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Abstract. The call-by-value λ-calculus can be endowed with permutation rules, arising
from linear logic proof-nets, having the advantage of unblocking some redexes that otherwise
get stuck during the reduction. We show that such an extension allows to define a satisfying
notion of Böhm(-like) tree and a theory of program approximation in the call-by-value
setting. We prove that all λ-terms having the same Böhm tree are observationally equivalent,
and characterize those Böhm-like trees arising as actual Böhm trees of λ-terms.

We also compare this approach with Ehrhard’s theory of program approximation based
on the Taylor expansion of λ-terms, translating each λ-term into a possibly infinite set
of so-called resource terms. We provide sufficient and necessary conditions for a set of
resource terms in order to be the Taylor expansion of a λ-term. Finally, we show that
the normal form of the Taylor expansion of a λ-term can be computed by performing a
normalized Taylor expansion of its Böhm tree. From this it follows that two λ-terms have
the same Böhm tree if and only if the normal forms of their Taylor expansions coincide.

We are honoured to dedicate this article to Corrado Böhm, whose brilliant
pioneering work has been an inspiration to us all.

Introduction

In 1968, Corrado Böhm published a separability theorem – known as the Böhm Theorem –
which is nowadays universally recognized as a fundamental theorem in λ-calculus [Bö68].
Inspired by this result, Barendregt in 1977 proposed the definition of “Böhm tree of a
λ-term” [Bar77], a notion which played for decades a prominent role in the theory of
program approximation. The Böhm tree of a λ-term M represents the evaluation of M
as a possibly infinite labelled tree coinductively, but effectively, constructed by collecting
the stable amounts of information coming out of the computation. Equating all λ-terms

Key words and phrases: Lambda calculus, call-by-value, Böhm trees, differential linear logic, Taylor
expansion, program approximation.
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having the same Böhm tree is a necessary, although non sufficient, step in the quest for fully
abstract models of λ-calculus.

In 2003, Ehrhard and Regnier, motivated by insights from Linear Logic, introduced
the notion of “Taylor expansion of a λ-term” as an alternative way of approximating
λ-terms [ER03]. The Taylor expansion translates a λ-term M as a possibly infinite set1

of multi-linear terms, each approximating a finite part of the behaviour of M . These
terms populate a resource calculus [Tra09] where λ-calculus application is replaced by the
application of a term to a bag of resources that cannot be erased, or duplicated and must be
consumed during the reduction. The advantage of the Taylor expansion is that it exposes the
amount of resources needed by a λ-term to produce (a finite part of) a value, a quantitative
information that does not appear in its Böhm tree. The relationship between these two
notions of program approximation has been investigated in [ER06], where the authors show
that the Taylor expansion can actually be seen as a resource sensitive version of Böhm trees
by demonstrating that the normal form of the Taylor expansion of M is actually equal to
the Taylor expansion of its Böhm tree.

The notions of Böhm tree and Taylor expansion have been first developed in the setting
of call-by-name (CbN) λ-calculus [Bar84]. However many modern functional programming
languages, like OCaml, adopt a call-by-value (CbV) reduction strategy — a redex of shape
(λx.M)N is only contracted when N is a value, namely a variable or a λ-abstraction. The call-
by-value λ-calculus λv has been defined by Plotkin in 1975 [Plo75], but its theory of program
approximation is still unsatisfactory and constitutes an ongoing line of research [Ehr12,
CG14, MRP19]. For instance, it is unclear what should be the Böhm tree of a λ-term
because of the possible presence of β-redexes that get stuck (waiting for a value) in the
reduction. A paradigmatic example of this situation is the λ-term M = (λy.∆)(xx)∆, where
∆ = λz.zz (see [PRDR99, AG17]). This term is a call-by-value normal form because the
argument xx, which is not a value, blocks the evaluation (while one would expect M to
behave as the divergent term Ω = ∆∆). A significant advance in reducing the number of
stuck redexes has been made in [CG14] where Carraro and Guerrieri, inspired by Regnier’s
work in the call-by-name setting [Reg94], introduce permutations rules (σ) naturally arising
from the translation of λ-terms into Linear Logic proof-nets. Using σ-rules, the λ-term M
above rewrites in (λy.∆∆)(xx) which in its turn rewrites to itself, thus giving rise to an
infinite reduction sequence, as desired. In [GPR17], Guerrieri et al. show that this extended
calculus λσv still enjoys nice properties like confluence and standardization, and that adding
the σ-rules preserves the operational semantics of Plotkin’s CbV λ-calculus as well as the
observational equivalence.

In the present paper we show that σ-rules actually open the way to provide a meaningful
notion of call-by-value Böhm trees (Definition 2.8). Rather than giving a coinductive
definition, which turns out to be more complicated than expected, we follow [AC98] and
provide an appropriate notion of approximants, namely λ-terms possibly containing a constant
⊥, that are in normal form w.r.t. the reduction rules of λσv (i.e., the σ-rules and the restriction
of (β) to values). In this context, ⊥ represents the undefined value and this intuition is
reflected in the definition of a preorder v between approximants which is generated by

1In its original definition, the Taylor expansion is a power series of multi-linear terms taking coefficients
in the semiring of non-negative rational numbers. Following [MP11, Ehr12, BHP13], in this paper we abuse
language and call “Taylor expansion” the support (underlying set) of the actual Taylor expansion. This is
done for good reasons, as we are interested in the usual observational equivalences between λ-terms that
overlook such coefficients.
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⊥ v V , for all approximated values V . The next step is to associate with every λ-term M
the set A(M) of its approximants and verify that they enjoy the following properties: (i) the
“external shape” of an approximant of M is stable under reduction (Lemma 2.5); (ii) two
interconvertible λ-terms share the same set of approximants (cf., Lemma 2.6); (iii) the set
of approximants of M is directed (Lemma 2.7). Once this preliminary work is accomplished,
it is possible to define the Böhm tree of M as the supremum of A(M), the result being a
possibly infinite labelled tree BT(M), as expected.

More generally, it is possible to define the notion of (CbV) “Böhm-like” trees as those
labelled trees that can be obtained by arbitrary superpositions of (compatible) approximants.
The Böhm-like trees corresponding to CbV Böhm trees of λ-terms have specific properties,
that are due to the fact that λ-calculus constitutes a model of computation. Indeed, since
every λ-term M is finite, BT(M) can only contain a finite number of free variables and,
since M represents a program, the tree BT(M) must be computable. In Theorem 2.13 we
demonstrate that these conditions are actually sufficient, thus providing a characterization.

To show that our notion of Böhm tree is actually meaningful, we prove that all λ-
terms having the same Böhm tree are operationally indistinguishable (Theorem 4.16) and
we investigate the relationship between Böhm trees and Taylor expansion in the call-by-
value setting. Indeed, as explained by Ehrhard in [Ehr12], the CbV analogues of resource
calculus and of Taylor expansion are unproblematic to define, because they are driven
by solid intuitions coming from Linear Logic: rather than using the CbN translation
A → B = !A ( B of intuitionistic arrow, it is enough to exploit Girard’s so-called
“boring” translation, which transforms A → B in !(A ( B) and is suitable for CbV.
Following [BHP13], we define a coherence relation ¨ between resource terms and prove
that a set of such terms corresponds to the Taylor expansion of a λ-term if and only if it is
an infinite clique having finite height. Subsequently, we focus on the dynamic aspects of
the Taylor expansion by studying its normal form, that can always be calculated since the
resource calculus enjoys strong normalization.

In [CG14], Carraro and Guerrieri propose to extend the CbV resource calculus with
σ-rules to obtain a more refined normal form of the Taylor expansion T (M) of a λ-term
M — this allows to mimic the σ-reductions occurring in M at the level of its resource
approximants. Even with this shrewdness, it turns out that the normal form of T (M) is
different from the normal form of T (BT(M)), the latter containing approximants that are
not normal, but whose normal form is however empty (they disappear along the reduction).
Although the result from [ER06] does not hold verbatim in CbV, we show that it is possible
to define the normalized Taylor expansion T ◦(−) of a Böhm tree and prove in Theorem 4.11
that the normal form of T (M) coincide with T ◦(BT(M)), which is the main result of the
paper. An interesting consequence, among others, is that all denotational models satisfying
the Taylor expansion (e.g., the one in [CG14]) equate all λ-terms having the same Böhm
tree.

Related works. To our knowledge, in the literature no notion of CbV Böhm tree appears2.
However, there have been attempts to develop syntactic bisimulation equivalences and theories
of program approximation arising from denotational models. Lassen [Las05] coinductively
defines a bisimulation equating all λ-terms having (recursively) the same “eager normal
form”, but he mentions that no obvious tree representations of the equivalence classes are at

2Even Paolini’s separability result in [Pao01] for CbV λ-calculus does not rely on Böhm trees.
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hand. In [RDRP04], Ronchi della Rocca and Paolini study a filter model of CbV λ-calculus
and, in order to prove an Approximation Theorem, they need to define sets of upper and
lower approximants of a λ-term. By admission of the authors [Roc18], these notions are
not satisfactory because they correspond to an “over” (resp. “under”) approximation of its
behaviour.

We end this section by recalling that most of the results we prove in this paper are the
CbV analogues of results well-known in CbN and contained in [Bar84, Ch. 10] (for Böhm
trees), in [BHP13] (for Taylor expansion) and [ER06] (for the relationship between the two
notions).

General notations. We denote by N the set of all natural numbers. Given a set X we
denote by P(X) its powerset and by Pf(X) the set of all finite subsets of X.

1. Call-By-Value λ-Calculus

The call-by-value λ-calculus λv, introduced by Plotkin in [Plo75], is a λ-calculus endowed
with a reduction relation that allows the contraction of a redex (λx.M)N only when the
argument N is a value, namely when N is a variable or an abstraction. In this section
we briefly review its syntax and operational semantics. By extending its reduction with
permutation rules σ, we obtain the calculus λσv introduced in [CG14], that will be our main
subject of study.

1.1. Its syntax and operational semantics. For the λ-calculus we mainly use the notions
and notations from [Bar84]. We consider fixed a denumerable set V of variables.

Definition 1.1. The set Λ of λ-terms and the set Val of values are defined through the
following grammars (where x ∈ V):

(Λ) M,N,P,Q ::= V |MN
(Val) U, V ::= x | λx.M

As usual, we assume that application associates to the left and has higher precedence
than λ-abstraction. For instance, λxyz.xyz = λx.(λy.(λz.((xy)z))). Given x1, . . . , xn ∈ V,
we let λ~x.M stand for λx1 . . . λxn.M . Finally, we write MN∼n for MN · · ·N (n times).

