS BM25 BM25
Contrast - - a=0.3 - a=0.3 - a=0.3
coverage | 48.1 65.6 38.1 | 582 689 57.0 | 60.8 70.5 63.8 71.9 62.5 | 65.8 73.5 644 | 62.2 70.0 62.3 70.0
relevance | 403 53.5 314 | 44.7 53.5 43.7 | 44.1 53.3 39.8 49.4 40.1 | 36.6 447 36.6 | 424 489 424 489
length 157 152 158 | 164 154 169 | 165 154 248 19.7 269 | 27.0 21.8 29.0 | 20.1 19.0 20.1 19.0

Table 3: Retrieval scores averaged over domains for triplets fest-0.4, test-0.6, test-de. § = 0.1

| filter+ranker | test-0.4  test-0.6  test-de | | ranker k-shot [ test-0.4  test-0.6  test-de |
NGM+LED 43.9/262 56.0/47.8 29.4 LED 1 45.8/305  50.0/30.7 -
best NGM+ED pair | 45.5/328 56.9/49.7 - LED 3 47.8/353  51.5/35.1 333
best BM25+ED pair | 45.7/31.0 57.1/499 - LED. 3 48.3/37.5  52.0/37.3 -
LED (k=1) 44.9/29.0 55.7/466 - 0-LCS 3 48.1/360 51.6/36.3 33.7
LED (k=2) 45.2/29.1  56.7/485 - 6-LCS. 3 48.2/364 51.7/36.8 339
LED 45.6/31.3 57.3/507 33.4 BM25 1 45.8/28.7  49.6/27.1 -
6-LCS 45.9/314 57.4/505 33.9 BM25 3 48.1/350 51.8/34.8 -
6-LCS. 46.0/313 57.2/49.4 33.7 BM25. 3 48.1/348 51.4/352 -

Table 5: Average BLEU (/COMET (x100)) SCOT€S across
all 11 (en-fr) or 5 (de-en) domains using TM3-LevT.

We observe here a stronger impact of retrieval on
the downstream scores, with a large gain over the
baseline (for test-0.4 and en-de). 0.1-LCS slightly
outperforms LED in most conditions and metrics,
with a very small difference between the contrastive
and non-contrastive versions of the ranking.

In-context learning We evaluate BLOOM in k-
shot translation for £ = 1 and 3 with two rankers:
ED and BM25.!3 The retrieval scope is always
“in-domain”. We do not use any filter to ensure
the retrieval of exactly k examples for each test
instance.'* Results in Table 6 show again small
differences between retrieval techniques, with a
positive effect of contrastive ranking policy, which
yields the best results. For this architecture, we
also note that retrieving at least very good match
(e.g. test-0.6) does not necessarily imply very high
BLEU scores, contrarily to NFA and TM-LevT.

4.3 Complementary Analyses

What makes a good set of examples? We use
a linear model and try to predict BLEU scores us-
ing the retrieval metrics (coverage, relevance, and
length) of §2.2 for TM3-LevT and ICL w.r.t. cover-
age, relevance, and length. First, with TM3-LevT,
the linear model has an average squared residuals
of 0.2 BLEU. On the other hand, a constant model,

3We also consider a “random” ranking policy for contrast,
which yields comparatively very poor results that are about
15 BLEU points below the others for k = 3. This confirms
the findings of Moslem et al. (2023, Table 1, p. 235) on the
benefits of TM-based retrieval.

“In some situations however, we could not find 3 candi-
dates with a score greater than 0.

Table 6: Average BLEU/COMET (x 100) scores averaged
accross 7 en-fr domains (test-0.4/6) and 5 de-en
domains (test-de) for ICL (k-shot) for several filter-
free retrieval setups. . denotes contrast; 6 = 0.1.

which supposes that the model-agnostic metrics are
independent of BLEU, has an error of 1.2. Cover-
age, relevance, and length have respective coeffi-
cients of 0.13, 0.09, and 0.03. This highlights the
importance of coverage and relevance measures in
the explanation of BLEU performance. As for ICL,
the constant model has the same average residual
error (0.28 against 0.26), with respective coeffi-
cients of 0.04, 0.03, and 0.00. Thus, ICL seems
more robust to changes in the retrieved examples.

