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Infologic R&D, 26500 Bourg-Les-Valence, France
mka@infologic.fr

Abstract. Data lakes are widely used to store extensive and heteroge-
neous datasets for advanced analytics. However, the unstructured nature
of data in these repositories introduces complexities in exploiting them
and extracting meaningful insights. This motivates the need of exploring
efficient approaches for consolidating data lakes and deriving a common
and unified schema. This paper introduces a practical data visualiza-
tion and analysis approach rooted in Formal Concept Analysis (FCA)
to systematically clean, organize, and design data structures within a
data lake. We explore diverse data structures stored in our data lake at
Infologic, including InfluxDB measurements and Elasticsearch indexes,
aiming to derive conventions for a more accessible data model. Lever-
aging FCA, we represent data structures as objects, analyze the con-
cept lattice, and present two strategies—top-down and bottom-up—to
unify these structures and establish a common schema. Our methodology
yields significant results, enabling the identification of common concepts
in the data structures, such as “resources” along with their underlying
shared fields (timestamp, type, usedRatio, etc.). Moreover, the number
of distinct data structure field names is reduced by 54% (from 190 to 88)
in the studied subset of our data lake. We achieve a complete coverage
of 80% of data structures with only 34 distinct field names, a significant
improvement from the initial 121 field names that were needed to reach
such coverage. The paper provides insights into the Infologic ecosystem,
problem formulation, exploration strategies, and presents both qualita-
tive and quantitative results. The source code and datasets of this work
are made available: https://zenodo.org/records/10589722

Keywords: Formal Concepts Analysis - Data Lakes - Data Engineering.

1 Introduction

Organizations increasingly rely on data lakes [25] as versatile repositories to store
vast and heterogeneous datasets for advanced analytics. The flexibility and scala-
bility offered by data lakes have positioned them as a bedrock for managing mas-
sive volumes of raw, unstructured, and heterogeneous data. As defined in [17], a
data lake is a massive collection of datasets that: (1) may be hosted in different
storage systems; (2) may vary in their formats; (3) may not be accompanied by
any useful metadata or may use different formats to describe their metadata; and
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(4) may change autonomously over time. At Infologic [5], our data lake serves as
a key component in the scope of our predictive maintenance system [9], enabling
seamless aggregation of continuously collected data from diverse sources at a
low cost. New data collections can be easily added to the data lake by different
teams, without the need of defining a priori the data schema. Nevertheless, the
unstructured and heterogeneous nature of the data stored in data lakes poses a
significant challenge, hindering the full exploitation of their inherent value [17].
It becomes difficult to have a clear understanding of the content of the data and
to implement data pipelines that generalize well. Furthermore, executing some
common analytics operations between data structures, such as merges and joins,
becomes cumbersome, as these structures may use different names for the same
fields. Particularly at Infologic, we were using two storage systems, InfluxDB [4]
and Elasticsearch [3], each adhering to distinct conventions. This combination of
two storage systems were motivated by the effectiveness of InfluxDB in handling
metrics and time series, while Elasticsearch is more efficient as a search engine,
especially in textual data and JSON documents.

We aim to explore the data structures within our data lake, and extract a set
of conventions to consolidate our data model. The data structures under exami-
nation include the schemas of InfluxDB measurements and Elasticsearch indexes.
Deriving a common schema is a problem that has interested many practitioners.
Notably, the Elasticsearch community has proposed the ECS [2] (Elastic Com-
mon Schema) to define a common set of fields to be used when storing events
data in Elasticsearch. The Common Event Format [7] (CEF) has been designed
to propose standard naming conventions for logs in network and security devices
and computer systems. Inspired by these well-established standards, we seek to
derive a tailored data model that not only aligns with industry practices, but
also accommodates the specificities of our business at Infologic. Such specifici-
ties concern the architecture that governs our Copilote ERP software, as well as
conventions that are already followed in the Relational database that is used to
store Copilote critical business data.

