
HAL Id: hal-04670557
https://hal.science/hal-04670557v1

Submitted on 5 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Nonlinear Dynamics of a Rotary Drill-String Immersed
in a 3D Geometry Well

Quang Thinh Tran, Khac-Long Nguyen, Lionel Manin, Marie-Ange
Andrianoely, Sébastien Baguet, Stéphane Menand, Régis Dufour

To cite this version:
Quang Thinh Tran, Khac-Long Nguyen, Lionel Manin, Marie-Ange Andrianoely, Sébastien Baguet, et
al.. Nonlinear Dynamics of a Rotary Drill-String Immersed in a 3D Geometry Well. 10th International
Conference on Rotor Dynamics – IFToMM, Sep 2018, Rio de Janeiro, Brazil. pp.265-279, �10.1007/978-
3-319-99272-3_19�. �hal-04670557�

https://hal.science/hal-04670557v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Nonlinear Dynamics of a Rotary

Drill-String Immersed in a 3D

Geometry Well

Q.-T. Tran1(B), K.-L. Nguyen1, Lionel Manin1, M.-A. Andrianoely1,
Sebastien Baguet1, Stephane Menand2, and Regis Dufour1

1 Univ Lyon, CNRS, INSA-Lyon, LaMCoS UMR5259, 69621 Villeurbanne, France
quang-thinh.tran@insa-lyon.fr

2 DrillScan, Pôle Pixel Bâtiment C2, 26 Rue Émile Decorps,
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Abstract. Oil or geothermic rotary drilling is composed with a very
slenderness drill-string which is subjected in particular to the tool-bit
excitations. Therefore a great number of vibratory phenomena concerned
with the axial, lateral and torsional behavior are exhibited: whirling, bit
bouncing, stick slip to cite just a few. In order to predict the rotordynam-
ics of such a structure, the model proposed is based on Timoshenko beam
elements immersed in a 3D geometry well. A constant rotation speed in
imposed at the top of drill-string. A fluid-structure interaction model
that takes into account the drilling mud is used. The effect of drilling
mud in drill-string vibration is studied by varying the well trajectories.

Keywords: Fluid-structure interaction · Drill-string dynamics

1 Introduction

Rotary drilling requires a very long drill-string made of screwed pipes, which
brings the rotation and the drilling fluid (mud) to the drill-bit. The mud is
injected downward from the pump into the drill-pipes, and then ejected at the
drill-bit by the drill-nozzle. It goes upward to the surface by the drill-string -
wellbore annular space. The mud carries the rock-cutting, lubricates and cools
the drill-string and drill-bit. The presence of the mud inside provides the hydro-
static pressure acting on the drill-string. Consequently, the slenderness structure
which runs in a 60 to 120 rpm range, is subject to various and variable excita-
tions caused mainly by the pulsating flow of the mud, the distributed unbal-
ance masses, the pulsating axial torque and the force of the drill-bit. Therefore
this structure exhibits very intensive unexpected static and dynamic phenom-
ena, which cause mechanical failures and reduce the MTBF: torsional and axial
buckling, axial drill-bit bouncing due to the axial vibration, torsional stick-slip,
lateral vibrations, for- and backward whirls are studied in [4–7]. In these studies,
the effect of drilling fluid is neglected. In order to understand and to control as
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good as possible the dynamics of such a complicated mechanical system, a reli-
able model is being established. It couples the axial, lateral and torsional deflec-
tions, also taking into account the fluid-structure interaction and multi-contacts
between the string and the well. Gravity, 3D-geometric well, soil-hardness, vari-
able viscosity and density of the mud, complicate the deal.

Chen et al. [8], studied the vibration of a rod in Newtonian viscous, incom-
pressible fluid enclosed by a rigid, concentric and cylindrical shell. The reaction
fluid force acting on the rod is interpreted as an added mass and a damping
coefficient. An approximation of added mass coefficient for different types of
drilling fluid based on Chen et al. [8] ’s research is proposed by Shyu [9]. Heisig
[11] provided the analytic formulas to compute the eigen frequencies of drill-
string in horizontal well-bore. As the fluid is considered with a nill viscosity,
the added damping coefficient can not be calculated. The drilling fluid is taken
into account only by the added mass coefficient proposed by Sinyavskii [12].
Axisa and Antunes [13,14] studied the influences of hydrodynamic force acting
on a rotor immerged in dense fluid confined in an annular space. The fluid force
consists of inertia, friction and viscosity effects. The first two effects contribute
to equation of motion of drill-string by: an added mass matrix, a stiffness and
damping matrix proportional to the rotation speed of rotor. A modal damping
matrix is derived from the third effect.

