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A B S T R A C T

As global land cover/ land use change (LULCC) threatens the human’s well-being, accurate detection and
characterization of LULCC is of paramount importance. The increasing availability of dense satellite image time
series (SITS), together with the ever-improving change detection algorithms, has allowed significant progress to
be made. However, much remains to be done in its characterization.
This study aims to uncover potential relationships between changes in Normalized Difference Vegetation Index

(NDVI) SITS patterns and their drivers. It distinguishes itself by representing phenological changes not only as
transitions between specific patterns, but also by examining the nature of these changes—whether abrupt,
gradual, or seasonal. For seasonal changes, it further refines the analysis to determine their impact on the
amplitude, number of seasons (NOS), or length of seasons (LOS) components. Our focus is to provide insights into
the land dynamics and drivers of change in Senegal using an RGB (red, green, blue) composite change map. This
map is derived from three MODIS NDVI time series change metrics detected by BFASTm-L2 within the MODIS
NDVI 2000–2021 SITS: magnitude of change, direction of change, and dissimilarity of time series shape. The
250-meter resolution MODIS data served as an optimal data source for this analysis due to its high temporal
resolution (near daily) and extensive coverage over 20 years.
The sensitivity of each metric to different types of change was first tested on a simulated dataset before being

applied to the MODIS SITS. The RGB change map enabled visualization of different “signatures” of change,
which, combined with ground information, rainfall data, NDVI time series analysis, and Google Earth imagery,
helped link these signatures to various drivers of change. Climatic and anthropogenic changes, such as those
induced by Large Scale Agricultural Investments (LSAI) or mining, were visually inferred from the RGB map.This
approach demonstrates the usefulness of integrating the type of change, especially seasonal change, into the
characterization of land change. This method has the advantage of being fast, interpretable, robust to noise and
easily transferable to different regions.

1. Introduction

The Earth’s land surface has been changing at an unprecedented rate,
with about three-quarters of the land surface having been modified by
humans within the last millennium (Winkler et al., 2021). Because such
global land changes threaten the sustainability of ecosystem services and
human’s well-being, there is a strong requirement for monitoring land

cover and land use (LULC) changes (Radwan et al., 2021). Over the past
few decades, the land change community has benefited from the rapid
advances in remote sensing technologies, together with the free and
open data policy, cloud computing platforms, and the ever-improving
change detection algorithms. Remote sensing offers significant advan-
tages for effective land use and land cover mapping and monitoring due
to its large area coverage, frequent observations at short intervals, and
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consistent image quality. High temporal resolution remote sensing data,
such as that provided by the Moderate Resolution Imaging Spectror-
adiometer (MODIS) sensor, allow changes to be tracked on a near-daily
basis. This capability, combined with its great temporal depth, has
enabled the availability of dense Satellite Image Time Series (SITS), the
analysis of which has triggered a paradigm shift from bi-temporal
change detection to continuous monitoring of LULC change, especially
at regional and higher scales (Molinier et al., 2021; Weiss et al., 2020;
Woodcock et al., 2020; Zhu et al., 2022).

Among change detection algorithms, the trend is toward those that
can use all available data (and thus handle seasonal variations) in dense
SITS, with supervised approaches (map classification, trajectory classi-
fication), unsupervised statistical approaches, ensemble approaches and
recently, deep-learning approaches (Molinier et al., 2021). Unsuper-
vised statistical methods, if fast enough and with few tuning parameters,
are suitable for large-scale studies where the availability of labeled data
at appropriate spatial and temporal resolution remains a major chal-
lenge (Woodcock et al., 2020). While they have been widely adopted by
the land change community through cloud-based platforms, they still
have limitations.

First, fast algorithms that do not rely on time series decomposition
are more sensitive to abrupt and long-term gradual changes than to
seasonal changes due to the use of harmonic regression models (Zhao
et al., 2019). This can be problematic if the goal is to detect seasonal
changes. In fact, specific land-use conversions, such as those driven by
Large Scale Agricultural Investments (LSAIs), often include seasonal
changes without abrupt changes (Ngadi Scarpetta et al., 2023). Second,
algorithms that perform time series decomposition are often too
computationally expensive and therefore less suitable for large-scale
applications (Masiliūnas et al., 2021; Zhao et al., 2019). In addition,
to the best of our knowledge, none of these statistical techniques are
currently capable of both detecting and identifying the specific type of

seasonal change, i.e., in amplitude, in the number of seasons (NOS) and/
or in the length of season (LOS).

In an attempt to fill this gap, Ngadi Scarpetta et al. (2023) proposed
BFASTm-L2, a rapid change detection approach, fine-tuned to seasonal
changes. The algorithm, based on BFAST Monitor (Verbesselt et al.,
2012) for breakpoint detection combined with the use of euclidean
distance (hereafter referred to as L2) for breakpoint selection, demon-
strated higher sensitivity to NOS changes than three state-of-the-art al-
gorithms, allowing spatial detection of LULCC induced by LSAIs in
Senegal. This and other studies (Browning et al., 2017; Hentze et al.,
2017; Mardian et al., 2021; Setiawan and Yoshino, 2012) highlight the
importance of accurate seasonal change detection, but also the partic-
ular link that may exist between the type and the driver of change,
allowing to shift from land change detection to characterization, which
remains one of the most difficult challenges in the land change com-
munity (Verburg et al., 2009; Zhu et al., 2022). Although there is no one-
to-one relationship between the drivers and the types of change, some
drivers are more likely to cause a particular type of change. First, climate
variability often causes direct changes in amplitude through its effects
on vegetation vigor and health. If important enough to change the
existing vegetation cover, it impacts the overall shape of the growing
cycle or Normalized Difference Vegetation Index (NDVI) cycle (Geerken,
2009), thereby affecting phenological characteristics such as the LOS or
the NOS. Second, abrupt changes (often accompanied by amplitude
changes) are often associated with large abiotic (fires, floods…) or
anthropogenic changes. When it comes to gradual changes, land man-
agement practices inducing subtle changes, such as selective logging,
reforestation, biotic changes (forest regeneration, disease…) or long
trend climate change may be in cause. Finally, drivers likely to induce
changes in LOS and NOS include agricultural activities (particularly
agricultural intensification), that have a direct impact on the land cover
type ( Arvor et al., 2012; Brown et al., 2007; Hentze et al., 2017; Ngadi

