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Making Control in High Performance Computing for Overload Avoidance
Adaptive in Time and Job Size

Rosa Pagano1 Sophie Cerf2 Bogdan Robu3 Quentin Guilloteau1 Raphaël Bleuse1 Éric Rutten1

Abstract— The feedback control of High-Performance Com-
puting (HPC) has been explored as an application area of
Control Theory, because of the high variability involved in
their resource management. A regulation mechanism can allow
to soundly automate the injection of small flexible jobs in a
cluster. A trade-off is needed, to fill up the cluster’s computing
capacity while avoiding overload of e.g., the file server.

In this work, we describe new results in this context, where
the overload avoidance controller is made adaptive to the jobs’
size, that is a time-varying unknown parameter. To do so, the
original PI controller is enhanced with an online estimation
algorithm that allows the controller to adapt to various working
conditions, to avoid performance degradation. Parallel and ro-
bust estimation algorithms are designed, tackling the challenges
of bursting and noise in the system. Validation and evaluation
of the adaptive controller are performed on a large-scale
experimental HPC platform, showing higher robustness than
the state-of-the-art in highly varying conditions. Reproducible
analysis are available at doi:10.5281/zenodo.11961696.

Keywords: Adaptive Control, Control for Computing,
High Performance Computing

I. INTRODUCTION

High Performance Computing (HPC) systems are tools for
scientists that stand out due to their computational power,
which outstrips the capacity of a single computer. HPC plat-
forms run large-scale computations, such as fluids mechanics
simulations, molecular interactions or Artificial Intelligence
training. However, HPC comes with a non-negligible ener-
getic and monetary cost, and has a relatively short life cycle
to ensure that top performing machines are always available.
The optimal management of HPC infrastructures is a pivotal
research domain. In this work, we focus on the optimization
of the use of HPC resources, such as computing nodes.

Nowadays, such large scale distributed systems are subject
to dynamical variations occurring, e.g., in the execution
of the jobs, the quantity of reading and writing (called
inputs/outputs or I/O) data exchanged, or the network con-
sumption. They thus need autonomic management [1] in
an online feedback control loop, in order to self-adapt to
unpredictable evolutions. Leveraging methods from Control
Theory for Software Engineering has been identified as a rich
potential for the design of well-founded and well-understood
autonomic managers [2], [3]. However, control-theory tools
and methods are not straightforwardly usable and applicable,
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which makes control for computing a challenging research
field [4], [5]: this is in part due to the lack of generally-
admitted models for the controllers design, and to the great
variety of problems and levels in the software stack, some-
times up to the hardware.

This work focuses on the application of control techniques
for resource allocation in HPC systems. Computing jobs are
scheduled to be executed on the HPC cluster, while most
of the time this scheduling leaves unused resources due to
jobs’ high requirements. The idea behind resource harvesting
is to take advantage of the idle resources left, by injecting
smaller jobs. In the light to do this, two categories of jobs are
considered: small, interruptible, and low priority are the best-
effort (BE) jobs, and the others are the high-priority (HP)
jobs. More particularly in this work, we consider a resource
harvesting mechanism called CiGri [6], that regulates the
injection and scheduling of BE jobs. Complementary; HP
jobs are sent by the main users of the cluster, they are con-
sidered by the injection controller as an external constraint.
This paper focuses on the case where the file server (the
shared storage among the various nodes within a cluster)
becomes the bottleneck of the system. Indeed, filling the
cluster without caring about the file server status could slow
down all computations, or even shut down and crash the
entire system.

The approach consists in using control techniques to man-
age the mechanism for the harvesting of idle resources within
an HPC cluster, in order to maximize its usage. Prior work
[7] used a simplified linear model to build a Proportional
Integral (PI) controller to avoid the overloading problem.
Its performance, however, deteriorates when the working
conditions deviate from the nominal ones. To overcome
the dependency on modeling and PI formulation, a Model-
Free Control approach [8] was proposed in [9]. Such an
approach, however, cannot guarantee the performance of the
closed-loop system. Building upon these results, the primary
objective of this work is to make the PI controller adaptive
to face diverse operational scenarios and be able to run in
response to jobs of various sizes without requiring manual
re-tuning. To do so, we use adaptive control [10], more
specifically a self-tuning regulator [11]. The PI controller is
enhanced with an online identification algorithm that allows
the controller to cope with various working conditions to
avoid undesired behavior observed in the previous solution.

