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Abstract
We consider the notion of probabilistic applicative bisimilarity (PAB), recently introduced as a
behavioural equivalence over a probabilistic extension of the untyped λ-calculus. Alberti, Dal Lago
and Sangiorgi have shown that PAB is not fully abstract with respect to the context equivalence
induced by the lazy call-by-name evaluation strategy. We prove that extending this calculus with
a let-in operator allows for achieving the full abstraction. In particular, we recall Larsen and
Skou’s testing language, which is known to correspond with PAB, and we prove that every test is
representable by a context of our calculus.
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1 Introduction

We consider the probabilistic extension Λ⊕ of the untyped λ-calculus, obtained by adding a
probabilistic choice primitive M ⊕N representing a term evaluating to M or N with equal
probability. This calculus provides a useful although quite simple framework for importing
tools and results from the standard theory of the λ-calculus to probabilistic programming.

As well-known, the choice of an evaluation strategy for Λ⊕ plays a crucial role, even for
strongly normalising terms. Consider a function λx.F applied to a probabilistic term M ⊕N :
if we adopt a call-by-name policy, cbn by short, the whole term M ⊕N would be passed to
the calling parameter x before actually performing the choice between M and N , while in
a call-by-value strategy, cbv by short, we first chose between M and N and then pass the
value associated with this choice to x. If the evaluation of F calls n times the parameter
x, then the cbn strategy performs n independent choices between M and N , while the cbv
strategy copies n times the result of one single choice. In linear logic semantics [11], this
phenomenon can be described by precising that the application is a bilinear function in cbv
(so (λx.F )(M ⊕N) is equivalent to ((λx.F )M)⊕ ((λx.F )N)), while it is not linear in the
argument position in cbn (see discussion at Example 3).

In probabilistic programming it is worthwhile to have a cbv operator even in a cbn
language, as the most of the randomised algorithms need to sample from a distribution
and passing to a sub-procedure the value of this sample rather than the whole distribution.
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26:2 Λ⊕ with Let-In Operator

Consider for example the randomised quicksort: this algorithm takes a pivot randomly
from an array and it passes it to the partitioning procedure, which uses this pivot several
times. The algorithm would be unsound if we allow to make different choices each time the
partitioning procedure calls for the same pivot. In [10] the authors enrich the cbn probabilistic
PCF with a let-in operator, restricted to the ground values, so that let x = M ⊕ N in F
behaves like a cbv application of λx.F to M ⊕N . In a continuous framework this kind of
operator is usually called sampling (e.g. [15]), but this is just a different terminology for
the same computation mechanism: sampling a value from a distribution before passing it
to a parameter.

Both calling policies (cbn and cbv) can be declined with a further attribute which is
Abramsky’s lazyness [1]: a reduction strategy is lazy (sometimes called also weak) whenever
it does not evaluate the body of a function, i.e. it does not reduce a β-redex under the scope
of a λ-abstraction. This notion has been presented in order to provide a formal model of the
evaluation mechanism of the lazy functional programming languages.

Two probabilistic programs are context equivalent if they have the same probability of
converging to a value in all contexts. Of course, this notion depends on which reduction
strategy has been chosen. The prototypical example of diverging term Ω def= (λx.xx)(λx.xx)
is context equivalent with λx.Ω for a non-lazy strategy, while the two terms can be trivially
distinguished by a lazy strategy as λx.Ω is a value for such a reduction. Similarly, the term
(λxy.y)Ω is equivalent to Ω for cbv, but it is converging for the cbn policy (lazy or not),
because the reduction step (λxy.y)Ω→ λy.y is admitted.

One of the major contribution of the already mentioned [1] has been to use the notion of
bisimilarity in order to study the context equivalence of the lazy cbn λ-calculus. The idea is
to consider a reduction strategy as a labelled transition system where the states and labels
of the system are the λ-terms and a transition labelled by a term P goes from a term M

to a value M ′ whenever M ′ is the result of evaluating the application MP . The benefit of
this setting is to be able to transport into λ-calculus the whole theory of bisimilarity (called
in [1] applicative bisimilarity) and its associated coinduction reasoning, which is one of the
main tools for comparing processes in concurrency theory. Basically, two terms M and N
are applicative bisimilar whenever their applications MP and NP are applicative bisimilar
for any argument P . Abramsky proved that applicative bisimilarity is sound with respect to
lazy cbn context equivalence (i.e. the former implies the latter), but it is not fully abstract
(there are context equivalent terms that are not bisimilar).

Abramsky’s applicative bisimilarity has been recently lifted to Λ⊕ by Dal Lago and his
co-authors [3, 7]. The transition system becomes now a Markov Chain (here Definition 14)
on the top of it one can define a notion of probabilistic applicative bisimilarity (PAB). The
paper [7] considers a lazy cbn reduction strategy, while [3] focuses on the (lazy) cbv strategy.
In both settings, PAB is proven sound with respect to the associated context equivalence,
but, surprisingly, the cbv bisimilarity is also fully abstract, while the lazy cbn is not. Our
paper shows that adding the let-in operator mentioned before is enough for recovering the
full abstraction even for the lazy cbn.

Let us discuss more in detail the problem with the lazy cbn operation semantics. The two
terms λxy.(x⊕y) and (λxy.x)⊕(λxy.y) are context equivalent but not bisimilar (Example 7).
The difference is between a process giving a value allowing two choices and a process giving
two values after a choice (see Figure 4 to have a pictorial representation of the two processes).
The cbn contexts are not able to discriminate such a subtle difference while bisimilarity does
(Examples 16 and 23). In [3] the authors show a cbv context discriminating a variant of
these two terms and they conjecture that a kind of sequencing operator can recover the full
abstraction for the lazy cbn : our paper proves this conjecture.
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Testing Equivalence
∀t test, Pt(M) = Pt(N)

Bisimilarity ∼
∃R bisimulation, M RN

Context Equivalence '
∀C context,

∑
[[C[M ]]] =

∑
[[C[N ]]]

Theorem 24

Theorem 27 Theorem 20

Figure 1 Sketch of the main results in the paper, giving Corollary 28.

The result is not surprising if compared to [3], however let us stress the contrast with the
non-lazy cbn reduction strategy (i.e. the full head-reduction). We have already mentioned
that [10] considers the cbn probabilistic PCF endowed with the let-in operator. The full
abstraction result of probabilistic coherence spaces proved in [10] shows that the let-in operator
does not change the context equivalence of probabilistic PCF, as this latter corresponds with
the equality in probabilistic coherence spaces, regardless of the presence of the let-in in the
language. Also, [2, 14] achieve a similar probabilistic coherence spaces full abstraction result
for the untyped non-lazy cbn probabilistic λ-calculus without the let-in operator. These
considerations show that the need of let-in operator for getting the full abstraction is due to
the notion of lazy normal form rather than the call-by-name policy.

Structure of the paper. Section 2 defines Λ⊕,let, the lazy call-by-name probabilistic λ-
calculus extended with the let-in operator. The operational semantics is given by a notion of
big-step approximation, following [8]. An equivalent notion based on Markov chains could
be given as in e.g. [9]. The context equivalence is defined by Equation (5) where what we
observe is the probability of getting a value. Notice that the notion of lazyness plays a crucial
role here, since a value is a variable or just an abstraction and not a head-normal form, as it
is the case instead in the non-lazy cbn considered in e.g. [2, 9, 13, 14].

Section 3 defines the probabilistic applicative bisimulation and the corresponding bisimil-
arity by considering Λ⊕,let as a labelled Markov chain. The definitions and results of this
section are an adaptation of the ones in [7]. The main result is the soundness of bisimilarity
with respect to the context equivalence (Theorem 20), whose proof is based on Lemma 19
stating that the bisimilarity is a congruence. The proof of this lemma is quite technical
but follows the same lines of [3, 4, 7], using Howe’s lifting: we postpone the details in the
Appendix. The last Section 4 achieves the converse of Theorem 20 by considering Larsen
and Skou’s testing language (Definition 21) which is well-known to induce an equivalence
corresponding with probabilistic bisimilarity (Theorem 24). Lemma 25 states that any test
can be represented by a context of Λ⊕,let (here we are using in an essential way the presence
of the let-in operator), so giving Theorem 27 and closing the circle (Corollary 28). Figure 1
sketches the main reasoning of the paper.
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26:4 Λ⊕ with Let-In Operator

2 Preliminaries

In this section we introduce the syntax and operational semantics of Λ⊕,let.