The aforementioned researchs considered the fluid at rest, but in drilling
context, there are fluid flows inside and outside of the drill-string. Therefore
these models are not appropriate to describe the influences of fluid on drill-string
vibration.

Recently, Ritto [2] proposed a fluid - structure interaction model that takes
into account the fluid flows in drilling based on Päıdoussis model [1]. But this
one is dedicated to a vertical well. The model presented hereafter in this paper
focuses on the dynamic behavior of the drill-string taking into account the mud
in a 3D-well. The Finite Element model uses Timoshenko beam elements. The
fluid descending within the hollow drill-strings is assumed non-viscous while the
fluid rising in the annular space is viscous. The effect of the trajectory of the well
is also studied in order to develop a model as general as possible. The results of
dynamic responses of the system show the important influences of the fluid on
the drill-string vibration.

2 Beam Theory

The drill-string is modeled by beam elements with two nodes and six degrees
of freedom (dofs) per node (Fig. 1). The material properties are constant for an
element. The section and inertia characteristics of each element are averaged by
those of two nodes at the extremities. The inertial effect due to rotation of beam
section (Rayleigh) and the shear effect (Timoshenko) are taken in consideration.
The equation of motion of drill-string is obtained by means of two steps. Firstly,
the kinetic energy T , the strain energy U and the virtual work δW of external
forces are calculated. Then, applying Lagrange’s equations leads to the equation
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of motion. In order to clarify the calculation process of energy balance, the
calculations for bending, longitudinal and torsional movements are presented
separately.

2.1 Kinetic Energy of Beam Element

The elementary kinetic energy due to the longitudinal motion is:

T1 =
1

2
ρS

∫ le

0

ẇ2dz (1)

The elementary kinetic energy due to the torsional motion is:

T2 =
1

2
ρIp

∫ le

0

θ̇zdz (2)

The elementary kinetic energy due to bending motion [3] is:

T3 =
1

2
ρS

∫ le

0

(

u̇2 + v̇2
)

dz +
1

2
ρI

∫ le

0

(

θ̇x

2
+ θ̇y

2
)

dz + ρIpΩ

∫ le

0

θ̇xθydz (3)

Where:

– ρ: density (constant)
– S: section (averaged)
– I: second moment of beam section
– Ip: polar moment of beam section
– Ω: rotation speed of drill-string
– θx, θy: bending rotation angles about x-axis, y-axis.
– θz: torsional rotation angle
– le: beam element length

Fig. 1. The 6 dofs per node of the beam element

The first integral of Eq. (3) is the classical expression of kinetic energy of a bend-
ing beam. The second integral is the secondary effect of rotary inertia (Timo-
shenko beam). The last integral represents the gyroscopic effect. When applying
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the Lagrange equations, the first two integrals will provide the mass matrix,
the third will provide the Coriolis matrix. The elementary vector of displace-
ment δe = [u, v, w, θx, θy, θz]

T
is expressed into nodal displacements, see Fig. 1

by using the classical shape functions matrix N such as:

δe = Nδn (4)

Where: δn = [u1, v1, w1, θx1, θy1, θz1, u2, v2, w2, θx2, θy2, θz2]
T
.

2.2 Strain Energy

The elementary strain energy may be decomposed by the energy associated to
the longitudinal U1, torsional U2 and bending U3 motions:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

U1 =
1

2
ES

∫ le

0

(

∂w

∂z

)2

dz,

U2 =
1

2
GIp

∫ le

0

(

∂θz

∂z

)2

dz,

U3 =
1

2
EI
∫ le

0

[

(

∂2u

∂z2
+

∂2v

∂z2

)2
]

dz

(5)

Where G is the shear modulus. The stiffness matrix is built by using Eq. (5).
The shear effect is added into the bending stiffness matrix by the quantity [3]:

a =
12EI

GSrl2e
(6)

where Sr is the reduced area of the cross-section.