Fig. 1. Senegal’s map of the MODIS NDVI 2000–2021 average. The black boxes represent the three regions of interest: a) the Senegal river (SR) (North), b) the Niayes
(West), and c) Ferlo (Centre) that include most of the LSLAs (red polygons) reported in the field database (M. Dieye, personal communication, 2022. Punctual study
cases used in this study are represented by points 1 to 13. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Y. Ngadi Scarpetta et al.
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Scarpetta et al., 2023).
In a recent review of the potential of remote sensing to fully char-

acterize land change, Zhu et al. (2022) proposed a multifaceted frame-
work consisting of five facets, including Where (i.e. the location of
change), When (i.e. the date of change), What (i.e., target of change),
How (i.e., the metrics of change), and Why (i.e., the drivers of change).
They found that while the first three facets have been studied exten-
sively, much work remains to be done on the last two facets.

Given the identified needs, our main objective is to contribute to the
How and Why facets of land change using the BFASTm-L2 algorithm.
While its sensitivity to seasonal changes was demonstrated, BFASTm-L2
also showed some sensitivity to abrupt changes and trends, hindering
the analysis of land dynamics from a change type perspective. Therefore,
this study aims to: i) derive a set of change metrics with varying

sensitivities to the different types of change, and ii) combine these
metrics into a comprehensive RGB (red,green,blue) change map to
provide insight into the drivers behind the changes detected by
BFASTm-L2 at the national scale. Compared to other change visualiza-
tion approaches (Hird et al., 2016; Julien and Sobrino, 2021), this
approach goes beyond detecting change to characterizing it (the most
important change detected by BFASTm-L2 within the entire monitoring
period), by looking at the specific relationships between the different
types of change (particularly seasonal) and potential drivers.

In this study, special attention has been given to the detection of
LSAIs. Details of the approach, data and methods are presented in the
next section.

Fig. 2. Illustration of the highest-intensities changes found in (Awty-Carroll, 2019) benchmark dataset, for each change-type group: a) trend (gradual change), b)
abrupt change with a gradual change, c) amplitude change, d) change in the length of season (LOS), e) change in the number of season (NOS). The no-change time
series is plotted in black dash line.

Y. Ngadi Scarpetta et al.
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2. Study area and LSAI

Located in the westernmost part of the Sahel, Senegal has a strong
north–south rainfall gradient resulting in a semi-arid climate in the
north (200–400 mm/ year) and a tropical climate in the south
(800–1200mm/ year) (Fig. 1). Senegal has two distinct climatic seasons:
a dry season from November to May and a rainy season from June to
October, with the main land cover types being steppe, savanna and sub-
humid dry forest (Budde et al., 2004; Sultan and Janicot, 2003; Tappan
et al., 2004). It also has remarkable ecosystems, such as the productive
wetlands along the Senegal River, which have supported small farmers,
herders, fishermen and traders for centuries, but are increasingly
threatened by dams and irrigated rice schemes (Horowitz and Salem-
Murdock, 1993; Tappan et al., 2004).

The agriculture, which accounts for 15 % of the GDP, is dominated
by smallholdings with farm sizes of less than 5 ha (Bourgoin et al.,
2019). Large Scale Land Acquisitions (LSLAs) are however increasing in
number, with 3 % of the country’s arable land declared under contract
by foreign investors in 2016 (Harding et al., 2016). Due to opacity, lack
of geospatial information, and potential socio-environmental impacts,
efforts have been made to inventory and map LSLAs (Bourgoin et al.,
2019; Nolte et al., 2016). However, discrepancies and gaps remain due
to the spatio-temporal dynamic nature of LSLAs and differences in
methodologies. Automated and rapid approaches are needed to easily
monitor the entire national territory.

Agricultural LSLAs, hereinafter refer as to Large Scale Agricultural
Investments or LSAIs, are mainly concentrated over three regions,
shown in Fig. 1(Bourgoin et al., 2019):

The Senegal River (hereinafter refer as to SR) region shown in box a,
is an important agricultural region with a growing number of LSAIs,
mainly focused on horticulture, sugarcane production and cereals,
mainly rice.

The box b in the Niayes includes many LSAIs dedicated to horticul-
ture. The vegetation consists mostly of open agricultural parkland.

The sylvopastoral area of Ferlo shown in box c, consists mainly of
tree and shrub savannah, and is home to most of the LSAIs focusing on
gum arabic production.

Fig. 1 also displays the locations of thirteen study cases with
medium-large magnitudes of change, corresponding to different

LULCCs, as interpreted using Google Earth (GE) imagery, LSAI field
database, and analysis of selected NDVI time series and rainfall
distributions.

3. Data

3.1. LSAI dataset

In 2019, the Senegalese Institute of Agricultural Research (ISRA)
conducted a field campaign on LSLAs, with more than 700 polygons
recorded in a spatial database (M. Dieye, personal communication,
2022). The database contains deal information, such as deal type
(agrobusiness, mining, etc), size, year of transaction/ negotiation or
implementation status. A sub-database of 76 polygons was used, which
only includes: i) LSAIs established or expanded during the monitoring
period (2003–2018), ii) with a minimum size of 30 ha, iii) with at least
1/3 productive area (as verified by GE imagery).

