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DIFFERENTIAL GRADED DIVISION ALGEBRAS, THEIR MODULES, AND

DG-SIMPLE ALGEBRAS

ALEXANDER ZIMMERMANN

Abstract. We shall dive the definition of a dg-division algebra, that is a concept of a differential
graded algebra which may serve as an analogue of a division algebra. Using this concept, we study
their dg-modules, give examples when they occur and study their relation to dg-simple algebras.

Introduction

Differential graded algebras (dg-algebras for short) and their differential graded modules appear in
various places, mainly of geometric and topological nature. More precisely, let K be a commutative
ring. A dg-algebra over K is a Z-graded algebra with a graded K-linear endomorphism d of degree 1
with d2 = 0 satisfying the Leibniz equation d(ab) = d(a) ⋅b+(−1)∣a∣a ⋅d(b) for all homogeneous a, b ∈ A.
Dg-modules are defined similarly. For more precise definitions we refer to Section 1.1. Though defined
by Cartan [5] in 1954 already, the ring theory of dg-algebras remained largely unexplored until quite
recently. In 2002 Aldrich and Garcia Rozas characterized the dg-algebras whose dg-module category
is semisimple. They obtained that this is the case if and only if the algebra is acyclic and the algebra
of cycles ker(d) is graded semisimple. Orlov studied in [13, 14] finite dimensional dg-algebras over
a field K with a geometric motivation. Using this approach Goodbody [8] studied a version of a
dg-Jacobson radical. In a sequel of papers we studied more systematically the ring theory of dg-
algebras. In [16] we defined dg-Jacobson radicals in a much more general and natural setting, study
dg-simple dg-algebras, dg-simple dg-modules, and the relation with dg-simple dg-algebras. We study
dg-orders and define locally free dg-class groups. In [18] we define Ore localisation od dg-algebras,
proving that under some hypotheses, the localised ring is again dg. Using this, we study and define
dg-uniform dimension, and a dg-Goldie theorem for dg-Goldie rings.

In the present paper we first define a dg-division algebra as a dg-ring without non trivial left or
right dg-ideals. The question of an appropriate concept for a dg-division algebra was posed recently
by Violeta Borges Marques and Julie Symons. We show that left dg-Noetherian and dg-artinian
dg-division algebras are precisely those for which the ring of cycles is a Z-graded-division algebras
(cf [12, page 38] for the graded concept). For this result we need a technical assumption, namely that
the set of left regular elements of the ring of cycles coincides with the set of right regular elements.
This holds true, by a result of Goodearl and Stafford [9] for graded-Noetherian and graded-prime
rings of cycles, using a graded version of Goldie’s result. We further show that dg-modules over
dg-division algebras are free. Not surprisingly, we prove that endomorphism complexes of dg-simple
dg-modules over dg-algebras are dg-division algebras. We provide further examples.

We study the graded centre of a dg-simple algebra, and show that this is a dg-division algebra.
In particular, the graded centre of a dg-division algebra is a dg-division algebra. Further, under
the above mentioned technical assumption, the homology of a dg-division algebra is a gr-division
algebra, as defined by Nastacescu-van Oystaen [12]. Recall that [12] classified completely commuta-
tive gr-fields with the group being Z. Such a gr-field is either a Laurent polynomial ring or a field
concentrated in degree 0.

Further, we study dg-primitive dg-algebras and some of their properties. We finally show that for
a dg-Noetherian and dg-artinian dg-algebra being dg-simple is equivalent with being dg-primitive.
In a final section we show a dg-version of the Jordan-Chevalley density theorem in case of acyclic
dg-algebras.

Date: August 8, 2024.
2020 Mathematics Subject Classification. Primary: 16E45; Secondary: 12H05; 13A02; 16N60; 16W50.
Key words and phrases. differential graded algebras.