Copying input tokens The copy rate, introduced
in §3.2 measures how much the translation model
exploits slices from the examples to produce its
output. Pipelines with high covering examples sys-
tematically imply a higher copy rate. We find that
copy rate is correlated with higher BLEU scores
for TM3-LevT and ICL; in contrast NFA fails to
produce higher BLEU scores with increasing copy
rate.

Also note that, even though it relies on explicit
edits, TM3-LevT always has a lower copy rate than
NFA or ICL; the latter notably has the highest
copy rate for test-0.6 and also the worst transla-
tion scores, suggesting that too many irrelevant
tokens are kept in the output.

Domain Filtering Relaxing the constraint that
similar examples should be retrieved “in-domain”
increases the retrieval rate. However, it turns out
to be detrimental for all architectures: results are
in Table 8, where we compare in-domain retrieval
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\ | test-0.4  test-0.6  test-de |

| NFA \ |
BM25 47.0 62.1 -
BM25. 46.3 61.3 -
LED 43.4 60.8 38.2
0-LCS 46.7 62.8 41.0
6-LCS, 47.5 63.8 41.3

[ TM*-LevT \ |
NGM+LED 37.4 56.3 30.4
best BM25+ED pair 424 57.8 -
LED 40.7 56.9 37.2
6-LCS 42.8 58.3 39.5
6-LCS, 43.0 58.4 394

[ ICL k-shot \ \
LED 1 40.5 53.5 -
LED 3 51.8 64.7 45.0
LED. 3 53.7 65.9 -
6-LCS 3 54.1 66.1 47.2
6-LCS. 3 54.3 65.2 48.1
BM25 1 53.9 66.1 -
BM25 3 54.1 66.1 -
BM25. 3 54.9 67.0 -

Table 7: Average copy rate of all three models.

with all-domains and out-of-domain retrievals.

‘ domain ‘ NFA T™3-LevT ICL ‘
In 549/644 45.6/573 47.8/51.5
All 52.5/623 43.8/554 45.1/49.0
Out 455/51.2 30.2/33.5 30.7/29.6

Table 8: Average BLEU scores (fest-0.4 / test-0.6, en-
fr) according to the domain selection strategy, using
filter-free LED as ranker.

The impact of the “all-domain” policy is gen-
uine: when this policy is enforced, the most similar
examples are found out-of-domain for 35.1% of
our 22k test samples. The most impacted domains
are Ubuntu (82.8% matches are out-of-domain) and
NewsCommentary (79.7%). The per-domain anal-
ysis (Appendix E) however shows that this is detri-
mental for Ubuntu (-6.1/-6.7 BLEU for test-0.4/test-
0.6), and neutral for NewsCommentary (-0.2/+0.2
BLEU). As expected, enforcing an “out-of-domain”
selection constraint yields dramatic losses in BLEU
(-15.4/-23.8 BLEU).

These results confirm the benefit of retrieving
“in-domain”, even for small domains: not only does
it greatly speed up retrieval, but it also yields better
examples and, ultimately, higher translation scores.

Simplifying the Retrieval Pipeline For large do-
mains, removing the filtering step in the retrieval
pipeline considerably increases the computational
cost, especially during training.'® Yet, it may pre-

'5The complexity is quadratic w.r.t. to the TM size.

maturely discard useful examples, especially when
using contrastive ranking. To evaluate this, we turn
off filtering for test samples during inference. This
simplification of the pipeline improves the scores
for TM3-LevT, while there is no effect for NFA (see
lines for filtering free inference in Tables 4 and 5).
Thus, for the former method at least, a trade-off can
be made between latency and translation scores.