Longitudinal - Bending Coupling: An axial force F0 modifies the lateral
stiffness of the beam. A tension stiffens the beam, a compression weakens it and
destroys it for the values of buckling critical loads. This effect is obtained by
taking into account the nonlinear terms of the deformation field which is written
by neglecting the shear effect and estimating that the axial deformations are
small:

ǫzz =
∂w

∂z
− x

∂2u

∂z2
− y

∂2v

∂z2
+

1

2

(

∂u

∂z

)2

+
1

2

(

∂v

∂z

)2

(7)

The first term in (7) is the longitudinal deformation and the remains is the
bending deformation. This one consists of linear (second and third terms) and
non-linear (two lasts terms) deformation. The contribution of the axial force F0

is translated by strain energy:

UF0
=

F0

2

∫ le

0

[

(

∂u

∂z

)2

+

(

∂v

∂z

)2
]

dz (8)
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Torsional - Bending Coupling: An axial torque C reduces the lateral stiffness
of the beam whatever the direction of application [19,20]. This type of effort is
circulatory and therefore non-conservative. Since a strain energy can not be
established, it is necessary to calculate the virtual work of the two projections
of the torque in the two axes related to the beam cross-section:

δW = C

∫ le

0

[

∂v

∂z
δ

(

∂2u

∂z2

)

−
∂u

∂z
δ

(

∂2v

∂z2

)]

dz (9)

3 Fluid - Structure Interactions

The fluid flows inside the drill-string and in the annular space induces the fluid
forces acting on the structure. The characteristics of fluid flow, the properties of
fluid influence the dynamic of drill-string within the well. The fluid - structure
interactions model developed in [2] dedicated to vertical drilling has the following
assumptions: incompressible fluid, non-viscous internal fluid, viscous external
fluid; drill-string rotation not considered; drill-string - well concentric; linear
variation of the hydrostatic pressure along the drill-string; constant velocity of
the fluid. In reality the wellbore trajectory is rarely vertical. In order to reach the
oil reservoir, it is sometimes necessary to drill a well of complex trajectory. In this
work, a model based on [1,2] is developed taking into account the curvature of
wellbore and the rotation speed of drill-string. Figure 2 shows the transformation
from the global coordinate XYZ to the local coordinate xyz of point A on the
center line of wellbore. It is achieved by respectively three rotations ψ around X,
θ around Y1 and φ around Z2. Finally, the rotation matrix from global coordinate
to local coordinate is:

⎛

⎜

⎝

−→

I
−→

J
−→

K

⎞

⎟

⎠
=

⎡

⎣

cos θ cos φ − cos θ sin φ sin θ

sin ψ sin θ cos φ + cos ψ sin φ − sin ψ sin θ sin φ + cos ψ cos φ − sin ψ cos φ

− cos ψ sin θ cos φ + sin ψ sin φ cos ψ sin θ sin φ + sin ψ cos φ cos ψ cos θ

⎤

⎦

⎛

⎜

⎝

−→

i
−→

j
−→

k

⎞

⎟

⎠

(10)

where (
−→
I ,

−→
J ,

−→
K) and (

−→
i ,

−→
j ,

−→
k ) are the unit vectors of the global and local

coordinates, respectively. In the undeformed state, the drill-strings are located in
the center line of the well. The rotation matrix from undeformed configuration
of drill-strings to its deformed state (Fig. 3) is given by:

⎛

⎜

⎝

−→
i
−→
j
−→
k

⎞

⎟

⎠
=

⎡

⎣

1 −θz θy

θz 1 −θx

−θy θx 1

⎤

⎦

⎛

⎜

⎝

−→
i3−→
j3−→
k3

⎞

⎟

⎠
(11)

Where θx, θy, θz are respectively the rotations around x, y1 and z2 axis with the

assumption that these angles are small. (
−→
i3 ,

−→
j3 ,

−→
k3) are the unit vectors of the

deformed state coordinates. During the drilling, the filtered fluid is injected into
the hollow drill-string with the constant axial speed Ui and then goes back into
the annular space drill-string - bore-hole with the speed Uo loaded with rock
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Fig. 2. Transformation from global coordinate to local coordinate

Fig. 3. Transformation from undeformed state to deformed state
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debris, calories. The pressures inside and outside of the drill-string are respec-
tively pi, po and varied linearly along the drill-string. In the undeformed state,
the axis of beam element coincides with the center line of well-bore. The Eq. (12)
shows the forces associated with the drilling fluid acting on the structure. This
equation is obtained by considering the forces balance of a drill-string element
immerged in drilling-fluid. The detail of formulation is not shown in this paper.
The calculation procedure is similar to that presented in [1,10,18].

