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Abstract 9 
Significance: Accurate identification of epidermal cells on reflectance confocal microscopy (RCM) images is important in the 10 
study of epidermal architecture and topology of both healthy and diseased skin. However, analysis of these images is currently 11 
done manually, and therefore time-consuming, subject to human error and inter-expert interpretation. It is also hindered by low 12 
image quality due to noise and heterogeneity.  13 
Aim: To design an automated pipeline for the analysis of the epidermal structure from reflectance confocal microscopy images. 14 
Approach: Two attempts have been made at automatically localizing epidermal cells, called keratinocytes, on RCM images, the 15 
first based on a rotationally symmetric error function mask, and the second on cell morphological features. Here we propose a 16 
dual-task network to automatically identify keratinocytes on RCM images. Each task consists of a cycle Generative Adversarial 17 
Network (cycle-GAN). The first task aims to translate real RCM images into binary images thus learning the noise and texture 18 
model of RCM images, whereas the second task maps Gabor-filtered RCM images into binary images, learning the epidermal 19 
structure visible on RCM images. The combination of the two tasks allows one task to constrict the solution space of the other thus 20 
improving overall results. We refine our cell identification by applying the pre-trained StarDist algorithm to detect star-convex 21 
shapes, thus closing any incomplete membranes and separating neighboring cells.  22 
Results: The results are evaluated both on simulated data and on manually annotated real RCM data. Accuracy is measured using 23 
recall and precision metrics, which as summarized as the F1-score. 24 
Conclusions: We demonstrate that the proposed fully unsupervised method successfully identifies keratinocytes on RCM images 25 
of the epidermis, with an accuracy on par with experts’ cell identification and is not constrained by limited annotated available 26 
data and can be extended to images acquired using various imaging techniques with no-retraining. 27 
Keywords: cycle-GAN, identification, keratinocytes, multi-task, reflectance confocal microscopy, segmentation. 28 

1 Introduction 29 

Reflectance confocal microscopy (RCM) is a non-invasive in vivo imaging technique that allows for 30 

visualization of epidermal cells, called keratinocytes, at cellular level in the epidermis and upper layers of 31 

the dermis (150 - 200 µm in depth, depending on body site 1). It provides information on the geometry and 32 

topology of the skin, which are key elements in skin barrier and health, thus helping in the study of infant 33 

and children skin maturation, adult skin ageing, and photo-ageing due to UV exposure. RCM can also be 34 

used to assess skin inflammatory diseases, e.g., psoriasis, allergic contact dermatitis, and skin cancer 3, 35 

providing information faster than traditional biopsies, and potentially reducing the number of unneeded 36 

biopsies, by guiding them to delimit lesion borders and helping in disease diagnosis and monitoring. 37 

Although automated methods have been developed to identify some lesions on RCM images 4–8, most of 38 



 

 

the analysis is performed manually which is time consuming, and subject to inter and intra-expert 39 

interpretation9. Hence the need for an automated method for keratinocytes identification on RCM images, 40 

which would allow for a more reproducible, unbiased, and precise analysis. Unfortunately, image quality, 41 

heterogeneity, and low signal-to-noise ratio are a hurdle to automated methods development. Attempts at 42 

automating keratinocytes identification on RCM images have been made, and were based on the 43 

identification of cell morphological features, e.g., membrane size 10,11, but are hindered by manual 44 

parametrization often different between datasets, image types, and epidermal layers. Deep learning methods 45 

could be an alternative solution to circumvent these problems.  46 

Accurate automated cell identification on biomedical images with deep learning has been a growing 47 

research topic in computer vision but is hindered by the lack of labelled data on account of cost, time, and 48 

domain-specific skills. Unsupervised learning bypasses the labeled data scarcity problem by tapping into 49 

unlabeled data potential. One of the main developments in unsupervised learning research of the recent years 50 

are Cycle Generative Adversarial Networks (cycle-GAN) 12 for unpaired image-to-image translation, and are 51 

classically used for synthetic images generation and data augmentation 13–16.  52 

We propose a top-down, structure aware, multi-task cycle-GANs architecture which we have named 53 

DermoGAN to automatically detect keratinocytes on RCM images. The multi-task model performs two 54 

parallel cycle-GANs, to denoise RCM images while highlighting membranes positions, and provides an 55 

incomplete cell identification, which is then refined and completed by a post-processing based on star-convex 56 

shape detection. The proposed architecture is fully unsupervised and thus not limited by training annotations, 57 

often the first limitation to the use of deep learning methods in the analysis of biomedical images. To our 58 

knowledge, this is the first use of cycle-GANs in a multi-task framework. Additionally, while generally used 59 

for synthetic images generation and data-augmentation, here we employ the cycle-GAN algorithm as an 60 

image-denoiser and cell-identifier. Indeed, we change our perspective on the cell identification problem, and 61 

move the data augmentation approach consisting in learning the noise model in RCM images in order to 62 

create synthetic images, which will then be used to augment our dataset to be used in other models, to a new 63 



 