Increasing the number of examples We vary
k, the number of TM examples retrieved, from 1
to 3. Overall, we observe a gain (BLEU/COMET)
when £ increases. For ICL, this is already clear
from the results in Table 6 where 3-shots clearly
outperforms 1-shot. We get a similar conclusion for
TM3-LevT based on the results in Table 5, where we
vary the inference procedure for a model trained
on (BM25+LED). The test retrieval is filter-free
LED with either exactly £ = 1, 2, or 3 retrieved
examples.

As for NFA, a model trained on up to 3 instances
slightly benefits from more examples but does not
compete with a model using only the one-best
match in training and inference. This seems to
contradict Bulte and Tezcan (2019), who claim the
superiority of using more examples.

Optimizing for coverage with §-LCS By de-
sign, -LCS retrieves examples having a higher
coverage of the source than LED, which turns
into higher copy rates for all architectures. For
ICL and TM3-LevT, it yields similar BLEU gain
(ICL: +0.3/+0.1/4+0.4; TM3-LevT: +0.3/+0.1/+0.5
on resp. fest-0.4, test-0.6, test-de). The analysis in
Appendix D shows a consistent benefit of J-LCS
for TM3-LevT when coupled with filters at training
(NGM) and inference time (NGM and BM25).

Enforcing diversity with contrastive ranking
We observe that using a contrastive ranker is mostly
beneficial for medium-scoring similar examples
(test-0.4), regardless of the architecture. It can even
be detrimental when at least one high-matching ex-
ample is found. This is because contrastive ranking
generates less similar examples that are not neces-
sarily relevant. In comparison, for fest-0.4, increas-
ing the diversity in retrieval seems beneficial, as
it increases the coverage of the source. This sug-
gests that contrastive methods should adapt their
strength parameter (« in (2)) to the retrieval scores,
enforcing more diversity when matches are poor.
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5 Related Work

As for other text generation applications (Li et al.,
2022b), efforts to integrate a retrieval component in
NMT have intensified in recent years. One motiva-
tion is to increase the transparency of ML models
by providing users with the retrieved examples that
were used to compute the actual output (Rudin,
2019). For MT, this is achieved by integrating
fuzzy matches retrieved from memory as an addi-
tional context. This can be performed by concate-
nating the retrieved target instance to the source
text, an approach that also accommodates several
TM matches (Bulte and Tezcan, 2019), or by the
simultaneous use of their source and target sides
(Pham et al., 2020; Reheman et al., 2023). More
complex schemes to combine retrieved examples
with the source sentence are in (Gu et al., 2018; Xia
etal., 2019; He et al., 2021b). The recent studies of
Cheng et al. (2022); Agrawal et al. (2023) and Sia
and Duh (2023b) handle several complementary
TM examples retrieved in a contrastive manner
that aims to enhance source coverage. Gupta et al.
(2023) propose a general formulation in the appli-
cation of ICL in various tasks. Cai et al. (2021)
also handle multiple matches and introduce two
novelties: (a) retrieval is performed directly in the
target language and (b) similarity scores are train-
able, which allows to evaluate retrieved instances
based on their usefulness in translation. Most of
these attempts rely on auto-regressive (AR) decod-
ing, meaning that the impact of TM match(es) on
the output is only indirect.

The use of TM memory match with a NAT de-
coder is studied by Niwa et al. (2022); Xu et al.
(2023); Zheng et al. (2023), who adapt LevT for this
specific setting, using one single retrieved instance
to initialize the edit-based decoder; (Bouthors et al.,
2023) extends this technique to process multiple
retrieved examples. Zhang et al. (2018) explore a
different set of techniques to improve translation
using retrieved segments instead of full sentences.
Generalizing nearest neighbor language models
(NNLMs) (He et al., 2021a) to conditional LMs,
Khandelwal et al. (2021) perform k-NNMT as fol-
lows: at each decoding step, the k target contexts
that closest to the current contextualized representa-
tions are retrieved and used to select the next token.
This approach is further elaborated in (Zheng et al.,
2021; Meng et al., 2022) and extended to chunks
by Martins et al. (2022).