3.2. Simulated time series dataset

In this study a gap-free and noise-free subsample of the simulated
time series dataset created by Awty-Carroll (2019) (https://osf.io/t
af9y/) was used to analyze the sensitivity of the proposed metrics to
different types of change. The subsample consisted of 3,150 simulated
NDVI time series (2006–2015 at 16-day frequency resolution as MODIS),
each containing a single change and belonging to one of the following
change types: trend, abrupt with/without a trend change, amplitude,
length of season (LOS), and number of seasons (NOS). Different in-
tensities of change, with 50 replicates for each, were included in each
group. The highest absolute intensities are (Fig. 2): 0.3 NDVI units for
the amplitude changes (+60 % of the initial amplitude), a shift of season
start of − 45 days backward for LOS changes, + 1 season for NOS
changes, 0.046 NDVI units/ year for trend changes, and + 0.3 of the
NDVI baseline (+a trend of 0.046 NDVI units/year) for abrupt changes.
More information (on the parameters, intensities…) can be found in
Awty-Carroll et al. (2019).

Fig. 3. Flowchart for identifying drivers of change from MODIS time series.

Y. Ngadi Scarpetta et al.
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3.3. MODIS NDVI data and pre-processing

The Moderate Resolution Imaging Spectroradiometer (MODIS) is a
satellite sensor launched in 1999, and designed to improve our under-
standing of global dynamics and processes on Earth. Its global coverage,
moderate spatial resolution (250 m) and high temporal resolution (1–2
days), make it ideal for detecting subtle land cover changes. Here, a set
of MODIS NDVI 16-day composites at 250 m resolution (MOD13Q1,
Collection 6), was acquired for Senegal over 2000–2021 and pre-
processed in GE Engine. Pre-processing included the application of an
optimized weighted Savitzky-Golay smoothing (Chen et al., 2004).
Weights were computed according to Piou et al. (2013), which uses the
reliability of the pixel (i.e., quality flag, view zenith angle) and the po-
sition of each observation in a predefined moving window (exponen-
tially decreasing weights). A moving window length of 13 observations
and a polynomial order of 3 were used.

3.4. TRMM precipitation data

Precipitation estimates for the study cases 1 (16.605◦; − 14.627◦), 4
(15.220◦; − 13.708◦) and 11 (12.944◦; − 14.631◦) were obtained from
the Tropical Rainfall Measuring Mission (TRMM), a satellite designed to
observe rainfall in tropical and subtropical regions of the world (Kum-
merow et al., 1998). Specifically, the 3B43v7 product, created using
TRMM-adjusted data from several sources (namely high-quality micro-
wave data, infrared data, and rain gauges analysis), was downloaded
from GE Engine. Monthly precipitation rate estimates (mm/hr monthly
average) at a spatial resolution of 0.25◦ were converted to annual esti-
mates (mm/year).

4. Methods

This section is divided into three sub-sections. Section 3.1 describes
the global approach used in this study. Section 3.2, dedicated to the How
facet of land change, presents the three change metrics derived from the
MODIS NDVI SITS that characterize in different ways the change found
by BFASTm-L2 between 2003 and 2018. Finally section 3.2, dedicated to
the Why facet of land change, presents the RGB map obtained from the
combination of the three change metrics, allowing the identification of
possible drivers of change through the analysis of known study cases.
Throughout this study, special emphasis was placed on the detection of
LSAIs.

4.1. Approach

Flowchart of the approach is shown in Fig. 3. The first step aims to
characterize BFASTm-L2 detected change on MODIS dense NDVI SITS.
In addition to the magnitude of change, originally calculated by the
algorithm, two change metrics were derived: a time series shape
dissimilarity measure to assess the type of seasonal change, and an NDVI
change ratio to assess the change’s directionality. The second step aims
to provide a map of the major drivers of change on a national scale by
combining the change metrics into a unique RGB change map. Dominant
colors were tentatively assigned to one or a few drivers of change by
visual inspection using Google Earth (GE), NDVI time series analysis,
precipitation distribution analysis, and the LSAI field database.

4.2. Contributing to the How facet of land change: the change metrics

4.2.1. The magnitude of change metric
The magnitude of change used in this study is the one corresponding

to the largest magnitude breakpoint detected by BFASTm-L2 in each
time series (Ngadi Scarpetta et al., 2023). This magnitude represents the
Euclidean distance (L2) (i.e., the. square root of the sum of the squared
difference) between the two 3-year time series located at each part of the
breakpoint. Because this distance does not take into account the non-

stationarity of the variance in the time series (Lhermitte et al., 2011),
it is very sensitive to trends and amplitude changes that are commonly
attributed to natural (e.g., forest regeneration) and climatic variability-
induced changes, respectively. To discriminate such contributions, a
time series shape similarity metric expected to be more sensitive to
seasonal changes is introduced in the next section.

4.3. The time series shape dissimilarity metric

Since special attention is given to the detection of LSAIs in Senegal,
that induce changes in the NDVI time series NOS and LOS components
(Ngadi Scarpetta et al., 2023), we propose here the Procrustes distance
(hereafter referred to as dissimilarity) as a method to refine the type of
seasonal change detected. Procrustes is a measure of similarity between
two shapes (or matrices), by taking into account transformations such as
translation, scaling, and rotation (Gower, 1975). The goal of Procrustes
analysis is to determine the minimum distance between two matrices, X
and Y. This is done by minimizing the following equation:

d(X,Y) = mint∈T‖X − t(Y)‖

where: X and Y are nxm matrices representing the coordinates of n
points in m dimensions; T is the ensemble of different possible combi-
nations of scaling, translation and rotation possible, and ‖.‖ the chosen
distance norm. Values ∈ [0, 1], with higher values indicating greater
dissimilarity. Fig. 4 illustrates the time series (dashed one) resulting
from the application of scaling, translation (time shift), and rotation
(trend) to the original time series (solid line). Despite these significant
transformations (which do not however affect the time series NOS or
LOS) , the Procrustes distance between the two time series is zero.

