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Abstract: 
What does learning mean for a living, thinking being? What are the mechanisms involved in 
mastering a new ability or transforming an existing one? For just over a century, the sciences 
that study intelligent behavior have proposed precise definitions and models of learning, 
favoring a behaviorist and internalist approach to learning, initially seen as an associative 
process, then as a process of acquisition, and finally as a process of self-organization. Is the 
enactive approach, and more generally the 4E approaches to cognition (embodied, embedded, 
enactive, extended), likely to change the definition of learning in the same way that these 
approaches are changing definitions in relation to cognition more generally? We first take a 
long look at the different ways in which learning has been understood over the last hundred or 
so years. We examine to what extent these successive new interpretations were useful, and we 
discuss their limitations. Then, in a second, shorter section, we attempt to lay the groundwork 
for an enactive definition of learning, which is conspicuously absent from the work of the 
pioneers.  
 
Key Words: learning, enaction, association, connection, feedback, modeling 
 
Résumé : 
Que signifie apprendre pour un être vivant et pensant ? Quels sont les mécanismes favorables 
à la maîtrise d’une nouvelle capacité ou à la transformation d’une capacité existante ? Depuis 
un peu plus d’un siècle, les sciences qui étudient les comportements intelligents ont proposé 
des définitions et modélisations précises de l’apprentissage, privilégiant une approche 
comportementaliste et internaliste du mécanisme, initialement conçu comme un processus 
associatif, puis d’acquisition et enfin d’auto-organisation. L’approche énactive, et plus 
généralement les approches de la cognition 4E (embodied, embedded, enactive, extended ; en 
français, encorporée, située, énactive, étendue), sont-elles susceptibles de faire évoluer la 
définition de l’apprentissage comme elles le font plus globalement pour la cognition ? Nous 
proposons dans un premier temps de revenir longuement sur les principales conceptions de 
l’apprentissage pour en identifier les conquêtes successives et les limites. Au-delà de ces bilans, 
et dans un second temps plus court, nous tentons de formuler les premiers éléments d’une 
définition énactive de l’apprentissage dont il faut indiquer qu’elle fait explicitement défaut dans 
les travaux des pionniers. 
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I. Introduction 

In this article we focus on the question of learning, showing how different theoretical 
approaches have gradually revealed the ways in which learning can take place. Here, we define 
learning as a mechanism, or set of mechanisms, by which a living organism increases its power 
through acquiring mastery of a new relationship with the world or with itself1. A study of how 
behaviors emerge, and how they are transformed, will sometimes approach learning from a 
systems perspective, seeing learning as a network of nodes and links, and the history of this 
type of what we might call “learning science” is broadly the history of how ideas have changed 
as to how this network is constituted. 
There is, however, a different way of approaching learning. In the place of a direct focus on 
learning as a mechanism, the focus may be indirect, examining instead the functions, effects, 
forms, and conditions of learning. An exhaustive review of the literature shows that, apart from 
a few original theoretical proposals and some computational modeling work, definitions of 
learning as a mechanism are rare and sometimes circular. Importantly, while it is indisputable 
that the notion of learning (or rather, of adaptation) permeates all of Varela and Maturana’s 
work on enaction and autopoiesis, a careful re-examination of their work has convinced us that 
this notion, as employed by Varela and Maturana, lacks a clear, enactive definition. 
A change has occurred in the approach to learning from a systems perspective. In the scientific 
traditions of associationism, cognitivism and connectionism, the network of nodes and links 
referred to above was traditionally internal, i.e., containing components limited to the agent 
and its brain, seen as a machine capable of producing representations from information about 
the environment. Recently, however, as a result of significant conceptual developments, 
learning systemics or dynamics have been considered as having a specific organization, subject 
to disturbances from elements coupled to and transcending the learning entity itself. 
Approaches based on the theory of non-linear dynamic systems, on the ecological approach, on 
cultural anthropology, on situated and distributed cognition, and on enaction all include 
physical and human environments, culture and technology in the determination of learning. The 
contribution that these approaches have made to the field of genetic constructivism2, and in 
particular to approaches based on enaction, has enabled a clearer understanding of the 
mechanism of learning and its place in cognitive genesis. We consider learning to be a specific 
relational mode, with phylogenetic differences that point to difficulties (or even impossibilities) 
encountered by certain species in relation to learning. These difficulties reflect, on the one hand, 
limits in the extent to which organisms may be deformed or transformed, and, on the other, 
their relationship to the environment. The issue of the difficulty of learning becomes 

 
1 For the human species, the conquest of this power almost systematically mobilizes tools, instruments, devices 
and mediations. In other words, learning is technically augmented, which amplifies and constrains both the 
possibilities for relating to the world and to oneself, and the ways in which the flow of consciousness can be filled. 
2 On this point, we refer to Visetti (2004, pp. 231-233), who describes two forms of constructivism in particular: 
assembly constructivism and genetic constructivism. Visetti’s paper includes the following lines: "Here, every 
construction is understood as the growth, differentiation and complexification of a potential that is already 
organized from the outset, without, however, immanently determining the process that begins: it is not the property 
of a plan or a program, but first and foremost that of a dynamically organized support, at once closed and open, in 
a specific mode that is the creator of history. Local and global, structure and process, are mutually and dynamically 
determined. The individuality of the construction, like that of its parts, is never taken for granted. Rather, we 
describe reorganizations, or the unfolding of an organization sketched out from the outset, rather than the 
appearance of organizations from nothing. Organization always seems a primitive term: to be is to be organized, 
to pre-exist is to be pre-organized, etc." 
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particularly acute as regards perception and action, once we move beyond so-called sensitive 
periods (Knudsen, 2004). This suggests that where learning mobilizes a singular mode of 
coupling, it is probably not independent from more elementary modes of relationship specific 
to living organizations – such as autopoiesis – emerging earlier within the vital process. 
 

II. Learning as passive bonding: associative learning 

To our knowledge, the work of physiologist Ivan Pavlov (1927) was the first scientific 
investigation of learning. His work inspired the entire associationist and behaviorist traditions. 
Pavlov considered that events in the world (e.g., signals sent to sensors) have their 
correspondents in the nervous system, and that learning consists in the creation of associative 
links between neurological entities. The first of the five explicit definitions of learning that we 
have identified in the literature may thus be stated as follows: 
 
Learning definition #1: Learning consists in the creation of associative links between events 
within the nervous system that correspond to events in the world. 
 
Pavlov further posited that the formation of these links occurs passively and is induced by the 
temporally contiguous repetition of at least two events. In concrete terms, Pavlov used a 
particular learning method, now known as Pavlovian or classical conditioning. This is a method, 
first used in dogs, whose aim is to take an already constituted relationship between what is 
termed an unconditional stimulus (US), e.g., food, and an unconditional response (UR), 
salivation in the case of Pavlov's dogs, and to replace it with a relationship between a 
conditioned stimulus (CS), e.g., sound or light, and a conditioned response (CR): the salivation 
in Pavlov’s dogs becomes a CR after when it is a response triggered by the CS. Initially, the CS 
is a neutral stimulus (NS) not eliciting an UR, and subsequently the UR is elicited after repeated 
exposure to NS-US pairs. NS becomes CS, and UR becomes CR. 
To explain the fact that UR and CR are identical, Pavlov hypothesized that an associative link 
is established between CS and US, which is reinforced through repetition. The strength of the 
link between CS and US is the measure of the strength of learning, and a great deal of research 
has been done into the factors determining this strength. As well as repetition and contiguity, 
two additional important factors have been identified, namely the salience of the CS and the 
power of the reinforcement. However, as we shall see later, other factors such as attention 
(Kamin, 1969; Mackintosh, 1975; Pearce & Hall, 1980; Panayi, Khamassi et al., 2021), can 
affect learning just as significantly in the same conditioning situation. 
In the conditioning setup used by Pavlov, a metronome delivers a sound (NS) that the dog can 
hear, and a cannula inserted into the dog’s cheek measures the amount of saliva produced (UR). 
The experimenter can also apply meat powder (US) to the dog’s tongue. The procedure 
generally consists of the presentation of NS (which, at least initially, gives rise to an orientation 
response that has to be different from UR), followed by the presentation of US, which 
necessarily produces UR. Gradually (as Pavlov incidentally observed), the NS becomes CS. In 
other words, the delivery of CS produces UR, which we then term CR. Stabilization of learning 
occurs when the presentation of CS alone is able to produce CR. The sound of the metronome 
produces an increase in saliva production. This equivalence between UR and CR was a decisive 
element in the theorization of the situation. How could the fact that CS and US produce the 
same response (substitution hypothesis) be explained without the existence of a CS-US link? 
All the experiments carried out with this protocol show that the effects are predictable and 
generalizable to all the species tested including humans (Balleine and O'Doherty, 2010). The 
shape of the learning curves is sufficiently invariable to have led scientists to imagine that they 
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were indeed holding the key to learning. However, the validity of these experiments requires 
the conditioning sequence NS - US - UR be rigorously observed. In addition (and this indicates 
that controlling this type of situation, despite its apparent simplicity, can be a very delicate 
matter) the CS is often composite: that is to say, while the sound of the metronome can induce 
salivation, events temporally associated with the sound can also do so. This can be 
demonstrated by combining two neutral stimuli – let us call them A and B – and presenting 
them together as a CS. After conditioning, either of the two triggers in isolation is shown to 
trigger CR, but to a lesser extent, as if the strength of the CS-US link were shared between A 
and B (Dickinson and Balleine, 2002). Finally, as numerous studies have shown, even on 
apparently elementary responses such as the palpebral response, there are systematic 
differences between individuals. 
The inclusion in the initial model of three complementary phenomena has helped to delineate 
the mechanism assumed to be at play in the situation, i.e., the formation of a link between CS 
and US. These three phenomena, outlined below, are extinction, generalization, and 
discrimination. Other phenomena that have enabled researchers to specify some of the 
mechanisms needed by computational models to account for Pavlovian conditioning are 
blocking, conditioned inhibition, and conditioned suppression. 
 
Phenomenon 1: Extinction 
Extinction is a gradual disappearance of CR when reinforcement (US) is no longer present. The 
interesting point about extinction is that it does not correspond to a disappearance of the 
binding, but rather to an inhibition of it. This has been confirmed by two elements, as follows. 
First, the first presentation of US, after a period of interruption, immediately gives rise to a 
response (re-learning is not necessary) with less latency than in the initial conditioning phase. 
Modern neuroscience has identified similar phenomena at the cellular level when inhibition is 
lifted. Second, when the period of reinforcement interruption is prolonged, a form of inhibition-
forgetting can be observed: CS again elicits CR. Another noticeable feature is that some 
conditioning protocols where reinforcement is not delivered systematically create resistance to 
extinction. At this level, the question is whether it is the strength of the associative relationship 
that is greater, or the limited inhibition. What is more, while CR may disappear, it may occur 
for stimuli other than CS. 
 
Phenomenon 2: Generalization 
Composite stimuli have been mentioned above, but more interestingly as regards a possible 
modeling of the mechanism, it has been shown that CRs can be induced by CSs that were not 
initially present and that have a dimensional proximity (in terms, for example, of intensity or 
frequency) with the initial CS (Ghirlanda and Enquist, 2003). These induced CRs are generally 
attenuated in intensity, and the greater the distance from the initial stimulus, the greater the 
attenuation. Just as remarkably, it is possible to induce CRs with signals possessing the same 
characteristics as the initial CS but differing in the modality used (visual, auditory, or tactile). 
This is a very important point, and is likely to fuel new hypotheses in regard to the intrinsic 
intermodality of perceptual and, more broadly, cognitive activities. 
 