2.1 Probabilistic Lambda Calculus Λ⊕,let

We present the probabilistic lambda calculus Λ⊕,let, that is the pure, untyped lambda calculus
endowed with two new operators: a probabilistic binary sum operator ⊕, representing a
fair choice and a let-in operator, simulating the call-by-value evaluation in a call-by-name
calculus. The operational semantics of Λ⊕,let is defined by a big-step approximation relation
as in [8], we refer to this paper for more details. Given a countable set X = {x, y, z, . . . } of
variables, term expressions (terms) and values are generated by the following grammar:

(values) V,W ::= x | λx.M,

(terms) M,N ::= V |MN |M ⊕N | let x = M in N, (1)

where x ∈ X. The set of all terms (resp. values) is denoted by Λ⊕,let (resp. V⊕,let ) and
is ranged over by capital Latin letters M,N, . . . , the letters V,W being reserved for values.
The set of free variables of a term M is indicated as FV(M) and is defined in the usual way.
Given a finite set of variables Γ = {x1, . . . , xn} ⊆ X, ΛΓ

⊕,let (resp. VΓ
⊕,let ) denotes the set of

terms (resp. values) whose free variables are within Γ. A term M is closed if FV(M) = ∅, or
equivalently if M ∈ Λ∅⊕,let. The capture-avoiding substitution of N for the free occurrences
of x in M is denoted by M{N/x}.

I Example 1. Let us define some terms useful in the sequel. The identity I def= λx.x, the
boolean projections T def= λxy.x and F def= λxy.y and the duplicator ∆ def= λx.xx, this latter
giving the ever looping term Ω def= ∆∆. The let-in operator allows for a call-by-value
duplicator ∆` def= λx.let x = x in xx that will distribute over the probabilistic choice (see
Example 3).

Because of the probabilistic operator ⊕, a closed term does not evaluate to a single value,
but to a discrete distribution of possible outcomes, i.e. to a function assigning a probability
to any value. More formally, a (value) distribution is a map D : V∅⊕,let → R[0,1] such that∑
V ∈V∅⊕,let

D(V ) ≤ 1. The set of all value distributions is denoted by P. Given a value
distribution D, the set of all values to which D attributes a positive probability is denoted
by S(D) and we will call it the support of D. Note that value distributions do not necessarily
sum to 1, this allowing to model the possibility of divergence (Example 5). We will use the
abbreviation

∑
D to stand for

∑
V ∈V∅⊕,let

D(V ). The expression p1V1 + · · ·+pnVn denotes the
distribution D with finite support {V1, . . . , Vn} such that D(Vi) = pi, for every i ∈ {1, . . . , n}.
Note that

∑
D =

∑n
i=1 pi. In particular, 0 denotes the empty distribution and V can denote

both a value and the distribution having all of its mass on V .
The operational semantics of Λ⊕,let is given in two steps. First, the derivation rules in

Figure 2 inductively define a notion of big-step approximation relation M ⇓ D between a
closed term M and a finite value distribution D. Then, the semantics [[M ]] of M is given as:

[[M ]] = sup{D ; M ⇓ D}, (2)

according to the point-wise order over value distributions (D ≤ E if and only if ∀V,D(V ) ≤
E(V )). The lub in Equation (2) is well-defined since ≤ is a directed-complete partial order
and the set {D ; M ⇓ D} is countable and directed (for every M ⇓ D and M ⇓ E, there
exists a distribution F ≥ D,E such that M ⇓ F).
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M ⇓ 0 V ⇓ V
M ⇓ D N ⇓ E

M ⊕N ⇓ 1
2 ·D + 1

2 · E

M ⇓ D {P{N/x} ⇓ EP,N}λx.P∈S(D)

MN ⇓
∑
λx.P∈S(D) D(λx.P ) · EP,N

N ⇓ G {M{V/x} ⇓ HV }V ∈S(G)

let x = N in M ⇓
∑
V ∈S(G) G(V ) ·HV

Figure 2 Rules for the approximation relationM ⇓ D, withM ∈ Λ∅⊕,let and D a value distribution.

V ⇓ V
I ⇓ I

V ⇓ V

I ⇓ I V V ⇓ 0
I⊕ V V ⇓ 1

2I...
V V ⇓

∑n−1
i=1

1
2i I

I⊕ V V ⇓
∑n
i=1

1
2i I

V V ⇓
∑n
i=1

1
2i I

Figure 3 A derivation of the big-step approximation V V ⇓
∑n

i=1
1
2i I for V = λx.(I⊕ xx).

Notice that the rules in Figure 2 implement a lazy call-by-name evaluation: they do
not reduce within the body of an abstraction, and an application (λx.M)N is evaluated
as M{N/x} for any term N . However, the let-in operator follows a call-by-value policy:
let x = N in M has the same semantics as M{N/x} only when N is a value.

I Example 2. Consider the term M
def= ∆(T⊕ F). One can easily check that the rules of

Figure 2 allows to derive M ⇓ D for any D ∈ {0, 1
2λy.(T⊕ F), 1

2I, 1
2λy.(T⊕ F) + 1

2I}. The
latter distribution is the lub of this set and so it defines the semantics of M .

I Example 3. Let us replace in Example 2 the duplicator ∆ with its call-by-value variant
∆` (Example 1). We have ∆`(T ⊕ F) ⇓ D for any D ∈ {0, 1

2λy.T,
1
2I, 1

2λy.T + 1
2I}, so

[[∆`(T ⊕ F)]] = 1
2λy.T + 1

2I. Notice that [[∆`(T ⊕ F)]] = [[∆`T ⊕∆`F]] = [[∆T ⊕∆F]],
while [[∆(T ⊕ F)]] 6= [[∆T ⊕∆F]], as calculated in Example 2. Let us mention that this
phenomenon is well enlightened by the linear logic encoding of the call-by-name application
and the call-by-value one, the latter resulting in an operator linear both in the function and
the argument position, while the former is linear only in the functional position [11].

I Remark 4. In general, notice that the presence of the let-in operator allows for an encoding
( )• of the call-by-value λ-calculus into our language, commuting with abstraction and variables
and mapping the call-by-value application to (MN)• = let x = M• in let y = N• in xy.
However, our language contains much more terms than the image of this mapping, so the
computational behaviour of the terms might not be preserved by ( )•.

I Example 5. The previous examples are about normalizing terms, in this framework
meaning terms M with semantics of total mass

∑
[[M ]] = 1 and such that there exists a

unique finite derivation giving M ⇓ [[M ]]. Standard non-converging λ-terms give partiality, as
for example [[Ω]] = 0, so [[Ω⊕ I]] = 1

2I. However, probabilistic λ-calculi allow for almost sure
terminating terms, that is terms M such that

∑
[[M ]] = 1 but there exists no finite derivation

giving M ⇓ [[M ]]. For example, consider the term M
def= V V , with V def= λx.(I⊕xx): any finite

approximation of M gives a distribution bounded by
∑n
i=1

1
2i I for some n ≥ 0, as Figure 3

shows, but only the limit sum supn
∑n
i=1

1
2i I is equal to [[M ]] = I.

FSCD 2019



26:6 Λ⊕ with Let-In Operator

The following lemma states simple properties of the semantics that can be easily proved by
continuity of [[ ]] and induction over finite approximations (see e.g. [8] for details).
I Lemma 6 ([8]). For any terms M and N ,
1. [[(λx.M)N ]] = [[M{N/x}]].
2. [[M ⊕N ]] = 1

2 [[M ]] + 1
2 [[N ]].