This paper addresses this challenge through a comprehensive exploration of
a novel approach grounded in Formal Concept Analysis (FCA) [12,[27], aimed
at systematically cleaning, structuring, and designing the data within our data
lake. We perform interactive data analysis, leveraging the concept lattice as a
central tool. FCA has been exploited to address various challenges in both soft-
ware engineering and data engineering, such as mining functional dependencies
for SQL data refractoring [8l/15], creating and merging of ontology top-levels [13],
and fault localization in software [10]. However, our paper represents the first
attempt to employ the concept lattice as a visual tool for consolidating struc-
tures in data lakes. We represent data structures, including tables, measure-
ments, and indexes, as objects within a formal context. Each of these objects
is described by Boolean attributes that indicate whether a field is present in
the related data structure. Subsequently, we derive and analyze the concept lat-
tice from this formal context. In our exploration of this lattice, we present two
distinct strategies—top-down and bottom-up—that leverage visual insights to
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Fig. 1: Simplified architecture of predictive maintenance at Infologic [9].

unify field names and establish a common schema. Our methodology yields sig-
nificant results, enabling the identification and unification of common concepts
in the data structures, such as “resources” along with their underlying shared
fields (timestamp, type, usedRatio, etc.). Moreover, the number of data struc-
ture field names is reduced by 54%, from 190 to 88 in a subset of our data lake.
We achieve a complete coverage of 80% of data structures in this subset with
only 34 distinct field names, a significant improvement from the initial 121 field
names that were needed to reach such coverage.

Outline. Section [2| provides an overview of Infologic and its ERP software,
Copilote, accompanied by a description of our data lake that is used to store
predictive maintenance data. Section [3| formulates the studied dataset and prob-
lem within the FCA framework, and describes the generation of the concept
lattice by illustrating the process with a toy example. In Section [4] we show the
used strategies to explore the concept lattice and derive insights that guide us in
building our data model. Section [5| approaches the final results from a qualita-
tive and quantitative points of view. Section [6] provides a conclusion and future
avenues.

2 Background

2.1 Infologic

Infologic [5] is a leading provider of enterprise resource planning (ERP) solutions
for the agri-food, health nutrition, and cosmetic sectors in France. Its flagship
product, Copilote, is an ERP software designed to optimize and automate a
large panel of business processes, including sales tracking, supply chain and cus-
tomer relationship management. INFOLOGIC provides maintenance of the ERP
instances and infrastructure in operation for its clients. As the proper functioning
of their businesses depends heavily on the reliable performance and accessibility
of the ERP, it is crucial to ensure high availability and excellent maintenance
for Copilote. To this aim, Infologic has made substantial investments in a pre-
dictive maintenance project [9,(19H23]. In [9], the architecture of this project
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Fig. 2: Data structures stored in our data lake and studied in this paper.

has been presented, and its key components have been described in details. Fig-
ure (1] provides a simplified overview of this architecture. One of the foundational
components of this project is the data lake, or its broader iteration, the data
lake-house , incorporating data warehousing features @

2.2 Data lake

During the period of our study, the primary components of our data lake com-
prised InfluxDB [4] and Elasticsearch , serving as repositories for the contin-
uous collection and storage of diverse datasets. In Figure [2] we present a subset
of data structures contained in our data lake, which constitutes the focus of
our analysis. This figure depicts our data as a hierarchy whose leaves represent
specific data structures, such as Machine, Tomcat, Storage, among others. The
internal nodes in the figure denote cohesive groups of structures belonging to
distinct domains. For instance, Lucene forms a group encompassing four In-
fluxDB tables (measurements) designed for storing Lucene monitoring data ,
including PausedIndex, WaitingDoc, CurrentJob, and IndexSize. Time series
data were stored in InfluxDB, whereas Elasticsearch was dedicated to textual
data and JSON documents. The examined subset comprises 32 data structures
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Table 1: Toy example of data structures with their underlying fields.

G (structures)||time|timestamp |used |max |path name|serviceName|duration
Storage X X | X X
DBTablespace || x X X X
ServiceCall X X X X

(InfluxDB measurements and Elasticsearch indexes) utilizing 190 distinct field
names. Some of these names are used in several data structures.

3 Problem Formulation

3.1 Data model with FCA

We formalize the dataset describing our data structures based on Formal Con-
cept Analysis (FCA) [12,[27]. We define the formal context [12] as a triple
K = (G, M,T) comprising two sets G and M and an incidence relation Z be-
tween G and M. Elements of G are called objects, and elements of M are called
attributes. To signify that an object g € G has an attribute m € M, we use the
notation gZm. Table 1| reports a formal context (G, M,Z) where objects in G
represent data structures from the data lake, and attributes in M denote fields
within these data structures. The incidence relation Z is visually depicted by
crosses in the table, and it represents the fact that a data structure contains a
field. For instance, we have “Storage T used” that can be read as: “the Storage
data structure contains the field used”. In total, the data structure Storage is
characterized by the following fields: time, used, mazx, path. Notably, some fields
in data structures of Table [I|] convey similar meanings but are designated by dis-
tinct names, such as time and timestamp, or service Name and name. The goal
of our study is to analyze a comprehensive set of data structures, and identify
groups of akin field names that manifest recurrently and signify the same un-
derlying notion. Subsequently, we aim to generalize these field names uniformly,
establishing a cohesive and unified schema.