Phenomenon 3: Discrimination 
As well as having relevance to the study of generalization and categorization abilities, the 
classical learning setup is also relevant to the study of discrimination. It is possible to establish 
conditioning with two distinct CSs eliciting the same CR (and by implication, with the same 
US for reinforcement) and to show that producing extinction for one of the CSs (by removing 
the US) does not produce extinction for the other. This simple but remarkable finding indicates 
that the animal is able to discriminate between two CSs. From here, as in the case of 
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generalization, it becomes possible to implement psychophysical-type protocols to identify 
differential thresholds for a whole range of signal dimensions. 
 

III. Computational models of associative learning 

The learning model that Pavlov developed was directly inspired by the neurobiological work 
going on around him. Having observed the phenomenon of neuronal growth, Pavlov suggested 
a spawning model to explain the formation of associative links. At the time, this type of proposal 
was generally considered hypothetical, but contemporary neuroscientific research has largely 
proved him right (which, of course, is not to say that the question of learning has been settled). 
Certain functional rules have been established. These include Hebb's Law, which states that if 
two interconnected neurons are co-active, the connecting force of the synapse that links them 
must be potentiated (Hebb, 1949). The neurobiological mechanisms underlying Hebb’s Law 
have in recent years been partially elucidated (Langille and Brown, 2018; Martens, Celikel and 
Tiesinga, 2015). Hebb’s Law is a functional rule underlining the significance of the temporal 
contiguity of associated events, and as such lies at the heart of formal connectionist models and 
the mechanisms of neurogenesis that are to be found, for example, in the visual system. Hull's 
model (1943), although inspired by Pavlov's work and models, is a formal model mobilizing 
variables that cannot be directly verified experimentally. It is only deductions made from the 
model that may be verified empirically. 
Hull advocated the use of intermediate variables, which he used extensively in his models. 
Intermediate variables allow for internal processes that are not directly observable, and which 
depend on associations. They are comparable to the latent variables that physicists have used 
to model unobservable phenomena. Models of this kind have been used to account for 
conditioning by including a latent variable as a hidden cause behind observations that may be 
CSs and USs (Courville et al., 2006; Gershman and Niv, 2012). From a computational point of 
view, this notion of latent variable has a wider scope than Pavlovian conditioning alone. It also 
resonates directly with the notion of latent learning espoused by Tolman, which we will explore 
further below: this is the idea that even in the absence of reward, an animal may learn from the 
relationships and properties of its environment. The learning may not at first be visible in the 
animal's behavior, hence the idea that it is latent or hidden, although we need to be able to 
account for the mechanisms underlying it. The relationships and properties learned by the 
animal (see our discussion below relating to cognitive maps) can be used by it to adapt its 
behavior more quickly in the presence of reward (see for example, Dollé et al., 2018). 
 
Phenomenon 4: Blocking 
A fourth phenomenon, blocking, sheds light on one of the key mechanisms in computational 
models of Pavlovian conditioning, namely prediction error. In blocking experiments the animal 
has already learned that a stimulus A (e.g., a sound) is followed by a food reward. A has 
therefore become a CS associated with a US. A second stimulus B (e.g., a light) is now 
presented simultaneously with A, followed by the US. This is repeated for a set of trials, 
followed by a test phase in which the animal is exposed to stimulus B only. It is found that B 
does not trigger salivation in the animal, suggesting that its conditioning has been blocked by 
the presence of an already reward-predicting stimulus A (Dickinson et al., 1976). In a variant 
of this experiment, A is only partially conditioned: the animal's training in the A-US association 
is interrupted after a limited number of trials. We then move on to phase 2, where A and B are 
presented simultaneously, followed by US. Here, it can be observed that B has indeed become 
a conditioned stimulus: its presentation alone triggers a salivation response from the animal, 
albeit a weaker one. 
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If a reinforcer is already fully predicted by the animal in virtue of a CS, then its appearance 
after the AB presentation is not surprising, and therefore does not trigger new conditioning: B 
is blocked. But when a certain level of surprise persists, conditioning can occur. This goes 
beyond Pavlov's original model, and below we will show precisely how it may be 
operationalized in computational models. 
 
Phenomenon 5: Conditioned inhibition 
Pavlov (1927) himself examined the limits of his initial model in certain situations, including 
conditioned inhibition. Conditioned inhibition is where an initial conditioning is established, 
and where a composite CS (the initial CS combined with a new CS) is then presented. This 
composite CS, which elicits a CR, will generally be subject to extinction if it is not followed by 
a US. However, if the initial CS is presented again, CR reappears. This suggests that the link 
between CS and CR initially established is not the object of inhibition as such, and that if 
extinction is due to inhibition, then this comes from the new CS. 
 
Phenomenon 6: Conditioned suppression 
Conditioned suppression is another example of conditioning that is difficult to interpret within 
the initial framework, showing that the CS-US link alone is not sufficient to account for 
learning. Here, the initial conditioning is of the Skinnerian or instrumental type (see below), 
i.e., the animal learns to press a pedal to obtain positive reinforcement (food). Once the response 
rate has stabilized, the experimenter presents a new CS (e.g., a sound) for a minute or more, 
followed by a negative reinforcement (e.g., an electric shock). When this couple is repeated, 
the animal avoids pressing the pedal, i.e., the CR disappears. The numbers of responses 
produced respectively with and without negative US over a given duration are compared, and 
a suppression ratio calculated which, if it tends towards 0, indicates that conditioning has been 
established. Its value reflects the strength of the association (the link here being inhibitory). 
Rescorla (1968), adopting this protocol, came up with the following idea: after establishing 
aversive CS-US conditioning (with an 80% probability of a shock being administered) for each 
of the animals in a sample, he divided the sample into 4 groups with different probabilities of 
shock during the CS-free phase. The most important result of this experiment is to show that 
the suppression ratio varies in the 4 groups. It is highest when the probability of shock is the 
same with or without CS, and it is lowest when the probability of shock is zero in the absence 
of CS. What is interesting is that in all 4 groups there are similar numbers of occurrences of the 
CS-US pair, a factor which cannot therefore explain the differences observed, as the initial 
Pavlovian model might suggest. This experiment shows that the contingency between CS and 
US would appear to be the critical factor in explaining these differences. The contingency is 
zero in the situation where the probability of US occurrence is the same with or without CS. 
 
The Rescorla-Wagner model 
On the basis of experiments like those described above in relation to blocking and to 
conditioned suppression, Rescorla and Wagner (1972) proposed a theory of conditioning where 
the critical factor determining the strength of the CS-US link is not so much repetition as the 
level of prediction of the US. Their model moreover excludes factors, proposed by Pavlov, 
relating to salience and power. Learning is thus the result of novelty and surprise. In this regard, 
Rescorla and Wagner (ibid.) operationalized a hypothesis proposed by Kamin (1969) that he 
termed "retrospective contemplation", with reference to the idea that the animals (such as rats) 
used in this type of experiment would somehow replay and review any situation in which they 
had been confronted with an unpredicted stimulus. This internal cognitive activity was seen as 
underpinning the active learning process. Interestingly, phenomena more recently studied in 
neuroscience, such as hippocampal reactivations – which appear to replay the reversed 
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sequence of actions just performed by the animal, from the US (where the animal is at the end 
of the trial) to the CS (where it was at the beginning) in mazes – are now being interpreted as 
possible substrates of this type of situational review that may contribute to learning (see, for 
example, Cazé et al., 2018). Possible computational mechanisms for this type of retrospective 
activity able to modulate learning have also been the subject of recent studies in humans (Moran 
et al., 2019). 
Rescorla and Wagner, for their part, took a much simpler approach, focusing on a possible 
reinforcement mechanism based on a calculation of US prediction error given the stimuli 
presented. This mechanism is at the heart of all current models of reinforcement learning 
(Sutton and Barto, 2018; see the following section), including recent versions seeking to 
account for hippocampal reactivations that enable situations to be reviewed. The following 
equation summarizes the central learning mechanism in Rescorla and Wagner's model: 

𝑉!"#(𝑘) = 𝑉!(𝑘) + 𝛼𝛽$ +𝑟!"# −. 𝑉!(𝑘)
$

/ 

The iterative process implemented by this equation can be described as follows: each stimulus 
k gradually acquires a predictive value for the reward, V(k), which is increasingly reinforced 
over the course of successive trials (hence the representation of its changing value at time t, 
then at time t+1, etc.) through repeated association with the reward r. The reward itself is not 
enough to reinforce the value of stimulus k. What counts is the prediction error, i.e., the 
difference between the amount of reward predicted (i.e., expected) at time t and the amount rt+1 
of reward actually obtained by the animal at time t+1. This predicted reward quantity is 
calculated here as the sum of the predicted reward values of the individual stimuli, as learned 
from previous trials. The parameters 𝛼 and 𝛽 respectively represent the rate (or speed) of 
learning (if 𝛼 is close to 0, learning is slow, while if 𝛼 is close to 1, learning is fast) and the 
salience of stimulus k (learning is faster with a highly salient stimulus i whose value 𝛽 is close 
to 1 than with a less salient stimulus j whose value 𝛽 is close to 0).  
Below are a few examples3 to illustrate the central mechanism at play in this equation: 

• Example 1: At the outset we associate a neutral stimulus A, whose initial value is 
therefore set to 0 (i.e., 𝑉!(𝐴) = 0), with a reward arbitrarily set to 1 (i.e., rt+1=1). There 
is no other stimulus present, so ∑ 𝑉!(𝑘)$ = 𝑉!(𝐴) = 0. The surprise associated with this 
first reward is at its greatest, and the model calculates a prediction error of 𝑟!"# −
∑ 𝑉!(𝑘)$ =	𝑟!"# − 𝑉!(𝐴) = 1 − 0 = 1. Stimulus A is reinforced, its value at the next 
trial (t+1) being: 𝑉!"#(𝐴) = 𝑉!(𝐴) + 𝛼𝛽%5𝑟!"# − 𝑉!(𝐴)6 = 0 + 𝛼𝛽%(1 − 0) = 𝛼𝛽%. 
The value of stimulus A has therefore been increased by the quantity 𝛼𝛽A. 

• Example 2: We are now N trials later, i.e., at time t+N, and stimulus A has been 
repeatedly associated with the reward for all these trials. It is now perfectly predictive 
of the reward (i.e., 𝑉!"&(𝐴) = 𝑟!"& = 1). What, according to this model, will happen 
on subsequent rewarded exposures to stimulus A? The model predicts that there is no 
longer any prediction error, because the reward is perfectly predicted, and so the 
stimulus value will not be further reinforced: 𝑉!"&"#(𝐴) = 𝑉!"&(𝐴) + 𝛼𝛽%5𝑟!"&"# −
𝑉!"&(𝐴)6 = 1 + 𝛼𝛽%(1 − 1) = 1 + 0 = 1. 