2.2 Context Equivalence
One standard way of comparing term expressions is by observing their behaviours within
programming contexts. A context of Λ⊕,let is a term containing a unique hole [·], generated
by the following grammar:

C,D ::= [·] | λx.C | CM |MC | C ⊕M |M ⊕ C | let x = C in M | let x = M in C (3)

If C is a context and M is a Λ⊕,let-term, then C[M ] denotes a Λ⊕,let-term obtained by
substituting the unique hole in C with M allowing the possible capture of free variables
of M . We will work with closing contexts, that is contexts C such that C[M ] is a closed
term (where M can be an open term). Thus, we want to keep track of the possible variables
captured by filling a context hole. Given two finite sets of variables Γ, ∆, we denote by
CΛ⊕,let

(Γ;∆) the set of contexts capturing the variables in Γ of a term filling the hole but
keeping free the variables in ∆. So for example the context λx.let y = x⊕ z in x[·] belongs
to CΛ⊕,let

({x,y};∆) for any ∆ containing z.
In a probabilistic setting, the typical observation is the probability to converge to a value,

so giving the following standard definition, for every M,N ∈ ΛΓ
⊕,let:

M ≤ N iff ∀C ∈ CΛ⊕,let
(Γ;∅),

∑
[[C[M ]]] ≤

∑
[[C[N ]]], (context preorder) (4)

M ' N iff ∀C ∈ CΛ⊕,let
(Γ;∅),

∑
[[C[M ]]] =

∑
[[C[N ]]] (context equivalence) (5)

Notice that M ' N is equivalent to M ≤ N and N ≤M .
I Example 7. As mentioned in the Introduction, the terms M def= λxy.(x ⊕ y) and N

def=
(λxy.x)⊕ (λxy.y) are context equivalent in the call-by-name probabilistic λ-calculus without
the let-in operator [7]. However, they can be discriminated in Λ⊕,let by, e.g. the context
C

def= (let y = [·] in (let z1 = yIΩ in (let z2 = yIΩ in I))). In fact, by applying the rules of
Figure 2, one gets:

∑
[[C[M ]]] = 1

4 and
∑

[[C[N ]]] = 1
2 .

I Example 8. The two duplicators ∆ and ∆` (Example 1) are not context equivalent, for
example C def= [·](I⊕Ω) gives

∑
[[C[∆]]] = 1

4 while
∑

[[C[∆`]]] = 1
2 .

I Proposition 9. Let M,N ∈ Λ∅⊕,let, if [[M ]] ≤ [[N ]] then M ≤ N . So, [[M ]] = [[N ]] implies
M ' N .
Proof. First, notice that [[M ]] ≤ [[N ]] is equivalent to ∀D,M ⇓ D,∃E ≥ D, N ⇓ E . Then one
proves, by structural induction on a context C that [[C(M)]] ≤ [[C(N)]], whenever [[M ]] ≤ [[N ]].
The delicate points are in the cases C is an application or a let-in operator. J

I Example 10. Thanks to Proposition 9, one can prove that quite different terms are indeed
context equivalent, e.g. the term V V in Example 5 is context equivalent to I. However, not
all context equivalent terms have the same semantics, as for example λx.(x⊕ x) and I.

Proving in general that two terms are context equivalent is rather difficult because of the
universal quantifier in Equation (5). For example, proving that λx.(x⊕ x) and I are context
equivalent is not immediate. Various other tools are then used to prove context equivalence,
as the bisimilarity and testing introduced in the next sections.
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3 Probabilistic Applicative Bisimulation

We briefly recall and adapt to Λ⊕,let the definitions of [7] about probabilistic applicative
(bi)simulation. This notion mixes Larsen and Skou’s definition of (bi)simulation for labelled
Markov chains [12] with Abramsky’s applicative (bi)simulation for the lazy call-by-name
λ-calculus [1]. The core idea is to look at a closed term M as a state of a transition system,
a Markov chain in our setting, having two kinds of transitions. A “solipsistic” transition
consisting in evaluating M to a value λx.P (this transition being weighted by the probability
[[M ]](λx.P ) of getting λx.P out of M) and an “interactive” transition consisting in feeding
a value λx.P by a new term N representing an input from the environment, so getting the
term P{N/x}. We can then consider the notions of similarity and bisimilarity (resp. (6), (7))
over such probabilistic transition system. The benefit of this approach is to check program
equivalence via an existential quantifier (see Equation (7)) rather than a universal one as in
context equivalence (Equation (5)). The main result of this section is Theorem 20 stating
that similarity implies context preorder. As a consequence we have that bisimilarity implies
context equivalence. The key ingredient for achieving this result is to show that the similarity
is a precongruence relation (Definition 18 and Lemma 19). The proof of Lemma 19 is quite
technical but standard, see the Appendix and [7] for more details.

We start with the definition of a generic labelled Markov chain and following Larsen and
Skou [12] we introduce the notions of a probabilistic simulation and bisimulation.

I Definition 11. A labelled Markov chain is a tripleM = (S,L, P ) where S is a countable set
of states, L is a set of labels (actions) and P is a transition probability matrix, i.e. a function
P : S ×L×S → R[0,1] satisfying the following condition: ∀s ∈ S,∀l ∈ L,

∑
t∈S P (s, l, t) ≤ 1.

Given a relation R, R(X) denotes the image of the set X under R, namely the set
{y | ∃x ∈ X such that xRy}. If R is an equivalence relation, then S/R stands for the set of
all equivalence classes of S modulo R. The expression P (s, l,X) stands for

∑
t∈X P (s, l, t).

I Definition 12. Let (S,L, P ) be a labelled Markov chain and R be a relation over S:
R is a probabilistic simulation if it is a preorder and ∀(s, t) ∈ R,∀X ⊆ S,∀l ∈ L,
P (s, l,X) ≤ P (t, l,R(X)).
R is a probabilistic bisimulation if it is an equivalence and ∀(s, t) ∈ R,∀E ∈ S/R,∀l ∈ L,
P (s, l, E) = P (t, l, E).

We define the probabilistic (bi)similarity, denoted respectively by . and ', as the union
of all probabilistic (bi)simulations which can be proven to be still a (bi)simulation:

M . N iff ∃R probabilistic simulation s.t. MRN, (probabilistic similarity) (6)
M ∼ N iff ∃R probabilistic bisimulation s.t. MRN (probabilistic bisimilarity) (7)

One can prove that M ∼ N is equivalent to M . N and N .M , i.e. ∼=. ∩ .op.

I Definition 13. For every closed value V = λx.N ∈ Λ∅⊕,let a distinguished value is indicated
as Ṽ = νx.N and belongs to the set VΛ∅⊕,let.

As an example, value λxy.x belongs to the set Λ∅⊕,let, while the distinguished value νx.λy.x
is the element of VΛ∅⊕,let. As previously stated, we want to see the operational semantics of
Λ⊕,let as a labelled Markov chain defined as follows:

FSCD 2019



26:8 Λ⊕ with Let-In Operator

I Definition 14. The Λ⊕,let-Markov chain is defined as the triple (Λ∅⊕,let ] VΛ∅⊕,let,Λ∅⊕,let ∪
{τ},P), where the set of states is the disjoint union of the set of closed terms and the set
of closed distinguished values, labels (actions) are either closed terms or τ action and the
transition probability matrix P is defined in the following way:

for every closed term M and distinguished value νx.N ,

P (M, τ, νx.N) = [[M ]](λx.N) ,

for every closed term M and distinguished value νx.N ,

P (νx.N,M,N{M/x}) = 1 ,

in all other cases, P returns 0.

For technical reasons the set of states is represented as a disjoint union Λ∅⊕,let ] VΛ∅⊕,let.
Since Λ⊕,let can be seen as a labelled Markov chain, the simulation and bisimulation

can be defined as for any labelled Markov chain. A probabilistic applicative simulation is a
probabilistic simulation on Λ⊕,let and a probabilistic applicative bisimulation is a probabilistic
bisimulation on Λ⊕,let. Then, the probabilistic applicative similarity, PAS for short, and the
probabilistic applicative bisimilarity, PAB for short, are defined in the usual way applying
Equation (6) and (7). From now on, the symbol . (resp. ∼) will denote the probabilistic
applicative similarity (resp. bisimilarity).