In this study, as in our previous work on magnitude (L2) (Ngadi
Scarpetta et al., 2023), we conducted a sensitivity analysis of the
dissimilarity metric. This analysis was performed on both a simulated
time series dataset and a selection of six real NDVI time series, including
pixels with no change and pixels undergoing different types of change.
For each sample, we computed the dissimilarity between two 3-year
time series that were first averaged annually at each point of change.
The Procrustes function from the Python spatial package SciPy was used
for this calculation.

Fig. 4. Illustration of the time series (dashed) resulting from the application of
scaling (x1.5 NDVI unit), translation (4 month shift) and rotation (trend of 0.1
NDVI unit/ year) transformations to the time series represented by the solid
line. The computed Procrustes distance between the two time series is zero.

Y. Ngadi Scarpetta et al.
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4.4. The change direction metric

To assess the direction of change, the ratio of the 3-year NDVI
average after the change to the 3-year NDVI average before the change
was calculated. An NDVI ratio below 1 indicates a “negative” direction
of change, while a ratio above 1 indicates a “positive” direction of
change.

As for the magnitude in our previous study, a sensitivity analysis of
the NDVI ratio to different types of change was performed on the
simulated time series dataset and on a selection of real NDVI time series.

4.5. Contributing to the Why facet of land change: combining the change
metrics into an RGB composite map

In light of the observations made in the introduction about the re-
lationships that may exist between specific drivers of change and the
types of change observed within the time series, we propose a composite
RGB map based on three change metrics having contrasted sensitivities
to different types of change to help discriminate between different
drivers of change: the magnitude of change (L2) in red, the NDVI ratio
(indicative of the direction of change) in green, and the dissimilarity
(Procrustes distance) in blue. The dominant change “signatures” (i.e.
colors) observed in the RGB map were linked to specific land dynamics
and drivers of change (see Table 3) based on the: i) expected relation-
ships between some drivers and types of change (presented in the
Introduction), ii) visual verification of thirteen selected study case
points presenting different land use transitions, iii) constructed knowl-
edge of LSAIs, and iv) comparison of NDVI time series and the distri-
bution of annual average precipitation for cases that are likely to be non-
anthropogenic due to their area and shape (cases 1, 4, and 11). As
BFASTm-L2 breakpoint detection is based on the comparison of two 3-
year time series subsamples, only potential drivers with short-term ef-
fects were considered and grouped into four broad classes: CLIM (for
changes induced by climate variability), NAT (for biotic natural
changes), MIN/INF (for mining/ infrastructure), and LSAI (for intensive
agricultural activities), the latter being our main focus in this study.

5. Results and discussion

5.1. Sensitivity assessment of the dissimilarity and NDVI ratio metrics

The sensitivity of the dissimilarity and NDVI ratio metrics is here
assessed using two different datasets.

5.1.1. On the simulated dataset

5.1.1.1. The dissimilarity metric. Table 1 shows the dissimilarity me-
dians computed for each type of change in the simulated dataset. Null
values are observed for “vertical” changes, represented by changes in
amplitude, trend, and abrupt changes (with/without trend changes). In
contrast, it is very sensitive to NOS changes (median = 0.78) and to a
lesser extent to LOS changes (median = 0.35).

5.1.1.2. The NDVI ratio metric. Fig. 5 shows the distribution of the NDVI
ratios for each type of change in the simulated dataset. This metric
shows particular sensitivity to abrupt changes (max. = 6.03), and to a
lesser extent to LOS changes (max. = 1.85). Less sensitivity is shown for
amplitude and gradual changes (max. of 1.62 and 1.59 respectively).
The lowest value is reached for NOS changes (1.47).

5.1.2. On real NDVI time series with different land use transitions
In this section, the MODIS NDVI time series of six pixel-study cases

are presented. Four of them include LULC transitions from/to (Fig. 6.a-
d): natural vegetation other than estuaries/wetlands (NAT), estuaries
(EST), small-scale agriculture (SA), large-scale agricultural investment
(LSAI), mining (MIN) and infrastructures (INF) (roads or airports). The
computed dissimilarities and NDVI ratios are given.

Fig. 6 demonstrates that real data can be complex, with various types
of changes occurring simultaneously. For example, two study cases with
the same land use transition (NAT-LSAI) show different combinations of
change types. While case a. shows a combination of amplitude (~ +75
%) and NOS changes, case c. shows a combination of amplitude, LOS and
abrupt change. Transition SA-MINE study case b) shows a combination
of all types of changes. Study cases without land conversions, i.e. cases e.
and f. (NAT and EST), show mainly amplitude changes.

In this dataset the highest and lowest NDVI ratios were obtained for
NAT-LSAI (case c: 2.3) and SA-MINE (case b: 0.5) transitions, due to
large abrupt (~-0.1 NDVI units) and amplitude (+75 %) changes,
respectively. At the opposite, the NDVI ratios close to 1 of the two cases
without land conversions (case e:0.8; case f: 0.9) indicate the absence of
significant land changes.

Table 1
Medians of the dissimilarities computed per type of change using the simulated
dataset.