• Example 3: On the following trial, t+N+2, we present a new stimulus B, initially neutral, 
i.e., 𝑉!"&"'(𝐵) = 0, simultaneously with stimulus A, and then give a reward. The 
Rescorla-Wagner model proposes the following explanation for the blocking 

 
3 We refer readers wishing to go further to the book chapter (in French) Introduction à la modélisation 
computationnelle (Collins & Khamassi, 2021) and to the open-source code to which the chapter provides a link. 
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phenomenon: the value of stimulus B will not be reinforced because there is a zero 
prediction error, given that the reward is already perfectly predicted by stimulus A. 
Updating the value of B is expressed mathematically as follows: 𝑉!"&"((𝐵) =
𝑉!"&"'(𝐵) + 𝛼𝛽)(𝑟! − ∑ 𝑉!"&"'(𝑘)$ ) = 𝑉!"&"'(𝐵) + 𝛼𝛽) 8𝑟! − 5𝑉!"&"'(𝐴) +

𝑉!"&"'(𝐵)69 = 0 + 𝛼𝛽)51 − (1 + 0)6 = 0 + 0 = 0. The value of B remains zero. 

Wagner, Rudy and Whitlow (1973) set up a more elaborate experiment to test other possible 
mechanisms with a view to extending their model. In their experiment, two clearly predictable 
situations are established following two CSs (A and B). An additional CS-US aversive 
conditioning is then performed, followed 10 seconds later by a post-trial event (PTE). The result 
of this manipulation of the predictability of the PTE demonstrated that despite an identical 
number of CS-US associations, conditioning is more difficult to establish when the PTEs are 
surprising. The presence of an unexpected PTE would prevent the process of post-trial 
repetition. 
 
The story so far 
Before going any further, let us consider what Pavlov teaches us about the learning mechanism. 
It is undeniable that the Pavlovian conditioning situation modifies an animal's behavior, or 
rather, has some effect on an animal's reactivity or apprehension domain, since the animal does 
not in fact produce a new response (UR and CR are similar), but this sheds only a very limited 
light on learning as a mechanism, since learning more generally involves producing new modes 
of exploration to apprehend new situations and objects. However, computational modelling of 
mechanisms possibly underlying the phenomena that Pavlov observed has since been able to 
identify types of neural activity, such as the response of dopaminergic neurons, correlated with 
reward prediction error signals (Schultz et al., 1997). Pavlov’s legacy therefore provides a 
glimpse of plausible neurobiological mechanisms underlying this type of learning, which is 
admittedly very simple. 
The learning paradigm of Pavlovian conditioning posits the possibility of creating arbitrary 
associations based on the temporally ordered contiguity of events. This time-constrained 
associative potential, which has largely inspired cognitive architectures in computational 
modeling (cf. Hebb's rule), leaves no room for movement, and addresses questions of perception 
and cognition purely in term of passive reception and aggregation or association, a position that 
does not seem tenable when considering a living being, and which would appear to rule out a 
possible functional hierarchy of the multiple couplings (proprioceptive and others) with which 
animals are endowed. 
So, what does the potential creation of new, arbitrary associations tell us? First of all, if we 
consider UR to be the result of an already constituted schema (e.g., salivation), the possibility 
of producing this response again in relation to temporally contiguous events (still heralded by 
US, at least initially) means that some kind of structure of anticipation by recurrence, as 
proposed by Piaget (1967), has been created. But is not this simply the extension of an 

assimilating schema4, which would be incompatible with the idea that learning necessarily 
involves a transformation of the schema's overall structure? The difficulty here is knowing to 
what extent the animal’s capacity to learn is functionally organized as an open loop or as a loop 

 
4 For Piaget, "the essential fact to start from is that no knowledge, even perceptive knowledge, is a simple copy of 
reality, because it always involves a process of assimilation to previous structures. We take the term assimilation 
in the broad sense of integration with prior structures" (Piaget, 1967, p.22). An action pattern or scheme (e.g., 
sucking or putting-together) can thus be said to be assimilative when the actions produced in the interaction do not 
encounter any notable resistance to their deployment. If this is not the case, the.  accommodation process is 
mobilized to modify the pattern. 



 9 

including a retroaction. In other words, whether or not UR effects are linked to the occurrence 
of the next NS (future CS). We would argue against the idea of an open loop, as this would 
underestimate the role of the action of salivation and the often-overlooked positive 
reinforcement of satiety. As we see it, the formation of an associative bond needs to be 
interpreted within a broader framework, its significance being strongly associated with the 
repetition of an ordered scenario. This is a very general statement: the new relationship is not 
established as the result of a single occurrence. The very fact of repetition is an indication of 
the signifying circularity underlying the animal’s existence. But it is also the constancy of the 
repetition of the sequence that enables the sequence to be perceived and the learning mechanism 
to be implemented, insofar as this learning mechanism corresponds to the creation and the 
stabilization of an anticipation. 
To illustrate the point, we might mention recent findings in neuroscience suggesting that neural 
signals (for example, from dopaminergic neurons or in the prefrontal cortex) relating to reward 
predictions and reward prediction errors may reflect not only a current trial, but also past trials 
and sometimes anticipations (therefore estimations) of future trials (Seo and Lee, 2007; 
Enomoto et al., 2011; Wittmann et al., 2020).  Such neural signals are therefore potentially 
useful for learning according to the Rescorla-Wagner model discussed above. These findings 
suggest that the animal does not learn the value of individual stimuli in isolation, but considers 
things in context, and tries to learn the overall value of this learning context, in addition to the 
value of the stimuli that make it up. Recent research in humans suggests that the learned value 
of context also influences behavior (Palminteri et al., 2015). A crucial question also arises here 
concerning the emergence of a particular, minimal form of reflexivity at the heart of learning 
and perhaps already present in the Pavlovian situation. As we mentioned above, this is what 
Kamin (1969) termed retrospective contemplation, a subject to which we will return later. 
 

IV. Learning as active bonding: instrumental learning 

Instrumental learning, due in particular to Thorndike (1913) and Skinner (1938), gave rise to 
different kind of research that placed the animal's activity at the forefront. What had been a 
passive vision of learning gave way to an active one, in which the exploratory dimension of 
behavior and the feedback (reinforcement) resulting from action took center stage. This brings 
us to our second definition of learning, seen from an associationist perspective: 
 
Learning definition #2: Learning involves the creation of links between internal entities, 
resulting in the production or inhibition of a "response", depending on the nature of the 
reinforcement (reward or punishment) associated with it. The response is a behavior that must 
be instrumented (learned to use). 
 
This definition reflects the view that learning leads to a progressive convergence towards 
organized, effective, satisfying behavior. Here, reinforcement is a basic form of feedback. 
Instrumental learning can take at least three forms: 

• Serial learning, as in the case of behavior modeling (such as employed in dressage), 
where the positive reinforcement of individual elementary behaviors can be used to 
build up sequences of these behaviors. The qualitative aspect of serial learning also 
applies to sensory-motor learning. 

• Discriminative learning (simple or complex) refers to all situations in which animals 
control their learning through actions that force them to make choices. The classic 
example of this is the maze, whether consisting simply of two branches one of which 
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contains a reward, or a more sophisticated device such as a Lashley vault or a multi-
branch maze. 

• Operant conditioning, proposed by Skinner (1938), has been studied mainly in rats 
(although it can be applied to any species, including humans) in setups featuring 
actuators (usually pedals) that can deliver reinforcement. Such setups are generic, 
insofar as only fairly simple technical adjustments are required in order to enable 
performances to be compared between different species. They are also able to exclude 
effects that might result from the proximity of a human experimenter. 

Law of effect and "problem box" device 
Although instrumental learning is most often associated with Skinner and his operant 
conditioning protocol, it should be remembered that this emphasis on action and its effects was 
formulated earlier by authors such as Thorndike (1913). The dominant view at the time was 
that the formation of associations in animals depends on the frequency of presentation of the 
events to be associated and on the temporal contiguity of their occurrence. Thorndike had a 
vision of learning causality that was clearly distinct from this dominant view. As we will outline 
below, his formulation of the law of effect also reflects a selectionist point of view. To test his 
theory that behavior is a function of its consequences, he placed a cat in a device known as a 
"problem box". The cat needed to find a way out of the box in order to receive positive 
reinforcement (food). Here we see the beginnings of Gestalt and cognitivist methodologies 
based on problem situations, which later gave rise to hypotheses on the internal mechanisms 
leading to the resolution of a problem. Like Skinner's rat-in-a-box a few years later, Thorndike's 
cat – which, it should be remembered, was kept hungry – produced the following stable 
sequence: the animal explores the limited space and produces a variety of behaviors (trial-and-
error learning), it produces a response corresponding to the solution (opening the box), and it 
then learns to produce the "right response" (continuous learning = continuous decrease in the 
latency of the right response) to the detriment of other behaviors (selectionist aspect), ultimately 
producing only the right response. 
Instrumental learning represents a significant shift in how learning was conceived, highlighting 
the agentive and relational dimension of the process. Learning, seen from this new perspective, 
is fully visible5 . The animal manifests its own capacity to perceive relationships and organize 
its behavior to produce stable effects, albeit in a less than ecological way.  
 
Reinforcement learning theory 
From a computational point of view, instrumental learning means extending the Rescorla-
Wagner model such that reward-predictive value is no longer linked only to stimuli, but also to 
sequences of actions leading to reward. This was formalized as the reinforcement learning (RL) 
theory (Sutton and Barto, 1998), in which it is assumed that animals learn by trial and error to 
select the actions that help them maximize the sum of future rewards. Importantly, the RL 
theory not only generalizes stimulus-value learning to action-value learning, but it also covers 
the reinforcement of actions whose positive consequences are delayed in time. In other words, 
while Rescorla-Wagner is able to reinforce only events (i.e., stimuli) that were immediately 
followed by a reward, the RL theory can reinforce any event or action leading to a state of the 
task where the expected reward value is higher than the expectation before the event or action. 
Stated differently, any action bringing the animal closer to the reward is to be reinforced, even 

 
5 This partly explains why Skinner was the first promoter of a large-scale educational technology project in the 
United States and beyond, and why attempts to return to a different, notably constructivist, understanding of the 
mechanisms of learning have been seen as neo-behaviorist (neo-Skinnerian, one might say) approaches, as in the 
case of enaction. 
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if subsequent actions are required before the reward is actually delivered. The reinforcement 
equation in the Rescorla-Wagner model thus needs to be rewritten as follows: 

𝑉!"#(𝑠) = 𝑉!(𝑠) + 𝛼5𝑟!"# + g𝑉!"#(𝑠′) − 𝑉!(𝑠)6 
where a new parameter, g (with 0 < g < 1) has been added. This is termed the discount factor 
and it enables a smaller weight to be given to 𝑉!"#(𝑠′), the expectation of future rewards, than 
to the current reward 𝑟!"#. 
Comparing this new model with the initial Rescorla-Wagner model, three important changes 
may be remarked. First, rather than distinguishing a value corresponding to each stimulus k, 
here there is a global value corresponding to each state s of the task, no matter how many stimuli 
this state might include. The global value of each state s can be decomposed into the specific 
values of the different stimuli k present in that state, but for simplicity we do not show this here. 
Second, we have removed the 𝛽 parameter, which means that this formulation neglects saliency. 
Third and most importantly, the prediction error used for computing the reinforcement signal 
now has three terms rather than just two: instead of simply comparing the reward obtained 𝑟!"# 
with the expected value 𝑉!(𝑠), we now compare the reward obtained 𝑟!"# plus the expectation 
of future reward 𝑉!"#(𝑠′) in the new state s’ of the animal once it has performed an action (for 
instance, pressing a lever that turns on a light) with the previous reward expectation 𝑉!(𝑠) in 
the state s of the animal before the action takes place (e.g., while the light was off). 
This third element is what enables RL models to reinforce actions leading to delayed rewards. 
In our example, once the animal has learned that state s’ – where the light is on – is predictive 
of reward (i.e., 𝑉!"#(𝑠′) > 0, because the reward will be received at the next timestep: 𝑟!"' =
1), any action that can lead the animal to state s’ (e.g., pressing a lever) gets reinforced because 
it yields a positive prediction error even when the reward has not yet been delivered (i.e., 𝑟!"# =
0): 𝑟!"# + g𝑉!"#(𝑠′) − 𝑉!(𝑠) = 	0 + g𝑉!"#(𝑠′) − 0 = 𝑉!"#(𝑠′), which is positive6. 
For the same reasons, it is this third ingredient that enables RL models to learn sequences of 
actions leading to the reward. Sticking to our example, once the animal has learned that pressing 
the lever in state s is consistently followed by state s’, itself consistently followed by a reward, 
the reward-predictive value corresponding to state s becomes positive (i.e., 𝑉!(𝑠) > 0). Then, 
any action that can lead the animal to state s (e.g., pulling a chain) in turn starts getting 
reinforced. And so on, and so on. 
 