The notions of PAS and PAB are defined on closed terms, and we extend these definitions
to open terms by requiring the usual closure under substitutions. Let M,N ∈ ΛΓ

⊕,let where
Γ = {x1, . . . , xn}. We say M and N are similar, (denoted M . N), if for all L1 ∈
Λ∅⊕,let, . . . , Ln ∈ Λ∅⊕,let, M{L1/x1, . . . , Ln/xn} . N{L1/x1, . . . , Ln/xn}. The analogous
terminology is introduced for bisimilarity.

I Example 15. Let us recall the terms λx.(x⊕x) and λx.x from Example 10 having different
semantics but context equivalent. As mentioned, the proof of their context equivalence is
not immediate, because of the universal quantifier in Equation (5). However, we can check
easily that they are bisimilar, because we need just to exhibit a bisimulation relation between
the two terms. By Theorem 20 we then infer context equivalence from bisimilarity. Let us
define the relation R = {(λx.(x⊕ x), λx.x)} ∪ {(λx.x, λx.(x⊕ x))} ∪ {(νx.(x⊕ x), νx.x)} ∪
{(νx.x, νx.(x⊕ x))} ∪ {(N ⊕N,N) | N ∈ Λ∅⊕,let} ∪ {(N,N ⊕N) | N ∈ Λ∅⊕,let} ∪ {(M,M) |
M ∈ Λ∅⊕,let} ∪ {(Ṽ , Ṽ ) | Ṽ ∈ VΛ∅⊕,let}. We prove that R is a bisimulation containing
(λx.(x⊕x), λx.x). The relation is trivially an equivalence, so we have to show that ∀(M,N) ∈
R,∀E ∈ (Λ∅⊕,let ]VΛ∅⊕,let)/R,∀` ∈ Λ∅⊕,let ∪ {τ}, P (M, `,E) = P (N, `,E) (Definition 12). We
prove only for (λx.(x⊕ x), λx.x) ∈ R, (νx.(x⊕ x), νx.x) ∈ R and (N ⊕N,N) ∈ R. First we
have that (λx.(x⊕x), λx.x) ∈ R and for all closed terms F ∈ Λ∅⊕,let and all equivalence classes
E ∈ (Λ∅⊕,let ] VΛ∅⊕,let)/R, P (λx.(x ⊕ x), F, E) = 0 = P (λx.x, F,E) holds by Definition 14.
If the equivalence class E contains νx.(x ⊕ x) then P (λx.(x ⊕ x), τ, E) = 1, otherwise
P (λx.(x⊕ x), τ, E) = 0. Since (νx.(x⊕ x), νx.x) ∈ R, we have that νx.(x⊕ x) ∈ E if and
only if νx.x ∈ E. Hence, P (λx.(x⊕x), `, E) = P (λx.x, `, E) for all ` ∈ Λ∅⊕,let∪{τ} and all E ∈
(Λ∅⊕,let]VΛ∅⊕,let)/R. For all equivalence classes E ∈ (Λ∅⊕,let]VΛ∅⊕,let)/R, P (νx.(x⊕x), τ, E) =
0 = P (νx.x, τ, E) holds by Definition 14. Further, P (νx.(x⊕x), F, E) = 1 for some F ∈ Λ∅⊕,let
if F⊕F ∈ E, otherwise P (νx.(x⊕x), F, E) = 0. We have that F⊕F ∈ E if and only if F ∈ E,
because (F ⊕ F, F ) ∈ R for all F ∈ Λ∅⊕,let. Hence, P (νx.(x⊕ x), `, E) = P (νx.x, `, E) for all
` ∈ Λ∅⊕,let ∪ {τ} and all E ∈ (Λ∅⊕,let ] VΛ∅⊕,let)/R. Finally, let us consider (N ⊕N,N) ∈ R,
for an arbitrary N ∈ Λ∅⊕,let. For all closed terms F ∈ Λ∅⊕,let and all equivalence classes
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E ∈ (Λ∅⊕,let ] VΛ∅⊕,let)/R, P (N ⊕ N,F,E) = 0 = P (N,F,E) holds by Definition 14. By
Lemma 6 and Definition 14 we have that the following holds for all equivalence classes
E ∈ (Λ∅⊕,let ] VΛ∅⊕,let)/R.

P (N ⊕N, τ,E) =
∑

νx.M∈E
P (N ⊕N, τ, νx.M) =

∑
{λx.M |νx.M∈E}

[[N ⊕N ]](λx.M)

=
∑

{λx.M |νx.M∈E}

(1
2 [[N ]] + 1

2 [[N ]])(λx.M) =
∑

{λx.M |νx.M∈E}

[[N ]](λx.M)

=
∑

νx.M∈E
P (N, τ, νx.M) = P (N, τ,E)

The proof for the other elements of R is analogous to the cases we considered.

I Example 16. The terms M = λxy.(x⊕ y) and N = (λxy.x)⊕ (λxy.y) are not bisimilar.
Let us suppose the opposite. Then, there exists a bisimulation R such that (M,N) ∈ R. By
definition R is an equivalence relation. Let E be an equivalence class of Λ∅⊕,let ] VΛ∅⊕,let with
respect to R which contains νx.λy.(x ⊕ y). Then, we should have that 1 = P (M, τ,E) =
P (N, τ,E). We know that P (N, τ, νx.λy.x) = 1

2 and P (N, τ, νx.λy.y) = 1
2 . Thus, we can

conclude νx.λy.x ∈ E and νx.λy.y ∈ E. If νx.λy.x ∈ E, then (νx.λy.(x⊕ y), νx.λy.x) ∈ R.
Hence we have that 1 = P (νx.λy.(x ⊕ y),Ω, E1) = P (νx.λy.x,Ω, E1), where E1 is an
equivalence class which contains λy.(Ω⊕ y). Using the fact that P (νx.λy.x,Ω, λy.Ω) = 1
we obtain λy.Ω ∈ E1. Since λy.(Ω⊕ y) and λy.Ω belong to the same equivalence class we
conclude (λy.(Ω⊕ y), λy.Ω) ∈ R. If E2 is an equivalence class such that νy.(Ω⊕ y) ∈ E2,
then we have that 1 = P (λy.(Ω ⊕ y), τ, E2) = P (λy.Ω, τ, E2). By a similar reasoning
as before we obtain that (νy.(Ω ⊕ y), νy.Ω) ∈ R. Let E3 be an equivalence class which
contains Ω ⊕ I. From 1 = P (νy.(Ω ⊕ y), I, E3) = P (νy.Ω, I, E3) it follows that Ω ∈ E3,
i.e. (Ω ⊕ I,Ω) ∈ R. Finally, if E4 is an equivalence class such that νx.x ∈ E4, then
1
2 = P (Ω⊕ I, τ, E4) = P (Ω, τ, E4). This is in contradiction with P (Ω, τ, E4) = 0 which is a
consequence of the definition of a transition probability matrix. Thus, terms M and N are
not bisimilar.

The following proposition is the analogous to Proposition 9, stating the soundness of
(bi)simulation with respect to the operational semantics.

I Proposition 17. Let M,N ∈ Λ∅⊕,let, if [[M ]] ≤ [[N ]] then M . N . So, [[M ]] = [[N ]] implies
M ∼ N .

Proof. By checking that the relation R = {(M,N) ∈ Λ∅⊕,let×Λ∅⊕,let | [[M ]] ≤ [[N ]]}∪{(Ṽ , Ṽ ) ∈
VΛ∅⊕,let × VΛ∅⊕,let} is a probabilistic applicative simulation. The second part of the statement
follows from ∼=. ∩(.)op. J

We introduce a new notion of relations called Λ⊕,let-relations, which are sets of triples
in the form (Γ,M,N) where M,N ∈ ΛΓ

⊕,let. Any relation R′ on the set of Λ⊕,let-terms can
be extended to a Λ⊕,let-relation R, such that whenever (M,N) ∈ R′ and M,N ∈ ΛΓ

⊕,let, we
have that (Γ,M,N) ∈ R. We will write Γ `MRN instead of (Γ,M,N) ∈ R.