The set FV(M) of free variables of M and the α-conversion are defined as in [Bar84,
§2.1]. A λ-term M is called closed, or a combinator, whenever FV(M) = ∅. The set of all
combinators is denoted by Λo. From now on, λ-terms are considered up to α-conversion,
whence the symbol = represents syntactic equality possibly up to renaming of bound
variables.

Definition 1.2. Concerning specific combinators, we define:

I = λx.x, ∆ = λx.xx, Ω = ∆∆,
B = λfgx.f(gx), K = λxy.x, F = λxy.y,
Z = λf.(λy.f(λz.yyz))(λy.f(λz.yyz)), K∗ = ZK.

where I is the identity, Ω is the paradigmatic looping combinator, B is the composition
operator, K and F are the first and second projection (respectively), Z is Plotkin’s recursion
operator, and K∗ is a λ-term producing an increasing amount of external abstractions.
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Given M,N ∈ Λ and x ∈ V we denote by M [x := N ] the λ-term obtained by substituting
N for every free occurrence of x in M , subject to the usual proviso of renaming bound
variables in M to avoid capture of free variables in N .

Remark 1.3. It is easy to check that the set Val is closed under substitution of values for
free variables, namely U, V ∈ Val and x ∈ V entail V [x := U ] ∈ Val.

A context is a λ-term possibly containing occurrences of a distinguished algebraic
variable, called hole and denoted by L−M. In the present paper we consider – without loss of
generality for our purposes – contexts having a single occurrence of L−M.

Definition 1.4. A (single-hole) context CL−M is generated by the simplified grammar:

C ::= L−M | CM |MC | λx.C (for M ∈ Λ)

A context CL−M is called a head context if it has shape (λx1 . . . xn.L−M)V1 · · ·Vm for Vi ∈ Val.

Given M ∈ Λ, we write CLMM for the λ-term obtained by replacing M for the hole L−M
in CL−M, possibly with capture of free variables.

We consider a CbV λ-calculus λσv endowed with the following notions of reductions. The
βv-reduction is the standard one, from [Plo75], while the σ-reductions have been introduced
in [Reg94, CG14] and are inspired by the translation of λ-calculus into linear logic proof-nets.

Definition 1.5. The βv-reduction →βv is the contextual closure of the following rule:

(βv) (λx.M)V →M [x := V ] whenever V ∈ Val

The σ-reductions →σ1 , →σ3 are the contextual closures of the following rules (for V ∈ Val):

(σ1) (λx.M)NP → (λx.MP )N with x /∈ FV(P )
(σ3) V ((λx.M)N)→ (λx.V M)N with x /∈ FV(V )

We also set →σ = →σ1 ∪ →σ3 and →v = →βv ∪ →σ.

The λ-term at the left side of the arrow in the rule (βv) (resp. (σ1), (σ3)) is called βv-
(resp. σ1-, σ3-) redex, while the λ-term at the right side is the corresponding contractum.
Notice that the condition for contracting a σ1- (resp. σ3-) redex can always be satisfied by
performing appropriate α-conversions.

Each reduction relation →R generates the corresponding multistep relation �R by
taking its transitive and reflexive closure, and conversion relation =R by taking its transitive,
reflexive and symmetric closure. Moreover, we say that a λ-term M is in R-normal form
(R-nf, for short) if there is no N ∈ Λ such that M →R N . We say that M has an R-normal
form whenever M �R N for some N in R-nf, and in this case we denote N by nfR(M).

Example 1.6.

(1) Ix→βv x, while I(xy) is a v-normal form.
(2) Ω→βv Ω, whence Ω is a looping combinator in the CbV setting as well.
(3) I(∆(xx)) is a βv-nf, but contains a σ3-redex, indeed I(∆(xx))→σ3 (λz.I(zz))(xx).
(4) For all values V , we have ZV =v V (λx.ZV x) with x /∈ FV(V ). So we get:
(5) K∗ = ZK =v K(λy.K∗y) =v λx0x1.K

∗x1 =v λx0x1x2.K
∗x2 =v · · · =v λx0 . . . xn.K

∗xn.
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(6) Let Ξ = ZN for N = λf.(λy1.fI)(zz), then we have:

Ξ =v N(λw.Ξw) by ZV =v V (λw.ZV w)
=v (λy1.(λw.Ξw)I)(zz) by (βv)
=v (λy1.ΞI)(zz) by (βv)
=v (λy1.((λy2.ΞI)(zz))I)(zz) by (βv)
=v (λy1.((λy2.ΞII)(zz)))(zz) by (σ1)
=v (λy1.((λy2.((λy3.ΞIII)(zz)))(zz)))(zz) = · · ·

(7) ZB =v B(λz.ZBz) =v λgx.(λz.ZBz)(gx) =v λgx.(λfy.(λz.ZBz)(fy))(gx) =v · · ·

The next lemma was already used implicitly in [GPR17].

Lemma 1.7. A λ-term M is in v-normal form if and only if M is a G-term generated by
the following grammar (for k ≥ 0):

G ::= H | R
H ::= x | λx.G | xHG1 · · ·Gk
R ::= (λx.G)(yHG1 · · ·Gk)

Proof. (⇒) Assume that M is in v-nf and proceed by structural induction. Recall that every
λ-term M can be uniquely written as λx1 . . . xm.M

′N1 · · ·Nn where m,n ≥ 0 and either
M ′ = x or M ′ = (λx.P )Q. Moreover, the λ-terms M ′, N1, . . . , Nn must be in v-nf’s since M
is v-nf. Now, if m > 0 then M is of the form λx.P with P in v-nf and the result follows from
the induction hypothesis. Hence, we assume m = 0 and split into cases depending on M ′:

• M ′ = x for some x ∈ V. If n = 0 then we are done since x is an H-term. If n > 0 then
M = xN1 · · ·Nn where all the Ni’s are G-terms by induction hypothesis. Moreover, N1

cannot be an R-term for otherwise M would have a σ3-redex. Whence, N1 must be an
H-term and M is of the form xHG1 · · ·Gk for k = n− 1.
• M ′ = (λx.P )Q for some variable x and λ-terms P,Q in v-nf. In this case we must have
n = 0 because M cannot have a σ1-redex. By induction hypothesis, P,Q are G-terms,
but Q cannot be an R-term or a value for otherwise M would have a σ3- or a βv-redex,
respectively. We conclude that the only possibility for the shape of Q is yHG1 · · ·Gk,
whence M must be an R-term.

(⇐) By induction on the grammar generating M . The only interesting cases are the following.

• M = xHG1 · · ·Gk could have a σ3-redex if H = (λy.P )Q, but this is impossible by defini-
tion of an H-term. As H,G1, . . . , Gk are in v-nf by induction hypothesis, so must be M .
• M = (λx.G)(yHG1 · · ·Gk) where G,H,G1, . . . , Gk are in v-nf by induction hypothesis. In

the previous item we established that yHG1 · · ·Gk is in v-nf. Thus, M could only have a
βv-redex if yHG1 · · ·Gk ∈ Val, but this is not the case by definition of Val.

Intuitively, in the grammar above, G stands for “general” normal form, R for “redex-like”
normal form and H for “head” normal form. The following properties are well-established.

Proposition 1.8 (Properties of reductions [Plo75, CG14]).

(1) The σ-reduction is confluent and strongly normalizing.
(2) The βv- and v-reductions are confluent.

Lambda terms are classified into valuables, potentially valuable and non-potentially
valuable, depending on their capability of producing a value in a suitable environment.
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Definition 1.9. A λ-term M is valuable if M �βv V for some V ∈ Val. A λ-term M is

potentially valuable if there exists a head context3 CL−M = (λx1 . . . xn.L−M)V1 · · ·Vn, where
FV(M) = {x1, . . . , xn}, such that CLMM is valuable.

It is easy to check that M valuable entails M potentially valuable and that, for M ∈ Λo,
the two notions coincide. As shown in [GPR17], a λ-term M is valuable (resp. potentially
valuable) if and only if M �v V (resp. CLMM�v V ) for some V ∈ Val. As a consequence,
the calculus λσv can be used as a tool for studying the operational semantics of the original
calculus λv.

In [Plo75], Plotkin defines an observational equivalence analogous to the following one.

Definition 1.10. The observational equivalence ≡ is defined as follows (for M,N ∈ Λ):

M ≡ N
⇐⇒

∀CL−M . CLMM, CLNM ∈ Λo [ ∃V ∈ Val . CLMM�βv V ⇐⇒ ∃U ∈ Val . CLNM�βv U ]

For example, we have I ≡ λxy.xy and Ξ ≡ Ω (see Example 1.6(6)), while Ω 6≡ λx.Ω.

Remark 1.11. It is well known that, in order to check whether M ≡ N holds, it is enough
to consider head contexts (cf. [Ong97, Pao08]). In other words, M 6≡ N if and only if there
exists a head context CL−M such that CLMM is valuable, while CLNM is not.

2. Call-by-value Böhm Trees

In the call-by-name setting there are several equivalent ways of defining Böhm trees. The
most famous definition is coinductive4 [Las99], while the formal one in Barendregt’s book
exploits the notion of “effective Böhm-like trees” which is not easy to handle in practice. The
definition given in Amadio and Curien’s book [AC98, Def. 2.3.3] is formal, does not require
coinductive techniques and, as it turns out, generalizes nicely to the CbV setting. The idea
is to first define the set A(M) of approximants of a λ-term M , then show that it is directed
w.r.t. some preorder v and, finally, define the Böhm tree of M as the supremum of A(M).

2.1. Böhm trees and approximants. Let Λ⊥ be the set of λ-terms possibly containing a
constant ⊥, representing the undefined value, and let v be the context-closed preorder on
Λ⊥ generated by setting, for all x ∈ V and M ∈ Λ⊥:

⊥ v x, ⊥ v λx.M.

Notice that, by design, ⊥ can only be used to approximate values, not λ-terms like Ω.
The reduction →v from Definition 1.5 generalizes to terms in Λ⊥ in the obvious way,

namely by considering a set Val⊥ of values generated by the grammar (for M ∈ Λ⊥):

(Val⊥) U, V ::= ⊥ | x | λx.M
For example, the βv-reduction is extended by setting for all M,V ∈ Λ⊥:

(βv) (λx.M)V →M [x := V ] whenever V ∈ Val⊥

3Equivalently, M is potentially valuable if there is a substitution ϑ : V→ Val such that ϑ(M) is valuable.
4See also Definition 10.1.3 of [Bar84], marked by Barendregt as ‘informal’ because at the time the

coinduction principle was not as well-understood as today.
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Similarly, for the σ-rules. A ⊥-context CL−M is a context possibly containing some occurrences
of ⊥. We use for ⊥-contexts the same notations introduced for contexts in Section 1.1.

Given M,N ∈ Λ⊥ compatible5 w.r.t. v, we denote their least upper bound by M tN .

Definition 2.1.