The new model generalizes the same learning mechanism – learning from prediction errors – 
to both classical (Pavlovian) conditioning and operant (instrumental) conditioning. This is 
because learning from prediction errors enables any kind of event, whether a stimulus or an 
action, to be reinforced. The third element as described in the previous paragraph is what 
enables RL models to explain second-order conditioning, which Rescola-Wagner fails to 
account for: if stimulus A is followed by stimulus B, itself followed by a reward r, in RL models 
the value of stimulus A will be reinforced because it is followed by a positive prediction error: 
𝑟!"# + g𝑉!"#(𝐵) − 𝑉!(𝐴) = 	0 + g𝑉!"#(𝐵) − 0 = 𝑉!"#(𝐵), which has become positive after B 
has been repeatedly followed by reward. In contrast, in Rescorla-Wagner, 𝑟!"# − 𝑉!(𝐴) = 	0 −
0 = 0, thus the value of A remains zero because it is never immediately followed by reward. 
 
Strikingly, the RL theory has played a key role in identifying the neural mechanisms of 
associative learning. In the case of a monkey performing a Pavlovian conditioning task, 
dopaminergic neurons were found to respond according to a reward prediction error signal 
consistent with the three-term equation in the RL theory (Schultz et al., 1997): they respond to 

 
6 For simplicity, here we just show how the value of states V(s) is learned, and not how the specific value of actions 
performed in those states Q(s,a) is learned. In the RL theory they are updated in the same way, i.e., as a function 
of prediction errors. Interested readers can refer to Sutton and Barto (1998).  
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unexpected reward, but no longer respond when the reward is well predicted by the animal; 
after learning, they respond to stimuli that have acquired a reward-predictive value. 
Interestingly, during second-order conditioning (of the type A->B->reward), the same recorded 
dopaminergic neuron initially responds to the reward, then progressively shifts its response to 
A, which is the first event causing the animal to anticipate reward delivery (Maes et al., 2020).    
 
Overall, the RL theory has contributed not only to formalizing the associative mechanisms by 
which stimuli and actions become reinforced through learning, but also to more precisely 
describing the neural substrates of this learning process. 
 
Criticisms of associative learning 
While the behaviorist framework may be suitable for thinking about simple instrumental 
learning, or even perceptual learning (e.g., Roelfsema et al., 2010), it is manifestly inadequate 
when it comes to addressing what are seen as more abstract forms of cognition. In the following 
section we discuss what makes the behaviorist framework unsuitable for this purpose. What is 
more, a behaviorist paradigm of learning is essentially centered on one individual alone, and 
the contribution of other individuals, not just as perceived objects but as actors in the learning 
process itself, is not problematized. But let us return briefly to the question of perception. 
Although instrumental learning may be linked to movement, movement is not seen as playing 
a role in the formation of percepts. The role of movement is essentially exploratory. It has no 
organizing or morphogenetic function in relation to stimuli other than to define a temporal 
framework within which associative links can be constructed. Here we have an echo of an 
overarching empiricist world-view in which perception is essentially a matter of unconscious 
processes that do not involve, or presuppose, action. To put it bluntly, in the behaviorist 
tradition there is no theory of the internal mechanisms of perception and learning other than an 
aggregative mechanism of sensations. If we are to explore these internal mechanisms, we need 
instead to look to cognitive approaches. One of the main criticisms levelled at behaviorist 
studies of learning is precisely that they necessarily consider only the inputs and outputs of the 
animal-system (conceived as a black box) in their attempts to characterize laws based on the 
coupling of stimuli and responses. The behaviorist position has also taken extreme forms, 
certain authors adopting what we might qualify as a militantly empirical approach and 
describing their work as anti-theoretical. However, as Richelle vigorously points out (e.g., 
1953, p.53), we must guard against over-hasty and caricatural judgments. We have to recognize 
that behaviorist work is by no means homogeneous, and the tensions that divided the 
community in the past are in some respects still relevant today. Researchers like Hull (with an 
interest in formalisms and theory, and putting forward hypotheses on internal mechanisms that 
involve intermediate variables) are clearly at odds with the behaviorist stereotype. An important 
development was a gradually increasing interest in representing internal events as embodying 
knowledge, to the detriment of the associations between these events. 
Finally, a crucial point, often raised in the ethology community, concerns the non-ecological 
nature of all these situations and the difficulty, if not the impossibility, of replicating them when 
animals are observed in their natural, meaningful environment. Gardner (1991), for example, 
considers that the behavior of animals in the Skinner box, and in particular the pressing of the 
pedal, is intertwined with a stimulation of the palmar surface of the paw, an action that animals 
habitually perform in their natural environment, and therefore needs to be interpreted 
accordingly. In addition, there is evidence to suggest that conditioned animals continue to press 
the pedal even when offered food in close proximity, which might point to an almost 
"pathological" aspect to this behavior.  
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Among the criticisms of associative learning, we could add a more recent objection, namely 
that reinforcement learning models focus on maximizing expected rewards while neglecting the 
interest of reducing uncertainty about perceived states of the world (Friston et al., 2009). This 
objection might be countered by including in the learning model some notion of uncertainty 
minimization alongside that of reward maximization: instead of learning to associate a stimulus 
or action or event simply with an average predictive reward value (as is the case in the RL 
theory), we could use a Bayesian framework to learn to associate it with an entire probability 
distribution. From a learned probability distribution, we could then extract: (1) the mean, 
corresponding to the average value learned by reinforcement learning models; and (2) the 
variance (i.e., the inverse of the distribution's "precision"), representing a level of uncertainty 
in this estimate. This uncertainty could be a key factor in modulating not only the strength of 
learning (e.g., from a normative point of view in Bayesian theory, greater uncertainty in prior 
knowledge should motivate faster learning), but also the animal's level of attention (replacing 
the additional term potentially added to the Rescorla-Wagner model in Panayi, Khamassi et al, 
2021, for example). An assessment of uncertainty could serve as a motor for an animal's 
curiosity, a high level of uncertainty increasing its eagerness to learn. This may be related to 
the notion of directed exploration, or curious exploration, which has been formulated as "active 
inference" in Bayesian terms (Friston et al., 2015), and to which we will return later. While 
Bayesian formulations of reinforcement learning (learning probability distributions rather than 
mean values) have since been proposed (e.g., Ghavamzadeh et al., 2015), this initial critique of 
reinforcement learning theory – and associative learning in general – has had the merit of 
highlighting the need to consider the role of animals' active motivations to learn, to explore in 
order to acquire new knowledge. We discuss this topic in detail in the following section. 
 

V. Learning as active motivation to acquire knowledge 

We now step aside from what has been a chronological account, in order to present some recent 
contributions from computational models that seek to include the active dimension of learning 
described above. We believe that it is important to highlight some of the mechanisms postulated 
before we move on to other forms of learning, such as cognitive map learning.  
An initial observation is that in most behavioral experiments involving animals, the animals 
will seldom behave identically in 100% of the trials. Where an animal has learned to press a 
lever to obtain food, there will always be a trial here and there where it does something different. 
We could possibly consider this as noise, statistically speaking, and simply assume that our 
computational models can never account for 100% of observed phenomena. But there seems to 
be something else, something qualitative that has the potential to inform us about the active 
nature of learning. 
In computer science, we have long known that for a learning algorithm to work, it must have a 
mechanism that makes it do something different from time to time, even after learning has 
apparently converged on an acceptable solution. The reason for this is that if nothing new is 
ever attempted, the optimality of the status quo is never called into question. More importantly, 
trying something new, or at least different, from time to time, even after learning, when we 
think we know the right solution, enables us to adapt more quickly to changes in the rules 
governing a task, or to changes in the environment around us. We call this an 
exploration/exploitation trade-off. Most computational conditioning models employ a very 
simple but effective solution: they include a parameter representing an exploration rate 𝜀. For 
example, 1% of the time the model will choose an action completely at random – so as to 
encourage exploration of different actions – and 99% of the time it will choose the action that 
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is associated with the highest predictive reward value V. In the RL theory this is known as an 
epsilon-greedy strategy (Sutton and Barto, 2018). 
More recent computational models, however, have proposed mechanisms to make this process 
more dynamic, which can make them even more effective in terms of maximizing gains, and 
which can give a better account of certain experimental data. For example, it may be supposed 
that animals will vary their rate of exploration: when they detect that the task or the world has 
changed, they could deliberately explore more; conversely, when they see that the task and the 
world are stable and familiar, they could deliberately explore less, so as to minimize surprise 
and maximize their gains. Mechanisms for varying the rate of exploration 𝜀 according to the 
estimated stability of the task have already been proposed, and seem to better account for the 
behavior of macaques in regard to certain tasks, as well as for neural activities in their prefrontal 
cortex that appear to underlie dynamic exploration (Khamassi et al., 2015). 
Another way making the process dynamic is by having the animal choose not only its rate of 
exploration, but also specific actions that favor exploration. If actions are chosen randomly 
during exploratory trials, then previously explored actions will sometimes be re-performed, 
with no new information being gained. If, however, estimates of action-reward uncertainties 
are retained in memory, then exploration can be directed towards actions judged to be more 
uncertain. We call this a mechanism of directed exploration, where greater value is given to 
uncertain actions whose execution could help reduce uncertainty and thus increase knowledge. 
This type of exploration would appear to exist in humans (Wilson et al., 2014) and other species 
(Costa et al., 2019). Directed exploration has been linked to active exploration, curiosity in 
children, and developmental psychology (Gottlieb et al., 2013). There are also links with Karl 
Friston's active inference theory (Pezzulo et al., 2015), which holds that a central motivation 
behind action is seeking to minimize uncertainty in our internal representations. 
The mechanisms proposed in computational models to account for active exploration take us 
even further away from the idea of a passive mode of learning in which there is first perception 
and subsequently action. Here, we have quite the opposite: we consider that the animal acts, 
even possibly in the absence of the possibility of reward (i.e., without a reinforcer in the sense 
of operant conditioning), with an intrinsic motivation to acquire knowledge. And when a reward 
is available in the environment, this mechanism links up with the central learning mechanism 
(such as that of the Rescorla-Wagner model seen above) to produce active exploration. 
 