I Definition 18. A Λ⊕,let-relation R is a congruence (respectively, a precongruence) if it
is an equivalence (respectively, a preorder) and for every Γ ∪∆ `MRN and every context
C ∈ CΛ⊕,let

(Γ;∆), we have that ∆ ` C[M ]RC[N ].

It is immediate to check that the context preorder ≤ (resp. equivalence ') is a precongruence
(resp. congruence)(Appendix A.1). Also similarity is a precongruence, but its proof is more
involved (Appendix A.2). As a consequence we have that bisimilarity is a congruence.
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I Lemma 19. The similarity . (resp. bisimilarity ∼) is a precongruence (resp. congruence)
relation for Λ⊕,let-terms.

Proof (Sketch). As standard [3, 4, 7], we use Howe’s technique to prove that probabilistic
similarity is a precongruence, this implying that the probabilistic bisimilarity is also a
congruence. The proof is technical and follows the same reasoning as [7], the only difference
being in the cases needed to handle the compatibility associated with the let-in operator.

We start with defining Howe’s lifting for Λ⊕,let, which turns an arbitrary relation R to
another one RH . The relation RH enjoys some properties with respect to the relation R. In
particular, if R is reflexive, transitive and closed under term-substitution, then it is included
in RH and the relation RH is context closed and also closed under term-substitution. These
properties allow to prove that the transitive closure (.H)+ of the Howe’s lifting .H is a
precongruence including .. One can conclude then easily that . is also a precongruence.
Finally, from ∼=. ∪(.)op we conclude that ∼ is a congruence. J

Now we can prove that simulation preorder (similarity) is sound with respect to the
context preorder. As a consequence we have that bisimulation equivalence (bisimilarity) is
included in the context equivalence.

I Theorem 20 (Soundness). For every M,N ∈ ΛΓ
⊕,let, Γ ` M . N implies Γ ` M ≤ N .

Therefore, M ∼ N implies Γ `M'N .

Proof. Suppose that Γ ` M . N . We have that for every context C ∈ CΛ⊕,let
(Γ;∅),

∅ ` C[M ] . C[N ] holds as a consequence of Lemma 19. Then by definition there exists
a simulation between C[M ] and C[N ], which implies by Definition 12 that

∑
[[C[M ]]] ≤∑

[[C[N ]]] holds. We conclude Γ `M ≤ N . The second part of the statement follows from
the definitions ∼=. ∩ .op and '=≤ ∩ ≤op. J

4 Full Abstraction

The goal of this section is to prove the converse of Theorem 20, showing that context
equivalence and bisimilarity coincide. In order to get this result, it is more convenient
to use the notion of testing equivalence, which has been proven to coincide with Markov
processes bisimilarity in [16] (here Theorem 24). In this framework we need to consider only
Markov chains, which are the discrete-time version of Markov processes, so we simplify the
definitions and results of [16] to this discrete setting, following [3]. Notice that Theorem 24 is
independent from the particular Markov chain considered, so we recall the general definitions
and then we applied them to the Λ⊕,let-Markov chain.

I Definition 21 ([3]). Let (S,L,P) be a labelled Markov chain. The testing language T(S,L,P)
for (S,L,P) is given by the grammar

t ::= ω | a.t | (t, t),

where ω is a symbol for termination and a ∈ L is an action (label).

It is easy to see that tests are finite objects. A test is an algorithm for doing an experiment
on a program. During the execution of a test on a particular program, one can observe the
success or the failure of the experiment with a given probability. The symbol ω represents a
test which does not require an experiment at all (it always succeed). The test a.t describes
an experiment consisting of performing the action a and in the case of success performing
the test t, and the test (t, s) makes two copies of the current state and allows both tests t
and s to be performed independently on the same state. The success probability of a test is
defined as follows:



S. Kašterović and M. Pagani 26:11

λxy.(x⊕ y)

νx.λy.(x⊕ y)

λy.(I⊕ y)

νy.(I⊕ y)
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τ1
2 0

Ω1
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I1
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Figure 4 The experiment t = τ.(I.τ.Ω.τ.ω, I.τ.Ω.τ.ω) over the terms of Example 23.

I Definition 22 ([3]). Let (S,L,P) be a labelled Markov chain. We define a family
{Pt(·)}t∈T(S,L,P) of maps from the set of states S to R[0,1], by induction on the structure of t:

Pω(s) = 1;
Pa.t(s) =

∑
s′∈S P(s, a, s′)Pt(s′);

P(t1,t2)(s) = Pt1(s) · Pt2(s).

I Example 23. The terms λxy.(x ⊕ y) and (λxy.x) ⊕ (λxy.y) of Example 7 can be dis-
criminated by the test t = τ.(I.τ.Ω.τ.ω, I.τ.Ω.τ.ω). Figure 4 sketches the computation of
Pt(λxy.(x⊕ y)) = 1

4 and Pt((λxy.x)⊕ (λxy.y)) = 1
2 .

The following theorem states the equivalence between the notion of bisimilarity over
(S,L,P) and testing equivalence. The theorem has been proven in [16] for a labelled Markov
processes. For lack of space, we have omitted a detailed proof of the adaptation of the results
from labelled Markov processes to labelled Markov chains.

I Theorem 24 ([3],[16]). Let (S,L,P) be a labelled Markov chain. Then s, s′ ∈ S are
bisimilar if and only if Pt(s) = Pt(s′) for every test t ∈ T(S,L,P).

It is known that this theorem does not hold for inequalities [16]. More precisely, it is not
true that s . s′ just in case Pt(s) ≤ Pt(s′) for every test t ∈ T(S,L,P).

4.1 Every Test has an Equivalent Context
Here is the main contribution of our paper, showing that for every test t associated with
the Λ⊕,let-Markov chain there exists a context Ct expressing t in the syntax of Λ⊕,let,
i.e. Pt(M) =

∑
[[Ct[M ]]] for every term M (Lemma 25). So context equivalence implies

testing equivalence (Theorem 27) and hence bisimilarity by Theorem 24. Together with
Theorem 20 this achieves the diagram in Figure 1, so Corollary 28.

I Lemma 25. For every test t ∈ TΛ⊕,let , there are contexts Ct ∈ CΛ⊕,let
(∅;∅) and Dt ∈

CΛ⊕,let
(∅;∅) such that for every term M ∈ Λ∅⊕,let and value V = λx.M ∈ V∅⊕,let it holds that:

Pt(M) =
∑

[[Ct[M ]]] and Pt(Ṽ ) =
∑

[[Dt[V ]]],

where we recall that Ṽ denotes the distinguished value νx.M ∈ VΛ∅⊕,let.
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Proof. We prove it by induction on the structure of a test t.
First we consider the case where t = ω. Then, by the definition of Pt(·), we have that
for every M ∈ Λ∅⊕,let and V ∈ V∅⊕,let , Pω(M) = 1 and Pω(Ṽ ) = 1. Thus, we can define
Cω = (λxy.x)[·] and Dω = (λxy.x)[·] and we obtain, for every M ∈ Λ∅⊕,let∑

[[Cω[M ]]] =
∑

[[(λxy.x)M ]] =
∑

[[λy.M ]] = 1 = Pω(M),

and for every value V ∈ V∅⊕,let∑
[[Dω[V ]]] =

∑
[[(λxy.x)V ]] =

∑
[[λy.V ]] = 1 = Pω(Ṽ ).