 

approach consisting in learning the image denoising model. This change in perspective makes use of the 64 

cycle-consistency property of cycle-GANs.  65 

We compare the proposed method to seven other approaches, a supervised method based on a U-net 66 

architecture17, a pre-trained StarDist18 applied to Gabor-filtered images, two unsupervised approaches based 67 

on a cycle-GAN with different inputs, a tailored-pipeline based on the detection of membrane morphological 68 

features9, the CellPose19 algorithm for cellular segmentation, and finally DermoGAN followed by 69 

postprocessing using CellPose. 70 

We demonstrate that the presented DermoGAN architecture performs on par with expert manual 71 

identification of cells and outperforms the seven other tested automated methods in accuracy and execution 72 

computational time. We also explore the use of DermoGAN, with no retraining, to images acquired using 73 

other image acquisition techniques, and the possibility of training it on datasets made entirely of synthetic 74 

images. 75 

2 Methods 76 

2.1 Identifying keratinocytes on RCM images with DermoGAN 77 

The goal of the proposed DermoGAN model, shown in Fig. 2, is to estimate a mapping 𝐺!"# from an RCM 78 

image domain (A) towards a binary domain (B). The mapping is learned using two connected complementary 79 

tasks. The first one learns RCM images noise and texture model (the likelihood of the image) from two sets 80 

of unpaired images: a set of RCM images and a set of (synthetic) binary images (obtained by simulating a 81 

prior model). The second task maps Gabor-filtered RCM images (domain C), i.e., where membranes have 82 

been highlighted, into (synthetic) binary images, to learn the global geometrical structure of the epidermal 83 

tissue. The combination of the two tasks makes the overall model structure-aware, allowing us to denoise 84 

RCM images while keeping the position and integrity of the membrane.  85 

The proposed architecture is fully unsupervised, thus circumventing the obstacle of limited labelled data. 86 

Additionally, as it does not rely on training with a manually generated ground truth, as opposed to supervised 87 



 

 

approaches like U-net, its accuracy cannot be impacted by incorrectly labelled data, i.e., missing cells in the 88 

ground truth or wrong detections. 89 

Each task is a cycle-GAN network, made of two generators, denoted 𝐺!"# and 𝐺#"! in the first task and 𝐺$"# 90 

and 𝐺#"$  in the second task, and two discriminators, denoted 𝐷#! and 𝐷! in the first task and	𝐷$  and	𝐷#" in 91 

the second task, making a total of 8 networks in the model.  92 

2.1.1 Generator and Discriminator architecture 93 

The generator and discriminator networks form pairs (𝐺!"#/𝐷#!and 𝐺#"!/𝐷!, 𝐺$"#/𝐷#" and 𝐺#"$/𝐷$). A 94 

generator takes a 256x256 image as input, down-samples it to extract high-level features and reduce spatial 95 

resolution, applies a succession of residual (ResNet) blocks to these features, and then up-samples them to 96 

increase the spatial resolution back up and generate the output, as described in Fig. S1. Each generator aims 97 

to create realistic target images taking a source image as input. The generators are constrained by an identity 98 

loss 20, to ensure that the generator does not modify a target domain image if used as an input encouraging it 99 

to be an identity mapping, i.e., 𝐺!"#(𝐵) 	≈ 	𝐵. The two generators in the network should be cycle consistent 100 

to ensure that the data is preserved during the translation process and the latter is reversible, i.e., 101 

𝐺!"#(𝐺#"!(𝐵)) 	≈ 	𝐵	21.  102 

The weights in all generators were initiated from a Xavier (or Glorot) normal distribution 22 such that the 103 

variation of the activations are the same across all layers in order to reduce the risk of the gradient exploding 104 

or vanishing and is a random number with a normal probability distribution in the range ±+ %
&#'	&$

, where 𝑛) 105 

= 862 is the number of input images (both real RCM images and Gabor-filtered ones), and 𝑛* = 400 is the 106 

number of output images (synthetic binary images). The weights of the generators were then updated by 107 

minimizing 3 loss functions (see Fig. 2).  108 



 

 

In the case of 𝐺!"#,these losses are: (1) Adversarial loss calculated with a mean squared error (MSE) between 109 

the generator and its associated discriminator, here 𝐷#!, such that for a pixel at coordinates [i, j] of the 110 

generated image 𝐺𝑒𝑛#, it is defined as, 111 

𝑀𝑆𝐸(𝐷#!(𝐺𝑒𝑛#), 1) = 	
1
𝑛+
6(𝐷#!(𝐺𝑒𝑛#)(𝑖, 𝑗) − 1)

"
&%

),-

	 (1) 112 

where 𝑛+ is the size of the tensor outputted by the discriminator. 113 

(2) Identity loss with a mean absolute error (MAE) between the input image 𝐼# from domain B and the 114 

theoretical identity mapping 𝐼𝑑.& = 	𝐺!"#(𝐼#) ≈ 𝐼#, defined for image 𝐼# at pixel [i, j],  115 

𝑀𝐴𝐸(𝐼𝑑.& , 𝐼#) = 	
1
𝑛)
6=𝐼𝑑.&(𝑖, 𝑗) −	𝐼#(𝑖, 𝑗)=
&#

),-

	 (2) 116 

(3) (Forwards or backwards) Cycle consistency loss with a MAE between an input image 𝐼# from domain B 117 

and the corresponding reconstructed image 𝑅𝑒𝑐.& = 	𝐺!"#(𝐺#"!(𝐼#)), defined at pixel of coordinates [i, j] 118 

as, 119 

𝑀𝐴𝐸(𝑅𝑒𝑐.& , 𝐼#) = 	
1
𝑛)
6=𝑅𝑒𝑐.&(𝑖, 𝑗) −	𝐼#(𝑖, 𝑗)=
&#

),-

	 (3) 120 

This loss function participates 10 times more to the update of the generator weights compared to the 121 

adversarial MSE loss. 122 

The generators were trained with the ADAM optimizer with an initial learning rate of 0.002, and a decay rate 123 

of the gradient exponential moving average of 1.  124 

The discriminators take an image as input and output the classification results (real vs. fake) in a tensor. Each 125 

discriminator aims to distinguish between real and generated target images, thus working against its matching 126 

adversary generator, which aims to create indiscriminable generated target images. These two networks are 127 

connected through the adversarial loss in (1) 21, and the discriminator loss function is defined as, 128 