Amplitude LOS NOS Trend
only

Abrupt w/
trend

No
change

Dissimilarity 0.03 0.35 0.78 0.03 0.04 0.03

Fig. 5. Violin plots of the NDVI ratio for each type of change in the simulated dataset. Group’s medians are represented by red dots. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Y. Ngadi Scarpetta et al.
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Fig. 6. Selected pixel-study cases. Each subplot’s upper part shows the smoothed MODIS NDVI time series, with the breakpoint detected by BFASTm-L2 (red dashed
line), and the 3-year time period before and after the breakpoint (grey zone). The bottom part shows the 3-year monthly average (before/ after the breakpoint) and
the computed change metric values. Land transitions (illustrated by the GE snapshots before and after the detected breakpoint) and coordinates [latitude, longitude]
are: a) NAT-LSAI [16.181◦, − 15.779◦]; b) SA-MINE [15.039◦, − 16.806◦]; c) NAT-LSAI [16.406◦, − 15.689◦]; d) NAT-INF [14.708◦, − 17.090◦]; e) NAT [16.278◦,
− 15.312◦]; f) EST [12.838◦, − 16.384◦]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Y. Ngadi Scarpetta et al.
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In terms of dissimilarity, values greater than 0.5 were observed for
large-scale land use conversions, such as conversion to LSAI (case a: 1;
case c: 0.51) or mining (case b: 0.55). Cases without LULCC (e.g.
climate-induced changes: case e), or those covering a smaller area (e.g.
infrastructure construction: case d), have lower dissimilarity values
(0.06 and 0.1). An exception is the estuary study where a high dissim-
ilarity is observed (case f: 0.61) due to the water level fluctuations.

The results are summarized in Table 2. Results related to the
magnitude sensitivity were taken from a previous study (Ngadi Scar-
petta et al., 2023).

Fig. 7 shows the different change metrics maps at the national scale:
magnitude of change (Fig. 7.a), time series shape dissimilarity (Fig. 7.b),

and NDVI ratio (Fig. 7.c). To facilitate readability, close-in views of these
maps for the three regions (SR, Niayes and Ferlo) are given in Appen-
dices B to D. As a reminder, the changes are those detected by BFASTm-
L2 in the full MODIS NDVI time series between 2003 and 2018 (the
monitoring period). Several observations can be made from these maps.

The first is that a breakpoint is almost always found on long and
dense SITS (see Appendix A for the date of change map).

Second, the magnitude of change map (Fig. 7.a) highlights signifi-
cant areas of change throughout the monitoring period. Large-scale
changes (big yellow patches) are primarily concentrated in the eastern
north and central pastoral regions, and the forested areas in Casamance,
which are located around point 4 and point 11 respectively. The changes

Fig. 6. (continued).
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occurred almost simultaneously in each region (Appendix A), indicating
a common cause of change per region. At a smaller scale, it appears that
the highest magnitudes in the SR (Appendix B.c) are linked with agri-
cultural activities or wetlands, which sharply contrast with the
remaining arid environment. In the Niayes (Appendix C.c), the LSAIs are
well highlighted with large magnitudes of change. Additional high-
lighted structures include linear structures (points 7–8) that correspond
to infrastructure constructions, compact patches (point 6) that corre-
spond to mines, and more diffuse patterns over greener areas (Appendix
C.a). In the Ferlo (Appendix D.c), random patterns of high magnitudes
and different dates of change appear. Here, the LSAIs dedicated exclu-
sively to the production of gum arabic do not induce visible changes.

Third, most of the previously observedmagnitude hotspots disappear
in the dissimilarity map (Fig. 7.b). In this map, high values are partic-
ularly observed in the SR valley, near water bodies and in the estuary
regions in the south, indicating high seasonal variations. Elsewhere, the
values are low, but with minor local variations. In the Niayes (Appendix
C.d), the LSAIs are particularly highlighted by the dissimilarity metric.
In the SR region, the LSAIs also show high dissimilarities, although they
are not clearly distinguished from the surroundings characterized by the
presence of wetlands. Conversely, the Ferlo region (Appendix D.d) ex-
hibits very low dissimilarity values.

Finally, the NDVI ratio map enables evaluation of change direction
(“negative” for values between 0–1, and “positive” for values > 1) and
demonstrates overall similar patterns to the magnitude of change map.
Very high (around 1.3) or very low (below 0.8) NDVI ratios are asso-
ciated with high magnitudes of change. The most significant changes in
NDVI occur in the eastern pastoral region, with a combination of high
and low values (Appendix D.e). Some patterns are also observed in
Casamance (southwest region), but with fewer extremes, except for the
forested region near point 11 that displays high NDVI ratios. At a smaller
scale, the LSAIs in the SR region are generally well represented by
compacted positive change patches (point 2 and polygons in Appendix
B.e), with the exception of LSAIs established prior to 2003 (Appendix B.
f). In this region, the wetlands have moderate positive or significant
negative NDVI ratios, suggesting that these ecosystems have mostly
dried out (all causes confounded) during the monitoring period. In the
Niayes (Appendix C.f), the linear structures observed in the magnitude
of change map and attributed to infrastructure are well highlighted by
negative values (points 7–8 of Fig. 8), as well as the mines (Fig. 9: Zoom-
ins of study cases 1 to 13. LSAIs: 2, 3, 9, 10,12. Not in database LSAIs:

Fig. 6. (continued).

Table 2
Sensitivity of the change metrics to different types of change. Sensitivity classes
are: low: +, medium: ++, high: +++, None: − . Change type thumbnails are for
illustration only, as changes can be positive/ negative, from one direction to the
other.

Change metricChange type Magnitude Dissimilarity NDVI
ratio

Trend ++ − ++

Abrupt +++ − +++

Amplitude ++ − ++

NOS +++ +++ +

LOS + ++ ++
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points 5, 10. Mines: points 6 and 13. Infrastructures: points 7 (airport)
and 8 (road). Forest: point 11. Wetland: point 1. Other natural vegeta-
tion: point 4..6). In this region, the LSAIs do not have overall high
positive NDVI ratios, indicating less abrupt changes than in the north.
The highest positive values observed here are in the form of diffuse
patterns, associated with greening areas.

As observed, each map provides useful information on its own, but it
is necessary to consider all three maps together for a full understanding
of the changes. To this end, in the next section we propose an RGB
composite map constructed to highlight anthropogenic changes.