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Ffx =
(

Mf + χρf Ao

) ∂2u

∂t2
+

(

1

2
Cf ρf DoUo + k

)

∂u

∂t
+

(

2Mf Ui − 2χρf AoUo

) ∂2u

∂t∂z

+
(

Mf U2

i + χρf AoU2
o + Aipi − Aopo

) ∂2u

∂z2
+

(

Ai
∂pi

∂z
− Ao

∂po

∂z

)

∂u

∂z

−Mf g (− cos ψ sin θ cos φ + sinψ sin φ) + Ao
∂po

∂z
(−cosψ sin θ cos φ + sin ψ sin φ)

Ffy =
(

Mf + χρf Ao

) ∂2v

∂t2
+

(

1

2
Cf ρf DoUo + k

)

∂v

∂t
+

(

2Mf Ui − 2χρf AoUo

) ∂2v

∂t∂z

+
(

Mf U2

i + χρf AoU2
o + Aipi − Aopo

) ∂2v

∂z2
+

(

Ai
∂pi

∂z
− Ao

∂po

∂z

)

∂v

∂z

−Mf g (cos ψ sin θ sin φ + sinψ cos φ) + Ao
∂po

∂z
(cosψ sin θ sin φ + sin ψ cos φ)

Ffz = −Ai
∂pi

∂z
+ Mf g cos ψ cos θ −

1

2
Cf ρf DoU2

o − Ao
∂po

∂z
(1 − cos ψ cos θ)

(12)
where Ao is the beam cross-section, Do is the external diameter of the beam,

ρf is the fluid density. Cf , k are viscous damping coefficients of the fluid, χ is
the added mass coefficient of fluid in the annular space.

χ =
D2

ch + D2
o

D2
ch − D2

o

(13)

Dch is the internal diameter of well-bore. The viscous damping coefficient k is
a function of drill-string/well-bore geometry, fluid properties and rotation speed
of drill-string [1]:

k =
2
√

2
√

S

⎡

⎢

⎢

⎢

⎣

1 +
(

Do

Dch

)3

(

1 −
(

Do

Dch

)2
)2

⎤

⎥

⎥

⎥

⎦

ρfAoΩ (14)

S = ΩD2
o/4ν is the Stokes number, Ω is the rotation speed of drill-string.

The discretization of Eq. (12) by using finite elements method and shape
functions in Eq. (4) gives the added mass, damping, stiffness elementary matrix
and vectors of fluid forces associated to drilling fluid:

[Me ]
f

=

∫ 1

0

(Mf + χρfAoUo)
(

NT
u (ξ) Nu (ξ) + NT

v (ξ) Nv (ξ)
)

ledξ (15)
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[Ce ]
f

=
∫ 1

0

((

1

2
CfρfDoUo + k

)

(

NT
u (ξ) Nu (ξ) + NT

v (ξ) Nv (ξ)
)

le

)

dξ

+
∫ 1

0
(2MfUi − 2χρfAoUo)

(

[

∂Nu (ξ)

∂ξ

]T

Nu (ξ) +

[

∂Nv (ξ)

∂ξ

]T

Nv (ξ)

)

dξ

(16)

[Ke ]f =

∫

1

0

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(

Mf U2

i + χρf AoU2
o + Aipi − Aopo

)

(

[

∂2Nu (ξ)

∂ξ2

]T

Nu (ξ) +

[

∂2Nv (ξ)

∂ξ2

]T

Nv (ξ)

)

1

le

+

(

Ai
∂pi

∂z
− Ao

∂po

∂z

)

(

[

∂Nu (ξ)

∂ξ

]T

Nu (ξ) +

[

∂Nv (ξ)

∂ξ

]T

Nv (ξ)

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

dξ

(17)

fx
f =

∫ 1

0

[

−Mfg (− cos ψ sin θ cos φ + sinψ sin φ)

+Ao

∂po

∂z
(− cos ψ sin θ cos φ + sin ψ sin φ)

]

NT
u (ξ) ledξ (18)

f
y
f =

∫ 1

0

[

−Mfg (cos ψ sin θ sin φ + sin ψ cos φ)

+Ao

∂po

∂z
(cos ψ sin θ sin φ + sinψ cos φ)

]

NT
v (ξ) ledξ (19)

fz
f =

∫ 1

0

⎡

⎢

⎣

Mfg cos ψ cos θ − Ai

∂pi

∂z
− 1

2CfρfDoU
2
o

+Ao

∂po

∂z
(1 − cos ψ cos θ)

⎤

⎥

⎦
NT

w (ξ) ledξ (20)

where le is the beam element length, ξ = z/le.