In the remaining of the paper, the formulation of the con-
trol problem, prior model and PI is recalled (Section II), be-
fore describing the adaptive controller and the two estimation
algorithms considered, and motivate its design (Section III).
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Fig. 1: Graphical representation of the CiGri feedback loop.

Then the adaptive control is first validated in simulation and
then evaluated in the real setup (Section IV).

II. BACKGROUND

A. System Under Control

CiGri [6] is a computing grid middleware aiming at har-
vesting the idle resource of a set of computing clusters. Users
of CiGri submit campaigns of bag-of-tasks applications that
are composed of tens or hundreds of thousands of small
and independent jobs. Monte-Carlo simulations, or parameter
sweep applications are examples of such applications. As
those jobs are small and independent, they are the perfect
candidates to use the resources left idle by larger and more
rigid classical HPC jobs.

In its original form, CiGri submits batches of BE jobs to
the scheduler (namely OAR in this case) [12] of the clusters
and then waits for all these BE jobs to have completed before
submitting again. This submission mechanism is suboptimal
as it does not take into account the state of the cluster, and
can lead to both an under-utilization or an overload of the
system. Hence, the need for a feedback control mechanism.
Figure 1 summarizes the considered feedback loop in CiGri.

While the introduction of a feedback loop in CiGri has
been shown to improve cluster usage [13], it led to an
increase of the load of the shared file server. This file server is
the central entity hosting the files used by the computations.
Any read or write (I/O) operations must go through the file
server. Thus, any overload of the file server will slow down
the I/O operations and impact the performance of every
job being executed on the cluster. There is thus a trade-
off between harvesting idle resource and degrading the I/O
performance of all the jobs in the cluster.

To take this new dimension into account, Guilloteau et al.
[14] extended the feedback loop proposed in [13] with
a sensor on the file server. This sensor is based on the
loadavg metric [15] which is a metric well known by
system administrators of HPC centers. Moreover, this metric
bears some inertia by its definition, which is a pleasant trait
from the point of view of Control Theory.

Notation Description Unit

y load of the file server [ 1 ]
u number of best-effort jobs to submit [ 1 ]
f file size of the best-effort jobs, (unknown) [MiB ]
b̃ model parameter, theoretical value [ 1 ]
b̂ online estimation of the model parameter b [ 1 ]
V covariance matrix for estimation [ 1 ]

TABLE I: Summary of notations

B. Control Formulation

We place ourselves in the situation where the load of the
file server is the limiting factor for the harvesting of idle
computing resources, thus the quantity to regulate. We also
consider a single cluster/scheduler.

The actuator (u) is the number of BE jobs that CiGri
submits every Ts = 30 s to the OAR scheduler. The sensor
(y) is the load of the file server. This load is captured via
the loadavg metric and indirectly represents a degradation
of the I/O performance. By definition, the file server load
(explained in details in [7]) can take continuous values
from 0 to 8. The reference value for the file server load
should represent an acceptable trade-off between resources
harvesting and the degradation of I/O performance. Table I
summarizes the notations used.

C. Model

This section summarizes the first-order linear model of
the file server from [7], that will be the base for the adaptive
controller:

y(t+ 1) = a y(t) + b u(t), (1)

where y is the file server’s load, and u is the number of BE
jobs sent by CiGri to the HPC platform.

The parameter a, describing the dynamics of the system,
is analytically known: a = e−Ts/60 [7].

The parameter b, describing the impact of the submission
of jobs on the load, is not analytically known, and has
to be identified from experimental data. Identification by
experiments on the real system has shown that the measure
of the load y depends both on the control action u (number
of jobs) and on the size of the file used by the BE jobs,
denoted f . The file size f is a time-varying parameter of
the system. A static model has been drawn as a bi-linear
regression:

y = c+ β1 f + β2 u+ γ f × u (2)

Numerical values of the regression parameters are reported
in Table II.