VI. Learning as the constitution of knowledge nodes 

As we have seen, learning was initially conceived as the constitution of links between entities, 
usually presumed to be neurobiological, with this constitution resulting from a repeated 
exposure to the CS-US couple and/or from observing the effects of action (feedback having the 
status of positive or negative reinforcement). However, against this initial conception, we have 
an accumulation of more recent empirical findings showing, on the one hand, that learning can 
involve phenomena that are apparently strictly internal, independent of stimuli and 
reinforcements, and, on the other, that the transformations specific to the learning mechanism 
concern not only the links but also, and perhaps above all, the nodes of the network. In the 
emerging cognitivist tradition, the nodes are seen as being representations that drive behavior. 
 
The cognitive map hypothesis 
Tolman (1948) was an early proponent of an alternative to behaviorist positions on learning. 
Two of his experimental situations, namely the three-pass maze situation (spatial learning), and 
the latent learning situation, are often cited in opposition to behaviorism. These two 
experiments tend to show that learning involves internal events that can be qualified as 
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cognitive and that can be assumed to mobilize representations and “calculations” relating to 
these representations. Learning is conceived here as the acquisition of knowledge about the 
external world, to be mobilized to achieve a goal. Tolman and Honzik (1930a) taught rats to 
move through a maze including three branches (A, B, and C) of different lengths. After a phase 
of free exploration of the whole maze, the rats are divided into two groups, and each group has 
to learn how to get around an obstacle. The predictions of behaviorist theories based on 
associative force postulate that rats will systematically opt for the shortest path, given the 
obstacle present in direct path A. This is indeed what was observed for rats in group 1, for 
whom the obstacle was close by. However, this is not the case for group 2. Rats prefer to take 
path C, which, despite a longer route, allows them to bypass the obstacle. From this, Tolman 
developed the idea of a cartographic representation of space (a cognitive map), formed during 
the exploratory phase, and used by the rat to organize its movements and reach its goal. 
Computational modeling has seized on this notion and formalized it as a different type of 
learning from the reward-based learning represented in associationist models of the Rescorla-
Wagner type (Redish and Touretzky, 1997; Arleo and Gerstner, 2000). The learning suggested 
by Tolman, and which he termed latent learning, occurs during a phase where there is no need 
for a reward. It consists in learning the probability of transition from one state to another as a 
function of action. In other words, it consists in learning the arrows between the nodes of a 
cognitive map. Then, once the position of a reward is known, a mental simulation drawing on 
a cognitive map enables the rat to find the shortest path between its current position and the 
reward. Interestingly, despite a seemingly irreconcilable opposition between behaviorists – 
advocates of Rescorla-Wagner-type associationist learning mechanisms – and cognitivists – 
advocates of cognitive map-type mechanisms – a growing body of work suggests that 
mechanisms linked to the two types of learning co-exist in the brain (Daw et al., 2005; Khamassi 
& Humphries, 2012). What is more, it would appear that certain behaviors observed in complex 
tasks combining both spatial cognition and generalization-type phenomena (i.e., phenomenon 
2 presented above) can only be explained by models that include both types of learning, i.e., 
Rescorla-Wagner and cognitive map (Dollé et al., 2018). The cognitive map hypothesis 
suggests the possibility of latent learning of structural regularities in the task or environment, 
which can then be reused to adapt behavior to new situations. 
 
Latent learning 
In the latent learning experiment (Tolman and Honzik, 1930b), rats were taught over a period 
of 18 days to navigate a complex maze to obtain food rewards. Three groups were then formed: 
rats in the first group were no longer rewarded, rats in the second continued to be rewarded 
systematically, while rats in the third were rewarded only from day 11 onwards. It was found 
that the rats in the third group performed at the same level as those in the second from the very 
first reinforcement on day 11, and that their performance was even better after that. The 
experimenters concluded that the rats were able to learn even where learning was not reinforced, 
and therefore that reinforcement does not condition learning itself, but rather its behavioral 
expression. 
More recent experimental situations have also fueled this conceptual renewal (Holland and 
Straub, 1979). These include the so-called conditioning reappraisal situation, where classical 
conditioning is first established, after which the presentation of US is associated with a nausea-
inducing toxin. When CS is subsequently presented, it no longer induces CR, even though the 
CS-US association has not been manipulated or modified. This suggests that US modification 
alone is sufficient to alter behavior and thus associative functioning. Results obtained with the 
so-called mediated learning protocol have implications similar to those that can be drawn from 
results obtained previously (Holland, 1984).  
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In this way, the refocusing on internal representations and on ways in which these 
representations may be manipulated has enabled the behaviorist community7: 

• to integrate results obtained later showing that event manipulation, and not only inter-
event links, is likely to constrain learning, 

• increasingly show that even the architectures enriched by Hull do not succeed in 
capturing the full range of results,  

• and, above all, to open up new interpretative opportunities for managing phenomena 
that are not directly observable in behavioral terms, but which undoubtedly have 
effects8. 

Cognitivist approaches 
In the nascent cognitivist tradition following Tolman’s experiments, the question of learning 
tended to become marginalized and eclipsed by questions relating to memory and information 
processing operations. 
 
Learning definition #3: Learning is a mechanism for acquiring and/or modifying knowledge. 
 
This definition reflects, for example, the viewpoint of Lindsay and Norman (1972), who 
describe their conception of learning as the incorporation of new information into semantic 
structures already stored in memory. Bruner (1957) sees learning, particularly perceptual 
learning, as an active process of internal categorization, while Bartlett (1932) and Vernon 
(1954) see it as the construction of a schema. Cognitivist work on learning has been highly 
inventive in terms of hypotheses and models, once again to account for internal operations that 
are difficult to observe, all the more so since the interpretation of certain results suggests a 
production/acquisition of new knowledge that does not correspond to external events. 
The marginalization of learning as a subject of study per se also led to a relativization of its 
perceived role in the modulation of behavior; new models focused in particular on attention and 
motivation, leading to a distinction made between learning and performance. Learning, as a 
mechanism9, is defined in this context as a transformation operation encapsulated in rules 
specifying actions to performed in response to successive elements of information received 
(system input). 
 
The role of feedback 
As already mentioned, the cognitivist tradition has preserved the idea of acquisition through 
action. Another legacy of instrumental learning is the idea that reaffirmed information linked 
to activity can have the status of feedback. The notion of feedback has evolved significantly, in 

 
7 It is interesting to note, in the light of recent work on animal behavior, that authors in the field such as Pickens 
and Holland (2004) no longer hesitate to redefine conditioning as involving associations between internal 
representations: "We described conditioning as involving the establishment of associations between internal 
representations of the CS and US, such that the CS comes, through learning, to activate a representation of the 
US". 
8 Although epistemologically distinct from the cognitivist tradition, we recall that the Gestalt school of 
psychology, in particular Köhler's (1925) work with great apes that sought to reveal interspecific discontinuities 
in learning, specifically studied the phenomenon of insight, by which is meant the impromptu resolution of a 
problem that suggests the presence of an underlying internal mechanism. Specifically, Köhler examined the use 
by chimpanzees of interlocking sticks in order to extend their reach and attain a food reward. This ability is thought 
not to have emerged in evolutionarily earlier species. Subsequent work has clearly shown that the emergence of 
this behavior occurs only in animals that have previously acquired the interlocking technique; this does not subtract 
from the interest of the observation, but it does limit the scope of the supposed internal activities. 
9 In this case, a particular combination of symbolic processing operations that produce or change knowledge. 
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line with the conceptual developments that cognitivism has heralded. Feedback, as an 
informational fact (i.e., carrying a certain quantity of information, in the Shannon and Weaver 
sense) continues to be thought of as being above all a means of measuring success or failure, 
or deviation from a goal. But feedback can be involved in more complex, more internal modes 
of operation, such as in comparisons, anticipations or inferences10. Feedback information linked 
to an agent's action is often tested against or supplemented by knowledge relating to the rules 
of action or the properties of objects. Wiener (1954), the father of cybernetics, saw learning as 
being essentially a form of feedback, in which a pattern of behavior is modified by past 
experience. For him it is a type of feedback that is complicated in its form, exerting its influence 
not only on action, but also on the pattern of action. In other words, the whole activity of an 
agent is affected by learning that appears to be local in nature. 
 
Mechanisms for acquiring new knowledge 
Numerous mechanisms have been envisaged to account for the learning/acquisition of new 
knowledge11 . They have all given rise to models and empirical studies that it would take too 
long to describe here. What is indisputable is that by considering learning as comprising 
operations that cannot be directly observed, the cognitivist tradition has to some extent exposed 
itself to intrusion and inflation, which has been damaging insofar as it has not always provided 
itself with the means to control what has been claimed in its name. The mechanisms that have 
been proposed can be divided into three groups: 

• Incremental mechanisms that concern the quantitative modification of knowledge (e.g., 
increasing the availability of a lexical item given its frequency of use). 

• Generative knowledge mechanisms based on episode storage (coding and selection 
according to multiple criteria such as novelty, relevance, etc.).  

• General generative mechanisms (inference and memorization) such as assimilation, 
analogical transfer, induction, hypothesis testing, and generalization. 

Implicit learning 
Among the different mechanisms that have been put forward involving an acquisition of 
knowledge via processes that are not directly observable, implicit learning can be seen as 
something of an extreme case. Implicit learning is where learning takes place without there 
being any attention paid to, or any awareness of, the object of learning. A field of research has 
emerged around the question, which would appear to show that despite the apparent paradox in 
the idea of learning about things without knowing about them, implicit learning setups do in 
fact mobilize subjects’ attention, and attention seems to be central to learning. In this research, 
subjects are confronted with a situation structured according to complex rules that they cannot 

 
10 In this way, we can see that the computational‐representational approach has made a shift in relation to earlier 
approaches, since feedback plays a clearly secondary role; the point of view is completely centralist and internalist, 
and behavior is determined by one or more goals. 
11 From this point of view, Anderson's (1983) ACT theory has been a reference model for modeling cognition and 
knowledge acquisition. Anderson classically distinguishes two types of knowledge (procedural and declarative) 
and postulates three memory instances (declarative, procedural and working memory). Acquisition is the 
permanent storage in working memory of processes that are taking place. Storage mechanisms for declarative 
knowledge and matching mechanisms for procedural knowledge ensure transfer. Modeling can become 
sophisticated, as in the case of procedural knowledge acquisition, where following an initial interpretation phase 
(the selection of declarative information to allow a choice of actions to be made), a second compilation phase 
transforms the declarative elements into real know‐how. Two mechanisms, proceduralization and composition, 
ensure this compilation. Other, more local models have been proposed, such as the BAIRN model (Klahr and 
Wallace, 1976), where the system creates knowledge by creating new nodes either from the combination of several 
nodes, or from sequentially stable traces of operation, or by eliminating redundancy. 
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apprehend (nor are they asked to). A classic result (Lewicki, Hill and Bizot, 1988) has been to 
show that in sequential reaction time tasks (where subjects are simply asked to press keys on a 
keyboard arranged in a topographically similar way to the display of targets (4 on a screen), 
subjects have significantly shorter reaction times when the succession of positions is governed 
by a rule than when it is random. Although subjects are unable to make explicit the rule (e.g., 
repetition of the same sequence of 10 items) that determines the appearance and position of 
targets, and may even have the feeling that the display is random, they manage to build up some 
anticipation. While it has been shown that attention is important in obtaining this effect (by 
adding an additional task that makes it disappear), an analysis of the succession of positions 
reveals that dynamic regularities are nevertheless perceptible. As some authors have suggested 
and shown (Perruchet, 1997), the object of learning is "the very object of phenomenal 
perception of the world, which changes under the effect of repetition". These experiments 
exploring the learning of skills appear to show that this learning does not concern the abstract 
rules that govern the production of objects perceived, but rather the possibility of stabilizing 
and identifying regularities. However, the artificial nature of these situations obviously calls 
into question the significance of the results obtained. Those results might suggest that learning 
cannot take place without attention and, above all, without the possibility of perceiving, either 
in the behavior of objects or in the subject/object relationship, certain regularities that can 
subsequently favor successful anticipation. An interesting point is that these perceived 
regularities are apprehended by subjects at a level distinct from that of the causal system that 
generates them (that is to say, a system that can be expressed in the form of complex rules). 
The conditions allowing these perceived regularities to be constituted remain to be clarified. It 
is possible, as Perruchet and Vinter (2002) have done, to appeal to Gestalt by invoking 
processes of automatic structuring of the perceptual field, but other explanatory frameworks, 
which we will discuss later, are also conceivable. However, these results are interpreted, they 
indicate quite clearly that learning, as a basis for successful anticipation, is possible even in 
environments presenting local regularities that the subject manages in a pre-reflective mode. 
Where subjects are unable to state the rule for determining the succession of target positions, it 
is only a retrospective analysis of the situation that may enable them to pinpoint local 
regularities such as to constitute learning at a perceptual level. 
 