(1) The set A of approximants contains the terms A ∈ Λ⊥ generated by the grammar (for
k ≥ 0):

A ::= B | C
B ::= x | λx.A | ⊥ | xBA1 · · ·Ak
C ::= (λx.A)(yBA1 · · ·Ak)

(2) The set of free variables FV(−) is extended to approximants by setting FV(⊥) = ∅.
(3) Given M ∈ Λ, the set of approximants of M is defined as follows:

A(M) = {A ∈ A | ∃N ∈ Λ,M �v N and A v N}.
Example 2.2. (1) A(I) = {⊥, λx.⊥, λx.x}.
(2) A(Ω) = A(Ξ) = ∅ and A(λx.Ω) = {⊥}.
(3) A(I(∆(xx))) = {(λz.(λy.Y )(zZ))(xX) | Y ∈ {y,⊥} ∧ Z ∈ {z,⊥} ∧ X ∈ {x,⊥}}.

Notice that neither (λz.⊥)(xx) nor (λz.⊥)(x⊥) belong to this set, because ⊥ 6v I(zz).
(4) A(Z) =

⋃
n∈N{λf.f(λz0.f(λz1.f · · · (λzn.f⊥Zn) · · ·Z1)Z0) | ∀i . Zi ∈ {zi,⊥}} ∪ {⊥}.

(5) A(K∗) = {λx1 . . . xn.⊥ | n ≥ 0}.
(6) The set of approximants of ZB is particularly interesting to calculate:

A(ZB) = {λf0x0.(· · · (λfn−1xn−1.(λfn.⊥)(fn−1Xn−1)) · · · )(f0X0) | n > 0,∀i .Xi ∈ {xi,⊥}}
∪ {⊥, λf0.⊥}.

Lemma 2.3. Every M ∈ A is in normal form with respect to the extended v-reduction.

Proof. By a simple case analysis (analogous to the proof of Lemma 1.7).

The following lemmas show that the “external shape” of an approximant is stable
under v-reduction. For instance, if A = (λx.A0)(yBA1 · · ·Ak) vM then all approximants
A′ ∈ A(M) have shape (λx.A′0)(yB

′A′1 · · ·A′k) for some B′, A′0, . . . , A
′
k ∈ A.

Lemma 2.4. Let CL−M be a (single-hole) ⊥-context and V ∈ Val. Then CL⊥M ∈ A and
CLV M→v N entails that there exists a value V ′ such that V →v V

′ and N = CLV ′M.

Proof. Let A = CL⊥M ∈ A. By Lemma 2.3, A cannot have any v-redex. Clearly, substituting
V for an occurrence of ⊥ in A does not create any new βv-redex, so if CLV M→βv N then
the contracted redex must occur in V . As V is a value, it can only v-reduce to a value V ′.

It is slightly trickier to check by induction on CL−M that such an operation does not
introduce any σ-redex. The only interesting case is CL⊥M = (λx.A′)(xC ′L⊥MA1 · · ·Ak) where
C ′L⊥M is a B-term. Indeed, since x ∈ Val, xC ′LV M would be a σ3-redex for C ′LV M = (λy.P )Q
but this is impossible since C ′L⊥M is a B-term and B-terms cannot have this shape.

The case CL⊥M = xC ′L⊥MA1 · · ·Ak is analogous.

Lemma 2.5. For M ∈ Λ and A ∈ A, A vM and M →v N entails A v N .

Proof. If A vM then M can be obtained from A by substituting each occurrence of ⊥ for the
appropriate subterm of M , and such subterm must be a value. Hence, the redex contracted
in M →v N must occur in a subterm V of M corresponding to an occurrence6 CL−M of ⊥ in

5Recall that M,N are compatible if there exists Z such that M v Z and N v Z.
6An occurrence of a subterm N in a λ-term M is a (single-hole) context CL−M such that M = CLNM.
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A. So we have CL⊥M = A and CLV M→v N
′ implies, by Lemma 2.4, that N ′ = CLV ′M for a

V ′ such that V →v V
′. So we conclude that A = CL⊥M v N , as desired.

Lemma 2.6. For M,N ∈ Λ, M →v N entails A(M) = A(N).

Proof. Straightforward from Definition 2.1(3) and Lemma 2.5.

Proposition 2.7. For all M ∈ Λ, the set A(M) is either empty or an ideal (i.e. non-empty,
directed and downward closed) w.r.t. v.

Proof. Assume A(M) is non-empty. We check the remaining two conditions:

• To show that A(M) is directed, we need to prove that every A1, A2 ∈ A(M) have an
upper bound A3 ∈ A(M).

We proceed by induction on A1. In case A1 = ⊥ (resp. A2 = ⊥) simply take A3 = A2

(resp. A3 = A1). Let us assume that A1, A2 6= ⊥.
Case A1 = x, then A3 = A2 = x.
Case A1 = xB1A

1
1 · · ·A1

k. In this case we must have M �v N1 for N1 = xN ′0 · · ·N ′k with
B1 v N ′0 and A1

i v N ′i for all i such that 1 ≤ i ≤ k. As A2 ∈ A(M), there exists a λ-term
N2 such that M �v N2 and A2 v N2. By Proposition 1.8(2) (confluence), N1 and N2 have
a common reduct N . Since A1 v N1, by Lemma 2.5 we get A1 v N thus N = xN0 · · ·Nk.
By Lemma 2.5 again, A2 v N whence A2 = xB2A

2
1 · · ·A2

k for some approximants B2 v N0

and A2
i v Ni for 1 ≤ i ≤ k. Now, by definition, B1, B2 ∈ A(N0) and A1

i , A
2
i ∈ A(Ni)

for 1 ≤ i ≤ k. By induction hypothesis, there exists B3 ∈ A(N0), A
3
i ∈ A(Ni) such

that B1 v B3 w B2 and A1
i v A3

i w A2
i from which it follows that the upper bound

xB3A
3
1 · · ·A3

k of A1, A2 belongs to A(xN0 · · ·Nk). By Lemma 2.6, we conclude that
xB3A

3
1 · · ·A3

k ∈ A(M), as desired.
Case A1 = (λx.A′1)(yB1A

1
1 · · ·A1

k). In this case we must have M �v N1 for N1 =
(λx.M ′)(yM0 · · ·Mk) with A′1 vM ′, B1 vM0 and A1

i vMi for all i such that 1 ≤ i ≤ k.
Reasoning as above, A2 ∈ A(M) implies there exists a λ-term N2 such that M �v N2 and
A2 v N2. By Proposition 1.8(2), N1 and N2 have a common reduct N . Since A1 v N1, by
Lemma 2.5 we get A1 v N thus N = (λx.N ′)(yN0 · · ·Nk). By Lemma 2.5 again, A2 v N
whence A2 = (λx.A′2)(yB2A

2
1 · · ·A2

k) where A′2 v N ′, B2 v N0 and A2
i v Ni for 1 ≤ i ≤ k.

By induction hypothesis we get A′3 ∈ A(N ′) such that A′1 v A′3 w A′2, B3 ∈ A(N0) such
that B1 v B3 w B2 and A3

i ∈ A(Ni) such that A1
i v A3

i w A2
i for 1 ≤ i ≤ k. It follows

that the upper bound (λx.A′3)(yB3A
3
1 · · ·A3

k) of A1, A2 belongs to A((λx.N ′)(yN0 · · ·Nk)).
By Lemma 2.6, we conclude that (λx.A′3)(yB3A

3
1 · · ·A3

k) ∈ A(M).
All other cases follow from Lemma 2.5, confluence of →v and the induction hypothesis.

• To prove that A(M) is downward closed, we need to show that for all A1, A2 ∈ A, if
A1 v A2 ∈ A(M) then A1 ∈ A(M), but this follows directly from its definition.

As a consequence, whenever A(M) 6= ∅, we can actually define the Böhm tree of a
λ-term M as the supremum of its approximants in A(M).

Definition 2.8. (1) Let M ∈ Λ. The (call-by-value) Böhm tree of M , in symbols BT(M),
is defined as follows (where we assume that

⊔
∅ = ∅):

BT(M) =
⊔
A(M)

Therefore, the resulting structure is a possibly infinite labelled tree T .
(2) More generally, every X ⊆ A directed and downward closed determines a so-called

Böhm-like tree T =
⊔
X .
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(3) Given a Böhm-like tree T , we set FV(T ) = FV(X ) =
⋃
A∈X FV(A).

The difference between the Böhm tree of a λ-term M and a Böhm-like tree T is that
the former must be “computable7” since it is λ-definable, while the latter can be arbitrary.
In particular, any Böhm tree BT(M) is a Böhm-like tree but the converse does not hold.

Remark 2.9. (1) Notice that A(M) = A(N) if and only if BT(M) = BT(N).
(2) The supremum

⊔
X in Definition 2.8(2) (and a fortiori

⊔
A(M), in (1)) belongs to the

larger set X generated by taking the grammar in Definition 2.1(1) coinductively, whose
elements are ordered by v extended to infinite terms. However, X contains terms like

(λy1.(λy2.(λy3. · · · )(yy))(yy))(yy) ∈X

that are not “Böhm-like” as they cannot be obtained as the supremum of a directed
subset X ⊆ A.

(3) FV(BT(M)) ⊆ FV(M) and the inclusion can be strict: FV(BT(λx.Ωy)) = FV(⊥) = ∅.

The Böhm-like trees defined above as the supremum of a set of approximants can be
represented as actual trees. Indeed, any Böhm-like tree T can be depicted using the following
“building blocks”.

• If T = ⊥ we actually draw a node labelled ⊥.
• If T = λx.T ′ we use an abstraction node labelled “λx”:

λx

T ′

• If T = xT1 · · ·Tk, we use an application node labelled by “@”:

@

x T1 · · · Tk

• If T = (λx.T0)(yT1 · · ·Tk) we combine the application and abstraction nodes as imagined:

@

λx

T0

@

y T1 · · · Tk

Notice that the tree T1 in the last two cases need to respect the shape of the corresponding
approximant (Definition 2.1(1)) for otherwise T would not be the supremum of an ideal.

Example 2.10. Notable examples of Böhm trees of λ-terms are given in Figure 1. Interest-
ingly, the λ-term Ξ from Example 1.6(6) satisfying

Ξ =v (λy1.((λy2.(· · · (λyn.ΞI∼n)(zz) · · · ))(zz)))(zz) (2.1)

is such that BT(Ξ) = ⊥. Indeed, substituting ⊥ for a λyn.ΞI
∼n in (2.1) never gives an

approximant belonging to A (cf. the grammar of Definition 2.1(1)).

7The formal meaning of “computable” will be discussed in the rest of the section.
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BT(Ω)
q
∅

BT(λx.Ω)
q
⊥

BT(Z)
q
λf

@

f λz0

@

f λz1 z0

@

f λz2 z1

BT(I(zz))

q
@

λx

x

@

zz

BT(K∗)
q
λx0

λx1

λx2

λx3

BT(ZB)
q
λf0

λx0

@

@

f0 x0

λf1

λx1

@

@

f1 x1

λf2

λx2

Figure 1: Examples of CbV Böhm trees.