In order to find an approximation of the parameter b, we
consider Eq. (1) in steady state, with the control uss and the
converged measure yss:

b = (1− a)
yss
uss

(3)

Using Eq. (2), the former equation rewrites as:

b = (1− a)

(
β2 + γ f +

c+ β1f

uss

)
(4)



In order to find an approximation of b that is independent
of the control signal, we simplify Eq. (4) with the realistic
hypothesis that the last term can be neglected, provided that
the control signal u is orders of magnitude larger than the
numerator. We define b̃, the theoretical value of b given this
hypothesis, as:

b̃ = (1− a) (β2 + γ f) (5)

From the expression above, one can note the connection
between b̃ and f : the model parameter changes with the jobs
file size. Let us note that the loadavg sensor introduces
noise in the system: by definition, it integrates processes
waiting on I/O but also other unrelated processes. This noise
is modeled as a white noise of standard deviation 0.59.

D. Proportional Integral Control

Prior work computed a controller dealing only with the
best-effort jobs. The idea was to develop a simple controller
for its implementation on the real platform. A PI was chosen,
implemented in discrete time [16]:

u(t) = u(t− 1) + (KP +KI) e(t)−KP e(k − 1) (6)

The controller is tuned with a pole placement design
technique [16]. The new poles of the closed loop are r e±jθ,
with r ≈ e−4/ks and θ ≈ π log r/ logMp. The two poles
rely on the settling time ks (here the number of iterations)
and the maximum overshoot Mp expressed as a percentage
of the reference.

In the end, the PI parameters are KP =
(
ξ − r2

)
/ b

and KI =
(
1− 2r cos θ + r2

)
/ b. Note that these two

parameters rely on the model parameter b, which depends
on the file size f . In [14], a nominal value f = 100MiB
of the file size is selected, resulting in b̃ = 0.0821. Note
that in practice, the controller does not have access to the
characteristics of the jobs. Therefore, Eq. (5) cannot be used
to estimate the model parameter b, as f is unknown.

E. Limitations of Previous Work

Figure 2 highlights the limits of the PI controller: we
present the measured tracking performance over three exper-
iments with different file sizes. The objective is to maintain
the load of the file server at a constant level yref = 3.
For all the experiments, the controller has been tuned with
f = 100MiB. Figure 2b depicts the nominal behavior, while
Figs. 2a and 2c evaluate the robustness of the controller. Note
that the results are the average of five similar executions
for each condition, as the system is noisy. With a controller

Parameter Value

c −0.507 148 4
β1 0.008 633 5
β2 0.045 139 4
γ 0.001 633
a 0.606 530 7

TABLE II: Numerical values of model parameters as exper-
imentally identified in [7].

soundly tuned to the actual file size (Fig. 2b, the performance
meets the requirements in terms of overshoot (none) and
response time (360 s). When the controller is facing a file
size twice larger than the value used for tuning, there is a
speed-up in the system response but a significant overshoot.
Conversely, when dealing with a smaller file size (50MiB)
the PI controller has a slower settling time than expected.
Note that in the two non-nominal cases, the steady state
oscillations are larger. This exhibits a lack of robustness w.r.t.
variations in the jobs’ file size, thus in the variations of the
model parameter b.

The objective of this paper is to devise a controller
adaptive to the different submitted jobs. In practice, it is not
possible to measure the file size of the jobs at runtime. We
hence use an adaptation approach based on online estimation.

III. ADAPTIVE CONTROL DESIGN

In order to cope with the varying size of the jobs submitted
to CiGri (reflected in the values of the unknown parameter
f ), an adaptation mechanism is designed on top of the exist-
ing controller. We adopt the indirect approach, consisting in
estimating the model parameters and subsequently updating
the controller, over the direct approach, where the controller
parameters are updated directly. Indeed, the model parameter
a is fixed and known, hence the sole estimation of parameter
b can be used to adapt both PI parameters. The self-tuning
technique [11] is used, as it allows finding the optimal
parameter for the controller, even if it does not ensure finding
the true model parameters.

Using the system modeling, we can define ŷ, the estimated
measure, and compute it as:

ŷ(t+ 1) = a y(t) + b̂(t)u(t) (7)

with b̂ a real-time estimate of the parameter b. The considered
adaptation is based on the least-squares resolution [17]. The
parameter estimation b̂ is updated as:

b̂(t+ 1) = b̂(t) + V (t+ 1)u(t) (y(t+ 1)− ŷ(t+ 1)) (8)

where V is the covariance matrix, computed as:

V (t+ 1) = V (t)− V (t)u2(t)V (t)

1 + u(t)V (t)u(t)
(9)

The estimation update of Eq. (7) relies on the difference
between the measured output and the estimate one using
Eq. (7). In addition, this difference is weighted by the product
of the covariance matrix V and the information matrix
in our unidimensional case is only u(t). The covariance
matrix allows tuning the relative impact of the new measure
compared to the former estimate. V decreases with time, as
the estimates improves in precision. Note that in our setup,
we reset the value of the covariance matrix when a new
campaign of jobs arrives. Indeed, as it results in a change of
the parameter f , and thus of b, the reset allows the estimation
to converge faster.