5.2. Gaining insight into the Why facet of land change: The RGB
composite map

Fig. 8 shows the national-scale RGB composite map, constructed
from the BFASTm-L2 magnitude of change (red band), the NDVI ratio
(green band), and the dissimilarity metric (blue band), as well as the
2000–2019 MODIS NDVI and TRMM annual precipitation distribution
for 3 pixels located in large natural areas (forest: point 11, wetland:
point 1, other natural vegetation: point 4). This figure is followed by
close-in views over the 13 study cases (Fig. 9: Zoom-ins of study cases 1
to 13. LSAIs: 2, 3, 9, 10,12. Not in database LSAIs: points 5, 10. Mines:
points 6 and 13. Infrastructures: points 7 (airport) and 8 (road). Forest:
point 11. Wetland: point 1. Other natural vegetation: point 4.), to help
interpret the observed signatures in terms of drivers of change.

The dominant colour observed is green, followed by yellow and or-
ange, indicating changes with low dissimilarities. Green indicates small
magnitude changes, along with varying NDVI ratio values that range
from 0.73 to 1.33. Orange and yellow pixels indicate high magnitudes of
change with either a decrease in NDVI average (orange pixels) or an
increase in NDVI average (yellow pixels). Based on their size and
irregular shape, as well as their similar dates of change (see Appendix
A), it is likely that these large orange and yellow patches are caused by
natural or climatic drivers of change. To confirm this hypothesis, we
visually analyzed the NDVI time series and precipitation distributions
from points 4 and 11 in Fig. 8. The change detected at point 4 (red
dashed line in 2012) correlates with a decrease in both NDVI amplitude
and precipitation, supporting the hypothesis of a climate-driven change.

In fact, a drought episode that caused a major humanitarian crisis in the
Sahel was reported in 2012 (United Nations Office for the Coordination
of Humanitarian Affairs. Sahel Crisis:, 2023). The NDVI time series at
point 11 shows a sharp increase in its baseline in 2003 (detected date of
change), corresponding to an increase in pluviometry. This is consistent
with positive anomalies observed in the region during the same period
(Solly et al., 2020). The absence of significant seasonality changes, other
than erratic amplitude changes, supports the assumption of non-
anthropogenic change.

Looking closely at Fig. 9 and the sub-regional areas in Appendices B,
C, additional shades of pink and blue appear that are associated with
changes of greater dissimilarity values (along with varying magnitudes).
The blue shades are primarily observed in the northern and southern
coastal ecosystems (see Appendix B.f). These areas show small magni-
tudes of change and no significant NDVI changes over a 3-year period. In
the arid north, areas of light pink are associated with higher magnitudes
of change (Fig. 9.1), suggesting a higher degree of instability compared
to estuaries in the south.

In addition to coastal ecosystems, other land dynamics are shown in
light pink. This is the case for all LSAIs in the Niayes and several of those
in the SR (zooms 2, 5, 7–8, 9, 10 of Fig. 9 and Appendices B.f and C.f).
However, those dedicated to gum arabic production in the Ferlo do not
follow the same trend (in yellow, see Appendix D and Fig. 9.3). In the SR,
many of the LSAIs established before 2003 (start of the monitoring
period) are colored in light pink, while the most recent ones appear in
white, indicating very high NDVI ratios (zoom 2 of Fig. 9). In the
southern Casamance, the LSAI plots shown Fig. 9.12 are light pink,
except for the most recent plot in orange, indicating very low NDVI
ratios, possibly due to vegetation removal associated with plot
preparation.

As noted above, the orange color indicates changes with low
dissimilarity values. It is therefore surprising that the vegetation cover’s
removal does not lead to higher dissimilarities. This is also the case for
most changes induced by infrastructure (roads Fig. 9.8) and some mines
(Fig. 9.9), which are also orange. Larger mines (Fig. 9.6, 9.13) or
infrastructure (airport in Fig. 9.7) tend however to appear in dark pink,
indicating higher dissimilarities.

The observations are summarized in Table 3. In this table, the

Table 3
Association table between the RGB map colours (first column) and the potential drivers of change (2nd column, see 2.4.2). Change signatures are composed of, in red:
the magnitude of change, in green: the NDVI ratio and in blue: the dissimilarity metric.
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dominant colors observed are linked to the 3-band intensities (1st col-
umn), and to some potential drivers of change (2nd column).

6. Discussion

This study aligns with recent efforts to produce improved change
maps that go beyond simply identifying the timing and magnitude of
change, (Rodríguez Paulino et al., 2024; Schroeder et al., 2017), with
some of these efforts also addressing the characterization of detected
change within spectral index time series (Chen et al., 2023; Kennedy
et al., 2015; Zhang et al., 2022). However, unlike most studies that are
supervised and focus on disturbances within specific ecosystems, pri-
marily forests, this research breaks free from ecosystem-specific limi-
tations. It aims to be entirely unsupervised, utilizing fewer and broader
driver classes, and avoids thresholding or land cover masking, thereby
enhancing its applicability across different regions. The changes that are
here characterized are the largest detected changes with BFASTm-L2 in
20-year MODIS NDVI time series.

This section is divided into two sub-sections. The first discusses the
results related to the change metrics proposed to better characterize the
detected changes. The second focuses on the RGB map, proposed as an
improved change map.

6.1. Contributing to the “How” facet: the magnitude, dissimilarity, and
direction of change to improve change characterization

Detected changes are usually categorized as either abrupt or gradual
changes depending on the duration of the change (Zhu et al., 2022).
Sudden seasonal changes have not been explicitly addressed because: i)
the detection of changes in dense SITS often requires the removal of the
seasonality (Evans and Geerken, 2004; Hird et al., 2016), ii) they are
mostly considered to be climate-driven changes (especially for erratic
changes in amplitude), and iii) they typically result in small magnitudes
of change (especially for LOS/NOS changes) (Ngadi Scarpetta et al.,
2023). Because land use conversions, such as LSAI-driven ones in
Senegal, typically involve seasonal changes that are not necessarily
accompanied by abrupt changes, the effort in this study was to select
metrics that effectively discriminate between types of changes.