Proposition 2.11. For M,N ∈ Λ, if M =v N then BT(M) = BT(N).

Proof. By Proposition 1.8(2) (i.e. confluence of →v), M =v N if and only if there exists a
λ-term P such that M �v P and N �v P . By an iterated application of Lemma 2.6 we get
A(M) = A(P ) = A(N), so we conclude BT(M) = BT(N).

Theorem 2.13 below provides a characterization of those Böhm-like trees arising as the
Böhm tree of some λ-term, in the spirit of [Bar84, Thm. 10.1.23]. To achieve this result, it
will be convenient to consider a tree as a set of sequences closed under prefix.

We denote by N∗ the set of finite sequences of natural numbers. Given n1, . . . , nk ∈ N,
the corresponding sequence σ ∈ N∗ of length k is represented by σ = 〈n1, . . . , nk〉. In
particular, 〈〉 represents the empty sequence of length 0. Given σ ∈ N∗ as above and n ∈ N,
we write n :: σ for the sequence 〈n, n1, . . . , nk〉 and σ;n for the sequence 〈n1, . . . , nk, n〉.

Given a tree T , the sequence i :: σ possibly determines a subtree that can be found
going through the (i+ 1)-th children of T (if it exists) and then following the path σ. Of
course this is only the case if i :: σ actually belongs to the domain of the tree. The following
definition formalizes this intuitive idea in the particular case of syntax trees of approximants.
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Definition 2.12. Let σ ∈ N∗, A ∈ A. The subterm of A at σ, written Aσ, is defined by:

A〈〉 = A (λx.A)σ =

{
Aτ if σ = 0 :: τ,

↑ otherwise,

⊥σ = ↑ (xA0 · · ·Ak)σ =

{
(Ai−1)τ if 1 ≤ i ≤ k + 1 and σ = i :: τ,

↑ otherwise,

((λx.A′)(yA0 · · ·Ak))σ =


A′τ if σ = 0 :: 0 :: τ,

(Ai−1)τ if 1 ≤ i ≤ k + 1 and σ = 1 :: i :: τ,

↑ otherwise.

As a matter of notation, given an approximant A′, a subset X ⊆ A and a sequence σ ∈ N∗,
we write ∃Aσ 'X A′ whenever there exists A ∈ X such that Aσ is defined and Aσ = A′.

Theorem 2.13. Let X ⊆ A be a set of approximants. There exists M ∈ Λ such that
A(M) = X if and only if the following three conditions hold:

(1) X is directed and downward closed w.r.t. v,
(2) X is r.e. (after coding),
(3) FV(X ) is finite.

Proof sketch. (⇒) Let M ∈ Λ be such that X = A(M), then (1) is satisfied by Proposition 2.7
and (3) by Remark 2.9. Concerning (2), let us fix an effective bijective encoding # : Λ⊥ → N.
Then the set {#A | A ∈ X} is r.e. because it is semi-decidable to determine if M �v N (just
enumerate all v-reducts of M and check whether N is one of them), the set {#A | A ∈ A}
and the relation v restricted to A× Λ are decidable.

(⇐) Assume that X is a set of approximants satisfying the conditions (1-3).
If X = ∅ then we can simply take M = Ω since A(Ω) = ∅.
If X is non-empty then it is an ideal. Since X is r.e., if A′ ∈ A and σ ∈ N∗ are effectively

given then the condition ∃Aσ 'X A′ is semi-decidable and a witness A can be computed.
Let pσq be the numeral associated with σ under an effective encoding and pAq be the quote
of A as defined by Mogensen8 in [Mog92], using a fresh variable zb /∈ FV(X ) to represent
the ⊥. (Such variable always exists because FV(X ) is finite.) The CbV λ-calculus being
Turing-complete, as shown by Paolini in [Pao01], there exists a λ-term PX satisfying:

PX pσqpA
′q =v

{
pAq if ∃Aσ 'X A′ holds,

not potentially valuable otherwise.

for some witness A. Recall that there exists an evaluator E ∈ Λo such that EpMq =v M for
all λ-terms M . Using the λ-terms E, PX so-defined and the recursion operator Z, it is possible

8This encoding is particularly convenient because it is effective, defined on open terms by exploiting the
fact that FV(pMq) = FV(M) and works in the CbV setting as well (easy to check). See also [BDS13, §6.1]
for a nice treatment.
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to define a λ-term F (also depending on X ) satisfying the following recursive equations:

F pσq =v



x if ∃Aσ 'X x,
λx.F pσ; 0q if ∃Aσ 'X λx.A1,

x(F pσ; 1q) · · · (F pσ; k + 1q) if ∃Aσ 'X xA0 · · ·Ak,(
λx.Fpσ; 0; 0q

)(
y(Fpσ; 1; 1q) · · · (Fpσ; 1; k + 1q)

)
if ∃Aσ 'X (λx.A)(yA0 · · ·Ak),

not valuable otherwise.

The fact that X is directed guarantees that, for a given sequence σ, exactly one of the cases
above is applicable. It is now easy to check that A(F p〈〉q) = X .

3. Call-By-Value Taylor Expansion

The (call-by-name) resource calculus λr has been introduced by Tranquilli in his thesis [Tra09],
and its promotion-free fragment is the target language of Ehrhard and Regnier’s Taylor
expansion [ER06]. Both the resource calculus and the notion of Taylor expansion have
been adapted to the CbV setting by Ehrhard [Ehr12], using Girard’s second translation of
intuitionistic arrow in linear logic. Carraro and Guerrieri added to CbV λr the analogous of
the σ-rules and studied the denotational and operational properties of the resulting language
λσr in [CG14].

3.1. Its syntax and operational semantics. We briefly recall here the definition of the
call-by-value resource calculus λσr from [CG14], and introduce some notations.

Definition 3.1. The sets Valr of resource values, Λs of simple terms and Λr of resource
terms are generated by the following grammars (for k ≥ 0):

(Valr) u, v ::= x | λx.t resource values
(Λs) s, t ::= st | [v1, . . . , vk] simple terms
(Λr) e ::= v | s resource terms

The notions of α-conversion and free variable are inherited from λσv . In particular, given
e ∈ Λr, FV(e) denotes the set of free variables of e. The size of a resource term e is defined
in the obvious way, while the height ht(e) of e is the height of its syntax tree:

ht(x) = 0,
ht(λx.t) = ht(t) + 1,
ht(st) = max{ht(s), ht(t)}+ 1,
ht([v1, . . . , vk]) = max{ht(vi) | i ≤ k}+ 1.

Resource values are analogous to the values of λσv , namely variables and λ-abstractions.
Simple terms of shape [v1, . . . , vn] are called bags and represent finite multisets of linear
resources — this means that every vi must be used exactly once along the reduction.
Indeed, when a singleton bag [λx.t] is applied to a bag [v1, . . . , vn] of resource values, each
vi is substituted for exactly one free occurrence of x in t. Such an occurrence is chosen
non-deterministically, and all possibilities are taken into account — this is expressed by a
set-theoretical union of resource terms (see Example 3.5 below). In case there is a mismatch
between the cardinality of the bag and the number of occurrences of x in t, the reduction
relation “raises an exception” and the result of the computation is the empty set ∅.

Whence, we need to introduce some notations concerning sets of resource terms.
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t→r T
λx.t→r λx.T

s→r S
s t→r S t

t→r T
s t→r s T

v0 →r V0
[v0, v1, . . . , vk]→r [V0, v1, . . . , vk]

e→r E1 e /∈ E2
{e} ∪ E2 →r E1 ∪ E2

Figure 2: Contextual rules for →r ⊆Pf(Λ
r)×Pf(Λ

r).

Notation 3.2. Sets of resource values, simple terms and resource terms are denoted by:

U ,V ∈P(Valr), S, T ∈P(Λs), E ∈P(Λr),

To simplify the subsequent definitions, given S, T ∈P(Λs) and V1, . . . ,Vk ∈P(Valr) we
fix the following notations (as a syntactic sugar, not as actual syntax):

λx.T = {λx.t | t ∈ T } ∈P(Valr),
S T = {st | s ∈ S, t ∈ T } ∈P(Λs),

[V1, . . . ,Vk] = {[v1, . . . , vk] | v1 ∈ V1, . . . , vk ∈ Vk} ∈P(Λs).

Indeed all constructors of λσr are multi-linear, so we get λx.∅ = ∅T = S∅ = [∅,V1, . . . ,Vk] = ∅.

These notations are used in a crucial way, e.g., in Definition 3.4(2).

Definition 3.3. Let e ∈ Λr and x ∈ V.

(1) Define the degree of x in e, written degx(e), as the number of free occurrences of the
variable x in the resource term e.

(2) Let e ∈ Λr, v1, . . . , vn ∈ Valr and x ∈ V. The linear substitution of v1, . . . , vn for x in e,
denoted by e〈x := [v1, . . . , vn]〉 ∈Pf(Λ

r), is defined as follows:

e〈x := [v1, . . . , vn]〉 =

{{
e[x1 := vσ(1), . . . , xn := vσ(n)] | σ ∈ Sn

}
, if degx(e) = n,

∅, otherwise.

where Sn is the group of permutations over {1, . . . , n} and x1, . . . , xn is an enumeration
of the free occurrences of x in e, so that e[xi := vσ(i)] denotes the resource term obtained
from e by replacing the i-th free occurrence of x in e with the resource value vσ(i).

The definitions above open the way to introduce the following notions of reduction
for λσr , mimicking the corresponding reductions of λσv (cf. Definition 1.5).

Definition 3.4. (1) The βr-reduction is a relation →βr ⊆ Λr × Pf(Λ
r) defined by the

following rule (for v1, . . . , vn ∈ Valr):

(βr) [λx.t][v1, . . . , vk]→ t〈x := [v1, . . . , vn]〉.
Similarly, the 0-reduction →0⊆ Λr ×Pf(Λ

r) is defined by the rule:

(0) [v1, . . . , vn] t→ ∅, when n 6= 1.

The σ-reductions →σ1 ,→σ3 ⊆ Λr × Λr are defined by the rules:

(σ1) [λx.t]s1s2 → [λx.ts2]s1, if x /∈ FV(s1),
(σ3) [v]([λx.t]s)→ [λx.[v]t]s, if x /∈ FV(v) and v ∈ Valr.