Next, let us consider the case where t = a.t′ for some action (label) a. By induction
hypothesis there are contexts Ct′ ∈ CΛ⊕,let

(∅;∅) and Dt′ ∈ CΛ⊕,let
(∅;∅) such that for every

M ∈ Λ∅⊕,let and V ∈ V∅⊕,let we have that Pt′(M) =
∑

[[Ct′ [M ]]] and Pt′(Ṽ ) =
∑

[[Dt′ [V ]]].
An action a can be either a closed term or a τ action, thus depending on it we differ two
cases.
1. If a = τ , then a test t is of the form τ.t′. From Definition 14 and Definition 22 we have

Pτ.t′(Ṽ ) = 0 for any value V ∈ V∅⊕,let . Hence, we define Dτ.t′ = Ω[·] and the statement
holds. Let M be a closed term. From the definition of a transition probability matrix
(P (M, τ, Ṽ ) = [[M ]](V )) and induction hypothesis Pt′(Ṽ ) =

∑
[[Dt′ [V ]]] it follows that

Pτ.t′(M) =
∑

Ṽ ∈VΛ∅⊕,let

P (M, τ, Ṽ )Pt′(Ṽ ) =
∑

V ∈V∅⊕,let

[[M ]](V ) ·
∑

[[Dt′ [V ]]].

We define Cτ.t′ = (let y = [·] in Dt′ [y]). Then, by the definition of operational semantics
we get∑

[[Cτ.t′ [M ]]] =
∑

[[let y = M in Dt′ [y]]] =
∑

V ∈V∅⊕,let

[[M ]](V ) ·
∑

[[Dt′ [V ]]],

for any closed term M ∈ Λ∅⊕,let. Thus, Pτ.t′(M) =
∑

[[Cτ.t′ [M ]]].
2. If a = F for some closed term F , then a test t is of the form F.t′. From Definition 14

and Definition 22 we have PF.t′(M) = 0 for any term M ∈ Λ∅⊕,let. Hence, we define
CF.t′ = Ω[·] and the statement holds. Let V be a value λx.N (Ṽ = νx.N). From the
definition of a transition probability matrix (P (νx.N, F,N{F/x}) = 1) and induction
hypothesis, Pt′(M) =

∑
[[Ct′ [M ]]] for every M ∈ Λ∅⊕,let, it follows that

PF.t′(Ṽ ) =
∑

N ′∈Λ∅⊕,let

P (Ṽ , F,N ′)Pt′(N ′)

= P (νx.N, F,N{F/x}) · Pt′(N{F/x})

= 1 · Pt′(N{F/x}) =
∑

[[Ct′ [N{F/x}]]]

By Lemma 6 terms N{F/x} and (λx.N)F have the same semantics. Hence, they are
bisimilar (Proposition 17). Due to the fact that bisimilarity is included in context
equivalence (Theorem 20) we have that terms N{F/x} and (λx.N)F are context
equivalent. More precisely, for any context C,

∑
[[C[N{F/x}]]] =

∑
[[C[(λx.N)F ]]].

Finally, we obtain that

PF.t′(Ṽ ) =
∑

[[Ct′ [N{F/x}]]] =
∑

[[Ct′ [(λx.N)F ]]] =
∑

[[Ct′ [V F ]]].

We define DF.t′ = Ct′ [[·]F ]. Then, we have that
∑

[[DF.t′ [V ]]] =
∑

[[Ct′ [V F ]]], holds for
any value V ∈ V∅⊕,let . Thus, PF.t′(Ṽ ) =

∑
[[DF.t′ [V ]]].
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Finally, let t = (t1, t2). By induction hypothesis there exist contexts Ct1 , Dt1 , Ct2 , Dt2 ∈
CΛ⊕,let

(∅;∅) such that for any closed term M and a value V the following holds:

Pt1(M) =
∑

[[Ct1 [M ]]], Pt1(Ṽ ) =
∑

[[Dt1 [V ]]],

Pt2(M) =
∑

[[Ct2 [M ]]] and Pt2(Ṽ ) =
∑

[[Dt2 [V ]]].

From Definition 22 we have

P(t1,t2)(M) = Pt1(M) · Pt2(M) =
∑

[[Ct1 [M ]]] ·
∑

[[Ct2 [M ]]],

for any closed term M ∈ Λ∅⊕,let. We define:

C(t1,t2) = (λy.(let z1 = Ct1 [y] in (let z2 = Ct2 [y] in I)))[·] (8)

and by the definition of operational semantics we have∑
[[C(t1,t2)[M ]]] =

∑
[[Ct1 [M ]]] ·

∑
[[Ct2 [M ]]].

Since, for a value V ∈ V∅⊕,let it holds that

P(t1,t2)(Ṽ ) = Pt1(Ṽ ) · Pt2(Ṽ ) =
∑

[[Dt1 [V ]]] ·
∑

[[Dt2 [V ]]],

we define D(t1,t2) = (λy.(let z1 = Dt1 [y] in (let z2 = Dt2 [y] in I)))[·] and the statement
holds.

This concludes the proof. J

I Lemma 26. Let M,N ∈ Λ∅⊕,let, M ≤ N implies that Pt(M) ≤ Pt(N), for every test t.

Proof. It is a straightforward consequence of Lemma 25. Let us assume that terms M and
N are in the context preorder, ∅ `M ≤ N . Then, for every context C ∈ CΛ⊕,let

(∅;∅),we have∑
[[C[M ]]] ≤

∑
[[C[N ]]]. By Lemma 25, we have that for each test t ∈ TΛ⊕,let there exists

context Ct such that for every term M , Pt(M) =
∑

[[Ct[M ]]]. Then, for every test t ∈ TΛ⊕,let ,
it holds that Pt(M) =

∑
[[Ct[M ]]] ≤

∑
[[Ct[N ]]] = Pt(N). Hence, for every test t ∈ TΛ⊕,let it

holds that Pt(M) ≤ Pt(N). J

I Theorem 27. Let M,N ∈ Λ∅⊕,let, M'N implies that Pt(M) = Pt(N), for every test t.

Proof. It is a straightforward consequence of Lemma 26 and the fact thatM'N is equivalent
to M ≤ N and N ≤M . J

Notice that the let-in operator is crucial in defining the context C(t1,t2) associated with the
product (t1, t2) of tests (Equation (8)) in the proof of Lemma 25. For example, if we consider
the call-by-name version of C(t1,t2), i.e. the context C = (λy.(λz1z2.I)Dt1 [y]Dt2 [y])[·], then
the semantics of C[M ] is independent from the contexts Dt1 [·], Dt2 [·] and the term M ,
being [[C[M ]]] = I. Hence, we cannot have P(t1,t2)(M) =

∑
[[C[M ]]] for every M . Another

possibility is to try to use a context not erasing Dt1 [·] and Dt2 [·] during the evaluation, as
for example in C = (λy.Dt1 [y]Dt2 [y])[·]. However this would imply to be able to control
the result of Dt1 [M ] for every term M , for example supposing [[Dt1 [M ]]] = Pt1(M)I, which
increases considerably the difficulty of the proof. Anyway, the fact that there are examples
of terms distinguished by tests (Example 23) but not by contexts without the let-in operator
(Example 7) shows the necessity of this latter.
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The following resumes all results in the paper, as sketched in Figure 1:

I Corollary 28 (Full Abstraction). For any M,N ∈ Λ∅⊕,let, the following items are equivalent:
(context equivalence) M'N ,
(bisimilarity) M ∼ N ,
(testing equivalence) Pt(M) = Pt(N) for all tests t.

Concerning inequalities, the equivalence of similarity and testing preorder, i.e. a relation
which contains (s, s′) if and only if Pt(s) ≤ Pt(s′) for every test t ∈ T(S,L,P), does not hold
as we stated below Theorem 24. So, we have no clue for proving that similarity is fully
abstract with respect to the context preorder. A possible way to achieve this inequality full
abstraction is to look for the converse of Lemma 25, by representing all contexts by tests.
However, such a representation is far to be obvious, and even it might not exists.

5 Conclusion

In this paper we have considered the Λ⊕,let-calculus, a pure untyped λ-calculus extended
with two operators: a probabilistic choice operator ⊕ and a let-in operator. The calculus
implements a lazy call-by-name evaluation strategy, following [1, 7], however the let-in operator
allows for a call-by-value passing policy. We prove that context equivalence, bisimilarity and
testing equivalence all coincide in Λ⊕,let (Corollary 28).

Concerning the inequalities associated with these equivalences: it is known that that
the probabilistic similarity does not imply the testing approximation [16]. We prove that
similarity implies context preorder (Theorem 20), but it remains open whether also the
converse holds.