1



2 ALEXANDER ZIMMERMANN

The paper is organized as follows. In Section 1 we recall the definition of dg-algebras and their
modules, the constructions we use in the paper, and we define dg-division algebra, the main structure
studied in our paper. In Section 2 we study the main properties of dg-division algebras with respect
to the cycles, and some occurrences of dg-division algebras. In Section 3 we show that dg-modules
over dg-division algebras are free, and in Section 4 we define graded centres of graded algebras and
show that the graded centre of a dg-algebra is a dg-subalgebra. We further consider the graded center
of a tensor product of dg-algebras. Section 5 studies dg-primitive algebras, i.e. dg-algebras allowing
a dg-simple faithful dg-module, and their relation to dg-simple and dg-prime algebras. Section 6
proves a version of the Jacobson-Chevalley density theorem for dg-algebras.

Acknowledgement: I wish to thank Violeta Borges Marques and Julie Symons for having asked me
during the Oberwolfach workshop ’Hochschild (co-)homology and applications’ in April 2024 for a
possible concept of a dg-field.

1. Elementary Definitions

1.1. Differential graded algebra and their modules; definitions and notations. In this
subsection we recall notations and basic conventions, as well as the construction of a tensor product
of two dg-algebras over a common graded commutative subalgebra of their graded centres. This
should be well-known, but we could not find a reference, and in any case the reader may appreciate
an explicit verification right in the paper.

Let K be a commutative ring. A differential graded K-algebra (dg-K-algebra for short) (A,d) is
a Z-graded algebra A with a graded K-linear endomorphism of degree 1 with d2 = 0 and satisfying
the Leibniz rule d(a ⋅ b) = d(a) ⋅ b + (−1)∣a∣a ⋅ d(b). By definition a dg-ring is a dg-Z-algebra.

If (A,d) is a dg-K-algebra, then define Aop to be the same graded additive group as A, but

multiplication defined as a ⋅op b ∶= (−1)∣a∣⋅∣b∣b ⋅ a. Then (Aop, d) is again a dg-K-algebra.
A differential graded left module (M,δ) over (A,d) is a Z-graded A-module M with an endomor-

phism δ of degree 1 satisfying δ(a ⋅m) = d(a) ⋅m + (−1)∣a∣a ⋅ δ(m) for all homogeneous a ∈ A and
m ∈M . Occasionally we denote a differential graded module by dg-module for short.

A differential graded right module over (A,d) is a differential graded left module over (Aop, d).
For two differential graded left modules (M,δM) and (N,δN ) over (A,d) we put

Hom●A((M,δM), (N,δN)) ∶= {f ∈ Homgraded(M,N) ∣ f(am) = (−1)∣a∣⋅∣f ∣af(m)}

and
dHom(f) ∶= δN ○ f − (−1)∣f ∣f ○ δM .

Further, End●A(M,δM) ∶= Hom
●
A((M,δM), (M,δM)). Then (End

●
A(M,δM), dHom) is a dg-K-algebra,

and (Hom●A((M,δM), (N,δN)), dHom) is a left dg-module over End●A(N,δN) and a right dg-module
over End●A(M,δM).

Let (A,d) be a dg-K-algebra. Then

Zgr(A,d) = {a ∈ A ∣ a ⋅ b = (−1)∣a∣∣b∣b ⋅ a ∀ homogeneous b ∈ A}

is the graded centre of (A,d).
If (A,dA and (B,dB) are dg-K-algebras, then ((A⊗K B), dA⊗KB) is a dg-K-algebra again with

dA⊗B = dA ⊗ idB + idA ⊗ dB

and
(a1 ⊗ b1) ⋅ (a2 ⊗ b2) = (−1)∣b1∣∣a2 ∣(a1a2 ⊗ b1b2).