Two fundamental operators, namely extent and intent, are defined on a for-
mal context K = (G, M, 7). The extent operator, denoted ext, associates to each
subset of attributes B C M the set of objects g € G possessing all attributes in
B, that is, ext(B) = {g € G | (Ym € B) gZm}. Dually, the intent operator, de-
noted int, associates to each subset of objects A C G the set of attributes m € M
shared among the objects in A, that is, int(A) = {m e M | (Vg € A) gZm}. Tt
is noteworthy that, for B C M and A C G, the following relationships hold:
ext(B) = ,,ep ext({m}) and int(A) =, c 4 int({g}). A key theorem in FCA
(Proposition 10 in [12]) is:

Theorem 1. The pair of functions (ext,int) form a Galois connection between
the power set lattices (29,C) and (2M,C). That is, ext o int and int o ext are
closure operators on (29,C) and, (2™, C) respectively.
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Fig. 3: The concept lattice before and after unifying fields from Table

Following this theorem, we can build a concept lattice (B (K), <). Elements of
9B (K) are formal concepts and are of the form (A4, B) € 29 x2M with A = ext(B)
and B = int(A). In Table[l] ext({time, used, maz}) = {Storage, DBT ablespace},
meaning that objects possessing the fields time, used, and max are Storage and
DBTablespace. Dually, int({Storage, DBTablespace}) = {time,used, maz},
indicating that the common fields between Storage and D BT ablespace are time,
used, and mazx. Since int(ext({time, used, maz})) = {time, used, mazx}, the pair
({Storage, DBTablespace}, {time, used, max}) is a formal concept.

3.2 Concept lattice

We construct the concept lattice (B(K), <) from our formal context K. Vari-
ous tools can be used to visualize the concept lattice given any formal context
stored in some specific format [24], such as a CSV file. In our study, Concept
Explorer |1] was utilized for this purpose. Figure 3| (a) shows the concept lattice
generated from the toy dataset in Table [1l Each node of this lattice represents
a formal concept (A, B) € 29 x 2™ such that A = ext(B) and B = int(A).
For example, the right child of the root corresponds to the formal concept
({Storage, DBTablespace}, {time, used, max}). Subsequently, the right child of
the latter formal concept is ({Storage}, {time,used, max, path}), which is a for-
mal concept covering only the object (data structure) Storage. Using such data
visualization, our aim is to analyze concepts in order to derive relevant unifica-
tion of fields and structures. In the toy dataset, we can unify the field names
time and timestamp, renaming both as time. We can also consolidate the field
names serviceName, name, and path into a unified label, such as name. These
transformations result in the unified field names ascending in the direction of
the top of the lattice. Figure (3| (b) illustrates the final lattice after applying
these transformations on the toy formal context of Table[I} The two fields name
and time have ascended to the root of the lattice since they are covered by all
the objects Storage, DBTablespace, and ServiceCall. An alternative method
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Fig. 4: Concept lattice depicting data structures within our data lake. The objects
(data structures) are indicated in the lattice.

to consolidate the data model is to exploit association rules derived from the
formal context. However, we believe that the visual exploitation of the lattice is
easier for FCA non-practitioners. We show in Section {4 that extracting relevant
insights is simplified when viewing the concept lattice.

4 Exploiting the Concept Lattice

4.1 Analyzing the initial lattice

We generate the concept lattice from the dataset depicted in Figure [2 com-
prising 32 objects (data structures) and 191 attributes (field names). Figure
presents the complete lattice, highlighting the objects associated with each for-
mal concept, while Figure [f] displays the attributes within each concept. The
root represents the formal concept that covers all the objects of the dataset.
Since there is no field name that is present in all the data structures, the root
node in Figure [5| has an empty intent. Below the root node, we observe a few
nodes that sit in this second level of the lattice, such as the concept with the
intent {instanceType, instanceCode, time}. This concept reflects a set of field
names that are present in every data structure of InfluxDB, but they are not
used in Elasticsearch. Other examples of concepts as children of the root include
those with the intent {rank} and {user}. In Figure 4, we notice that nearly all
objects (data structures) reside in the penultimate level. Notably, this lattice
exhibits a small height and a large width due to the limited number of common
field names between data structures, attributed to the absence of a standardized
naming convention. Consequently, there is a limited number of internal formal
concepts representing shared attributes. This lattice serves as the basis for our
analysis, where we explore two distinct data analysis approaches outlined in this
section: the top-down approach and the bottom-up approach.
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Fig.5: Concept lattice depicting data structures within our data lake. The at-
tributes (field names) are indicated in the lattice.