(2) The relation →r ⊆Pf(Λ
r)×Pf(Λ

r) is the contextual closure of the rules above, i.e. →r

is the smallest relation including (βr), (0), (σ1), (σ3) and satisfying the rules in Figure 2.
(3) The transitive and reflexive closure of →r is denoted by �r, as usual.
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Example 3.5. We provide some examples of reductions:

(1) [λx.[x][x]][λy.[y], z]→βr {[λy.[y]][z], [z][λy.[y]]} →βr {[z], [z][λy.[y]]}.
(2) [λx.[x, x]][λy.[y], z]→βr {[λy.[y], z], [z, λy.[y]]} = {[λy.[y], z]}.
(3) [λy.[λx.[x, x][y]]]([z][w])[I, w]→σ1 [λy.[λx.[x, x][y]][I, w]]([z][w])→βr {[λy.[I, w][y]]([z][w])}
→0 ∅. Note that (σ1) is used to unblock an otherwise stuck βr-redex.

(4) [I]([λx.[λy.[x][y]]][z][w])→βr {[λx.[λy.[x][y]]][z][w]} →βr {[λy.[z][y]][w]} →βr {[z][w]}.
(5) [I]([λx.[λy.[x][y]]][z][w]) →σ3 [λx.[I][λy.[x][y]]][z][w] →σ1 [λx.[I][λy.[x][y]][w]][z] →βr

{[I][λy.[z][y]][w]} →βr {[λy.[z][y]][w]} →βr {[z][w]}.
Remark that (4) and (5) constitute two different reduction sequences originating from the
same simple term.

As shown in [CG14], this notion of reduction enjoys the following properties.

Proposition 3.6. The reduction →r is confluent and strongly normalizing.

Note that strong normalization is straightforward to prove — indeed, a 0-reduction
annihilates the whole term, σ-rules are strongly normalizing (cf. Proposition 1.8(1)) and
contracting a βr-redex in a resource term e produces a set of resource terms whose size is
strictly smaller than e because no duplication is involved and a λ-abstraction is erased.

As a consequence of Proposition 3.6, the r-normal form of E ∈Pf(Λ
r) always exists and

is denoted by nfr(E), i.e. E �r nfr(E) ∈Pf(Λ
r) and there is no E ′ such that nfr(E)→r E ′.

Simple terms in r-nf are called “resource approximants” because their role is similar to the
one played by finite approximants of Böhm trees, except that they approximate the normal
form of the Taylor expansion. They admit the following syntactic characterization.

Definition 3.7. A resource approximant a ∈ Λs is a simple term generated by the following
grammar (for k, n ≥ 0, where [xn] is the bag [x, . . . , x] having n occurrences of x):

a ::= b | c
b ::= [xn] | [λx.a1, . . . , λx.an] | [x]ba1 · · · ak
c ::= [λx.a]([y]ba1 · · · ak)

It is easy to check that resource approximants are r-normal forms.

Example 3.8. The following are examples of resource approximants:

(1) [λx.[x], λx.[x, x], λx.[x, x, x]] and [λx.[x][x, x], λx.[x][x, x, x]] belong to the Taylor expan-
sion of some λ-term (as we will see in Example 3.11).

(2) [λx.[x, x, x], λx.[y, y, y]] does not, as will be shown in Proposition 3.18.

3.2. Characterizing the Taylor Expansion of a λ-Term. We recall the definition of
the Taylor expansion of a λ-term in the CbV setting, following [Ehr12, CG14]. Such a Taylor
expansion translates a λ-term M into an infinite set9 of simple terms. Subsequently, we
characterize those sets of resource terms arising as a Taylor expansion of some M ∈ Λ.

Definition 3.9. The Taylor expansion T (M) ⊆ Λs of a λ-term M is an infinite set of
simple terms defined by induction as follows:

T (x) = {[xn] | n ≥ 0}, where [xn] = [x, . . . , x] (n times),
T (λx.N) = {[λx.t1, . . . , λx.tn] | n ≥ 0,∀i ≤ n, ti ∈ T (N)},
T (PQ) = {st | s ∈ T (P ), t ∈ T (Q)}.

9This set can be thought of as the support of the actual Taylor expansion, which is an infinite formal
linear combination of simple terms taking coefficients in the semiring of non-negative rational numbers.
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From the definition above, we get the following easy properties.

Remark 3.10.

(1) [] ∈ T (V ) if and only if V ∈ Val.
(2) Every occurrence of a βrσ-redex in t ∈ T (M) arises from some v-redex in M .
(3) By exploiting Notation 3.2, we can rewrite the Taylor expansion of an application or an

abstraction as follows:

T (PQ) = T (P )T (Q),
T (λx.N) =

⋃
n∈N{[λx.T (N), . . . , λx.T (N)︸ ︷︷ ︸

n times

]}.

Example 3.11. We calculate the Taylor expansion of some λ-terms.

(1) T (I) = {[λx.[xn1 ], . . . , λx.[xnk ]] | k ≥ 0, ∀i ≤ k, ni ≥ 0},
(2) T (∆) = {[λx.[xn1 ][xm1 ], . . . , λx.[xnk ][xmk ]] | k ≥ 0,∀i ≤ k,mi, ni ≥ 0},
(3) T (∆I) = {st | s ∈ T (∆), t ∈ T (I)},
(4) T (Ω) = {st | s, t ∈ T (∆)},
(5) T (λz.yyz) = {[λz.[y`1 ][ym1 ][zn1 ], . . . , λz.[y`k ][ymk ][znk ]] | k ≥ 0, ∀i ≤ k, `i,mi, ni ≥ 0},
(6) T (λy.f(λz.yyz)) = {[λy.[fn1 ]t1, . . . , λy.[f

nk ]tk] | k ≥ 0, ∀i ≤ k, ni ≥ 0, ti ∈ T (λz.yyz)},
(7) T (Z) = {[λf.s1t1, . . . , λf.sktk] | k ≥ 0, ∀i ≤ k, si, ti ∈ T (λy.f(λz.yyz))}.

These examples naturally brings to formulate the next remark and lemma.

Remark 3.12. An element t belonging to the Taylor expansion of a λ-term M in v-nf
might not be in r-nf, due to the possible presence of 0-redexes. For an example, consider
[λx.[x, x][x, x], λx.[x][x, x, x]] ∈ T (∆). Notice that, since the reduction does not modify the
cardinality of a bag, a more refined definition of Taylor expansion eliminating all 0-redexes
is possible by substituting the application case with the following:

T (VM0 · · ·Mk) = {[v]t0 · · · tk | [v] ∈ T (V ), ∀i . (0 ≤ i ≤ k) ti ∈ T (Mi)}
We prefer to keep Ehrhard’s original notion because it has a simpler inductive definition.

The following statement concerning the Taylor expansion of λ-terms in v-nf does hold.

Lemma 3.13. For M ∈ Λ, the following are equivalent:

(1) M is in v-normal form,
(2) every t ∈ T (M) is in βrσ-normal form.

Proof. (1 ⇒ 2) Using Lemma 1.7, we proceed by induction on the normal structure of M .
If M = x then t ∈ T (M) entails t = [x, . . . , x] which is in v-nf.
If M = λx.G then t ∈ T (M) implies that t = [λx.t1, . . . , λx.tn] where ti ∈ T (G) for all

i ≤ n. By the induction hypothesis each ti is in βrσ-nf, hence, so is t.
If M = xHG1 · · ·Gk then t ∈ T (M) entails t = [xn]st1 · · · tk for some n ≥ 0, s ∈ T (H)

and ti ∈ T (Gi) (1 ≤ i ≤ k). By induction hypothesis s, t1, . . . , tk are in βrσ-nf, so t is in
βr-nf. Concerning σ-rules, t could have a σ3-redex in case s = [λx.s′]t′ but this is impossible
since s ∈ T (H) and H cannot have shape (λx.P )Q.

If M = (λx.G)(yHG1 · · ·Gk) and t ∈ T (M) then t = [λx.s1, . . . , λx.sn]t′ for some
n ≥ 0, si ∈ T (G), 1 ≤ i ≤ n, and t′ ∈ T (yHG1 · · ·Gk). By induction hypothesis, the
resource terms s1, . . . , sn and t′ are in βrσ-nf. In principle, when n = 1, the simple term t
might have the shape either of a βr-redex or of a σ3-redex. Both cases are impossible since
t′ ∈ T (yHG1 · · ·Gk) entails t′ = [ym]st1 · · · tk which is neither a resource value nor a simple
term of shape [λz.s]s′. We conclude that t is in βrσ-nf.



Vol. 16:3 REVISITING CALL-BY-VALUE BÖHM TREES 6:17

(2 ⇒ 1) We prove the contrapositive. Assume that M is not in v-nf, then either M itself
is a βv- or σ-redex, or it contains one as a subterm. Let us analyze first the former case.

(βv) If M = (λx.N)V for V ∈ Val then, by Remark 3.10(1), the βr-redex [λx.s][] belongs to
T (M) for every s ∈ T (N).

(σ1) If M = (λx.N)PQ then for all s ∈ T (N), t1 ∈ T (P ), t2 ∈ T (Q) we have [λx.s]t1t2 ∈
T (M) and this simple term is a σ1-redex.

(σ3) If M = V ((λx.P )Q) for V ∈ Val then for all [v] ∈ T (V ), s ∈ T (P ) and t′ ∈ T (Q) we
have [v]([λx.s]t′) ∈ T (M) and this resource term is a σ2-redex.

Otherwise M = CLM ′M where C is a context and M ′ is a v-redex having one of the shapes
above; in this case there is t ∈ T (M) containing a βrσ-redex t′ ∈ T (M ′) as a subterm.

The rest of the section is devoted to provide a characterization of all sets of simple terms
that arise as the Taylor expansion of some λ-term M .

Definition 3.14. (1) The height of a non-empty set E ⊆ Λr, written ht(E), is the maximal
height of its elements, if it exists, and in this case we say that E has finite height.
Otherwise, we define ht(E) = ℵ0 and we say that E has infinite height.

(2) Define a coherence relation ¨ ⊆ Λr × Λr as the smallest relation satisfying:

x ¨ x
s ¨ t

λx.s ¨ λx.t

vi ¨ vj (∀i, j ≤ n)

[v1, . . . , vk] ¨ [vk+1, . . . , vn]
s1 ¨ s2 t1 ¨ t2
s1t1 ¨ s2t2

(3) A subset E ⊆ Λr is a clique whenever e ¨ e′ holds for all e, e′ ∈ E .
(4) A clique E is maximal if, for every e ∈ Λr, E ∪ {e} is a clique entails e ∈ E .

The coherence relation above is inspired by Ehrhard’s work in the call-by-name set-
ting [ER08]. Note that ¨ is symmetric, but neither reflexive as [x, y] 6¨ [x, y] nor transitive
since [x] ¨ [] ¨ [y] but [x] 6¨ [y].