1
2𝑀𝑆𝐸

(𝐷#!(𝐺𝑒𝑛#), 1) +	
1
2𝑀𝑆𝐸

(𝐷#!(𝐼#), 0)	 (4) 129 



 

 

	 130 

Training each generator/discriminator pair simultaneously allows the cycle-GAN to learn the bidirectional 131 

image-to-image translation between two unpaired domains.  132 

2.1.2 Multi-task approach 133 

RCM images are noisy and heterogeneous due to tissue-induced scattering 23, and are non-specific to 134 

organelles and macro-structures. This makes the identification of keratinocytes on RCM image a challenging 135 

task, whether done manually or automatically. In this case, cell identification requires two simultaneous tasks 136 

to capture the breath of information in confocal images: noise removal and membrane identification. Multi-137 

task learning allows for concurrent execution of these two related tasks, improving overall performance by 138 

leveraging complementary information and sharing representations 24. This reasoning mimics expert’s 139 

approach to manual cell identification on RCM images, i.e., focusing on bright tube-like membranes while 140 

ignoring the bright blob-like noise. 141 

Noise removal was performed using a first cycle-GAN network, learning the translation between RCM 142 

images and binary images obtained by simulating the structure of keratinocytes9 (a described in section 3.3.1). 143 

Whereas membrane identification was performed by learning the mapping between binary images and Gabor-144 

filtered RCM images, i.e., where membranes were highlighted.  145 

The multi-task model is optimized through soft-sharing of parameters 25, as the two tasks do not share any 146 

hidden layer, but are connected through their loss function, as shown in Fig. 2. Indeed, at each update of the 147 

loss function, those associated with the generators creating the binary images, i.e., 𝐺!"# and 𝐺$"#, are updated 148 

through their regular optimization, and then the maximum value of the two trios of losses is set as the loss 149 

function for both generators, in order to synchronize training across the two tasks of noise removal and 150 

membrane identification.  151 



 

 

2.2 Refining the results with star-convex polygons 152 

The proposed method is a top-down approach to cell detection. The DermoGAN roughly localizes individual 153 

cell locations, but post-processing is required, as shown in Fig. 3 and Fig. 4. Indeed, applying the obtained 154 

mapping 𝐺!"# to a locally normalized RCM image results in an incomplete binary image. To guarantee that 155 

the outside contour of tissue where the keratinocytes are detected is closed, we compute the alpha shape 26 of 156 

the incomplete binary mask at a set level of refinement, such that the tissue comprises only one volume per 157 

external contour and is not broken down into smaller shapes, and that the alpha-shape contour matches the 158 

actual tissue area. Small holes in the membrane are then closed using a connected components analysis 27. 159 

We assume that all cells are star-convex shapes. However non-star-convex polygons can result from the false 160 

merging of two or more cells due to the lack of contrast on the membranes. To split these shapes, we use the 161 

pre-trained convolutional neural network StarDist 18 to detect star-convex polygons within the contours 162 

detected by the DermoGAN model, consequently refining our results, countering any missed cells and 163 

reducing the number of false negatives, as shown in Fig. 3. 164 

3 Experiments & Results 165 

3.1 Dataset 166 

RCM images were captured using a Vivascope 1500 (Lucid, Inc., Rochester, New York) reflectance confocal 167 

microscope, on the volar forearm of 60 children (3 months – 10 years) and 20 adult women (25 – 40 years), 168 

and on the volar forearm and cheek of 80 other adult women (40 – 80 years). All participants have Fitzpatrick 169 

types between I and III, were in good health and with no history of skin disease. The study was initiated 170 

following approval from an independent institutional review board and in accordance with the Declaration 171 

of Helsinki (studies 19.0198 and 20.0022). Subjects or their guardian gave written informed consent prior to 172 

study initiation.  173 

The image size was 1000x1000 pixels, corresponding to 500x500µm², with a resolution of 1µm² per pixel. 174 

A region of interest (ROI) mask was generated for and applied to all images used across all six tested methods. 175 



 

 

The ROI was identified by distinguishing the tissue from the dark background, due to the skin micro-relief 176 

lines, using a morphological-geodesic-active-contour, and removing non-informative areas in the tissue, due 177 

to low contrast and a drop in signal-to-noise ratio, through a texture classification with a support vector 178 

machine on four features of the grey level co-occurrence matrix (homogeneity, contrast, dissimilarity, and 179 

energy9). 180 

Images used in DermoGAN, U-net, and both approaches using a cycle-GAN, were of size 256x256pixels 181 

and obtained by splitting the full image into 9 non-overlapping square patches of 256x256 pixels. The full 182 

image analysis pipeline network used full RCM images 11. 183 

DermoGAN and both Cycle-GAN models were trained using the same 862 RCM images of size 256*256 184 

pixels, and 400 synthetic images. The number of synthetic images used in the training of the models was 185 

determined empirically. Indeed, we noticed that adding more images did not improve performance but 186 

increased computational time. Using 400 images was the right balance between performance and 187 

computational time and power. The RCM images represent both volar forearm and cheek, and include 188 

participants ages 0 to 80 years. 189 

Image classification in one of the four epidermal layers was obtained using a hybrid deep learning algorithm 190 