Let (A,dA) and (B,dB) be dg-K-algebras, and let Z = (Z,d) be a common graded commutative
dg-subalgebra of the graded centre of A and of B. (For a more detailed discussion of the graded center
we refer to Section 4 below.) Then there is a differential dA⊗ZB on A⊗ZB such that (A⊗ZB,dA⊗ZB)
is a dg-algebra again. First, we consider the ordinary tensor product A ⊗Z B. This is graded by
posing the degree n component as ⊕k∈ZAk ⊗Z Bn−k. This is well-defined since Z is graded. Indeed,
if a ∈ Ak is in degree k − ℓ, b ∈ Bn−k is in degree n − k, and z ∈ Zℓ is in degree ℓ, then az ⊗ b = a⊗ zb

and the term on both sides is in degree n. Further, put again

(a1 ⊗ b1) ⋅ (a2 ⊗ b2) = (−1)∣b1∣∣a2 ∣(a1a2 ⊗ b1b2).
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This is well-defined again, as is shown by the following computation

(a1z1 ⊗ b1) ⋅ (a2 ⊗ z2b2) = (−1)∣b1∣∣a2 ∣(a1z1a2 ⊗ b1z2b2)

= (−1)∣b1∣∣a2 ∣+∣z1∣∣a2 ∣+∣b1 ∣∣z2∣(a1a2z1 ⊗ z2b1b2)

= (−1)∣b1∣∣a2 ∣+∣z1∣∣a2 ∣+∣b1 ∣∣z2∣(a1a2 ⊗ z1z2b1b2)

= (−1)∣b1∣∣a2 ∣+∣z1∣∣a2 ∣+∣b1 ∣∣z2∣+∣z1 ∣∣z2 ∣(a1a2 ⊗ z2z1b1b2)

= (−1)∣b1∣∣a2 ∣+∣z1∣∣a2 ∣+∣b1 ∣∣z2∣+∣z1 ∣∣z2 ∣(a1a2z2 ⊗ z1b1b2)

= (−1)(∣b1∣+∣z1 ∣)(∣a2∣+∣z2 ∣)(a1a2z2 ⊗ z1b1b2)

= (a1 ⊗ z1b1) ⋅ (a2z2 ⊗ b2)

for a1, a2 ∈ A, b1, b2 ∈ B, z1, z2 ∈ Z all homogeneous. Then,

dA⊗B = dA ⊗ idB + idA ⊗ dB

is well-defined again. Indeed, since dA(z) = dB(z) for all homogeneous z ∈ Z, we get

dA⊗B(az ⊗ b) = dA(az)⊗ b + (−1)∣az∣az ⊗ dB(b)

= dA(a)z ⊗ b + (−1)∣a∣adA(z)⊗ b + (−1)∣az∣az ⊗ dB(b)

= dA(a)⊗ zb + (−1)∣a∣a⊗ dA(z)b + (−1)∣az∣a⊗ zdB(b)

= dA(a)⊗ zb + (−1)∣a∣(a⊗ dB(z)b + (−1)∣z∣a⊗ zdB(b))

= dA(a)⊗ zb + (−1)∣a∣(a⊗ dB(zb))

= dA⊗B(a⊗ zb)

for all homogeneous a ∈ A and b ∈ B. This shows that dA⊗ZB is well-defined. The fact that d2A⊗ZB = 0
is trivial, and actually follows from the classical case, such as the fact that it verifies Leibniz’ rule.

We further mention that for a graded algebra A by some group G we denote be a gr-simple A-
module an A-module which does not allow a G-graded submodule other than 0 or itself. Similarly,
we denote by a gr-simple algebra an algebra which is gr-simple as A⊗Aop-module, and a gr-division
algebra an algebra where all homogeneous non zero elements are invertible. Occasionally we use the
notion graded-simple for gr-simple, etc.

1.2. Elements of the ring theory of differential graded algebra.

Definition 1.1. A dg-K-algebra (A,d) is dg-simple if (A,d) does not contain any twosided dg-ideal
other than 0 and A.

Definition 1.2. A dg-K-algebra (A,d) is a dg-division algebra if (A,d) does not contain any dg-left
ideal nor a dg-right ideal other than 0 and A.