Example 3.15. Notice that all sets in Example 3.11 are maximal cliques of finite height.
For instance, ht(T (I)) = 3 and by following the rules in Definition 3.14(2) we have u ¨ t for
all t ∈ T (I) if and only if either u = [] or u = [xn] for some n ∈ N if and only if u ∈ T (I).
Therefore T (I) is maximal.

The rest of the section is devoted to proving that these two properties actually charac-
terize those sets that the Taylor expansions of λ-terms (Proposition 3.18).

We may now characterize resource approximants (Definition 3.7).

Lemma 3.16. Let t ∈ Λs be such that t ¨ t. Then t is in r-nf iff t is a resource approximant.

Proof. Notice that t ¨ t guarantees that all terms in each bag occurring in t have similar
shape. The proof of the absence of βr- and σ- redexes, is analogous to the one of Lemma 1.7.
The bags occurring in [x]ba1 · · · ak and [λx.a]([y]ba1 · · · ak) must be singleton multisets, for
otherwise we would have some 0-redexes.

This lemma follows easily from Definition 3.14(1) and Remark 3.10(3).

Lemma 3.17. For N,P,Q ∈ Λ, we have:

(1) ht(T (λx.N)) = ht(T (N)) + 2.
(2) ht(T (PQ)) = ht(T (P ) ∪T (Q)) + 1,
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Proof. (1) Indeed, we have:

ht(T (λx.N)) = max{ht([λx.t1, . . . , λx.tn]) | n ≥ 0,∀i ≤ n, ti ∈ T (N)},
= max{max {ht(λx.t1), . . . , ht(λx.tn)}+ 1 | n ≥ 0, ∀i ≤ n, ti ∈ T (N)},
= max{max {ht(t1), . . . , ht(tn)}+ 2 | n ≥ 0,∀i ≤ n, ti ∈ T (N)},
= max{ht(t) + 2 | t ∈ T (N)} = ht(T (N)) + 2.

(2) This case is analogous but simpler, and we omit it.

The next proposition gives a characterization of those sets of simple terms corresponding
to the Taylor expansion of some λ-terms and constitutes the main result of the section.

Proposition 3.18. For E ⊆ Λs, the following are equivalent:

(1) E is a maximal clique having finite height,
(2) There exists M ∈ Λ such that E = T (M).

Proof. (1 ⇒ 2) As E maximal entails E 6= ∅, we can proceed by induction on h = ht(E).
The case h = 0 is vacuous because no simple term has height 0.
If h = 1 then t ∈ E implies t = [x1, . . . , xn] since variables are the only resource terms

of height 0. Now, t ¨ t holds since E is a clique so the xi’s must be pairwise coherent with
each other, but xi ¨ xj holds if and only if xi = xj whence t = [xi, . . . , xi] for some index i.
From this, and the fact that E is maximal, we conclude E = T (xi).

Assume h > 1 and split into cases depending on the form of t ∈ E .

• Case t = [λx.s1, . . . , λx.sk]. Since ht(E) > 1 we can assume wlog that t 6= [], namely k > 0.
Moreover, since E is a clique, all t′ ∈ E must have shape t′ = [λx.sk+1, . . . , λx.sn] for some
n with si ¨ sj for all i, j ≤ n. It follows that the set S = {s | [λx.s] ∈ E} is a maximal
clique, because E is maximal, and has height h− 2 since ht([λx.s]) = ht(s) + 2. Moreover,
E = {[λx.s1, . . . , λx.sk] | k ≥ 0, ∀i ≤ k . si ∈ S}. By induction hypothesis there exists
N ∈ Λ such that S = T (N), so we get E = T (λx.N).
• Otherwise, if t = s1s2 then all t′ ∈ E must be of the form t′ = s′1s

′
2 with s1 ¨ s′1 and s2 ¨ s′2.

So, the set E can be written as E = S1S2 where S1 = {t | ts2 ∈ E} and S2 = {t | s1t ∈ E}.
As E is a maximal clique, the sets S1,S2 are independent from the choice of s2, s1 (resp.),
and they are maximal cliques themselves. Moreover, ht(E) = ht(S1 ∪ S2) + 1, whence the
heights of S1,S2 are strictly smaller than h. By the induction hypothesis, there exists
P,Q ∈ Λ such that S1 = T (P ) and S2 = T (Q), from which it follows E = T (PQ).

(2 ⇒ 1) We proceed by induction on the structure of M .
If M = x then t, t′ ∈ T (M) entails t = [xk] and t′ = [xn] for some k, n ≥ 0, whence

T (x) is a clique of height 1. It is moreover maximal because it contains [xi] for all i ≥ 0.
IfM = λx.N then t, t′ ∈ T (M) entails t = [λx.t1, . . . , λx.tk] and t′ = [λx.tk+1, . . . , λx.tn]

with ti ∈ T (N) for all i ≤ n. By induction hypothesis T (N) is a maximal clique of finite
height h ∈ N, in particular ti ¨ tj for all i, j ≤ n which entails t ¨ t′. The maximality of
T (M) follows from that of T (N) and, by Lemma 3.17(1), ht(T (M)) has finite height h+ 2.

If M = PQ then t, t′ ∈ T (M) entails t = s1t1 and t′ = s2t2 for s1, s2 ∈ T (P ) and
t1, t2 ∈ T (Q). By induction hypothesis, s1 ¨ s2 and t1 ¨ t2 hold and thus t ¨ t′. Also
in this case, the maximality of T (M) follows from the same property of T (P ),T (Q).
Finally, by induction hypothesis, ht(T (P )) = h1 and ht(T (Q)) = h2 for h1, h2 ∈ N then
ht(T (M)) = max{h1, h2}+ 1 by Lemma 3.17(2), and this concludes the proof.
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4. Computing the Normal Form of the Taylor expansion, and Beyond

The Taylor expansion, as defined in Section 3.2, is a static operation translating a λ-term
into an infinite set of simple terms. However, we have seen in Proposition 3.6 that the
reduction →r is confluent and strongly normalizing. Whence, it is possible to define the
normal form of an arbitrary set of resource terms as follows.

Definition 4.1. The r-normal form is extended element-wise to any subset E ⊆ Λr by
setting NF(E) =

⋃
e∈E nfr(e).

In particular, NF(Λs) (resp. NF(Λr), NF(Valr)) represents the set of all simple terms
(resp. resource terms, resource values) in r-nf generated by the grammar in Definition 3.7.
Moreover, NF(T (M)) is a well-defined subset of NF(Λs) for every M ∈ Λ (it can possibly
be the empty set, thought).

Example 4.2. We calculate the r-normal form of the Taylor expansions from Example 3.11:

(1) NF(T (I)) = T (I) = {[λx.[xn1 ], . . . , λx.[xnk ]] | k ≥ 0,∀i ≤ k, ni ≥ 0},
(2) NF(T (∆)) = {[λx.[x][xm1 ], . . . , λx.[x][xmk ]] | k ≥ 0,∀i ≤ k,mi ≥ 0},
(3) NF(T (∆I)) = NF(T (I)),
(4) NF(T (Ω)) = ∅, from this it follows:
(5) NF(T (λx.Ω)) = {[]}, moreover, for A = (λz.(λy.y)(zz))(xx), we obtain:
(6) NF(T (A)) = {[λz.[[λy.[y`1 ]]([z][zm1 ])]([x][xn1 ]), . . . , λz.[[λy.[y`k ]]([z][zmk ])]([x][xnk ])] |

k ≥ 0, ∀i ≤ k, `i,mi, ni ≥ 0}.

On the one hand, it is not difficult to calculate the normal forms of the Taylor expansions
of I,∆ and A. (As shown in Lemma 3.13, it is enough to perform some 0-reductions.)
Similarly, it is not difficult to check that NF(T (Ω)) is empty, once realized that no term
t ∈ T (Ω) can survive through the reduction. On the other hand, it is more complicated to
compute the normal forms of T (Z), and hence T (ZB), without having a result connecting
such normal forms with the v-reductions of the corresponding λ-terms. The rest of the
section is devoted to study such a relationship. We start with some technical lemmas.

Lemma 4.3 (Substitution Lemma). Let M ∈ Λ, V ∈ Val and x ∈ V. Then we have:

T (M [x := V ]) =
⋃

t∈T (M)

⋃
[v1,...,vn]∈T (V )

t〈x := [v1, . . . , vn]〉.

Proof. Straightforward induction on the structure of M .

Lemma 4.4. Let M,N ∈ Λ be such that M →v N . Then:

(1) for all t ∈ T (M), there exists T ⊆ T (N) such that t�r T ,
(2) for all t′ ∈ T (N) such that t′ 6→0 ∅, there exist t ∈ T (M) and T ∈Pf(Λ

s) satisfying
t�r {t′} ∪ T . Moreover such a t is unique.

Proof. We check that both (1) and (2) hold by induction on a derivation of M →v N ,
splitting into cases depending on the kind of redex is reduced.

(βv): If M = (λx.Q)V and N = Q[x := V ] then items (1) and (2) follow by Lemma 4.3.
(σ1): If M = (λx.M ′)PQ and N = (λx.M ′Q)P then

T (M) = {[λx.t1, . . . , λx.tn]s1s2 | n ≥ 0, ti ∈ T (M ′), s1 ∈ T (P ), s2 ∈ T (Q)},
T (N) = {[λx.t′1s′1, . . . , λx.t′ns′n]s | n ≥ 0, t′i ∈ T (M ′), s′i ∈ T (Q), s ∈ T (P )}.
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For n 6= 1, we have [λx.t1, . . . , λx.tn]s1s2 →0 ∅ ⊆ T (N). For n = 1, we get [λx.t1]s1s2 →σ1

[λx.t1s2]s1 for t1 ∈ T (M ′), s1 ∈ T (P ) and s2 ∈ T (Q), whence [λx.t1s2]s1 ∈ T (N)
and (1) holds. Concerning (2), note that [λx.t′1s

′
1, . . . , λx.t

′
ns
′
n]s 6→0 ∅ entails n = 1.

Moreover, T (M) 3 [λx.t′1]ss
′
1 →σ1 [λx.t′1s

′
1]s since t′1 ∈ T (M ′), s′1 ∈ T (Q), s ∈ T (P ).

(σ3): If M = V ((λx.P )Q) for V ∈ Val and N = (λx.V P )Q then

T (M) = {[v1, . . . , vn]([λx.s1, . . . , λx.sm]s) | n ≥ 0, [v1, . . . , vn] ∈ T (V ),
i ≤ m, si ∈ T (P ), s ∈ T (Q)},

T (N) = {[λx.[v11, . . . , v1k1 ]s1, . . . , λx.[vn1, . . . , vnkn ]sn]s | n ≥ 0, i ≤ n,
si ∈ T (P ), s ∈ T (Q),
[vi1, . . . , viki ] ∈ T (V )},

For m 6= 1 n 6= 1, we have [v1, . . . , vn]([λx.s1, . . . , λx.sm]s) →0 ∅ ⊆ T (N). For m =
n = 1, we get [v1]([λx.s1]s) →σ3 [λx.[v1]s1]s ∈ T (N), so (1) holds. Similarly, we have
that [λx.[v11, . . . , v1k1 ]s1, . . . , λx.[vn1, . . . , vnkn ]sn]s→0 ∅ whenever n 6= 1 or ki 6= 1. For
n = k1 = 1, we get T (M) 3 [v11]([λx.s1]s)→σ3 [λx.[v11]s1]s which proves (2).