Learning by observation 
There is another family of situations where learning seems to take place not only on the basis 
of internal processing independent of directly perceived events, but also without any 
involvement or action on the part of the subject (human or animal) in the situation; here, 
learning appears to follow merely from observing the behavior of others. We speak of 
observational learning when an animal-learner, having observed a certain sequence of events 
involving an animal-model in context, manages to perform an activity faster and better than in 
a control situation where observation is not possible. Through observing the other animal and 
the situation, it as if the animal had performed the activity itself. In some cases, the animal 
reproduces the observed behavior identically (imitation), but in other cases there is some 
distance between the observed behavior and the animal’s own behavior following observation. 
Observation can even be an opportunity for an animal to learn which behaviors are best avoided. 
This was demonstrated in the seminal experiment by John, Chesler, Bartlett and Victor (1968), 
in which the learners (cats) observed an aversive conditioning situation and produced the 
avoidance response, some on the very first try. One interesting conclusion to be drawn from 
their results is that observing "naïve" models can be more beneficial than observing "expert" 
models, which corroborates the importance that the observation of mistakes has for this type of 
learning. More recent work on mice shows that observational learning has some interesting 
intra- and interspecific features. In a series of studies, Carlier and Jamon (2006) compared two 
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groups of mice in a dual task in which the mouse first has to push the food reward to the end of 
an angled tube, then open a drawer at the other end of the tube. It thus has to learn a sequence 
of two distinct actions to be executed in two distinct locations. The model mice selected are 
over-trained experts that are also capable of performing the task in front of other mice (whose 
presence they are aware of via their scent). It is worth noting that some experts are disturbed by 
the presence of the others (which leads the experimenters always to have a pair of models just 
in case). In this situation, the two groups – experimental and control – are distinguished by the 
fact that only the experimental group can see the models perform the task. The controls can see 
the device and have an exchange with the models, but never see them perform the task. The 
results show a significant learning facilitation effect in the experimental group that is not seen 
in the control group; however, not all the mice in the experimental group accomplish the 
complex task on the first try (only 6 out of 15). The authors suggest that learning during the 
observation phase focuses not so much on actions as on the models' areas of interest, and is 
coupled with observational conditioning that enables the learners to acquire the sequence of 
actions required. It should be noted that in this type of situation, it is generally impossible to 
control what the experimental animals actually observe. Even where the experimental space is 
restricted, this does not guarantee that the animals’ attention is focused on the behavior of the 
models. Moreover, there are differential effects depending on the species. Work on similar 
problems has been carried out with turtle doves and blackbirds (Carlier and Lefebvre, 1997). 
Corvids are an interesting case, as these long-lived animals (around 40 years) display i) long 
ontogeny (close to that of primates and humans), ii) cerebral hypertrophy (greater than that of 
humans) of certain cortical territories, and iii) rapid learning capacities throughout life. Studies 
show that the blackbirds can learn very quickly by observing a conspecific or an experimenter 
(Carlier and Lefebvre, ibid.); it is often necessary to hide the first manipulation of the device, 
as this may be enough for the animal to satisfy the task of opening a box on the first try. Doves, 
on the other hand, may take several weeks to complete this learning process once they have had 
the opportunity to see a model. Furthermore, the authors (ibid.) were also able to show, by 
comparing two turtle-dove families (gregarious versus territorial) of the same species, that only 
one of the two families benefited from observational learning even though they co-evolved 
together12. Underlying this type of research on observational learning and the diversity of its 
forms are obviously some highly relevant questions that cannot be developed here concerning 
the role played by the perception of other individuals, the actualization of perceived and 
imagined action at the level of the subject, and the effect of this actualization on the subject's 
own actions. 
 
Learning to learn 
To conclude our list of works showing how sophisticated internal cognitive activities are 
implemented in learning situations, we might recall the results obtained by Harlow (1949) with 
non-human primates showing that animals are capable of learning to learn, or in other words, 
that they appear capable of progressively generalizing rules that reduce the learning time for 
different sequences. Within the cognitivist tradition Harlow’s results are noteworthy, insofar as 
they point to internal processing possibilities whose inferential nature may be said to exceed 
the association of perceived events. 
This notion of learning to learn has been modeled computationally under the label of meta-
learning. It has its origins in methods initially developed in the field of artificial intelligence for 
revealing structure in a data sets, so as to accelerate learning when data of the same type are 

 
12 Studies of dogs show that they outperform their ancestors (wolves and jackals) in orientation tasks. This is 
especially noticeable in the case of sheepdogs and hunting dogs. A similar superiority is found in primates 
executing the same type of task. 
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encountered in the future (Schmidhuber, 1987; Giraud-Carrier et al., 2004). This search for 
structure is generally carried out off-line, i.e., not in real time. It may, for example, involve 
exploring the best models or learning algorithms for this type of data, or the most appropriate 
learning parameter values. 
These methods, adapted for online use, have been applied to the modeling of learning behaviors 
in humans and other animals in studies seeking to shed light on potential behavioral adaptation 
dynamics accompanying the execution of tasks. Some work has focused on online learning of 
the values of learning model parameters, such as exploration rate, thus enabling the creation of 
an active exploration process such as that described above (Schweighofer and Doya, 2003; 
Khamassi et al., 2011). Interestingly, these types of computational mechanisms are able to 
reproduce the behavioral dynamics that Harlow observed in monkeys: the time required to learn 
which of two objects is linked to a reward is seen to decrease from sequence to sequence. 
Another body of work has investigated mechanisms for arbitrating between different types of 
learning in the brain (Daw et al., 2005; Lee et al., 2014): mechanisms of this kind detect which 
type of learning (stated simply, learning either with or without a cognitive map) is most 
effective at different points in a task. In some variants of these models, a meta-controller, learns 
– and therefore memorizes – which type of learning has proved most effective in which 
situation, and can therefore contribute to generalization in new, similar situations (Dollé et al., 
2018).  
Finally, recent work has modeled certain meta-learning mechanisms in the prefrontal cortex as 
corresponding to a reconfiguration of a deep neural network that enables implicit encoding of 
network operating rules, which can then mimic learning-like behavioral dynamics without 
involving any further need for a learning mechanism per se (Wang et al., 2018). 
 
Provisional remarks on cognitivist approach of learning 
Within the cognitivist tradition, despite only a limited interest in the question of learning itself 
and a greater focus on memory mechanisms, elements have nevertheless been identified and 
clarified that have given rise to some computational modeling. 
The first of these elements is the role of action as a condition for learning, although cognitivists 
recognize that the main function of action, insofar as it is itself guided by already-constituted 
knowledge, is to extract information about the external world	– information that is specifically 
coded in such a way as to make it compatible with, and contribute to, cognitive computation. 
We have seen how active exploration mechanisms can guide action, with the aim of reducing 
uncertainty in our internal representations. Models of such mechanisms often feature an 
exploration bonus in terms of information entropy (in the Shannon sense), reflecting the amount 
of information that can be acquired by taking action. This type of approach explicitly neglects 
the question of action (cf. Marr's scientific project, 1982). What is more, the form of an action 
and the effect of this form on the construction of cognitive experience has only rarely been 
taken into account. And when it has been, the form of the action itself has generally received 
less attention than the sequence of actions to which that action belongs, insofar as this sequence 
reveals the implementation of internal problem-solving strategies (Bastien, 1997). 
A second element is the consideration of feedback and its potentially reconfiguring effect on 
cognitive structure. The reconfiguration that Wiener (1954) considered necessarily global is 
linked both to the meaning of coupling and to the constitution of anticipation, which 
corresponds to the possibility of changing function. From this point of view, what Wiener wrote 
is extremely relevant, even though his conception of feedback applies to formal, discrete 
cognitive architectures, the limits of which are well known today (c.f. the body of critical work 
on the computational-representational approach). In mathematical terms, the question of 
feedback has often been linked to the notion of recursivity, since it involves "reasoning about 
functions in which at least one variable is the value provided by a previous application of the 
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function" (Livet, 2004, p.130). Linking feedback and recursivity in this way must nevertheless 
remain subject to the following constraint, highlighted by Livet: "We cannot consider as a 
recursive function a function that would be a function of both its input x and its output y at the 
same instant, so that x depends on y which depends on x. In order to find it, we obviously have 
to decompose the function into two variables. To find it again, we obviously have to shift the 
inputs and outputs in time, and admit a t0 where x is given without y yet having any influence, 
which it will only have at time t+1 on input x in t+1 (assuming feedback takes place without 
delay)" (Livet, ibid., p.130). 
The third element is that learning appears to mobilize mechanisms that are essentially internal 
and, for the most part, unconscious, but which nonetheless presuppose attentive/perceptive 
awareness on the part of the subject. For our part, we consider it highly problematic (from an 
epistemological and a scientific standpoint) when work on perception takes no account of 
subjects’ own descriptions of their perceptual experience. Such descriptions should constitute 
the very object of a science of experience, particularly perceptual experience. The works of 
Varela, Thompson and Rosch (1993) and Shanon (1993), among others, are quite explicit about 
this, having paved the way for a substantial body of theoretical and methodological work on 
experience in relation to the 3rd and the 1st person (Lenay, 2006; Stewart and Gapenne, 2004; 
Varela, 1996). However, we believe that it is perfectly possible to think of certain fascinating 
observations that have been made concerning implicit or observational learning, or insight 
phenomena, within a constructivist framework of the genetic type13. An examination of these 
different situations shows that if internal cognitive activity is taking place, it is at least 
alternating, if not simultaneously, with phases of engagement. Moreover, we believe (and this 
is a central point) that this internalization of activity is the result of a necessary, and sometimes 
very long, history of moto-sensory couplings, and that it basically calls into question the internal 
nature of the processes. Perception is often seen as an active process of encoding and 
representing information, and it is our belief that this process is an internal activity in which 
representations are constructed. This conception is obviously distinct from a conception 
whereby perception is a relational act, which continues to be an act even where it does not 
mobilize an overt commitment on the part of the organism. 
A fourth and final element, complementary to the previous one, is that learning is sensitive to 
cognitive and situational context. This is at the heart of many theories of perception, in 
particular. Perception, as a fundamental cognitive act, is structured in relation to a social, 
cultural and technical context, and in relation to knowledge constituted by the subject. Thus, 
while learning involves processing incoming information (inputs) relating to the precise object 
of the subject's activity, this processing is constantly modulated by incoming elements that are 
nevertheless present in the situation, although potentially irrelevant to the realization of the task, 
and by knowledge possessed by the subject in relation to this situation it is already known. 
 