4.2 The top-down approach

This approach consists in starting from the root (the top-node) of the hierarchy
and find akin field names that can be unified. In this section, we illustrate this
top-down approach with two interesting findings that were made possible thanks
to this data exploration.

Unifying generic fields from InfluxDB and Elasticsearch. As depicted
in Figure @] (a), the concept lattice visualization provides a clear view of the
root having two children covered by similar sets of fields. The first group, com-
prising {typelnstance, codeInstance, Qtimestamp}, is uniformly present in all
data structures stored in Elasticsearch. Here, typelnstance signifies the Copilote
ERP instance type (production, test, development, deployment), instanceCode
is a unique identifier for Copilote instances, and Qtimestamp denotes the cre-
ation time of the collected event or metric. Simultaneously, the second group
{instanceType, instanceCode, time} is utilized across all InfluxDB measure-
ments. These two groups have been consolidated into the unified field names
{timestamp, instanceType, instanceCode}. As shown in Figure@ (b), this group
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Fig. 6: Top-down approach. Unifying generic fields from InfluxDB and Elastic-
search.
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Fig. 7: Top-down approach. Unifying user fields.

has ascended to the root of the lattice, since it is covered by all our data struc-
tures (all the objects of the formal context).

Unifying the wuser field. Another compelling application of the top-down
approach involves the consolidation of the field describing the user identifier, as
illustrated in Figure[7| (a). Initially, we observed distinct field names referencing
the user identifier, namely usr, user, and username. Each of them is covered
by several data structures, which makes them visible in the upper layers of the
lattice. We have unified these identifiers under a standardized field name, user,
as depicted in Figure[7] (b).

4.3 The bottom-up approach

Another method to exploit concept lattice visualization is to inspect the bottom
layers to discern a substantial set of distinct fields that are used in a relatively
limited set of data structures but represent the same notion. Unlike the top-down
approach, which unifies groups of fields already used in many data structures,
the bottom-up approach has another focus. It targets the unification of fields
generally employed in unique data structures and, consequently, found only in
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Fig. 9: Bottom-up approach. Unifying type fields.

the last layers of the lattice. We illustrate with three noteworthy results that
have been discovered through this methodology.

Unifying the code attribute. By examining data structures in the last layer,
we observe that many of them have a field dedicated to storing the name of a
component monitored by the respective data structure. Figure [§| (a) illustrates
this observation with five data structures. For instance, storageName denotes
the name of the storage space monitored by metrics such as maxSpace and
availableSpace. Similarly, nameGC' represents the name of the Java Garbage
Collector under surveillance, for which the number of executions (callsNb) is
logged. We have unified these fields under the same name, code, which sub-
sequently ascended to a position beneath the root of the lattice, as shown in

Figure [§] (b).
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Fig. 10: Bottom-up approach. Unifying resources fields in a Resource table.

Unifying the type attribute. An information that is present in a wide range
of data structures is the type of the component described by the data. Fig-
ure|§| (a) showcases five selected examples of such fields: statType, type, typRAZ,
typTrace, auditType. As reported in Figure |§| (b), all of these fields have been
consolidated under the same name: type.

Unifying the Resource table. In Figure[10] we report a specific optimization
of data model. We show two data structures that describe resource utilization
of the machine hosting the ERP, as well as its JVM. For example, swapU sed
indicates the used swap in bytes, swapM ax indicates the limit of the swap size,
while swapU sedRatio indicates the proportion of the used swap. Similar fields
exist to describe other resources, such as RAM, Java heap space, Java non heap
space, and more. We have consolidated these fields into a new data structure
named Resources. Within this structure, the type field indicates the resource
being monitored (e.g., “swap”, “ram”, “heap”). Subsequently, the utilization of
the resource indicated in the type field is described by three generic fields: used,
max, and usedRatio. Figure 10| (b) reveals that all of these fields have ascended
to the upper layers of the lattice, consequently elevating the entire Resources
structure within the lattice.