In the cases above it is easy to check that t is actually unique. The contextual cases follow
straightforwardly from the induction hypothesis.

As a consequence, we obtain the analogue of Proposition 2.11 for Taylor expansions.

Corollary 4.5. For M,N ∈ Λ, M =v N entails NF(T (M)) = NF(T (N)).

Proof. It is enough to prove NF(T (M)) = NF(T (N)) for M and N such that M →v N ,
indeed the general result follows by confluence of v-reduction. We show the two inclusions.

(⊆) Consider t ∈ NF(T (M)), then there exists t0 ∈ T (M) and T ∈Pf(Λ
s) such that

t0 �r {t} ∪ T . Since λσr is strongly normalizing (Proposition 3.6), we assume wlog T in r-nf.
By Lemma 4.4(1), we have t0 �r T0 ⊆ T (N) so by confluence of →r we get T0 �r {t} ∪ T
which entails t ∈ NF(T (N)) because t is in r-nf.

(⊇) If t ∈ NF(T (N)) then there are s ∈ T (N) and T ∈Pf(Λ
s) such that s�r {t}∪T .

By Lemma 4.4(2), there exists s0 ∈ T (M) and S ∈ Pf(Λ
s) satisfying s0 �r {s} ∪ S.

Composing the two reductions we get s0 �r {t} ∪ S ∪ T , thus t ∈ NF(T (M)) as well.

We now prove a Context Lemma for Taylor expansions in the spirit of [Bar84, Cor. 14.3.20]
(namely, the Context Lemma for CbN Böhm trees). For the sake of simplicity, in the next
lemma we consider head contexts but the same reasoning works for arbitrary contexts.

Lemma 4.6 (Context Lemma for Taylor expansions). Let M,N ∈ Λ. If NF(T (M)) =
NF(T (N)) then, for all head contexts CL−M, we have NF(T (CLMM)) = NF(T (CLNM)).

Proof. Consider CL−M = (λx1 . . . xn.L−M)V1 · · ·Vk for n, k ≥ 0. Let us take t ∈ NF(T (CLMM))
and prove that t belongs to NF(T (CLNM)), the other inclusion being symmetrical. Then
there exists t0 ∈ T (CLMM) and T ∈Pf(NF(Λs)) such that t0 �r {t} ∪ T . By definition of
CL−M and T (−), t0 must have the following shape:

t0 = [λx1.[ · · · [λxn.s] · · · ]][v11, . . . , v1n1 ] · · · [vk1, . . . , vknk
]

where s ∈ T (M), [vi1, . . . , vini ] ∈ T (Vi) where 1 ≤ i ≤ k and ni = degxi(s) for otherwise
t0 →0 ∅, which is impossible. By confluence and strong normalization of→r (Proposition 3.6),
the reduction t0 �r {t} ∪ T factorizes as t0 �r T0 �r {t} ∪ T where

T0 = [λx1.[ · · · [λxn.nfr(s)] · · · ]][v11, . . . , v1n1 ] · · · [vk1, . . . , vknk
]
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and nfr(s) ∈Pf(NF(T (M))). By hypothesis nfr(s) ∈Pf(NF(T (N))), therefore there are
S1 ∈Pf(T (N)) such that S1 �r nfr(s) ∪ S ′, for some S ′, and S0 ⊆ T (CLNM) of shape

S0 = [λx1.[ · · · [λxn.S1] · · · ]][v11, . . . , v1n1 ] · · · [vk1, . . . , vknk
]

so we conclude, for some S ′′, that S0 �r T0∪S ′′ �r {t}∪T ∪nfr(S ′′) ⊆ NF(T (CLNM)).

4.1. Taylor expanding Böhm trees. The Taylor expansion can be extended to elements
of Λ⊥ by adding T (⊥) = {[]} to the rules of Definition 3.9. However, the resulting translation
of an approximant A produces a set of resource terms that are not necessarily in r-normal
form because of the presence of (0)-redexes (as already discussed in Remark 3.12). Luckily, it
is possible to slightly modify such a definition by performing an “on the flight” normalization
and obtain directly the normalized Taylor expansion of a Böhm tree.

Definition 4.7. (1) Let A ∈ A. The normalized Taylor expansion of A, in symbols T ◦(A),
is defined by structural induction following the grammar of Definition 2.1(1):

T ◦(x) = {[xn] | n ≥ 0},
T ◦(λx.A′) = {[λx.t1, . . . , λx.tn] | n ≥ 0,∀i ≤ k . ti ∈ T ◦(A′)},

T ◦(⊥) = {[]},
T ◦(xBA1 · · ·Ak) = {[x]t0 · · · tn | t0 ∈ T ◦(B), ∀1 ≤ i ≤ k . ti ∈ T ◦(Ai)},

T ◦((λx.A′)(yBA1 · · ·Ak)) = {[λx.s]t | s ∈ T ◦(A′), t ∈ T ◦(yBA1 · · ·Ak)}.
(2) The normalized Taylor expansion of BT(M), written T ◦(BT(M)), is defined by setting:

T ◦(BT(M)) =
⋃

A∈A(M)

T ◦(A)

Example 4.8. (1) Recall from Example 2.2(1) that A(I) = {⊥, λx.⊥, λx.x}, therefore

T ◦(A(I)) = {[]} ∪ {[(λx.[])k] | k ≥ 0} ∪ {[λx.[xn1 ], . . . , λx.[xnk ]] | k, n1, . . . , nk ≥ 0}
By Example 4.2(1) this is equal to NF(T (I)).

(2) Since A(Ω) = ∅ we have T ◦(A(Ω)) = ∅ = NF(T (Ω)).
(3) Also, A(∆) = {⊥, λx.⊥, λx.xx}, so that

T ◦(A(∆)) = {[]} ∪ {[(λx.[])k] | k ≥ 0} ∪ {[λx.[x][xn1 ], . . . , λx.[x][xnk ]] | k, n1, . . . , nk ≥ 0}
By Example 4.2(2) this is equal to NF(T (∆)).

(4) Finally, Examples 2.2(3) and 4.2(3) and the above item (1) give us T ◦(A(∆I)) =
T ◦(A(I)) = NF(T (I)) = NF(T (∆I)).

The rest of the section is devoted to generalizing the above example, proving that the
normal form of the Taylor expansion of any λ-term M is equal to the normalized Taylor
expansion of the Böhm tree of M (Theorem 4.11). On the one side, this link is extremely
useful to compute NF(T (M)) because the Böhm trees have the advantage of hiding the
explicit amounts of resources that can become verbose and difficult to handle. On the other
side, this allow to transfer results from the Taylor expansions to Böhm trees, Lemma 4.15
being a paradigmatic example.
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Lemma 4.9. Let M ∈ Λ.

(1) If t ∈ T (M) and t→r {t1} ∪ T1, then there exists N ∈ Λ and T2 ∈Pf(Λ
s), such that

M →v N and {t1} ∪ T1 �r T2 ⊆ T (N).
(2) If t ∈ NF(T (M)) then there exists M ′ such that M �v M

′ and t ∈ T (M ′).
(3) If t, s ∈ T (M) then NF(t) ∩NF(s) 6= ∅ entails t = s.
(4) If t ∈ T (M) ∩NF(Λs) then there exists A ∈ A such that A vM and t ∈ T ◦(A).

Proof. (1) Note that t→r {t1}∪T1 by contracting an r-redex arising from an occurrence of a
v-redex in M , so M →v N where N is obtained by contracting such a redex occurrence. By
Lemma 4.4(1) and confluence of →r, there exists T2 ⊆ T (N) such that t�r {t1}∪T1 �r T2.

(2) Assume that t ∈ NF(T (M)), then there are t0 ∈ T (M) and T ∈Pf(Λ
s) such that

t0 �r {t}∪T . Since→r is strongly normalizing, we can assume T ⊆ NF(Λs) and choose such
a reduction to have maximal length n. We proceed by induction on n to show that the λ-term
M ′ exists. If n = 0 then t0 is in r-nf so just take t0 = t, T = ∅ and M = M ′. Otherwise
n > 0 and t0 →r {t1} ∪ T1 �r {t} ∪ T where the second reduction is strictly shorter. By (1)
and confluence there exists N such that M →v N and {t1} ∪ T1 �r T2 �r {t} ∪ T for some
T2 ⊆ T (N). So, there are t2 ∈ T2 and T ′ ∈Pf(Λ

s) such that t2 �r {t} ∪ T ′ ⊆ NF(T (M))
so we conclude by applying the induction hypothesis to this reduction shorter than n.

(3) Assume t0 ∈ NF(t) ⊆ NF(T (M)). By (2) there is a reduction M →v M1 →v · · · →v

Mk such that t0 ∈ T (Mk). By an iterated application of Lemma 4.4(2), we get that t is the
unique element in T (M) generating t0. Therefore, t0 ∈ NF(s) entails s = t.

(4) By structural induction on the normal structure of t (characterized in Lemma 3.16:
notice that t ¨ t by Proposition 3.18).

If t = [] then M ∈ Val and there are two subcases: either M = x, or M = λx.M ′ so we
simply take A = ⊥. Similarly, if t = [x, . . . , x] (n > 0 occurrences) then M = A = x.

If t = [λx.a1, . . . , λx.an] with n > 0 then M = λx.M ′ and ai ∈ T (M ′) for i ≤ n. By
induction hypothesis, there are approximants Ai vM ′ such that ai ∈ T ◦(Ai). Then we set
A = λx.A′ for A′ = A1 t · · · tAn which exists because the Ai’s are pairwise compatible.

If t = [x]ba1 · · · ak then M = xM0 · · ·Mk and b ∈ T (M0) and aj ∈ T (Mi) for 1 ≤ j ≤ k.
By induction hypothesis, there are A0, . . . , Ak such that Ai v Mi for all i (0 ≤ i ≤ k),
b ∈ T ◦(A0) and aj ∈ T ◦(Aj) for 1 ≤ j ≤ k. Moreover b ∈ T ◦(A0) entails that A0 is a
B-term from the grammar in Lemma 1.7, therefore we may take A = xA0 · · ·Ak ∈ A.