4 Quasi Static and Dynamic Calculations

4.1 Quasi Static Calculation

Before calculating dynamic reponses of the system, the quasi-static position of
the drill-string confined in the well-bore should be calculated. The equilibrium
position is described by Eq. (21):

Kδ = Fs + Fc (δ) (21)

where Fs is the static force vector including gravity force and fluid force, Fc is
the contact force vector. The quasi-static term is used to describe the equilibrium
position in the case where the rotating drill-string is pushed into the well. This
generates in Fc the normal, tangential components and the friction torque. The
expression of normal force is given by [15,16]

Fcn =

{

−
(

Kc (P )P + Cc (P ) Ṗ
)

[u/r, v/r, 0]
T

if P > 0

0 if P ≤ 0
(22)

where P =
√

u2 + v2 − j0, r =
√

u2 + v2, j0 is the clearance between drill-string
and bore-hole. To avoid numerical instability, the contact stiffness and damping
is regularized by the arctan function as in [16] (Fig. 4):
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Kc (P ) =
kc

2

[

2

π
arctan (πλP ) + 1

]

;Cc (P ) =
cc

2

[

2

π
arctan (πλP ) + 1

]

(23)

where kc and cc are maximum values of contact stiffness and damping, λ is the
regularization parameter. The contact force in tangent direction related to the
normal component of contact force by the classical Coulomb law:

Fct = −μ (vg)
(

Kc (P )P + Cc (P ) Ṗ
)

[−v/r, u/r, 0]
T

(24)

where μ (vg) is the friction coefficient which depends on the sliding speed vg of
the drill-string on the walls well-bore and static and dynamic friction coefficients
[15,16]. The friction torque is written as:

Tf = −μ (vg)
(

Kc (P ) P + Cc (P ) Ṗ
)

Re
−→z (25)

where Re is the outer radius of drill-string. The quasi-static position is obtained
by solving Eq. (21) with Newton-Raphson scheme.

Fig. 4. Contact scheme between drill-string and bore-hole

4.2 Dynamic Response Calculation

During the drilling, the interaction between the drill-bit and the formation is
taken into account by an axial force WOB and an axial torque TOB at the bit.
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In this work, their values are considered constant. After assembly by considering
the quasi-static computation, the final discretization equation is written as:

([M ] + [Mf ]) δ̈ +([C ] + [Cf ]) δ̇ +([K ] + [Kf ]) δ = Fs +Fc +W OB +T OB +Fim p

(26)
where [M ], [C] and [K] are classical mass, damping and stiffness matrices.
[Mf ], [Cf ] and [Kf ] are added mass, damping, stiffness matrices related to
fluid. Fimp is the force du to the taking into account the rotation speed of drill-

string. Fimp = − [M ] δ̈imp − [C] δ̇imp − [K] δimp , where: δ̈imp , δ̇imp , δimp

are acceleration, velocity and displacement vectors which contain only imposed
degree of freedom. The solving of Eq. (26) is carried out by using the fouth order
Runge-Kutta scheme with adaptative time step [17].

5 Numerical Application in Time Domain

This section is dedicated to study influences of the fluid on the vibration of the
drill-string for different trajectories of the well. Two test cases are considered:
one for a horizontal well and the other for a well inclined by 30o with respect
to the vertical axis. Consider a hollow beam in-plane of 100 m length, internal
radius Ri and external radius Re. The beam is confined inside a horizontal
well-bore (Fig. 5(a)) and an inclined well-bore (Fig. 5(b)) which are modeled by
the elastic stops. The clearance between drill-string and well-bore is j0. The
FE model consists of 101 nodes, so 606 degrees of freedom (dofs). The beam
is subjected to gravity force and a speed of rotation of 120 rpm is imposed at
the first (uppest) node. The fluid is conveyed inside the pipe-beam with velocity
Ui and then after leaving the end of the beam it is pushed in the opposite
direction with velocity Uo. During the rotation, a constant force of −105N and
a constant torque of −5000Nm are applied to the lowest node (drill-bit). The

Fig. 5. Test cases for dynamic computation: horizontal (a) and inclined (b) wells
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Table 1. Materials properties

E(N/m2) 2.03E11

ρ(kg/m3) 7900

ν 0.3

ρf (kg/m3) 1200

νf (m2/s) 1E-5

Cf 0.0125

Q(m3/s) 1E-2

Table 2. Contact modeling
parameters

Re(m) 8.0E-2

Ri(m) 5.0E-2

j0(m) 1.5E-2

kc(N/m) 1E7

cc(Ns/m) 1E4

λ(m−1) 7E7

µs 0.3

µd 0.2

Vref (m/s) 0.033

beam material and fluid properties are given in Table 1. The geometry of drill-
string and parameters used for modeling of drill-string - well-bore contact are
given in Table 2.

