The conservation theorem for differential nets - Archive ouverte HAL
Article Dans Une Revue Mathematical Structures in Computer Science Année : 2015

The conservation theorem for differential nets

Résumé

We prove the conservation theorem for differential nets – the graph-theoretical syntax of the differential extension of Linear Logic (Ehrhard and Regnier's DiLL ). The conservation theorem states that the property of having infinite reductions (here infinite chains of cut elimination steps) is preserved by non-erasing steps. This turns the quest for strong normalisation (SN) into one for non-erasing weak normalisation (WN), and indeed we use this result to prove SN of simply typed DiLL (with promotion). Along the way to the theorem we achieve a number of additional results having their own interest, such as a standardisation theorem and a slightly modified system of nets, DiLL ∂ϱ .
Fichier principal
Vignette du fichier
consdill.pdf (934.65 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04670079 , version 1 (11-08-2024)

Licence

Identifiants

Citer

Michele Pagani, Paolo Tranquilli. The conservation theorem for differential nets. Mathematical Structures in Computer Science, 2015, 27 (6), pp.939-992. ⟨10.1017/S0960129515000456⟩. ⟨hal-04670079⟩
21 Consultations
22 Téléchargements

Altmetric

Partager

More