This paper confirms a conjecture stated in [3], showing that the calculus introduced in [7]
can be endowed with a fully abstract bisimilarity by adding a let-in operator. As discussed
in the Introduction, our feeling is that the need of this operator is due to the lazyness rather
than to the cbn policy of the calculus. In order to precise this intuition we plan to investigate
the definition of bisimilarity for the non-lazy cbn probabilistic λ-calculus, which has already
fully abstract denotational models [2, 14] as well as infinitary normal forms [13] but not a
theory of bisimulations.

In a more general perspective, one can study the let-in operator in call-by-name languages
with different effects than the probabilistic one, as for example the non-determinism. Let us
also mention [5], which considers a kind of applicative bisimulation for lazy call-by-name
lambda-calculi endowed with various algebraic effects. However, the setting seems different,
as in [5] the notion of (bi)simulation is not defined over terms but over their semantics.

Finally, one should address similar questions in typed languages. We have already
mentioned in the Introduction that [10] shows that adding a let-in operator at ground types
does not alter the observational equality of the cbn probabilistic PCF, but what about
allowing a let-in at higher-order types? and what in presence of recursive types?
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A Appendix - Proofs

A.1 Context Equivalence is a Congruence
We consider Λ⊕,let-relations defined in Section 3. The set PFIN(X) denotes the set of all finite
subsets of X.

I Definition 29. A Λ⊕,let-relation R is compatible if and only if the five conditions below
hold:
(Com1) ∀Γ ∈ PFIN(X), x ∈ Γ : Γ ` x R x;
(Com2) ∀Γ ∈ PFIN(X),∀x ∈ X − Γ, ∀M,N ∈ ΛΓ∪{x}

⊕,let : Γ ∪ {x} ` M R N ⇒ Γ `
λx.M R λx.N ;

(Com3) ∀Γ ∈ PFIN(X),∀M,N,L, P ∈ ΛΓ
⊕,let : Γ `M R N ∧ Γ ` L R P ⇒ Γ `ML R NP ;

(Com4) ∀Γ ∈ PFIN(X),∀M,N,L, P ∈ ΛΓ
⊕,let : Γ ` M R N ∧ Γ ` L R P ⇒ Γ `

M ⊕ L R N ⊕ P ;
(Com5) ∀Γ ∈ PFIN(X),∀x ∈ X,∀M,N ∈ ΛΓ

⊕,let,∀L,P ∈ ΛΓ∪{x}
⊕,let : Γ `M R N ∧ Γ ∪ {x} `

L R P ⇒ Γ ` (let x = M in L) R (let x = N in P ).

I Definition 30. A Λ⊕,let-relation is a congruence (respectively, precongruence) if it is an
equivalence relation (respectively, preorder) and compatible.

This definition of a (pre)congruence is equivalent to Definition 18.

I Lemma 31. The context preorder ≤ is a precongruence relation.

Proof. The proof follows the same basic outline as the proof of Lemma 3.33 in [6]. J

I Lemma 32. The context equivalence ' is a congruence relation.

Proof. This statement follows directly from Lemma 31 and the definition of context equival-
ence, i.e. '=≤ ∩(≤)op. J

A.2 Bisimulation Equivalence is a Congruence
We use Howe’s technique to prove that probabilistic similarity is a precongruence and as
a consequence probabilistic bisimilarity is a congruence. Howe’s technique is a commonly
used technique for proving precongruence of similarity. The proof is very technical. It is the
adaptation of the technique used in [3, 4, 6] and it has the same structure as the proof in [6].
Contrary to the proof in [6], our proof introduces a new notion of compatibility with the
let-in operator.

The property ∼=. ∩ .op ensures it is enough to show that probabilistic similarity (.)
is a precongruence in order to prove that probabilistic bisimilarity (∼) is a congruence. The
key part is proving that . is a compatible relation and it is done by Howe’s technique.

We call an Λ⊕,let-relation R (term) substitutive if for all Γ ∈ PFIN(X), x ∈ X − Γ,M,N ∈
ΛΓ∪{x}
⊕,let , L, P ∈ ΛΓ

⊕,let the following holds

Γ ∪ {x} `M R N ∧ Γ ` L R P ⇒ Γ `M{L/x} R N{P/x}.

If a relation R satisfies

Γ ∪ {x} `M R N ∧ L ∈ ΛΓ
⊕,let ⇒ Γ `M{L/x} R N{L/x},

we say it is closed under term-substitution.
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Γ ` x R M (How1)
Γ ` x RH M

Γ ∪ {x} `M RH L Γ ` λx.L R N x 6∈ Γ
(How2)

Γ ` λx.M RH N

Γ `M RH P Γ ` N RH Q Γ ` PQ R L (How3)
Γ `MN RH L

Γ `M RH P Γ ` N RH Q Γ ` P ⊕Q R L (How4)
Γ `M ⊕N RH L

Γ `M RH P Γ ∪ {x} ` N RH Q Γ ` (let x = P in Q) R L
(How5)

Γ ` (let x = M in N) RH L

Figure 5 Howe’s lifting for Λ⊕,let.

Γ `M R N (TC1)
Γ `M R+ N

Γ `M R+ N Γ ` N R+ L (TC2)
Γ `M R+ L

Figure 6 Transitive closure for Λ⊕,let.

Please notice that ifR is substitutive and reflexive then it is closed under term-substitution.
As stated in the paper, open extensions of . and ∼ are closed under term-substitution by
definition.

For an arbitrary Λ⊕,let-relation R, Howe’s lifting RH is defined by the rules in Figure 5.
We start with some auxiliary statements.

I Lemma 33. If R is reflexive, then RH is compatible.

Proof. The proof follows the same basic outline as the proof of Lemma 3.10 in [6]. J

I Lemma 34. If R is transitive, then Γ `M RH N and Γ ` N R L imply Γ `M RH L.

Proof. By induction on the derivation of Γ `M RH N , looking at the last rule used, thus
on the structure of M . J

I Lemma 35. If R is reflexive, then Γ `M R N implies Γ `M RH N .

Proof. By induction on the structure of M . J

I Lemma 36. If R is reflexive, transitive and closed under term-substitution, then RH is
(term) substitutive and hence also closed under term-substitution.

Proof. We need to show that: ∀Γ ∈ PFIN(X),∀x ∈ X − Γ,∀M,N ∈ ΛΓ∪{x}
⊕,let ,∀L,P ∈ ΛΓ

⊕,let,

Γ ∪ {x} `M RH N ∧ Γ ` L RH P ⇒ Γ `M{L/x} RH N{L/x}.

Proof proceeds by induction on the derivation of Γ ∪ {x} `M RH N . J

The goal is to prove that .H is a precongruence, but in order to do that some properties
are missing. Hence, following Howe’s approach we build a transitive closure of a Λ⊕,let-relation
R as a relation R+ defined by the rules in Figure 6.

FSCD 2019
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I Lemma 37. If R is compatible, then so is R+.

Proof. The proof follows the same basic outline as the proof of Lemma 3.14 in [6]. J

I Lemma 38. If R is closed under term-substitution, then so is R+.

Proof. Proving that R+ is closed under term-substitution means to show: ∀Γ ∈ PFIN(X),
∀x ∈ X − Γ, ∀M,N ∈ ΛΓ∪{x}

⊕,let , ∀L ∈ ΛΓ
⊕,let, Γ ∪ {x} ` M R+ N ⇒ M{L/x} R+ N{L/x}.

Proof proceeds by induction on the derivation of Γ ∪ {x} `M R+ N . J

I Lemma 39. If a Λ⊕,let-relation R is a preorder, then so is (RH)+.

Proof. A relation is a preorder if it is reflexive and transitive. We assume that R is reflexive
and transitive. Then, by Lemma 33 and Lemma 37 we conclude (RH)+ is compatible and
hence reflexive. Relation (RH)+ is transitive by its construction, since it is a transitive
closure of relation RH . Thus, we conclude relation (RH)+ is a preorder. J

The crucial part in proving that probabilistic similarity is a precongruence is Key Lemma
(Lemma 44). First, we need the definition of a probability assignment and an auxiliary
lemma about it.