5.1 Quasi-Static Position

Concerning the boundary conditions for the computation of static equilibrium
position, the first node is embedded while the last node is blocked three transla-
tional movements and the rotation around z-axis. Under gravity effect, the beam
is bent. Figure 6 shows the deflection of the beam in the radial direction (a, b)
and in three directions x, y, z (c, d). Since the beam is subjected to the friction
efforts in tangent direction defined in local coordinate system, the two beams
in two test cases are bent out of plane, the displacements along the y axis are
non-zero. As showed in Fig. 6(e, f), the hydrostatic pressures of inclined beam
are more important than those of horizontal beam. This means that the fluid
forces acting on the inclined beam, deforms slightly the beam along its axial
direction (Fig. 6(d)).

5.2 Nonlinear Dynamic Response in the Time Domain

The dynamic response of the structure is computed from the equilibrium posi-
tion. Figure 7 shows the comparison of radial displacements at node 91 where
there are some interesting phenomena, with and without fluid-structure interac-
tion, for the horizontal and inclined drill-strings. After the quasi-static compu-
tation, most of the drill-string is in contact with well-bore in both two test cases.
The presence of the fluid greatly reduces the radial displacement especially in
the case of the horizontal drill-string. For the inclined beam, the lateral vibra-
tion is smaller than that of the horizontal beam. The latter can be explained
by the fact that the effect of gravity is reduced when the drill-string is inclined.
The friction between the beam and the well-bore is therefore less important.
This is the reason why the effect of the fluid in the case of the inclined beam is
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Fig. 6. Quasi-static position for the horizontal drill-string (a, c, e) and for the inclined
drill-string (b, d, f): (a, b) radial displacement, (c, d) displacements in the x, y, z
directions, (e, f) internal and annular hydrostatic pressures.

not very important like in the case of the horizontal beam. Figure 8 shows the
orbits of contact points at node 91 in horizontal Fig. 8(a) and inclined Fig. 8(b)
drill-strings. During the rotation, friction excites the vibration of the beam. It
rolls on well-bore. If the beam rotates without fluid, amplitude of rolling angle
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Fig. 7. Drill-string dynamic responses at node 91 with and without fluid: (a) horizontal
drill-string, (b) inclined drill-string

Fig. 8. Orbit of contact point at node 91 with and without fluid: (a) horizontal drill-
string, (b) inclined drill-string

is bigger than with fluid. In particular, in the case of horizontal drill-string, the
contact point at node 91 can make a full rotation around the well-bore. When
the drill-string rotates in the well with fluid, the rolling angle of the beam is
decreased significantly. Figure 9 shows the contact forces at node 91 with and
without fluid for horizontal Fig. 9(a) and inclined Fig. 9(b) drill-string. For the
horizontal beam, we can see that if there is not fluid in the well, the node 91
sometimes loses the contact. It lifts off, comes back and hit the well-bore. So the
contact force increases sharply. The presence of fluid provides the fluid forces
that keep the drill-string always in contact with well-bore. The value of contact
force is therefore decreased significantly. In the case of inclined drill-string, this
one is always in contact with well-bore even if there is not fluid in the well. But
the fluid reduces also the amplitude of contact force.
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Fig. 9. Contact force at node 91 with and without fluid: (a) horizontal drill-string, (b)
inclined drill-string

6 Conclusions

A fluid - structure interaction model taking into account the inner and annular
fluid flow and the curvature of well-bore is developed in this work. A 3D beam
with constant speed of rotation imposed at the top is considered. The non-linear
dynamic responses due to the contact between drill-string and well-bore are
obtained by using fouth order Runge-Kutta method with adaptative time step.
Influences of fluid - structure interaction model on the vibration of drill-string are
tested for two different well-bore trajectories. The results showed that the fluid
has an important influence on the lateral vibrations of drill-string. It reduces
the lateral displacement, the rolling angle of drill-string and therefore decreases
the contact force. However, the actual fluid - structure interaction model takes
into account only the concentric drill-string - well-bore. In reality major part of
drill-string lays on the well-bore at equilibrium position. In the future work, the
more general fluid model including the excentric drill-string - well-bore should
be implemented.
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