The first change metric is the BFASTm-L2 magnitude of change,
which is known to be sensitive to abrupt and large gradual changes, but
also to NOS changes (Ngadi Scarpetta et al., 2023).Because many change
drivers are likely to induce these types of changes, this map represented
our baseline map, from which different drivers, all of which inducing
high-intensity changes, were tentatively discriminated.

The second metric evaluated here was the dissimilarity metric
introduced to help discriminate seasonal changes. This metric showed to
be invariant to amplitude and trend changes, while being very sensitive
to NOS/LOS changes and small intra-annual variability (Table 1 and
Fig. 6). This metric was most effective in the Niayes, where it effectively
highlighted LSAIs (Appendix C). In other regions, the dissimilarity
shows a great sensitivity to the strong intra-annual variability present in
the wetlands and estuaries, in the SR floodplain (Appendix B.d) and
Casamance respectively. Although this metric shows a strong sensitivity
to agricultural changes, it seems to be primarily sensitive to the seasonal
changes caused by annual crops, rather than slow-growing plantations,
as is the case with the arabica gum plantations in Ferlo (Appendix D).

Finally, the NDVI ratio based on the comparison of two 3-year pe-
riods after and before the change, provides an indication of the direction
and intensity of the change. A 3-year period was considered sufficient to
favor persistent changes over climate-driven changes. While this ratio
improves the discrimination between biomass-producing and biomass-
depleting drivers, we found that it was most useful for discriminating
anthropogenic drivers such as mining or infrastructure (zooms 7–9,13 in
Fig. 9), rather than LSAIs, which have highly variable NDVI ratios
(Appendices B.e and C.e).

While each metric alone provides valuable insight into potential

Fig. 7.. National maps of the different change metrics: a) the magnitude, b) the
dissimilarity, c) the NDVI ratio.
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drivers of change, interpretation of these multiple changes indepen-
dently is often complicated.

6.2. Gaining insight into the ’Why’ Facet of land change through the
exploration of different change signatures displayed in an RGB Map

6.2.1. General considerations
To date, most unsupervised studies have focused on disentangling

climatic and anthropogenic drivers of LULC change based on the cor-
relation between vegetation productivity and meteorological data (e.g.
pluviometry) (Olsson et al., 2005), often using the Residual Trend
Analysis (RESTREND, Evans and Geerken (2004)) (Anchang et al., 2019;
Leroux et al., 2017). However, this approach relies heavily on the linear
relationship between vegetation productivity and rainfall, making it
applicable only under specific conditions (e.g., linear response of
vegetation to increased precipitation, absence of severe land
degradation).

In contrast, this study aims to identify drivers of change by
leveraging the complementary nature of different change metrics that
provide information about the type of change, its direction and in-
tensity, integrated into an RGB change map, supported by visual spatial

analysis at multiple scales. While shape parameters and change metrics
are often included in supervised analyses that aim to identify specific
drivers of change (Schroeder et al., 2017; Zhang et al., 2022), the rela-
tionship between major drivers of change and the types of changes
involved has been less frequently studied.

In the current study, while the change detection is done at the pixel
level, the attribution of possible drivers of change is done by looking at
the color (“signature” of change), area, and shape of the clusters. The
date of change map also helps in this process, as very large clusters of
change with the same date of change are unlikely to have an anthro-
pogenic origin. This is the case of the natural areas around points 4 and
11 in Fig. 8, which are most likely driven by pluviometry and natural
forest regrowth respectively. These represent the most significant events
occurring at any given time during the 2003–2018 monitoring period.
While the current dynamics may be slightly different, this change map is
powerful for detecting punctual human-induced events in the past,
which tend to be more persistent over the time than other disturbance
types. Compared to natural and climate-driven changes, anthropogenic
land changes are spatially constrained, often with geometric shapes.

Fig. 8. RGB composite map with in Red: the change’s magnitude, in Green: the NDVI ratio, and in Blue: the dissimilarity metric. MODIS 2000–2019 NDVI and TRMM
annual rainfall distribution are shown for three pixels with natural/ climate-driven changes: 1 (wetland), 4 (shrub savanna) and 11 (dry tropical forest). See legend in
Table 3. Map values were stretched between the 1st and 99th data percentiles, corresponding to [0.73–1.33] and [0–0.79] for NDVI ratio and dissimilarity,
respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Zoom-ins of study cases 1 to 13. LSAIs: 2, 3, 9, 10,12. Not in database LSAIs: points 5, 10. Mines: points 6 and 13. Infrastructures: points 7 (airport) and 8
(road). Forest: point 11. Wetland: point 1. Other natural vegetation: point 4.
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6.2.2. LSAIs
While the LSAIs show different signatures of change across the

country, most share high dissimilarities with different NDVI ratios,
introducing a new way to characterize them. All LSAI-related changes
appear in light pink/white, except for those in the Ferlo, which are
yellow (very low dissimilarities). Specifically, LSAIs are best identified
in the Niayes (Appendix C), where they are widely spaced and are col-
oured light pink (Figs. 9.5, 9.9, 9.10). In this region no other land dy-
namics produce the same signature of change. In the arid north
(Appendix B), newly established LSAIs appear in white as a result of
significant changes that represent land conversion from semi-arid nat-
ural vegetation to agribusiness. LSAIs established prior to the moni-
toring period and SR Valley wetlands characterized by flood recession
agriculture both appear in light pink, making them difficult to distin-
guish. Finally, in the semitropical south, new LSAIs (or spatial exten-
sions, i.e. the orange area in Fig. 9: Zoom-ins of study cases 1 to 13.
LSAIs: 2, 3, 9, 10,12. Not in database LSAIs: points 5, 10. Mines: points 6
and 13. Infrastructures: points 7 (airport) and 8 (road). Forest: point 11.
Wetland: point 1. Other natural vegetation: point 4..12) show negative
abrupt changes that may be related to field preparation and biomass
(woody vegetation) removal in favor of annual crops. In contrast to the
north, plots of LSAIs installed before 2003 appear in very pale pink,
indicating changes in agricultural practices. The presence of these white
clusters near compact orange clusters may help distinguish LSAIs from
other land dynamics in the tropics, even though in this region, as in the
Niayes, no other land dynamics appear to produce the same colors.