Remark 1.3. In case we want to stress that a dg-division algebra is commutative (or graded com-
mutative) we shall call it a dg-field (or graded commutative dg-field).

Remark 1.4. Note that if d = 0, then this was classified by Nastacescu-van Oystaen [12, page 38].
If K is algebraically closed, then A ≃KαG for a finite group G and an α ∈H2(G,K×).

Example 1.5. Let K ba a field. Then by [18] the dg-ring K[X,X−1] with differential d(X2n+1) =
X2n and d(X2n) = 0 for all n ∈ Z is dg-simple. Since it is commutative, it is a dg-field. Note however
that the ungraded ring K[X,X−1] is not Artinian (though Noetherian).

2. Relating dg-division algebras with gr-division algebra

Lemma 2.1. Let (A,d) be a dg-ring and suppose that ker(d) is a Z-gr division algerba. Then (A,d)
is a dg-division algebra.

Proof. Let (I, d) be a non trivial dg-left ideal of (A,d). Then I ∩ ker(d) is a Z-graded ideal of
ker(d).

Since I ≠ 0, there is 0 ≠ x ∈ I. If x ∈ ker(d), we have shown that I ∩ ker(d) ≠ 0. If d(x) ≠ 0, then
d(x) ∈ I since I is a dg-ideal, and d(x) ∈ ker(d) since d2 = 0. Hence I ∩ ker(d) ≠ 0.



4 ALEXANDER ZIMMERMANN

Suppose that I ∩ ker(d) = ker(d). Since d(1) = 0, we get 1 ∈ I ∩ ker(d). Hence 1 ∈ I and therefore
A = I. This is a contradiction to the hypothesis that I is a non trivial dg-ideal. The same holds for
dg-right ideals.

Lemma 2.2. Let (A,d) be a dg-ring and suppose that (A,d) does not contain any non trivial dg-left
ideal. If the set of homogeneous right regular element of ker(d) coincides with the set of homogeneous
left regular elements of ker(d), then ker(d) is a Z-gr-division algebra.

Proof. Let u ≠ 0 be a homogenous element of ker(d). Then Au is a dg-left ideal of A. Since u ≠ 0,
we get Au ≠ 0. Suppose that Au = A. Then there is b ∈ A with 1 = bu. Then

0 = d(1) = d(b) ⋅ u + (−1)∣b∣b ⋅ d(u) = d(b) ⋅ u.

Since u has a left inverse in A, it is right regular. Indeed, if ux = 0 in A, then x = bux = 0. Hence, by
hypothesis, u is left regular as well. Therefore, d(b) = 0 and hence b ∈ ker(d). This shows that the
equation bu = 1 already holds in ker(d), and hence u is left invertible in ker(d). Therefore, ker(d)
does not contain any non trivial graded left ideal, and by [12, page 38; Lemma 1.4.1] u is invertible
in ker(d).

Remark 2.3. We may consider situations where the hypothesis that the set of homogeneous right
regular element of ker(d) coincides with the set of homogeneous left regular elements of ker(d) holds.

● If ker(d) is finite dimensional over some field, this is true, since multiplication by a left
regular element u is realised by a matrix with non zero determinant.
● If ker(d) is graded commutative, or commutative, then trivially this property holds.
● It is known that if ker(d) is left gr-Noetherian and gr-prime, this is true. Indeed, by [9]
localising at the homogeneous regular elements of ker(d) yields a gr-simple algebra with all
homogeneous regular elements being invertible. Now, the proof of [7, (5.8) Proposition, (5.9)
Proposition] applies verbatim to graded rings and homogeneous left invertible elements.

Theorem 2.4. Let (A,d) be a differential graded ring. Suppose that in ker(d) the set of the left
regular homogeneous elements and the set of the right regular homogeneous elements coincide. Then
(A,d) is a dg-division algebra if and only if ker(d) is a gr-division algebra.