28, allowing to focus only on images of the stratum granulosum (SG) and stratum spinosum (SS), where 191 

keratinocytes are visible and identifiable on RCM images, and arranged in a honeycomb pattern 29 inside of 192 

islands surrounded by dark grooves representing micro-relief lines 9,30. 193 

Ground truth used for the evaluation of all the tested approaches was generated by a single expert manually 194 

pointing out cell centers on 9 RCM images of 7 subjects (children and adult women), ages 5 months to 35 195 

years old. The use of ground truth generated by a sole expert in the evaluation of our results is a limitation of 196 

our work but is justified by the previously documented inter-expert variation in keratinocytes identification9.  197 

Generated binary synthetic images. Binary (synthetic) images, of size 256x256 pixels, were created by 198 

generating a random tissue mask using random Bezier curves. Within these shapes, seeds, mimicking cell 199 

centers, were used to initiate a Voronoi tessellation, which have been previously used to represent both skin 200 



 

 

cells31 and other types of cells32–34. These synthetic binary images are user-controlled, and the associated 201 

ground truth is given by the seed locations. The seeds are generated with a ‘hard-core’ process simulation 202 

controlled by the density parameter (see Fig. 1).  203 

Synthetic RCM images were generated by adding different levels of noise and brightness heterogeneity to 204 

the binary images, as shown in Fig. 1, and detailed in 9. 205 

 206 
Fig. 1 Synthetic images used in the training of the models. (A) A synthetic binary image used in 207 

the DermoGAN training. (B and C) RCM images of different noise levels and cell sizes used in U-208 

net training. (D) Real RCM image. RCM, Reflectance confocal microscopy. 209 

 210 

3.2 DermoGAN implementation details 211 

The used model was trained for 5172 epochs on 46.9 CPU cores and 85.4 GiB of RAM. Training took 212 

approximately 4 days. All deep learning models were implemented using PyTorch.  213 

Intermediate models were saved every 400 epochs, and the model with best performance, i.e., accuracy 214 

metrics (precision and recall summarized into the F1-score), was chosen. 215 

3.3 Comparison to other automated methods 216 

The proposed method is compared to 7 other approaches: (1) a deep learning approach based on the U-net 217 

architecture 17, (2) a StarDist algorithm applied to Gabor-filtered RCM images, (3) a cycle-GAN trained to 218 

translate RCM images into binary images, (4) a second cycle-GAN trained to turn Gabor-filtered RCM 219 

images into binary images, (5) a full image analysis pipeline based on traditional image analysis 220 



 
 

 

methods9,11,35, (6) CellPose algorithm for cellular segmentation, and (7) DermoGAN followed by 221 

postprocessing with CellPose. 222 

The proposed combination of cycle-GAN models into a multi-task approach improves results by mimicking 223 

manual expertise, disregarding noise to focus on membrane location and tissue structure. 224 

U-net. A U-net architecture, pre-trained on the 2012 ImageNet Large Scale Visual Recognition Challenge 225 

dataset 36 with an efficientnetb3 backbone 37, was further trained on 43 real RCM images of size 256*256 (4 226 

participants, 20 – 35 years) and 203 synthetic RCM images and tested on 13 real RCM images and 68 227 

synthetic RCM images. The corresponding ground truths were obtained by the same expert and do not include 228 

the 9 images used in the model evaluation. The network used a combination of two loss functions: Dice loss 229 

38 and Focal loss 39 to account for class imbalance between cell membranes and background. The model is 230 

trained with the ADAM optimizer with an initial learning rate of 0.0001, a batch size of 64, and a sigmoid 231 

activation function. The model was trained for 500 epochs on 46.9 CPU cores and 85.4 GiB of RAM. Training 232 

took approximately three days. The selected U-net model was obtained following multiple iterations, as 233 

described in 9,40. 234 

StarDist applied to Gabor-filtered images. A Gabor-filter was applied to ROI-masked RCM images to 235 

highlight membrane positions. The result was normalized with a histogram equalization and binarized with 236 

a Gaussian adaptive thresholding. A pre-trained StarDist was then applied to the binary masked-Gabor-237 

filtered RCM image.  238 

Cycle-GAN based models. Two cycle-GAN models were trained on 862 RCM images and 400 binary images, 239 

each one representing a task in the DermoGAN architecture, to evaluate each model independently, and later 240 

emphasize the importance of combining the two tasks into one architecture. The first one aimed to translate 241 

RCM images into binary images, whereas the second sought to convert Gabor-filtered RCM images into 242 

binary images. Both tested cycle-GANs models were refined using star-convex shapes detection as performed 243 

in the DermoGAN architecture. Training was performed for 12068 epochs on 46.9 CPU cores and 85.4 GiB 244 

of RAM and took two days.  245 



 
 

 