Finally, if t = [λx.a]([y]ba1 · · · ak) then M = (λx.M ′)(yM0 · · ·Mk) with a ∈ T (M ′) and
[y]ba1 · · · ak ∈ T (yM0 · · ·Mk). Reasoning as in the previous case, we get yA0 · · ·Ak ∈ A such
that [y]ba1 · · · ak ∈ T ◦(yA0 · · ·Ak). Moreover, by induction hypothesis, there is A′ v M ′

such that a ∈ T ◦(A′). We conclude by taking A = (λx.A′)(yA0 · · ·Ak).

Lemma 4.10. Let M ∈ Λ and A ∈ A.

(1) If A vM then T ◦(A) ⊆ NF(T (M)).
(2) If T ◦(A) ⊆ T ◦(BT(M)) then A ∈ A(M).

Proof. (1) If A = ⊥ then M ∈ Val and T ◦(⊥) = {[]} ⊆ T (M) ∩NF(Λr).
Otherwise, it follows by induction on A exploiting the fact that all simple terms in

T ◦(A) belong to T (M) and are already in r-nf.
(2) We proceed by structural induction on A, the case A = ⊥ being trivial.

• If A = x then T ◦(x) = {[xn] | n ≥ 0} ⊆ T ◦(BT(M)) entails M �v x and we are done.
• If A = λx.A′ then T ◦(λx.A′) = {[λx.t1, . . . , λx.tn] | n ≥ 0,∀i ≤ k . ti ∈ T ◦(A′)}. So,

T ◦(λx.A′) ⊆ T ◦(BT(M)) implies that M �v λx.M
′ for some M ′ such that T ◦(A′) ⊆
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T ◦(BT(M ′)). By induction hypothesis, we get A′ ∈ A(M ′) and λx.A′ ∈ A(λx.M ′). By
Lemma 2.6 we obtain λx.A′ ∈ A(M) as desired.
• If A = ⊥, then T ◦(A) = {[]} ⊆ T ◦(BT(M)) entails M �v V for some value V , therefore

we get ⊥ ∈ A(V ) and we conclude by Lemma 2.6.
• If A = xBA′1 · · ·A′k then T ◦(A) = {[x]t0 · · · tn | t0 ∈ T ◦(B), ∀1 ≤ i ≤ k . ti ∈ T ◦(A′i)}.

In this case, we must have M �v xM0 · · ·Mk with T ◦(B) ⊆ T ◦(BT(M0)) and T ◦(A′i) ⊆
T ◦(BT(Mi)) for 1 ≤ i ≤ k. By induction hypothesis B ∈ A(M0) and A′i ∈ A(Mi)
∀i ∈ {1, . . . , k}, thus xBA′1 · · ·A′k ∈ A(xM0 · · ·Mk) = A(M) by Lemma 2.6.
• If A = (λx.A′)(yBA′1 · · ·A′k), then T ◦(A) = {[λx.s]t | s ∈ T ◦(A′), t ∈ T ◦(yBA′1 · · ·A′k)}.

In this case we get M �v (λx.M ′)(yM0 · · ·Mk) with T ◦(A′) ⊆ T ◦(BT(M ′)) and
T ◦(yBA′1 · · ·A′k) ⊆ T ◦(BT(yM0 · · ·Mk)). By applying the induction hypothesis, we
obtain A ∈ A((λx.M ′)(yM0 · · ·Mk)) and once again we conclude by Lemma 2.6.

The following constitutes the main result of the section, relating Böhm trees and Taylor
expansion in the spirit of [ER06].

Theorem 4.11. For all M ∈ Λ, we have T ◦(BT(M)) = NF(T (M)).

Proof. (⊆) Take t ∈ T ◦(BT(M)), then there exists an approximant A′ ∈ A(M) such that
t ∈ T ◦(A′). As A′ ∈ A(M), there is M ′ ∈ Λ such that M �v M

′ and A′ v M ′. We
can therefore apply Lemma 4.10(1) to conclude that t ∈ NF(T (M ′)), which is equal to
NF(T (M)) by Lemma 4.5.

(⊇) Assume t ∈ NF(T (M)). By Lemma 4.9(2) there exists M ′ ∈ Λ such that M �v M
′

and t ∈ T (M ′). By Lemma 4.9(4), there is A vM ′ such that t ∈ T ◦(A). By the conditions
above we have A ∈ A(M), so we conclude that t ∈ T ◦(BT(M)).

4.2. Consequences of the main theorem. The rest of the section is devoted to present
some interesting consequences of Theorem 4.11.

Corollary 4.12. For M,N ∈ Λ, the following are equivalent:

(1) BT(M) = BT(N),
(2) NF(T (M)) = NF(T (N)).

Proof. (1⇒ 2) If M,N have the same Böhm tree, we can apply Theorem 4.11 to get

NF(T (M)) = T ◦(BT(M)) = T ◦(BT(N)) = NF(T (N)).

(1⇐ 2) We assume NF(T (M)) = NF(T (N)) and start showing A(M) ⊆ A(N). Take
any A ∈ A(M), by definition we have T ◦(A) ⊆ T ◦(BT(M)), so Lemma 4.10(2) entails
A ∈ BT(N). The converse inclusion being symmetrical, we get A(M) = A(N) which in its
turn entails BT(M) = BT(N) by Remark 2.9.

Carraro and Guerrieri showed in [CG14] that the relational model U of CbV λ-calculus
and resource calculus introduced by Ehrhard in [Ehr12] satisfies the σ-rules, so it is actually
a model of both λσv and λσr . They also prove that U satisfies the Taylor expansion in the
following technical sense (where J−K represents the interpretation function in U ):

JMK =
⋃

t∈T (M)

JtK (4.1)

As a consequence, we get that the theory of the model U is included in the theory equating
all λ-terms having the same Böhm trees. We conjecture that the two theories coincide.
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Theorem 4.13. For M,N ∈ Λ, we have:

BT(M) = BT(N) ⇒ JMK = JNK.

Proof. Indeed, we have the following chain of equalities:

JMK =
⋃
t∈T (M)JtK, by (4.1),

=
⋃
t∈NF(T (M))JtK, as JtK =

⋃
s∈nfr(t)JsK,

=
⋃
t∈T ◦(BT(M))JtK, by Theorem 4.11,

=
⋃
t∈T ◦(BT(N))JtK, as BT(M) = BT(N),

=
⋃
t∈NF(T (N))JtK, by Theorem 4.11,

=
⋃
t∈T (N)JtK, as JtK =

⋃
s∈nfr(t)JsK,

= JNK, by (4.1).

This concludes the proof.

In the paper [CG14], the authors also prove that JMK 6= ∅ exactly when M is potentially
valuable (Definition 1.9). From this result, we obtain easily the lemma below.

Theorem 4.14. For M ∈ Λ, the following are equivalent:

(1) M is potentially valuable,
(2) BT(M) 6= ⊥.

Proof. It is easy to check that all resource approximants t have non-empty interpretation in
U , i.e. t ∈ NF(Λs) entails JtK 6= ∅. Therefore we have the following chain of equivalences:

M potentially valuable ⇐⇒ JMK 6= ∅, by [CG14, Thm. 24],
⇐⇒ ∃t ∈ NF(T (M)), JtK 6= ∅ by (4.1),
⇐⇒ ∃s ∈ T ◦(BT(M)), JsK 6= ∅ by Theorem 4.11,
⇐⇒ ∃A ∈ A(M), A 6= ⊥

This is equivalent to say that BT(M) 6= ⊥.

After this short, but fruitful, semantical digression we conclude proving that all λ-terms
having the same Böhm tree are indistinguishable from an observational point of view. As
in the CbN setting, also in CbV this result follows from the Context Lemma for Böhm
trees. The classical proof of this lemma in CbN is obtained by developing an interesting,
but complicated, theory of syntactic continuity (see [Bar84, §14.3] and [AC98, §2.4]). Here
we bypass this problem completely, and obtain such a result as a corollary of the Context
Lemma for Taylor expansions by applying Theorem 4.11.

Lemma 4.15 (Context Lemma for Böhm trees). Let M,N ∈ Λ. If BT(M) = BT(N) then,
for all head contexts CL−M, we have BT(CLMM) = BT(CLNM).

Proof. It follows from the Context Lemma for Taylor expansions (Lemma 4.6) by applying
Theorem 4.11 and Corollary 4.12.

As mentioned in the discussion before Lemma 4.6, both the statement and the proof
generalize to arbitrary contexts. Thanks to Remark 1.11, we only need head contexts in
order to prove the following theorem stating that the Böhm tree model defined in this paper
is adequate for Plotkin’s CbV λ-calculus.

Theorem 4.16. Let M,N ∈ Λ. If BT(M) = BT(N) then M ≡ N .
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Proof. Assume, by the way of contradiction, that BT(M) = BT(N) but M 6≡ N . Then, there
exists a head context CL−M such that CLMM, CLNM ∈ Λo and, say, CLMM is valuable while
CLNM is not. Since they are closed λ-terms, this is equivalent to say that CLMM is potentially
valuable while CLNM is not. By Theorem 4.14, BT(CLMM) 6= ⊥ and BT(CLNM) = ⊥. As a
consequence, we obtain BT(CLMM) 6= BT(CLNM) thus contradicting the Context Lemma
for Böhm trees (Lemma 4.15).

Notice that the converse implication does not hold — for instance it is easy to check
that ∆(yy) ≡ yy(yy) holds, but the two λ-terms have different Böhm trees.

5. Conclusions

Inspired by the work of Ehrhard [Ehr12], Carraro and Guerrieri [CG14], we proposed a
notion of Böhm tree for Plotkin’s call-by-value λ-calculus λv, having a strong mathematical
background rooted in Linear Logic. We proved that CbV Böhm trees provide a syntactic
model of λv which is adequate (in the sense expressed by Theorem 4.16) but not fully
abstract — there are operationally indistinguishable λ-terms having different Böhm trees.
The situation looks similar in call-by-name where one needs to consider Böhm trees up
to possibly infinite η-expansions to capture the λ-theory H∗ and obtain a fully abstract
model [Bar84, Cor. 19.2.10]. Developing a notion of extensionality for CbV Böhm trees is
certainly interesting, as it might help to describe the equational theory of some extensional
denotational model, and a necessary step towards full abstraction. Contrary to what
happens in call-by-name, this will not be enough to achieve full abstraction as shown by
the counterexample ∆(yy) ≡ yy(yy) but BT(∆(yy)) 6= BT(yy(yy)), where extensionality
plays no role. The second and third authors, together with Ronchi Della Rocca, recently
introduced in [MRP19] a new class of adequate models of λσv and showed that they validate
not only =v but also some I-reductions (in the sense of λI-calculus [Bar84, Ch. 9]) preserving
the operational semantics of λ-terms. Finding a precise characterization of those I-redexes
that can be safely contracted in the construction of a CbV Böhm tree is a crucial open
problem that can lead to full abstraction.
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