Proof. This is a direct consequence of Lemma 2.1 and Lemma 2.2. Note that the lemmas give a
more general statement for the only if direction.

Corollary 2.5. Let (A,d) be a differential graded ring. Suppose that in ker(d) the set of the left
regular homogeneous elements and the set of the right regular homogeneous elements coincide. Then
the following statements are equivalent.

● (A,d) admits only trivial dg-left ideals.
● (A,d) admits only trivial dg-right ideals.
● each non zero homogeneous element of ker(d) is invertible (i.e. ker(d) is a gr-division alge-
bra).

Proof. The first statement implies the third statement by Lemma 2.2. Similarly, the second
statement implies the third statement by Lemma 2.2. The third statement implies each of the first
and the second statement by Lemma 2.1.

Remark 2.6. Recall that in a graded commutative ring, the square of homogeneous elements of odd
degree is 0, unless the characteristic of the base ring is 2. Indeed, let x be a homogeneous element
of odd degree. Then, swapping the two factors yields

x ⋅ x = (−1)∣x∣⋅∣x∣x ⋅ x = −x ⋅ x.

Hence 2 ⋅ x2 = 0.

Corollary 2.7. Let (D,∂) be a dg-division algebra. Suppose that in ker(∂) the set of the left
regular homogeneous elements and the set of the right regular homogeneous elements coincide. Then
(Zgr(D), ∂) is a dg-division algebra as well. In particular, if the characteristic of D is different
from 2, then Zgr(D) ∩ ker(∂) is concentrated in even degrees, and in any case Zgr(D) ∩ ker(∂) is
commutative and either isomorphic to a Laurent polynomial ring or concentrated in degree 0.
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Proof. By Lemma 4.1 we see that Zgr(D) is a dg-subalgebra of (D,∂). Further, all elements in
Zgr(D) ∩ ker(∂) are invertible in ker(d). However, if z ∈ Zgr(D) and a ∈ ker(∂) are homogeneous
elements with az = za = 1 (using that in a group the left and the right inverse of a fixed element
coincide), then

b = baz = (−1)∣a∣∣b∣abz
and since z is right regular, ba = (−1)∣a∣∣b∣ab for all homogeneous b ∈ D. Hence a ∈ Zgr(D) as well.
Using Corollary 2.5 and Remark 2.6 we proved the statement. The classification of commutative
Z-graded gr-division algebras is given in [12, Section A.1.4; Section B.1.1], and it is shown that
Zgr(D) ∩ ker(∂) is isomorphic to a Laurent polynomial ring or concentrated in degree 0.

Corollary 2.8. Let (A,d) be a dg-division algebra, and suppose that the set of homogeneous left
regular elements of ker(d) coincides with the set of homogeneous right regular elements of ker(d).
Then H(A,d) is a gr-division algebra.

Proof. By Theorem 2.4 we see that ker(d) is a gr-division algebra, whence any homogeneous non
zero element is invertible. Therefore, also in H(A,d) = ker(d)/im(d) every homogeneous non zero
element is invertible. This shows the statement.

Proposition 2.9. Let K be a field, let (A,d) be a differential graded algebra and let (S, δ) be a
dg-simple left dg-module over (A,d). Then (End●A(S, δ), dHom) is a dg-division algebra. Moreover,
the set of homogeneous left regular elements of ker(dHom) coincides with the set of homogeneous right
regular elements of ker(dHom).

Proof. We shall use Corollary 2.5 and we shall see that the hypotheses are satisfied..
Now, let f ≠ 0 be homogeneous with f ∈ ker(dHom). Then this is equivalent with

0 = dHom(f) = δ ○ f − (−1)∣f ∣f ○ δ

and hence
f ○ δ = (−1)∣f ∣δ ○ f.

We claim that ker(f) is a dg-submodule of (S, δ). Let x ∈ ker(f) be homogeneous.