Full Image Analysis Pipeline (FIAP). A 3-step pipeline for keratinocytes detection 9,11,35 based on membrane 246 

detection using image filters was applied to full RCM images of size 1000x1000 pixels. First, the region of 247 

interest containing the epidermal cells is identified. Texture filters (Gabor and Sato filters) are then applied 248 

to the image to accentuate tube like structures (membranes) within the region of interest and identify 249 

individual cells within it. The detected contours are then post-processed using prior biological knowledge41 250 

on expected cell size to remove contours that are too small (𝑐𝑒𝑙𝑙	𝑎𝑟𝑒𝑎 < 100	𝑝𝑖𝑥𝑒𝑙𝑠	for contours detected 251 

on RCM images of the SG and 𝑐𝑒𝑙𝑙	𝑎𝑟𝑒𝑎 < 50	𝑝𝑖𝑥𝑒𝑙𝑠	for contours detected on RCM images of the SS). The 252 

texture filters were reapplied locally on detected regions presumed to be too big to be considered as a single 253 

cell and divide them into multiple cells if needed. The FIAP is applicable to images of the SG and SS and 254 

requires a different set of parameters for each layer which were determined manually. Computational time is 255 

7-10 minutes per image depending on image complexity and required post-processing steps. 256 

CellPose. The pretrained CellPose model was applied, without retraining, to the full RCM images of size 257 

1000x1000 pixels where the ROI had already been identified. CellPose is a generalist single-class instance 258 

segmentation algorithm optimized for cellular segmentation across different microscopy modalities. The 259 

model was run with the following parameters: ROI diameter = 50 for SG images, ROI diameter = 50 for SS 260 

images, and flow threshold = 0.4, cell probability threshold = 0.2, and stitch threshold = 0.  261 

DermoGAN followed by CellPose. We replaced the previously described postprocessing step with StarDist 262 

by the TissueNet cell model available in CellPose. The model was run with the following parameters: ROI 263 

diameter = 50 for SG images, ROI diameter = 50 for SS images, and flow threshold = 0.4, cell probability 264 

threshold = 0.2, and stitch threshold = 0.  265 

All eight tested methods were evaluated against the same RCM images. While the two cycle-GAN based 266 

approaches and DermoGAN were trained on the same images, U-net was not. Indeed, U-net is a supervised 267 

learning approach and ground truth was not available for all images used in the training of the other tested 268 

methods. This may limit the comparability of the approaches to each other, but also highlights the importance 269 

of unsupervised learning methods which are not limited by the available labelled data. 270 



 
 

 

3.4 Keratinocytes identification results 271 

The proposed DermoGAN architecture was evaluated using nine full RCM images, each divided into nine 272 

patches. Accuracy (precision and recall summarized into the F1-score) was calculated using d-accuracy 42 273 

against a manually obtained ground truth and compared to results obtained with the eight described methods, 274 

as shown in Fig. 4 and Table 1. 275 

The poor performance of the pre-trained U-net model augmented with real and synthetic RCM images with 276 

Focal and Dice loss functions is in part due to the limited training set. Being a supervised approach, it may 277 

also suffer from missing cells in the ground truth used for training, due to inter and intra-expert variability 278 

and subjectivity in manual keratinocytes identification on RCM image9, and from membranes in the ground 279 

truth images created by Voronoi tessellation initiated from manually determined cell centers, not matching 280 

the actual membrane position in RCM images.  281 

The pre-trained StarDist applied to Gabor-filtered images also performs poorly. Indeed, although the Gabor 282 

filter highlights most membranes, it may also highlight noise, due for example to organelles, leading to false 283 

positives and low precision. Although the StarDist post-processing greatly improves results by segmenting 284 

(correctly or not) the detected contours into star-convex shapes, it does not manage to correct for all missing 285 

cells, leading to false negatives and consequently low recall, and overall low F1-score.  286 

Both cycle-GAN-based approach have low F1-scores as they fail to detect complete membranes, as shown 287 

in Fig. 3. Indeed, the cycle-GAN model trained on RCM images and binary images, struggles to distinguish 288 

between noise and microstructures making up the membranes. On the other hand, the cycle-GAN trained on 289 

Gabor-filtered images with binary images is corrupted by the spatial correlation of noise and fails to detect 290 

any structure present in the image, as seen in Fig. 3, which also hints at the reason behind the DermoGAN 291 

greater performance. Indeed, it seems that adding up the two independent cycle-GAN outputs, would close 292 

most holes in the detected membranes by focusing on membrane detection and omitting any noise visible in 293 

them.  294 



 
 

 

The pretrained CellPose applied to the full RCM images without retraining has a low F1-score, and better 295 

performance for SG images compared to SS images, as shown in Table S1. Overall precision is higher than 296 

recall, showing that this method is more conservative in detecting positive instances.  297 

Overall, the last test method using the TissueNet cell model from CellPose as a postprocessing step to the 298 

proposed DermoGAN model performs well against both SG and SS images. This method has a good F1-299 

score but tends to have higher precision than recall. It is still outperformed by the selected method 300 

(DermoGAN followed by StarDist-based postprocessing) which has a better trade-off between recall and 301 

precision, and therefore is better suited for keratinocytes identification on RCM images.  302 



 
 

 

 303 
Fig. 2 DermoGAN architecture. The first task maps RCM images to the unpaired synthetic binary images. Whereas the second 304 

task learns the structure RCM images of the epidermis by translating Gabor filtered RCM images into binary images. . 305 



 
 

 

 306 
Fig. 3 Comparison of the two cycle-GAN based approaches and the proposed DermoGAN. DermoGAN 307 

outperforms both methods. 308 

Both DermoGAN and FIAP outperform the other models, as shown in Tables 1, S1, and S2, 309 

and show a great trade-off between precision and recall. DermoGAN has a higher F1-score than 310 