In the following, we present two different variants of
the above algorithm, tackling time-variation, burst and noise
challenges.
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Fig. 2: Limitation of the state-of-the-art controller regarding its robustness to changing jobs’ file size f . Tuning requirements
are no overshoot and 360 s response time. Average of five different experiments (in blue), with a reference of 3 (in black).

A. Parallel Estimation

When dealing with time-varying parameters, it becomes
essential to account for the evolving nature of the system and
give more weight to recent data while gradually forgetting
older data. To achieve this, a forgetting factor, denoted as
µ, is introduced [11], leading to a new formulation of the
covariance matrix Vµ in the parallel algorithm:

Vµ(t+ 1) =
Vµ(t)

µ
− Vµ(t)u

2(t)Vµ(t)

1 + u(t)Vµ(t)u(t)
· 1

µ2
(10)

The forgetting factor can vary from 0 to 1. When µ is close
to 1, the algorithm is slow in following the time-varying
parameters, as it gives more weight to historical data and is
less sensitive to rapid changes. However, this approach also
makes the algorithm less susceptible to noise, as it considers
a larger amount of data. On the other hand, with a small
value of µ, the algorithm becomes more responsive to fast-
varying parameters, enabling it to track rapid changes in the
system more effectively. However, a smaller µ also means
that noise has a more significant impact on the parameter
estimates, potentially leading to less accurate results.

To overcome the challenge of selecting a single adequate
value of µ, the parallel Estimation algorithm introduced here
employs a recursive least-squares estimator with a variable
forgetting factor. At each step, a µ is chosen among different
values to minimize the discrepancy between the measured
output and the estimated output. This allows the algorithm
to effectively track both fast and slow dynamics, and it
prevents the occurrence of blowing-up phenomena. Indeed,
if the algorithm continues to forget without new information
(lack of excitation), it approaches a singularity which leads
to a big strike on the estimated parameter. This is known as
the bursting phenomenon [18]. Given a vector µ of potential
values within [0, 1], we compute in parallel the corresponding
estimated value b̂ using Eq. (8), where the covariance matrix
is computed as in Eq. (10). Each value of µ leads to a
different estimation: we select the value with the smallest
prediction error ϵ(t) defined as ϵ(t) = y(t)− ŷ(t). Note that
altough many estimations are computed, it remains cheap to
compute. Each estimation can be computed in constant time,
hence the total work is linear in the size of µ.

B. Robust Estimation

As our system is subject to noise, the previous algorithm
could have some difficulties due to the direct derivation of a
least-squares cost function. A least-squares approach indeed
relies on low noise levels, otherwise the estimation could
significantly deviate due to the squaring in the cost function.
We introduce a new formula, taking into account the noise
challenge, to compute b̂:

b̂(t+ 1) = b̂(t) + V (t+ 1)u(t)F (ϵ(t)) (11)

F is a filter for the prediction error ϵ(t) defined as:

F (ϵ(t)) =
ϵ(t)

1 + α |ϵ(t)|
. (12)

For large errors, the function F (ϵ(t)) will be more gradual,
deviating from linearity, while for small errors the function
will resemble a linear function. This modification allows the
algorithm to handle larger errors more effectively, making
it more robust in the presence of substantial noise [10].
This revised formula introduces a smoothing factor α, that is
important for noise reduction: the greater the α, the greater
the noise reduction. Let us observe that the computation of
the robust estimation remains a constant-time algorithm, as
is the PI.

C. Tuning of Adaptation Parameters

Before testing the adaptation performance of the algorithm
on our system, we need to tune the algorithms. The quantities
to tune are the forgetting factors µ, the smoothing parameter
α, and the initial conditions b̂(0) and V (0). We tune all
parameters independently (namely varying parameter, noise
smoothing, initial guess and update speed), as they impact
differently the control performance.