VII. Learning as the constitution of an attractor in a network of interconnected elements 

The 1970s saw the spread a host of hitherto unfamiliar ways of thinking about how phenomena 
are caused. Concepts such as emergence, complexity, qualitative physics, and distributed 
causality, began to percolate into numerous fields of science, and the question of learning was 
no exception, with a study of the behavior of formal neural networks, extending earlier work in 
neurocybernetics, being an area of predilection. These artificial networks, inspired by biological 

 
13 We make this point because many researchers would have been quite happy with a sensorimotor framework 
reserved for constructivism and a separate conceptual/abstract framework reserved for cognitivism. Such a 
separation is obviously unacceptable, but the fact that it was considered desirable by some reveals a monolithic 
vision of constructivism that is highly problematic. 
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neural networks, have remarkable learning capabilities, and modeling them has been and still 
is the subject of a great deal of research (particularly in the field of machine learning). The 
study of these networks has had the great advantage of renewing the mathematization of the 
learning process: 
 
Learning definition #4: Learning involves mechanisms at play in a system comprising nodes 
(to which functions apply) and links, and in which weights change over time (cf. Hebb's Law) 
such as to constitute a major constraint on the learning mechanism as an auto-organized 
convergence. 
 
In this sense, connectionism proposes the introduction of a sub-symbolic14 algorithmic layer 
likely to clarify certain symbolic boxological models which basically present themselves as a 
special case. 
 
Neural networks 
Classifying and finding relationships are the two mathematical problems posed by learning in 
neural networks. A neural network is technically defined as a universal function approximator. 
It has an architecture and a learning algorithm (of which there are several) to build up a finite 
base of examples. One of the interesting properties of these networks is their ability to self-
organize, which may lead us to change the way we think about cognitive models of learning, 
and enhance our ability to estimate mechanisms at the so-called microcognitive scale. . In this 
vein, we may note a set of connectionist models that address the process of learning of cognitive 
maps in the form of self-organizing maps (Kohonen, 1991), which not only allow self-
organization between the nodes of the graph to account for the topology between places in the 
surrounding space, but which can also incrementally increase the number of nodes and links 
according to the need for information processing (e.g., when new locations are discovered in 
the environment; Khamassi et al., 2006). Alexandre (2004) has proposed a clear synthesis of 
the possible correspondences between the mechanisms (supervised or unsupervised) and 
architectures (single- or multi-layer, unidirectional or recurrent) of formal and biological 
learning. 
While neural networks represent a remarkable step forward in our understanding of cognition, 
insofar as they present a vision of cognitive micro-computation that includes notions relating 
to distributed dynamics and the genesis/emergence of these dynamics, these abstract models 
have remained based on a profoundly associationist, internalist and representationalist 
conception of learning; the stable configurations (that may even be expressed in terms of energy 
functions) that result from learning are not seen as anything other than representations of events 
in the world. Neural networks are currently enjoying a new lease of life, as well as renewed 
popularity thanks to the recent success of deep learning – i.e., training a neural network with 
many hidden layers to solve statistical problems such as classification and regression on large 
amounts of data. This is yet another example of the statistical efficiency of self-organization 
and distributed dynamics. In addition to the initial neurobiological inspiration behind neural 
networks (formal neurons having originally been inspired by biological neurons and the 
strength of their synaptic interconnections) we	note	that	they	have	also	drawn a finer-grained 
inspiration from more complex mechanisms, such as convolutional networks (LeCun and 
Bengio, 1995). Convolutional networks integrate the results of parallel processing on a set of 
neurons so as to recognize perceptual patterns at different spatial and temporal scales. 

 
14 "Information processing is not described as algorithmic, but as a spread of activity through cortical areas leading 
to self-organization of highly distributed spatiotemporal patterns which represent the computational result." (Engel 
and König, 1993). 
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Developments such as these have played an important role in recent successes. Artificial deep 
neural networks are now being used to ascertain which of their computational mechanisms 
might help understand vision-related sequential processing (in particular, but not exclusively) 
in different brain areas (Yamins and DiCarlo, 2016). 
However, while some neural networks have fully acquired the status of applications in a number 
of industrial fields, and irrespective of their origin and their relevance to learning in a living 
cognitive agent, new areas of relevant research have continued to open up. These include 
neuroscientific work on synchronization phenomena in neural networks and on the modalities 
of extra-synaptic transmission by diffusion (cf. work on "gasnet", Husbands, Smith, Jakobi, and 
O’Shea, 1998), which seems especially relevant to the question of learning, insofar as the 
phenomena correlated with this type of transmission have long time constants. 
 
A provisional assessment and the beginnings of a self-organizing vision of learning 
Systems thinking, culminating in connectionism, has stressed the importance of understanding 
the dynamics of coupled elements. However, this thinking has remained representationalist and 
cephalocentric. A conceptual rejuvenation has been most noticeable at the crossroads of 
ecological approaches and the theory of non-linear dynamic systems applied to development 
sciences (Thelen and Smith, 1994). An important first point is that dynamics (and their 
modeling) cannot be limited to the organism, but must include the organism’s situation (both 
present and historical) together with all the components of that situation (environmental, social, 
and cultural). The causality of learning goes beyond the subject. A second point is that the 
dynamic linking the various elements requires the subject to be active in order to be stabilized 
from that subject’s perspective. And today, numerous scientific studies are attempting to 
characterize how a subject’s perceptual and cognitive invariants are constituted, which once 
again only makes sense if we consider the subject/world relationship. This relationship may or 
may not be technically instrumented. A third point is that the learning of these invariants 
mobilizes, in some cases, social and technical devices designed to make explicit the path to be 
taken. In this case, the distributed dimension of learning is multiplied tenfold (see the question 
of support systems, Bachimont, 2010), making the analysis of learning much more difficult, as 
shown by certain ethnological (Mondada, 2005) and anthropological (Bril and Roux, 2002) 
studies, for example. The introduction of non-linear dynamical systems theory into certain areas 
of the human sciences, particularly in the perceptual-motor development sciences (cf. the 
numerous important works of Thelen and his collaborators; Thelen and Smith, 1994), has 
profoundly influenced conceptions of ontogeny and learning. This approach is in line with the 
historical extension of Piagetian constructivism, which posits the origin of perception and 
cognition in the acted relationship to the world. From the outset, the organism is considered to 
be coupled with its environment; the characterization of the subject's behavior and of how this 
behavior changes draws on multiple elements that transcend the subject itself. All the elements 
are considered to be heterarchically coupled (in other words, no single element alone is the 
cause of the phenomenon, and the part played by different elements is subject to situation-
related weighting). The transformation of behavior is therefore not the result of a program or 
an environmental footprint, but of the self-organization (constraint emergence) inherent in the 
system's temporal deployment. What is more, mathematical models – most of them qualitative 
– have been produced to characterize the properties of the system's dynamics, in particular its 
non-linearities (bifurcations) and stability (attractors). One of the crucial contributions of this 
approach is that it posits variability as intrinsic, and considers regularities as the result of 
coupling history. Learning is conceived as a particular mode of transformation enabling living 
and thinking forms to construct new behaviors different from those defining the species' basic 
repertoire. In this definition, proposed by Kelso in 1995, learning implies the organism's active 
coupling with its environment and, at this level, takes up Wiener's hypothesis of global, not just 
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local, system change. In many situations, it is possible to show that the heterogeneity of initial 
dynamics gives way to a gradual convergence towards the coupling strategy that appears 
optimal (Haken, Kelso and Bunz, 1985; Thelen, Corbetta and Kamm, 1993). This has led this 
tradition to consider ontogeny and learning as part of selectionist processes, which can be traced 
at the biological level and modeled (e.g., Sporns, Tononi and Edelman, 2000 or the work of the 
"Epigenetic Robotics" community on this subject). One of the questions that remains open in 
this approach is the question of the direction (and motivation) of behavioral transformation. 
How can we account, in a physicalist approach of this kind, for the desire to learn and the choice 
(preference, direction) of what is learned? 
To begin addressing this question, we note that in almost all the computational approaches to 
learning that we know of, whether in artificial intelligence, robotics (including 
epigenetic/developmental robotics), or computational neuroscience, the repertoire of actions is 
fixed. In other words, the modeler chooses in advance which actions will have relevance for an 
agent seeking to accomplish a task, and it remains for the agent to learn what the values of these 
actions are in different states of the task, i.e., to learn how to select the relevant actions. In some 
models there is a dynamic, incremental repertoire of states to represent the different parts of the 
task (Khamassi et al., 2006; Redish 2007), which is already less constrained by the a priori 
knowledge included by the modeler. But most of the time, there is no possibility of discovering 
new actions. There is therefore still much room for exploration in regard to finding efficient 
computational mechanisms for the discovery of new actions, and investigating to what extent 
these mechanisms might account for the discovering of new actions in living organisms. It is 
interesting to note that the epigenetic robotics community has recently begun to propose 
representation redescription mechanisms, whereby events experienced by an agent executing a 
task are mentally re-simulated and analyzed as a means of identifying possible representations 
of states and actions to best explain the dynamics of the events observed during the task 
(Doncieux et al., 2018). 
 

VIII. Learning as the constitution of a plastic and specific structure of anticipation 

Inspired by the dynamicist tradition, a number of research groups have been attempting in 
recent years to develop a "genetic constructivist" approach that would represent a decisive shift 
in what has up to now been an informational, computational and internalist conception of 
cognitive experience. Proponents of the enactive approach, which is sometimes qualified as 
non-representational, do not see cognition as resulting from internal mechanisms that 
reconstitute the world on the basis of one or more sensory channels. Rather, their objective is 
identifying the minimal structural and functional conditions required for the formation of an 
experience likely to enable the deployment of autonomous, adapted and effective behavior. 
Moreover, seen through the enactive lens, it is the very functioning of an agent that contributes 
to that agent’s own transformation. This is a spiral, rather than circular, conception of cognitive 
functioning, the elementary form of which, in this case, is the sensory-motor15, or rather, moto-
sensory loop. Varela (1989, p.199) proposes the concept of coupling by closure16, which 
"consists in thinking that the nervous system is defined essentially by its various modes of 
internal coherence, which derive from its interconnectivity." Signals from the various neural 

 
15 While a number of theoretical frameworks highlight the constitutive role of movement, the developmental or 
ontogenetic dimension is rarely addressed. There are, however notable exceptions, such as Piagetian theory, and 
Maturana and Varela's autopoiesis-enaction theory. 
16 It will be remarked that "closure" is not the same as "closed". Here we are talking about open, organizationally 
closed systems. It is a concept is very close, at least in spirit, to several others, such as schema (Piaget), functional 
circles (Von Uexhüll), dynamic invariant (Thelen), and transductive relation (Simondon). 
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circuits (retina, cochlea, neuromuscular spindles, semicircular canals, olfactory receptors, etc.) 
induce organizational disturbances of varying amplitude. This brings us to our final definition: 
 
Learning definition #5: Learning consists in organizing the succession of actions in relation 
to a new coherence of reafferent signals. 
 