I Definition 40. P = ({pi}1≤i≤n, {rI}I⊆{1,...,n}) is a probability assignment if for each
I ⊆ {1, . . . , n} it holds that

∑
i∈I pi ≤

∑
J∩I 6=∅ rJ .

I Lemma 41. Let P = ({pi}1≤i≤n, {rI}I⊆{1,...,n}) be a probability assignment. Then for
every nonempty I ⊆ {1, . . . , n} and for every k ∈ I there is sk,I ∈ [0, 1] which satisfies the
following conditions:
1. for every I, it holds that

∑
k∈I sk,I ≤ 1;

2. for every k ∈ {1, . . . , n}, it holds that pk ≤
∑
k∈I sk,I · rI .

The proof of Lemma 41 is omitted, but it can be found in [6]. Besides Lemma 41, in the
proof of Key Lemma we use the following technical Lemmas.

I Lemma 42. For every X ⊆ Λ{x}⊕,let, it holds that . (λx.X) = λx.(. (X)) and . (νx.X) =
νx.(. (X)). λx.(. (X)) stands for the set {λx.M | ∃N ∈ X,N .M}.

Proof. Straightforward consequence of the definition of similarity. J

I Lemma 43. If M . N , then for every X ⊆ Λ{x}⊕,let, [[M ]](λx.X) ≤ [[N ]](λx. . (X)).

Proof. It is a straightforward consequence of Lemma 42. J

I Lemma 44 (Key Lemma). IfM .HN , then for every X ⊆ Λ{x}⊕,let it holds that [[M ]](λx.X) ≤
[[N ]](λx.(.H (X))).

Proof. Since [[M ]] = sup{D ; M ⇓ D}, it is enough to prove the following statement: if
M .H N and M ⇓ D then for every X ⊆ Λ{x}⊕,let it holds that D(λx.X) ≤ [[N ]](λx.(.H (X)).
Proof proceeds by induction on the derivation of M ⇓ D, looking at the last rule used. We
only consider the case where M is of the form let x = L in P , while the proofs of other cases
follow the same basic outline as the proof of Lemma 3.17 in [6].
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Let M = (let x = L in P ). Then, we have D =
∑
λx.Q F(λx.Q) · HQ,P where L ⇓ F

and for any λx.Q ∈ S(F), {P{λx.Q/x} ⇓ HQ,P }. The last rule used in the derivation
of ∅ ` M .H N has to be (How5), thus we get ∅ ` L .H R, x ` P .H S and
∅ ` (let x = R in S) . N as additional hypothesis. By applying the induction hypothesis
on L ⇓ F and ∅ ` L .H R, we obtain that

F(λx.Y ) ≤ [[R]](λx. .H (Y )), (9)

holds for any Y ⊆ Λ{x}⊕,let. F is a finite distribution, hence the distribution D =∑
λx.Q F(λx.Q) · HQ,P is a sum of finitely many summands. Let the support of F

be the set S(F) = {λx.Q1, . . . , λx.Qn}. Equation (9) implies that for every I ⊆ {1, . . . , n}
the following holds

F(
⋃
i∈I

λx.Qi) ≤ [[R]](
⋃
i∈I

λx. .H (Qi)).

This allows us to apply Lemma 41. Thus, for every U ∈
⋃n
i=1 .H (Qi) there exist

numbers rU,R1 , . . . , rU,Rn such that:

[[R]](λx.U) ≥
n∑
i=1

rU,Ri , ∀U ∈
n⋃
i=1

.H (Qi);

F(λx.Qi) ≤
∑

U∈.H(Qi)

rU,Ri , ∀i ∈ {1, . . . , n}.

Now, we can conclude the following

D ≤
n∑
i=1

 ∑
U∈.H(Qi)

rU,Ri

 ·HQi,P =
n∑
i=1

∑
U∈.H(Qi)

rU,Ri ·HQi,P .

Since Qi .H U holds and .H is compatible by Lemma 33 , λx.Qi .H λx.U holds. By
applying Lemma 36 on P .H S and the latter we get P{λx.Qi/x} .H S{λx.U/x}. If we
apply the induction hypothesis on the derivations P{λx.Qi/x} ⇓ HQi,P , i ∈ {1, . . . , n},
we obtain that for every X ⊆ Λ{x}⊕,let it holds that

D(λx.X) ≤ [[N ]](λx. .H (X)).

This concludes the proof. J

Proof of Lemma 19. The proof that similarity is a precongruence consists of two steps:
the first step is to show that the relation (.H)+ is a precongruence and the second one
is to show that it coincide with relation .. Since . is a preorder, then by Lemma 39,
relation (.H)+ is also a preorder. Relation . is reflexive, hence by Lemma 33 we have
.H is compatible. Furthermore, Lemma 37 ensures that (.H)+ is also compatible. So,
we can conclude that (.H)+ is a precongruence. Next, we want to show that .= (.H)+.
From the construction of Howe’s lifting .H and its transitive closure (.H)+ it follows that
.⊆ (.H)+. It remains to show the inclusion (.H)+ ⊆.. We show that (.H)+ is included
in some probabilistic simulation R, thus it is also included in the largest one, .. The relation
we consider is R =

{
(M,N) : M (.H)+ N} ∪ {(νx.M, νx.N) : M (.H)+ N

}
. It is obvious

that (.H)+ ⊆ R, so it only remains to show that R is a probabilistic simulation. Relation
(.H)+ is closed under term-substitution (by Lemma 36 and Lemma 38), hence it is enough
to consider only closed terms and distinguished values. Since (.H)+ is a preorder relation
(reflexive and transitive), it is easy to see R is also a preorder. We show the following
two points:

FSCD 2019
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1. If M (.H)+ N , then for every X ⊆ Λ{x}⊕,let it holds that
P (M, τ, νx.X) ≤ P (N, τ,R(νx.X)).

2. If M (.H)+ N , then for every L ∈ Λ∅⊕,let and for every X ⊆ Λ{x}⊕,let,
P (νx.M,L,X) ≤ P (νx.N,L,R(X)).

The first point we prove by induction on the derivation of M (.H)+ N . We look at the
last rule used. Let us start with the base case where (TC1) is the last rule used. Then, we
have M .H N holds by hypothesis. By Key Lemma we conclude the following:

P (M, τ, νx.X) = [[M ]](λx.X)
≤ [[N ]](λx. .H (X))
≤ [[N ]](λx.(.H)+(X))
≤ [[N ]](R(νx.X))
= P (N, τ,R(νx.X)).

Next, we consider the case where (TC2) is the last rule used and we have that for some
P ∈ Λ∅⊕,let, M (.H)+ P and P (.H)+ N hold. By induction hypothesis on both of them,
we obtain:

P (M, τ,X) ≤ P (P, τ,R(X)),

P (P, τ,R(X)) ≤ P (N, τ,R(R(X))).

It is easy to show that R(R(X)) ⊆ R(X), thus we can conclude

P (M, τ,X) ≤ P (N, τ,R(X)).

This concludes the proof of the first point.
If M (.H)+ N and L ∈ Λ∅⊕,let, then because of the fact that (.H)+ closed under term-

substitution, we have that M{L/x} (.H)+ N{L/x} holds. As a consequence, we have that
whenever M{L/x} ∈ X, then N{L/x} ∈ (.H)+(X) and it holds that

P (νx.M,L,X) = 1
= P (νx.N,L, (.H)+(X))
= P (νx.N,L,R(X)).

On the other hand, if M{L/x} 6∈ X, then P (νx.M,L,X) = 0 ≤ P (νx.N,L,R(X)).
To prove that bisimilarity is a congruence we need to prove that ∼ is an equivalence

relation, which is compatible. Relation ∼ is an equivalence relation by its definition. Since
we know that ∼=. ∩ .op holds, from the fact that similarity is a precongruence it follows
that ∼ is also compatible. This concludes the proof. J
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