5 Results

In this section, we begin by reporting and analyzing the final lattice derived from
the dataset after performing our data structure consolidation. We highlight the
distinctions between this final lattice and the one generated from the original
dataset. Then, we perform a quantitative study to analyze the distribution of
field names, their coverage of the data structures, and measure the improvement
achieved from this perspective.
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Fig. 11: The concept lattice of our data structures after consolidating field names.
The objects (data structures) are indicated in the lattice.

5.1 Final lattice

Figure [11] illustrates the concept lattice generated from the final dataset after
applying all the transformations related to the proposed data model. The illus-
tration also includes the objects associated to each of the formal concepts rep-
resented in the lattice. Some data structures have moved upward in the lattice,
as they use only common fields without any specific field names. For example,
Resource emerges as one of the most generic data structures, positioned at one of
the initial layers of the lattice. Figure[I2] presents the same lattice but with a view
on field names (attributes of the formal context). Three field names appear in
the root of the lattice—timestamp, instancelype, and instanceCode—as they
are covered by all the data structures. In the second layer, we find generic fields
such as user, type, duration, code, used. Notably, the concept covered by used
represents resources whose consumption is measurable, and the field used is em-
ployed to store the quantity of utilization of the related resource. For example,
if the resource is the swap memory, used indicates the number of bytes con-
sumed by the swap. Furthermore, the concept covered by used has a child that
is extended with the fields max and usedRatio, to represent resources whose
capacity is limited and known. Another interesting observation in the lattice
is that, while duration sits in the second layer, the fields startTimestamp and
endTimestamp are separated in other concepts that come lower in the lattice. A
possible further consolidation of our model is to add the fields startTimestamp
and endTimestamp to all the “events” data structures that are described by
a duration. This would unify the three fields duration, startTimestamp and
endTimestamp in a same formal concept. Following our data structure consoli-
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Fig. 12: The concept lattice of our data structures after consolidating field names.
The attributes (field names) are indicated in the lattice.

dation, the number of distinct field names has decreased from 190 to 88. However,
the number of formal concepts has increased from 44 to 72, due to more sets
of fields common between data structures. Consequently, the lattice height has
increased from initially 4 to 6 after performing the data structure consolidation.

5.2 Analyzing the number of attributes

Our objective is to assess the extent of data structures coverage by the new
fields names, and compare it with their coverage before applying our transfor-
mations. To achieve this, we sort the field names in descending order based on
the frequency of their utilization in data structures. Subsequently, we measure
the proportion of completely covered data structures by a given number of top
fields ranked with respect to their utilization frequency. Figure reports the
results. In the final context, we achieve a coverage of 75% of data structures
with 25 field names, marking a significant improvement compared to the initial
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Fig. 13: Covered data structures given the number of top field names used.

dataset where the same number of field names covered less than 50% of the data
structures. Moreover, we can cover the entire dataset with 88 field names instead
of original 190 field names, reducing them by 54%.

6 Conclusion

In conclusion, our application of Formal Concept Analysis (FCA) to the explo-
ration of data lake structures at Infologic has proven highly effective. By system-
atically analyzing diverse data structures and leveraging FCA’s concept lattice,
we successfully reduced the number of distinct attributes by 54%, from 190 to
88, and covered 80% of data structures with only 34 distinct field names. This
approach not only addresses specific challenges at Infologic, but also provides a
valuable framework for organizations navigating the complexities of data lakes.
We believe that concept lattices are effective visual tools that are accessible even
to individuals who are not data analysis experts. They can read and understand
the presented concepts and make informed decisions accordingly. Moving for-
ward, the insights gained pave the way for a cleaner and a more exploitable
data lake. Moreover, the resulting unified schema can serve as a model for our
Electronic Data Interchange (EDI [18]) module, a generic Copilote component
serving as an interface for the exchange of data between Copilote instances and
other systems. As a part of future work, a promising avenue is to incorporate
advanced tools to enhance and automate our manual data analysis methods used
in this paper. Integrating Natural Language Processing (NLP) and graph min-
ing techniques will empower us to identify groups of similar fields, enabling the
mapping of disparate fields to a unified name. Additionally, leveraging analogy-
based reasoning will assist in identifying corresponding fields across different
tables. For example, the following analogy would make it possible to unify the
fields @ and b: “the field a is to the table A as the field b is to the table B”.
Thanks to these techniques, our approach would be able to scale to larger data
lakes with a higher number of data structures to consolidate. Another possibility
to improve the scalability of our approach is to exploit AOC-posets [11], which
are smaller and more concise subsets of concept lattices.
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