A final thread of relevant papers concerns the

use of large language models, which, provided with
suitable prompts and in-context examples, can be
turned into effective translation systems. Such ap-
proaches have been tested with most LL.Ms, with
the goal to illustrate the multi-tasking abilities of
such models. Closer to our work, a series of work
have tried to optimize LL.Ms performance for the
MT task, systematically studying the effect of the
prompt change, of the number of shots, and of
the in-context examples selection procedures (Vilar
et al., 2023; Zhang et al., 2023; Hendy et al., 2023;
Bawden and Yvon, 2023). Moslem et al. (2023)
were the first to combine LLMs with TMs, using
an embedding-based retrieval system and combin-
ing (via concatenation) up to 5 TM-matches in the
MT prompt; (Mu et al., 2023) followed suit, with
a different LLLM and a two-stage retrieval strategy
(first 500 closest matches for a Lucene-based en-
gine; then using up to 9 closest matches for the
edit-distance). (Agrawal et al., 2023) studies a way
to optimally select k& examples so as to maximize
coverage, an approach akin to our "contrastive” sce-
nario — using a BM25 retriever in a first stage, and
a greedy heuristic selection in a second stage. (Sia
and Duh, 2023b) explores another benefit of select-
ing good in-context examples, that of maintaining
consistency in the generated text - for this, they
retrieve examples from a moving context window
of past translations. Finally, M et al. (2023) go one
step further by training a linear regression model
predicting the goodness of TM instances based on
a small set of features.

6 Conclusion

This paper has investigated the effect of varying the
retrieval strategy for three commonly used retrieval-
augmented machine translation architectures, try-
ing to get a better understanding of the interplay
of these two components. While auto-regressive
encoder-decoder architecture seems quite robust
w.r.t. changes in the retrieval strategy, this is less so
for the two other architectures, for which optimiz-
ing the retrieval policy can yield significant returns.
Our experiments have also highlighted the benefits
of coverage-oriented retrieval policies, based on
LCS, especially for the non-autoregressive model.
Finally, we have validated the use of the “in-
domain” selection policy and proposed to simplify
the inference step by eliminating the filtering pro-
cess, yielding better performance at the expense of
an increased latency.
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In our future work, we would like to continue
the exploration of the interplay between retrieval
and translation, with the aim to jointly optimize
these two processes rather than have them designed
independently.

7 Limitations

In this paper, we have focused on purely trans-
ductive techniques, meaning that all inference is
performed with a frozen network - this limitation
certainly needs to be reconsidered, and our results
would be stronger with additional comparisons
with e.g., on-the-fly fine-tuning (Farajian et al.,
2017) or low-rank adaptation techniques (Hu et al.,
2022).

We have chosen to use only one large LLM, with
176b million parameters. This was motivated by
(a) the openness of the model and the transparency
of the training data, which allowed us to control for
test samples occurring also in the training; (b) the
existence of multiple previous experiments with
this model, which allowed us to get a reasonable
idea of its basic translation abilities. More re-
cent, smaller, and arguably better models (e.g., the
LLAMA (Touvron et al., 2023) and Falcon fami-
lies) (Almazrouei et al., 2023) with various levels
of multilingual support (Alves et al., 2024), would
likely yield a more faithful picture of the current
performance of in-context learning with LLMs.

Our discussion has focused on measures of trans-
lation quality; in practical applications, computa-
tional costs associated with a specific combination
of retrieval and architecture also matter. While we
have tried to be explicit about the complexity of
each retrieval algorithm, we have left aside issues
related to identifying the optimal computation/per-
formance tradeoffs.
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