0 = δ(f(x)) = (−1)∣f ∣f(δ(x))

and hence δ(x) ∈ ker(f). Moreover, for any homogeneous a ∈ A

f(ax) = (−1)∣a∣⋅∣f ∣a ⋅ f(x) = 0

and hence ax ∈ ker(f) again.
Since (S, δ) is dg-simple, either f = 0 or ker(f) = 0.
Also im(f) is a dg-submodule of (S, δ). If x = f(y), then

δ(x) = δ(f(y)) = (−1)∣f ∣f(δ(y)) ∈ im(f)

Further,

a ⋅ f(x) = (−1)∣a∣∣f ∣f(a ⋅ x) ∈ im(f)
again. Since (S, δ) is dg-simple, and since im(f) is a dg-submodule, either im(f) = 0 (which is
equivalent with f = 0 and this was excluded) or im(f) = S. Therefore f is surjective as well.

Hence f is an isomorphism between (S, δ) and a shifted copy, whence invertible, and this shows
that ker(dHom) is a gr-division algebra.

We want to apply Corollary 2.5. If f is a left invertible non invertible dg-endomorphism of (S, δ),
then (S, δ) has a non trivial direct factor, which is contradictory to (S, δ) being simple. Likewise a
right invertible non invertible dg-endomorphism leads to a contradiction.

Hence (End●A(S, δ), dHom) is a dg-division algebra by Corollary 2.5.

Recall the following statement from Aldrich and Garcia Rozas [1].

Theorem 2.10. [1, Theorem 5.3]. Let (A,d) be a dg-algebra. Then the following statements are
equivalent.

(1) The category of left dg-modules over (A,d) is semisimple.
(2) The left module (A,d) over (A,d) is a direct sum of a family of dg-simple dg-modules.
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(3) (A,d) is acyclic and the category of Z-graded modules over ker(d) is semisimple.

Note that this shows that for a dg-simple dg-algebra (A,d) with non zero homology the regular
(A,d)-left module (A,d) cannot be the direct sum of dg-simple dg-modules. However, in case the
category of left dg-modules is semisimple, we have the following statement.

Proposition 2.11. Let (A,d) be a dg-simple dg-algebra. If (A,d) is left dg-artinian. Then, up to
isomorphism of dg-modules, there is a unique simple dg-module (S, δ) over (A,d).

Suppose in addition that one (and hence all) of the conditions of Theorem 2.10 hold. Then, for
all finitely generated dg-module (M,δM) over (A,d), such as (A,d), there is a positive integer n and
we get

End●A(M,δM) ≃Matn((D,∂))
for some dg-division algebra

(D,∂) ≃ (End●A(S, δ), dHom).

Proof. As (A,d) is dg-Artinian, there is a minimal element in the set of non zero dg-left submodules
of (A,d). This minimal element is necessarily a dg-simple dg-module (S, δ). By [16, Lemma 4.22]
we get that all dg-simple dg-modules over (A,d) are isomorphic to (S, δ).

Suppose now that in addition the category of left dg-modules over (A,d) is semisimple. Then the
regular left dg-module (A,d) over (A,d) is a direct sum of dg-simple dg-modules. As (S, δ) is the
only dg-simple dg-module over (A,d) up to isomorphism,

(A,d) =⊕
j∈J

(Sj , δj)

for (Sj , δj) ≃ (S, δ) for all j ∈ J . We claim that the index set J for (A,d) is finite. Else, there is a
countable subset {ji ∣ i ∈ N} ⊆ J . Then

Ui ∶= ∑
j∈J∖{j1,...,ji}

(Sj , δj)

defines an infinite decreasing sequence of dg-submodules. This contradicts (A,d) being left dg-
artinian, and hence J is finite.

But now, for any finitely generated dg-modules (M,δM) over (A,d) we get that

M =
n

⊕
j=1

Sj

for Sj ≃ S. Hence,
End●A(M,δM) ≃Matn×n(D,∂).

for (D,∂) = (End●A(S, δ), dHom).