FIAP for 6/9 images. The first seems to favor recall and is less likely to miss existing cells and 311 

produce false negatives, whereas the second seems to favor precision, and is less likely to invent 312 

cells and create false positive detections. 313 

The DermoGAN architecture does not require manual parametrization nor a different set of 314 

parameters per epidermal layer, contrarily to the FIAP. This argues in favor of the DermoGAN 315 

network since multiple epidermal layers are often present in one RCM image. Once trained, its 316 

execution time is faster. It is based on the discovery of potentially unknown patterns in the 317 

image, making it less explainable than the FIAP. The latter is built on membrane detection using 318 

tubeness filters, with all its parameters being determined using general prior knowledge on the 319 

morphological features of the studied tissue. It is well documented that keratinocytes area 320 

increases with age and differs from one body site to another, and thus general parameters 321 

determined on a specific dataset may not be appropriate for all images. This point favors the 322 



 
 

 

DermoGAN architecture as more adaptable to different datasets and potentially to different 323 

image acquisition techniques and/or observed tissue. 324 

 325 

Table 1 Comparison of median f1-score (computed with d-accuracy42) for all eight tested approaches. 326 
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 328 
Fig. 4 RCM image analyzed with the 8 presented algorithms. DermoGAN outperforms 5 out of 6 other methods 329 

on all images, and outperforms FIAP on 6/9 images. 330 

 331 

4 Discussion 332 

Although the presented method was trained using RCM images for the detection of 333 

keratinocytes, we hypothesized that it can be extended without retraining to images generated 334 

by other instruments. Indeed, multi-task learning methods tend to perform well on domain 335 

adaptation and generalization and are therefore less data dependent. On the other hand, such 336 

adaptability can lower pixel-level segmentation, and therefore is more suited when the accuracy 337 

is calculated at object level and not at pixel level. In the following paragraphs, we aim to explore 338 

the potential applications of DermoGAN to images acquired using different imaging modalities. 339 

Accuracy metrics will not be presented, as this is a preliminary step to future research.  340 

To explore the possibility of applying DermoGAN to other images without retraining, we 341 

applied the presented model trained on RCM images to fluorescence microscopy images and 342 

compared the obtained results to 18 thresholding methods and to the pretrained CellPose cyto 343 

model, as shown in Fig. 5. We observed that, although trained on different images of a different 344 

tissue, DermoGAN managed to identify membranes while omitting the noisy background, and 345 

outperformed traditional thresholding methods. It had similar performance to the pretrained 346 



 
 

 

CellPose model which has better performance at image borders but misses a cell. It is important 347 

to note, that the fluorescence microscopy image does show a similar tissue organization, i.e., 348 

cohesive tissue with cells sharing membranes, to RCM images of the epidermis. However, 349 

when tested on cell culture images where cells were not always confluent, we noticed a loss in 350 

accuracy when using DermoGAN for cell identification. We therefore trained a second model 351 

using a different prior for simulating binary images and a different filter to enhance contours, 352 

that will be referred to for simplicity as DermoGAN2, on images where cells were not 353 

confluent. 354 



 
 

 

 355 
Fig. 5 DermoGAN can be extended to images acquired different imaging techniques using retraining and 356 

outperforms traditional thresholding algorithms. (A) Input florescence microscopy images. (B) Output of 357 

DermoGAN applied to image A. (C) Output of CellPose cyto model. (D) Application of 18 thresholding 358 

approaches to the same image.  359 

4.1 Retraining the model with only synthetic images 360 

DermoGAN2 was trained entirely on synthetic images. This served as a test of the 361 

generalization of the method when the available dataset is even more limited and serves to prove 362 

than the combination of the two tasks in the proposed model can capture general information 363 



 
 

 

and therefore can be extended to different images and tissues with similar organization, 364 

architecture, or texture, even when the images of interest were not included in the training set. 365 

The first task in DermoGAN2 maps synthetic non-confluent images created using the SIMCEP 366 

software for the simulation of fluorescence microscope images of cell populations 43 (Fig. 6A) 367 

to binary non-confluent images (Fig. 6C). The binary images were obtained by simulating a 368 

marked point process embedding a constraint on overlap between objects defined by disks44. 369 

While the second task, aims to learn the translation of Canny-filtered synthetic non-confluent 370 

images (Fig. 6B) towards the same binary non-confluent images. 371 

 372 
Fig. 6 DermoGAN2 was trained entirely on synthetic images. (A) Synthetic non-confluent images created using 373 

the SIMCEP. (B) Canny-filtered non-confluent images created using the SIMCEP. (C) Binary non-confluent 374 

images. 375 

The resulting DermoGAN2 was then applied to images of cell cultures, and on mass 376 

spectroscopy images. 377 

4.1.1 DermoGAN2 on cell culture images 378 

We applied DermoGAN2 on an image of BV-2 microglial cells derived from C57/BL6 murine 379 

from the LIVECell dataset 45 as seen in Fig. 7. We obtained an accurate segmentation of the 380 

cells on the image. To avoid border effects in the image, a 10px frame was applied to the image. 381 

We compare DermoGAN output to the pretrained CellPose cyto model (diameter = 10, flow 382 



 
 