Note that there could be a limitation in the independent
tuning of µ and α. Indeed, both reduce the impact of noise
in different ways: µ by using the memory of the previous
data, α for the non-linear function which acts each time step.
Then, we adopted two different approaches: we will avoid
the selection of a single value for µ, and optimally select the
best value at each iteration; while α is fixed.
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Fig. 3: Parameter estimation with the robust algorithm for
various values of the smoothing factor α. Simulation results.

1) Forgetting Factor µ: The number of values in the µ
vector expresses the trade-off between precision of the es-
timations and computing overhead. We deliberately avoided
values below 0.5 due to the high level of inherent noise
present in the system. We therefore choose the vector
of forgetting factors in the parallel algorithm as µ =
[0.5, 0.6, 0.7, 0.8, 0.9, 1].

2) Robust Smoothing Factor α: As the model parameter
b is not measurable, we rely on simulation to set different
values of b. We simulate the behavior of the system with a
varying b value: this is achieved by changing the campaign
file sizes f . We trigger two b changes: +0.02 at 4000 s and
−0.04 at 7000 s. The reference for the file server load y is set
to the constant value 3. Figure 3 depicts the simulation results
for various values of α. We observe fewer oscillations when
increasing α. On the other hand, a high α value slows the
algorithm: this is visible for α = 3 around 7000 s. We choose
α = 2 as a good trade-off between reducing oscillations and
preserving convergence speed.

3) Initial Estimation b̂(0): We tune the initial estimation
with experiments in real platform, because the model misses
the initial varying delay which exist in the real scenario.
Then, the initial conditions affect the real system, but the
simulation fails to capture this impact. An accurate tuning
of b̂(0) is important as an imprecise guess could lead to an
overload of the file server. Indeed, a small value of b̂(0)
leads to an undershoot on b̂, and thus over-increases the
control action, as implied by the definition of KP and KI

(see Section II-D). The dependency of the control action on
the inverse of b advises against opting for a small initial
estimation value.

Figure 4 presents the results for two initial condition
values: an over-estimation (b̂(0) = 0.5), and the theoretical
value (b̂(0) = 0.15). Both experiments exhibit the same
behavior. The estimated value of b̂, in Fig. 4a, initially
decreases below the true value and then increases. We
observe that the system requires some time to properly set
up, behaving as an initial delay of roughly four time steps.
Owing to this initial delay, the estimation is notably under-
estimated during this initial phase. The consequences of this
under-estimation are twofold. First, it results in an peak in

the control action, see Fig. 4b. Notably, the peak is more
pronounced with b̂(0) = 0.15, primarily due to the estimated
value reaching lower levels, as seen in Fig. 4a. Second, the
under-estimation affects the tracking performance, leading to
an overshoot in the early stages, see Fig. 4c. We therefore
select an initial estimation of b̂(0) = 0.5, significantly higher
than the theoretical value. This choice facilitates a soft start
of the control action, and effectively prevents overshoots that
could lead to system overloads. It is worth noting that the
choice of this b̂(0) value is not the sole solution: an initial
value greater than 0.5 would probably yield satisfactory
results.

4) Initial Covariance V (0): The larger the initial covari-
ance V (0), the lower the impact of the inital guess b̂(0)
on the estimation. To find a suitable value, we carried out
experiments. Figure 5 presents the estimation (Fig. 5a) and
tracking (Fig. 5b) performance for three different initial
covariance values: 102, 104 and 106. As the system is noisy,
we plot the average results of five experiments. The impact
of V (0) is relatively small. The main observed discrepancy
is the overshoot within the tracking outcome. We opt for
the initial value leading to the smallest overshoot: V (0) =
Vµ(0) = 104. Both the parallel and the robust algorithm are
set with the same initial covariance. Note that a large initial
covariance value V (0) may reduce the impact of the initial
condition b̂.

IV. EXPERIMENTAL EVALUATION

The adaptive controller and its two variants are first
compared in simulation, both for their estimation and track-
ing performance. Second, after presenting the experimental
setup, the best performing algorithm, e.g., the robust one,
is evaluated experimentally on a real HPC platform. Its
performance on several executions (or runs) is analyzed.
Eventually, we compare the adaptive control to the state-
of-the-art PI on varying systems.