In other words, learning is a mechanism for building up a structure of anticipation, leading to a 
transformation and enrichment of the learner system's own behaviors. A substantial body of 
existing research makes it possible to specify the modalities of this mechanism through 
modeling (e.g. Philipona, O'Regan and Nadal, 2003; Stewart and Gapenne, 2004) and 
experimentation (e.g. Lenay and Stewart, 2012; Roy et al., 2019). 
Against this background we also note the emergence of new approaches in computational 
modeling, such as "radical interactionism", whose originality lies in the reformulation of the 
"observation/action" model of the reinforcement learning theory (described above) into an 
"experience/result" model (also called “interaction”; Gay et al., 2017). The objective is then to 
endow an agent with the ability to construct variables estimating spatiotemporal regularities 
relative to the context, enabling it to predict, based on limited sensory feedback, which 
interactions with the environment are possible, so as to better enable learning that furthers the 
agent’s intrinsic motivations. The model considers perception and action to be inseparable, 
forming a sensorimotor schema. The work undertaken to date with this model has sought in 
particular to identify ways in which the contextual part of these sensorimotor schemas may be 
enriched through the learning of associations between spatio-temporal regularities, and the 
construction of structures characterizing near (peri-personal) and far (extra-personal action) 
space, by means of a spatial memory capable of processing interactions. 
 
Hypothesis 
Let us now try to clarify matters. Our hypothesis in this enactive framework is that the particular 
nature of learning lies in the nature of the feedback (or feedbacks) that guide action, allowing 
anticipation to be created, and enabling a novel mode of control, known as prospective control, 
within the feedback-action coupling. By prospective control we mean the idea of temporal 
extension of a self-organizing, metastable process (in the sense of Simondon, 2005). This 
presupposes tolerance of future functional uncertainties (the principle of functional non-
univocity), which in turn presupposes a certain structural plasticity such that conflicts within 
the feedback-action coupling can be resolved. Although we must act in order to learn, not all 
actions give rise to learning, since not all reafferences of action have the potential to reconfigure 
the organization of the unfolding structure. In the enactive approach, reafferences essentially 
have the status of disturbances17 that modulate bodily dynamics and which are able to exercise 
control over those bodily dynamics only when they acquire the status of constraints. 
Reafferences are not defined as informational inputs or outputs. Thus, our enactive definition 
of learning is in a sense compatible with von Foerster's (1969) vision of recursivity, which 
posits that memory is a memory without explicit information storage, insofar as the dynamic or 
operation carries the entirety of its history at all times. 
 
Reflexive loop 

 
17 Simondon (2005) points out that stimulation is what enables a being to initiate the transition from the potential 
dynamic state to the "actual" state of accumulated energy. He also points out that stimulation can only be effective 
if it encounters a being in an unstable state. 
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To this definition, which is rooted in the biological and moto-sensory organization of a living 
agent, we need to add an element to account for the precondition that the subject "knows" that 
it is learning in order to learn, in other words, that it experiences its own transformation. The 
aim here is to characterize the more specifically human dimension of learning, using the same 
level logic as for language 1 and 2 (communication versus narrative) or consciousness 1 and 2 
(direct versus reflexive): what would “learning 2” be like? Adopting a dynamicist perspective, 
seeking to specify the nature of the variables (control parameters) that constrain and empower 
dynamics, we still need to understand how the subject (organism or system) apprehends through 
its actions the elements that will enable the reorganization of its behavior. One solution would 
be to introduce a reflexive loop that would enable the subject to self-assess (even implicitly) 
and to know (or, more simply, feel) whether and how it is changing. This would have the merit 
of corresponding to a certain supposed or observed phenomenology (reminiscent of Kamin's 
(1969) retrospective contemplation mentioned earlier), but it entails the classic risk of tangling 
different levels of experience. As Rosenthal (2004) reminds us, the stumbling block of classical 
approaches to learning is encapsulated in a paradox voiced in Plato’s Socratic dialogue Meno: 
learners do not know what they need to know. And even where they acquire initially unknown 
knowledge, how can they know that it is what they need? Here we have the problem of the 
orientation of the learning mechanism and the evaluation of transformative pathways. There are 
two possible, complementary solutions to this apparent paradox: the first is to consider that 
there is a morphogenetic orientation intrinsic to dynamics, and that any schema can become 
anticipatory once it has been constructed through the deployment of what Piaget calls 
extrapolation and recurrence (1967, p.188-189). In the latter case, the anticipatory structure 
unfolds in both directions of time, relative to the temporal core constituted by the primary 
pattern. This first solution can be supplemented by a second one, which considers the question 
of help (Gapenne, 2006) and thus the technical, social and cultural dimensions of learning; the 
second solution can overcome this paradox, but only from a certain point of view, since, 
ultimately, learning must be assumed and experienced by the learner itself. These two solutions 
lead us briefly to the social aspects of learning, including its socio-technical components. 
 
Learning, development and socio-technical environment 
This is precisely what was at the heart of the Vygotskian approach. One of Vygotsky's (1985) 
preoccupations was to define learning and development as two clearly distinct but not 
independent mechanisms; for him, their dependent relationship operates as a basis for 
ontogenetic development by learning, as a relationship to tools and to other learners18. A first 
element of differentiation is to consider that learning can take place on a variety of time scales, 
which can be temporally circumscribed and included in the vital cycle that constitutes the time 
scale of development, which, for its part, nevertheless presents non-linearities. Moreover, 
although people today often talk about lifelong learning, we should not confuse this with 
development. Learning does not always succeed (contrasting with the robustness of the living 
ontogenetic process), and it requires an effort and a commitment (different from a living being’s 
commitment to its own survival). Human beings are embroiled in the vital cycle and assume 

 
18 Yvon and Clot (2003) point out that at least three others aspects have been highlighted, namely independence, 
identity, and symmetrical dependence. As our position is to define learning as a specific relational (or coupling) 
mode, distinct from the more elementary modes of relationship specific to living beings, we propose considering 
learning and development as two distinct mechanisms, functionally interdependent and therefore influencing each 
other. This position was elaborated in the Gestalt tradition, in particular by Kofka. Kelso (1995) takes a similar 
stance when he writes "People enter the learning situation with a certain degree of pre-organization that 
constraints the form that learning takes (p.184)". The dynamics of this pre-organization obviously have their own 
survival constraints. 
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their permanent transformation; but they also have the opportunity, also permanent, to organize 
their transformation. Perception serves as good example of this. As Eleonor Gibson (1969) 
reminds us, situations in which perceptual learning occurs even in adult subjects are very 
frequent, and indicate that perception can be constructed at any age, provided that the conditions 
of biological plasticity and commitment allow it. However, certain situations show that 
perceptual learning is not always possible. One example is the inability of certain species 
(including chickens and toads) to adapt to a prismatic deviation. Hatwell (1966) and Jeannerod 
(1975) note that it is very rare that congenitally blind people are able to attain a full visual 
experience following surgery. Vision generally remains very limited19, to such an extent that 
those concerned often decide to forego this learning opportunity. It would appear that a set of 
very favorable conditions is required for learning to take place (motivation, social support, 
education). From this point of view, Vygotsky's work on the proximal zone of development, a 
notion taken up by Bruner in the concept of scaffolding, strongly supports the importance of 
the social in the individual dynamic of learning. 
An important area of study that is contributing to our understanding of the situated, distributed 
and socialized approach to learning is examining how specialized technical skills such as 
turning or stone-cutting, and also certain domestic skills, are learned. Bril and Roux (2002), for 
example, showed that the way in which a social "calendar" of apprenticeships is created, the 
way in which technical gestures themselves are learned, and the way in which these things are 
brought to bear on the economic life of the community, have structural aspects in common. In 
addition – and this is a crucial point – at the heart of this kind of system of learning is a 
relationship between the learner and the teacher, which can be described as helping, and which 
mobilizes many of the mechanisms at play in scaffolding situations. This has clear echoes of 
the notion of the zone of proximal development, mentioned above. And going beyond the 
teacher, it is the co-presence of learners and "experts" (learning often takes place in workshops) 
that needs to be considered. We expect this relatively recent intellectual current to be reflected 
in the scientific orientation of future work on learning, with researchers looking beyond the 
subject and considering learning in its instrumental but also and above all social dimension. 
Computational neuroscience has recently turned its attention to what are, for the moment, very 
simple dimensions of social cognition, seeking to integrate these dimensions with the already 
well-known mechanisms of reinforcement learning in non-social contexts. The laboratory tasks 
implemented often involve the presence of an acting conspecific, which must be directly taken 
into account by the learning agent, in the sense of an imitation that adds to the classical variables 
of reinforcement learning models (Burke et al., 2010). While these approaches need to be 
developed further to provide a better understanding of the complexity of possible teacher-
learner relationships in settings that are more ecological than that of the laboratory, we remark 
that this work appears to have already identified, in certain parts of the prefrontal cortex, a 
degree of reuse of some of the reinforcement learning mechanisms usually used for non-social 
contexts, and here extended to the learning of the trust that can be attributed to this or that 
agent/teacher (Behrens et al., 2009). 
 

IX. Conclusion 

 
19 Where the operation is not done during the first two or three years of life, amblyopic vision would appear to be 
the maximum possible visual attainment. Post-operative phenomena such as nystagmus and painful glare may 
persist and impair learning. 
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We have seen that the quest to understand the learning process scientifically is a recent 
undertaking, which essentially began with the work of Ivan Pavlov in the early 20th century. 
The way that thinking about learning subsequently evolved may be condensed into a handful 
of succinct definitions, corresponding to the great meta-theoretical frameworks of 
associationism, computationism, emergentism and constructivism, of which the enactive 
approach is a particular form, doubly heir to Piagetian work and the phenomenological tradition 
in philosophy and psychology. Perhaps more noticeably than research into other so-called 
cognitive phenomena, research into learning is above all based on biological considerations. 
And, as is often the case in cognitive science and technology, computational and, to some 
extent, emergent approaches have provided formal and algorithmic tools for simulating learning 
behaviors. However, this behavioral mimicry says nothing about the difference in the material 
realizations of learning in these two types of beings, living and computational, and, moreover, 
says nothing about the necessary distinction between ontogeny and learning. And although 
some researchers in these fields have sought to base the operation and the constraints of their 
artificial entities on those of natural systems, in so doing they have generally seen living 
systems as producing coupling by input in accordance with Varela’s hypothesis that "the 
nervous system functions on the basis of the informative content of instruction from the 
environment, and it functions by elaborating an operational representation of this 
environment." (Varela, 1989, p.199). 
On the strength of the various considerations that we have outlined above, we are inclined to 
give a positive answer to the question formulated in the title of this article, and to acknowledge 
that the enactive approach does indeed provide the framework for a new definition of learning. 
After the "prediction-association", "acquisition-representation" and "emergence-auto-
organization" pairs, a pair linking "anticipation and autonomy" (and implying a coupling by 
closure) seems to us to be an appropriate scientific focal point for extending the enactive 
approach to learning and initiating new computational modeling. 
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