Synthetic, marine, light-driven, autotroph-heterotroph co-culture system for sustainable β-caryophyllene production - Archive ouverte HAL
Article Dans Une Revue Bioresource Technology Année : 2024

Synthetic, marine, light-driven, autotroph-heterotroph co-culture system for sustainable β-caryophyllene production

Wenchao Chen
Lucie Studená
  • Fonction : Auteur
David Bell
  • Fonction : Auteur
Piotr Hapeta
  • Fonction : Auteur
Jing Fu
Peter Nixon
Rodrigo Ledesma-Amaro

Résumé

Applying low-cost substrate is critical for sustainable bioproduction. Co-culture of phototrophic and heterotrophic microorganisms can be a promising solution as they can use CO2 and light as feedstock. This study aimed to create a light-driven consortium using a marine cyanobacterium Synechococcus sp. PCC 7002 and an industrial yeast Yarrowia lipolytica. First, the cyanobacterium was engineered to accumulate and secrete sucrose by regulating the expression of genes involved in sucrose biosynthesis and transport, resulting in 4.0 g/L of sucrose secretion. Then, Yarrowia lipolytica was engineered to efficiently use sucrose and produce β-caryophyllene that has various industrial applications. Then, co- and sequential-culture were optimized with different induction conditions and media compositions. A maximum β-caryophyllene yield of 14.1 mg/L was obtained from the co-culture. This study successfully established an artificial light-driven consortium based on a marine cyanobacterium and Y. lipolytica, and provides a foundation for sustainable bioproduction from CO2 and light through co-culture systems.

Dates et versions

hal-04669846 , version 1 (09-08-2024)

Identifiants

Citer

Wenchao Chen, Young-Kyoung Park, Lucie Studená, David Bell, Piotr Hapeta, et al.. Synthetic, marine, light-driven, autotroph-heterotroph co-culture system for sustainable β-caryophyllene production. Bioresource Technology, 2024, pp.131232. ⟨10.1016/j.biortech.2024.131232⟩. ⟨hal-04669846⟩
49 Consultations
0 Téléchargements

Altmetric

Partager

More