A. Comparison of Estimation Algorithms in Simulation

The parallel and robust estimation algorithms are first
compared in simulation, to allow having the ground truth
value of b, unknown in experimentation. Here we are inter-
ested in evaluating both their performance in estimating the
model unknown parameter b̂, and on reference tracking.

Figure 6a presents the estimation results for the parallel
and robust algorithms. Both algorithms manage to estimate
the parameter value, while the parallel algorithm presents
larger oscillations. This is a direct consequence of the im-
plementation of the robust algorithm, tailored to mitigate the
influence of noise through the adjustment of the smoothing
parameter α.

The tracking performance of both algorithms are presented
in Fig. 6b. In both cases, the tracking is fairly good, however
with a slight static error for the parallel algorithm. Both
outputs present significant noise. The difference in tracking
performance is less significant than what is observed for the
estimation. It seems that the influence of the measurement
noise on the output tracking is equally significant for both
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Fig. 5: Tuning the initial covariance value V (0). Robust
algorithm.
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Fig. 6: Comparison of the parallel and robust algorithm in
simulations.

algorithms in this simulation setup, even though less noise
was observed in the estimation of b̂ with the robust algorithm.

To objectively compare the algorithms, we quantify the
estimation and tracking performances using the metric of
the relative percentage error, shown in Fig. 7. These box
plots aim at offering valuable insights into the distribution
of the estimation and tracking errors. The results of Fig. 7a
confirm that the robust algorithm outperforms the parallel
one in estimating b̂. This assertion is shown by the significant
reduction in the error average and variance. With the parallel
algorithm, 75% of the data points exhibit a relative percent-
age estimation error below 15% (top line of the blue box).
However, with the robust algorithm, an equivalent proportion
of data points exhibit errors below 10%.

Now looking at the tracking performance in Fig. 7b, one
can see that the robust error values are smaller than the
other algorithm. Performance disparities among algorithms
are however not as significant as in the case of estimation.
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Fig. 7: Distribution of the estimation and tracking relative
percentage error in absolute value for each algorithm. Data
from Figs. 6a and 6b.

The similarity in tracking errors among the results can
be attributed to the fact that the influence of noise can
sometimes surpass the impact of the estimation of b̂ in the
controller. To further study the impact of noise, Section IV-
C will present experimental results of multiple controller
executions, and the average behavior.

To conclude, the robust algorithm outperforms the parallel
one in estimation and tracking, hence will be selected for the
experimental evaluation.

B. Experimental Setup

The experiments presented in this paper have been carried
out on the grisou cluster of Grid’5000 testbed [19], a
nation-wide infrastructure for large-scale experimental Com-
puter Science. Each experiment required to deploy four
machines: a OAR server, a CiGri server, a file server with
NFS, and a cluster. We used the technique of folding
described in [7] to emulate a full scale cluster of hundred
nodes. The jobs submitted to CiGri are conceived so that to
allows changing their duration and I/O load. Note that each
experiment runs for several hours on the High Performance
Computing platform, and are repeated five times each to cope
with the inevitable variability of such shared real-life large-
scale infrastructures: temperature effects, measurement noise,
shared network, etc.

C. Tackling Variations

In this subsection, the robust algorithm is evaluated in
experiments on the real platform, additionally allowing to



analyze the system’s inherent noise and more important the
variability between different executions even with the same
initial conditions. Results are given in Fig. 8. The reference
is constant and equal to 3. Two distinct jobs campaigns are
launched, thus resulting in a varying b along the experiment.
The first campaign has a file size f of 100MiB with 2000
jobs, while the other has f equal to 200MiB with 1000 jobs.

In an experimental context, the beginning of the second
campaign is not deterministic as it will start only when all the
jobs of the previous campaign are sent, which is dependent
on the control action u. Thus, in different experiments, the
second campaign might start at a different time. Black lines
of Fig. 8a illustrate the theoretical values of b for each
campaign.

In Fig. 8, we refrained from displaying solely the average
of the five experiments, as such an approach would over-
simplify the analysis, due to the divergence in experiment
completion times for the first campaign. One can note this
variability in Fig. 8a, where certain experiments initiate the
new campaign around 3000 s (light blue and orange lines),
while others commence closer to 4000 s.