 

threshold = 0.4, cell probability threshold = 0, and stitch threshold = 0). We observe a drop in 383 

performance for both methods.  384 

 385 
Fig. 7 DermoGAN2 applied to an image of confluent BV-2 cells (on the left), resulted in accurate detection of 386 

cells with both DermoGAN (in the middle) and CellPose (on the right). Manually determined cell centers were 387 

plotted on DermoGAN2 output in yellow, and in red on the CellPose output. 388 

We also applied DermoGAN2 to an image of the SK-BR-3 human breast cancer cell line, where 389 

cells display morphological heterogeneity (Fig. 8A). Good cell detection was observed (Fig. 390 

8B) on most cells when contrast is high enough. This proves that DermoGAN2 can be extended 391 

to different cell shapes and is not limited to the detection of the circular cells it was trained on, 392 

and that it is not restricted by the aspect of the cells. Indeed, the synthetic images used for 393 

training the model where more similar to fluorescence images, with high luminosity, which is 394 

not the case of the tested cell culture images. Similar results can be observed when applying the 395 

pretrained CellPose live-cell model (diameter = 10, flow threshold = 0.4, cell probability 396 

threshold = 0, and stitch threshold = 0) (Fig. 8D), which seems to visually outperform 397 

DermoGAN in this case. 398 

 399 



 
 

 

 400 
Fig. 8 DermoGAN2 applied to an image of SK-BR-3 cells (A) resulted in accurate detection with both 401 

DermoGAN (B) of cells and CellPose (C), compared to thresholding methods (D). 402 

4.1.2 DermoGAN2 on mass spectroscopy images 403 

Similar observations were made on mass spectroscopy images, where DermoGAN2 managed 404 

to detect hazy cell contours, with a tendency to merge close cells into one detected region, as 405 



 
 

 

shown in Fig. 9. This can be solved by post-processing using StarDist as done on RCM images. 406 

When applying the pretrained CellPose cyto model to the same mass spectroscopy image, we 407 

observe a drop in detection in areas suffering from a drop in contrast, which is not the case for 408 

DermoGAN, but borders are sharper when using CellPose compared to DermoGAN. 409 

 410 
Fig. 9 DermoGAN2 applied to a mass spectroscopy image (on the left) resulted in accurate cell detection with 411 

both DermoGAN (in the middle) with merging of adjacent cells, and CellPose (on the right). 412 

The success of DermoGAN in segmenting cohesive tissues, and that of DermoGAN2 in 413 

detecting non-confluent cells, highlights the importance of the binary denoised images domain 414 

(domain B in DermoGAN). This domain serves as a prior domain incorporating anterior 415 

knowledge in the model by describing the structure of the studied tissue. In DermoGAN, the 416 

prior is represented as a tissue island containing adjacent cells of similar size, while in 417 

DermoGAN2, this prior is represented by circular non-confluent cells. This prior domain 418 

summarizes our degree of certainty concerning the studied tissue and steers the training of the 419 

model towards the right solution. Therefore, to obtain the best results, the appearance of the 420 

tissue should guide the choice of the appropriate DermoGAN model based on the corresponding 421 

prior domain.  422 

In all the iterations of DermoGAN so far, training was performed using cell membranes 423 

positions. It would be of interest to see if the performance of the models could be improved by 424 

replacing the images representing cell membranes in the training by images representing the 425 



 
 

 

entire cell (cell membrane and inside of the cell), therefore having two classes in the data, cell 426 

vs. background instead of cell membrane vs. background as currently done.  427 

5 Conclusion 428 

This paper has presented a novel multitask cycle-GANs architecture for the identification of 429 

keratinocytes on RCM images and was compared to seven other methods. Supervised deep 430 

learning approaches obtained poor scores due to the lack of annotated data, even when using 431 

transfer learning. Unsupervised learning, such as cycle-GAN, failed to capture information at 432 

different scales simultaneously. Therefore, the FIAP approach outperformed these attempts. 433 

However, the proposed DermoGAN which combines two cycle-GANs to embed both local and 434 

global structure information, outperformed the classical FIAP, in terms of accuracy and 435 

execution time.  436 

We showed that the proposed fully unsupervised architecture be used with or without retraining 437 

on other types of imaging and tissue types, bypassing the problem of required annotated data 438 

and potential label noise/missing labels provided the creation of simulated data, and that it is 439 

not limited by the training set but rather determined by the prior data domain, i.e., tissue 440 

organization and architecture in the training set. It would be of interest to generate new prior 441 

domains using marked point processes to generate more specific priors, which would help 442 

extend the use of DermoGAN to images with multiple cell types, or when the spatial 443 

dependence between different structures is important.  444 
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 571 
Caption List 572 
 573 
Fig. 2 Synthetic images used in the training of the models. (A) A synthetic binary image used 574 

in the DermoGAN training. (B and C) RCM images of different noise levels and cell sizes used 575 

in U-net training. (D) Real RCM image. RCM, Reflectance confocal microscopy. 576 

Fig. 2 DermoGAN architecture. The first task maps RCM images to the unpaired synthetic 577 

binary images. Whereas the second task learns the structure RCM images of the epidermis by 578 

translating Gabor filtered RCM images into binary images. . 579 

Fig. 3 Comparison of the two cycle-GAN based approaches and the proposed DermoGAN. 580 

DermoGAN outperforms both methods. 581 

Fig. 4 RCM image analyzed with the 8 presented algorithms. DermoGAN outperforms 5 out of 582 