Compared to other pixel-based studies aimed at detecting LSAI (Bey
et al., 2020; Hentze et al., 2017; Hurni et al., 2017; Xiao et al., 2020),
this approach has the advantage of being fast, unsupervised, not crop-
specific, independent of absolute spectral values, and able to use all
available data. Therefore, it can be used as the first step of a pipeline to
detect potential LSAIs. Beyond Senegal, this approach has been vali-
dated in diverse geographical contexts, including Laos, Argentina,
Mozambique, and Bolivia. Illustrations of the applications in Laos and
Argentina are provided in Appendix B of the Ngadi Scarpetta (2024)
thesis.

A more in-depth analysis could then be performed using High Res-
olution satellite imagery only at these specific locations, including
morphological and textural metrics following Vogels et al. (2019).
Because the detected changes represent the largest LULCC within the
entire monitoring period, detected areas may have a different land use in
the present.

6.3. Limitations and recommendations

Our results show that the RGB change-metric based map at the na-
tional scale proved to be useful for quick visual detection of specific land
changes. However, there are some limitations. The first, as shown in
Table 3, is that there is not a one-to-one relationship between a given
combination of change types and a change agent. For example, while it
is true that the reported Senegalese LSAIs are likely to cause seasonal
NOS/LOS changes, other spatial objects such as the highly unstable es-
tuaries and wetlands are also exhibit this type of change. In this case,
other characteristics such as spatial patterns (area, shape) may help to
determine the most likely driver of change. Similarly, the same type of
change’s agent can cause different combinations of change types. For
example, certain types of LSAIs, such as those involving slow-growing
tree plantations in semi-arid environments, do not cause visible NOS/
LOS changes such as annual crops. These land dynamics are therefore
poorly captured by BFASTm-L2. Finally, it is important to note that the
results may be different in other climatic regions, especially in the

humid tropics, where the observed seasonal changes may be less pro-
nounced. The same conclusions apply to regions where the diversity and
size of agricultural systems makes LSAI less contrasted with other
agricultural land uses. Indeed, it is important to keep in mind that in
Senegal, the majority of the farms are smallholdings, rain-fed, with an
area of less than five hectares (Bourgoin et al., 2019).

Regarding some of the recommendations, it is worth noting that
because the change magnitude is not NDVI normalized, for a same re-
gion encompassing different biomes (e.g. the Niayes), the magnitude
tends to be higher over the forested areas. On the other hand, when
considering the use of this method with other sensors, because BFASTm-
L2 relies on long (at least 8 years) gap-free and smoothed time series,
with a high temporal frequency to properly represent phenology, ap-
plications with higher resolution SITS such as Sentinel are currently
hampered by the short temporal depth. The use of coarse resolution
MODIS SITS allows rapid and easy identification of areas with specific
land change dynamics over large areas, which can be analysed in more
detail using High Resolution satellite imagery at a later stage.

7. Conclusions and perspectives

In this exploratory study, the BFASTm-L2 change detection algo-
rithm was applied to MODIS 2000–2020 NDVI imagery to provide in-
sights into the major land changes and potential drivers of change in
Senegal, contributing in a novel way to the How and Why facets of land
change proposed by Zhu et al. (2022). The How facet of land change was
characterized here by three change metrics, namely the magnitude of
change, the direction of change, and a time series shape dissimilarity
metric. The combination of these metrics in an RGB composite map
allowed the characterization of different land dynamics, and proved to
be a useful visualization approach in detecting different anthropogenic
LULCC such as those induced by LSAIs, mines or infrastructure. Complex
land use systems such as LSAIs, which are diverse in terms of cropping
practices, are often difficult to detect. However, by combining the
“signature” of change, with other change characteristics such as the area
and shape, newly installed (within the monitoring period) LSAIs could
be visually inferred from the RGB map.

Although this approach has only been tested in Senegal, it demon-
strates the usefulness of integrating the type of change, and in particular
the seasonal ones, into the characterization of land change. This
approach, based on a statistical change detection method, has the
advantage of being interpretable, robust to noise and easily transferable
to different regions, as it uses all the available temporal data and does
not require the use of ancillary data. Further research will focus on
automating the LSAI detection approach and integrating morphological
and textural variables from high spatial resolution satellite imagery into
the analysis. The approach will then be tested to different regions of the
world.
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Close-in views of the Senegal River. a) MODIS NDVI 2000–2021 average map, b) Date of change map, c) Magnitude of change map, d) Dissimilairty
map, e) NDVI ratio map, f) RGB map.
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Close-in views of the Niayes. a) a) MODIS NDVI 2000–2021 average map, b) Date of change map, c) Magnitude of change map, d) Dissimilairty
map, e) NDVI ratio map, f) RGB map.
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Appendix D

Close-in views of the Ferlo. a) MODIS NDVI 2000–2021 average map, b) Date of change map, c) Magnitude of change map, d) Dissimilairty map, e)
NDVI ratio map, f) RGB map.
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