First, we evaluate if the behavior of the closed-loop
complies with the design requirements, that is no overshoot
and a response time of twelve sampling times, that is 360 s.
Figure 8b depicts the tracking behavior for all experiments
(thin lines) and their average (bold red line), as well as the
reference of 3 (black line). All experiments successfully track
the reference with no steady state error, despite significant
noise. There is no overshooting in average, and only one
experiment out of five has an overshoot. Nevertheless, we
observe that the system reached the reference value after
more than double the initially projected time. It seems that
the time taken by the estimation algorithm to converge to a
specific value for b̂ delays the tracking convergence.

Figure 8a presents the results of the estimation. b̂ con-
verges in about 400 s, with some downshoot but smoothly,
and similarly for all experiments. After the change of cam-
paign (around 3000 s to 4000 s) the estimation shows an
increasing trend, resulting in a reduction of the control action
(see Eq. (6) and the computation of KP and KI ) and
successfully maintaining the tracking of the reference.

To conclude, the adaptive controller is stable, precise, and
fast, both for individual experiments and in average. The
controller successfully adapts to a changing system, i.e., a
change in the jobs’ campaign, despite significant noise.

D. Comparison With State-of-the-art

To conclude on the performance of the presented adaptive
controller, we compare to the state-of-the-art PI. For fair
comparison, both the PI and adaptive controllers are tuned
by pole placement as described in Section II-D, with Mp = 0
and ks = 12. A range of system’s variation is considered,
with a file size f varying from 50MiB to 400MiB. More-
over, we consider a step disturbance from 2000 s to 4000 s.
Tracking results are given in Fig. 9.

The adaptive controller successfully tracks the reference
value in all four conditions. Note that, differently to the
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Fig. 8: Adaptive controller performance in case of system’s
variation. Two campaigns are successively launched, so f
(and thus b) changes through the experiment. Five repetitions
of individual experiments are represented in thin lines, the
average is the bold red line. The setup uses the robust
algorithm with α = 2, b̂(0) = 0.5, V (0) = 104.

PI, the adaptive control does not suffer from large starting
overshoots, whatever the working condition. Important over-
shoots are particularly detrimental in our system, as it leads
to overloading the file server, which brings the system to a
critical state where the jobs cannot be executed anymore. The
system with the adaptive control is however slower, while
this difference tends to decrease for working conditions far
from the nominal one. Moreover, as expected, the further
from the nominal conditions (e.g., 400MiB) the more chaotic
the PI’s behavior becomes.

The adaptation not only allows dealing with changes
in the campaign (i.e., size of jobs), but is also robust to
disturbances, as can be seen in all plots from 2000 s to 4000 s.

To sum up, the adaptive control manages to successfully
track the reference in all conditions, it can be applied to
various jobs, and could be used also for other HPC clusters
without a necessary pre-tuning.

V. CONCLUSION

We presented in this work a way to harvest unused
resources of a HPC cluster. The harvested resources are used
to execute small and low priority jobs. The injection of such
jobs needs regulation to avoid overloading the platform: in
particular, the file server is a critical resource. We aimed
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Fig. 9: Performances of the adaptive and PI controllers, on four systems with different file size.

in this work to design a control algorithm able to adapt
its parameters for varying working conditions. The designed
controller must prioritize the stability of the file server in
order to avoid an overload, and ultimately crashing the whole
HPC system. We proposed in this work two variants of an
adaptive algorithm tailored for this problem. We then studied
their the performance in simulation and validated the best
one on a large-scale HPC platform. The experiments show
the designed controller is able to adapt to varying working
conditions, and can effectively limit the overload of the file
server. However, the adaptive system can be slower than the
original control.

Control theory usually considers adaptability w.r.t. time-
varying systems. One could consider instead making the con-
troller adaptive when deployed on a variety of systems. The
variability in this case is spatial: it comes from the hardware
or even the software configuration. The adaptation would
then be across several repetitions on different systems, rather
than a temporal adaptation. One could consider alternatives
between self-tuning and adaptive control in these cases.
Another perspective resides in the coordination between the
controller and other already-existing decision mechanisms.
For example, coordinating with the cluster scheduler would
allow combining control and scheduling theories. An ongo-
ing work considers using the scheduler knowledge of future
jobs as a building block for feed-forward control. Finally, in
the context of complex systems with a hierarchical structure,
it is interesting to consider the coordination of controllers at
different levels. Cluster-level controllers could interact with
lower-level controllers such as power controllers.
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