6 other methods on all images, and outperforms FIAP on 6/9 images. 583 



 
 

 

Fig. 5 DermoGAN can be extended to images acquired different imaging techniques using 584 

retraining and outperforms traditional thresholding algorithms. (A) Input florescence 585 

microscopy images. (B) Output of DermoGAN applied to image A. (C) Output of CellPose 586 

cyto model. (D) Application of 18 thresholding approaches to the same image.  587 

Fig. 6 DermoGAN2 was trained entirely on synthetic images. (A) Synthetic non-confluent 588 

images created using the SIMCEP. (B) Canny-filtered non-confluent images created using the 589 

SIMCEP. (C) Binary non-confluent images. 590 

Fig. 7 DermoGAN2 applied to an image of confluent BV-2 cells (on the left), resulted in 591 

accurate detection of cells with both DermoGAN (in the middle) and CellPose (on the right). 592 

Manually determined cell centers were plotted on DermoGAN2 output in yellow, and in red on 593 

the CellPose output. 594 

Fig. 8 DermoGAN2 applied to an image of SK-BR-3 cells (A) resulted in accurate detection 595 

with both DermoGAN (B) of cells and CellPose (C), compared to thresholding methods (D). 596 

Fig. 9 DermoGAN2 applied to a mass spectroscopy image (on the left) resulted in accurate cell 597 

detection with both DermoGAN (in the middle) with merging of adjacent cells, and CellPose 598 

(on the right). 599 

Table 1 Comparison of median f1-score (computed with d-accuracy42) for all eight tested 600 

approaches. 601 

Fig. S1 Structure of the generator and discriminator networks used in the cycle-GAN and 602 

DermoGAN approaches. 603 

Fig. S2 To obtain keratinocytes positions. We apply the 𝐺!"#:	𝐴 → 𝐵 network to locally 604 

normalized RCM image and obtain an incomplete cell identification, which is then cleaned 605 

by closing any holes in the detected membrane and the outside contour, and finally the cell 606 

identification is refined using StarDist algorithm. RCM, reflectance confocal microscopy. 607 

Table S1 Comparison of all accuracy metrics for all eight tested approaches (in %). 608 



 
 

 

Table S2 Comparison of median accuracy metrics for all eight tested approaches (in %). 609 
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Fig. S1 Structure of the generator and discriminator networks used in the cycle-GAN and DermoGAN 

approaches. 

 

 

Fig. S2 To obtain keratinocytes positions. We apply the 𝐺!"#:	𝐴 → 𝐵 network to locally normalized RCM image 

and obtain an incomplete cell identification, which is then cleaned by closing any holes in the detected 

membrane and the outside contour, and finally the cell identification is refined using StarDist algorithm. RCM, 

reflectance confocal microscopy. 
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3 SG 45.3 64.3 53.2 14.4 72.0 24.0 29.9 68.4 41.6 22.2 28.0 24.8 71.3 81.8 76.2 45.3 27.3 34.1 56.0 70.5 62.4 53.2 84.8 65.4 

3 SG 42.4 70.7 53.0 14.7 78.7 24.7 19.7 58.7 29.5 16.8 31.8 22.0 71.6 90.7 80.0 52.3 60.0 55.9 62.0 81.7 70.5 63.9 92.0 75.4 

3 SG 60.5 55.3 57.8 23.0 62.8 33.7 30.1 43.6 35.7 34.4 27.3 30.4 78.9 56.3 65.7 56.1 25.4 35.0 71.7 45.8 55.9 65.8 75.8 70.4 

3 SG 50.5 86.6 63.8 14.8 79.5 25.0 21.0 70.9 32.4 18.8 26.1 21.8 64.1 87.4 74.0 51.5 78.7 62.3 58.8 82.3 68.6 57.4 86.6 69.0 

 



Table S2 Comparison of median accuracy metrics for all eight tested approaches (in %). 
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StarDist based 
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Median 44.8 55.3 47.9 27.7 65.5 38.9 30.1 58.7 41.6 30.6 31.8 30.4 63.9 79.6 65.1 35.8 27.3 35.0 65.3 61.5 62.4 64.9 82.0 69.0 
SD 8.9 21.6 12.2 15.1 13.4 12.1 10.5 11.3 6.4 15.2 5.8 8.4 11.3 12.1 7.4 12.2 23.5 16.5 8.8 17.7 8.7 8.4 13.3 4.2 

SS
 Median 40.8 24.6 30.7 50.3 47.5 47.3 45.9 46.8 45.5 50.4 33.9 41.8 48.9 79.6 61.0 25.2 12.5 16.5 75.9 40.3 50.6 72.5 60.7 66.1 

SD 6.7 3.0 4.2 7.7 4.7 5.2 3.7 4.6 1.5 7.4 7.1 4.3 2.9 6.9 0.6 3.8 1.6 2.1 8.9 13.0 11.9 4.8 11.4 4.6 

SG
 Median 45.1 60.5 53.1 18.9 74.1 29.3 26.5 66.2 35.0 20.5 29.9 23.8 67.7 79.4 69.9 48.4 43.4 37.7 61.8 75.4 65.5 60.6 85.0 69.7 

SD 10.4 13.0 8.7 11.5 7.0 12.3 5.3 10.1 5.2 7.4 5.6 5.5 7.9 14.2 7.2 9.8 20.5 12.1 5.5 14.6 6.3 5.8 5.4 3.9 
 

 