3. Dg-modules over Dg-division algebras

We shall prove that a dg-module over dg-division algebra contains a basis.

Proposition 3.1. Let (A,d) be a dg-division algebra and let (M,δ) be a dg-module. Suppose that the
set of left invertible elements of ker(d) coincides with the set of right invertible elements of ker(d).
Then there is a set Λ ⊂ ker(δ) such that

M = ⊕
m∈Λ

A ⋅m

and A ⋅m ≃ AA, i.e. each direct factor is isomorphic to the regular module.

Proof. Let 0 ≠m ∈ ker(δ). Then the map

A
ρmÐ→ A ⋅m

a ↦ am

is a homomorphism of dg left modules. Indeed, it is obviously a left module homomorphism. Further,

ρm(d(a)) = d(a) ⋅m = δ(a ⋅m) − (−1)∣a∣a ⋅ δ(m) = δ(ρm(a)),

where the first equation is Leibniz formula and the second equation comes from m ∈ ker δ.
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Further, (A,d) is a dg-division algebra, and hence does not contain any non trivial dg left ideal.
Hence ρm is injective, and surjective by definition.

Now, let L be the set of subsets Λ ⊆ ker δ with

∑
m∈Λ

Am = ⊕
m∈Λ

Am.

This set is non empty since each non zero singleton in ker δ is an element in L. The set L is partially
ordered by inclusion. Let D be a totally ordered subset on L. Then put

Γ ∶= ⋃
Λ∈D

Λ.

We claim that
D ∶= ∑

m∈Γ

Am = ⊕
m∈Γ

Am.

Indeed, if x ∈ ∑m∈ΓAm, then x = ∑n
i=1 ximi ∈ ∑

n
i=1 Ami for some mi ∈ Γ and xi ∈ A. Hence

there is Λ ∈ D such that m1, . . . ,mn ∈ Λ. But, by hypothesis, ∑m∈ΛAm = ⊕m∈ΛAm. Hence
x = 0⇔ xi = 0 ∀i ∈ {1, . . . , n}.

By Zorn’s lemma there is a maximal element ∆ in L and set F ∶= ⊕m∈∆Am. Let x ∈ M ∖ F .
Suppose x ∈ ker(δ). Then the map A Ð→ Ax defined by a ↦ ax is injective, since the kernel is a
dg-left ideal of A, whence 0 or A. The latter is impossible, and the injectivity follows. The map
is surjective by definition, whence an isomorphism. Now, we have an inclusion of dg-left modules
F ∩Ax ≤ Ax. Since Ax is dg-simple, being isomorphic to A, the intersection is 0 or Ax ⊆ F , which
is absurd by the choice of x. Hence if x ∈ ker(δ) we have that Ax+F = Ax⊕F ≤M and ∆∪ {x} ∈ L
is strictly larger than ∆, contrary to the maximality of ∆.

So, suppose that x /∈ ker(δ). Then consider the inclusion of dg left A-modules

Ax +Aδ(x) ≥ Aδ(x).

We claim that there is y ∈ Aδ(x) with δ(y) = δ(x). Indeed, let z ∈ A be homogeneous with d(z) ≠ 0,
then

Aδ(x)
ϕ
Ð→ A

with ϕ(a ⋅ δ(x)) ∶= a ⋅d(z) for all a ∈ A defines a dg-left module isomorphism. Now, y ∶= ϕ−1(z) is the
required element. But then y − x ∈ ker(δ) and A(y − x) is again isomorphic to A as dg left module
over (A,d). Hence

Ax +Aδ(x) = Ax + (Ay +Aδ(x))
= Ay +Aδ(x) +A(y − x)
= (Ay +Aδ(x)) +A(y − x)
= Aδ(x) +A(y − x)
= Aδ(x)⊕A(y − x)

since there is no proper non zero submodule of Aδ(x) ≃ A ≃ A(y − x), the dg-algebra (A,d) being a
dg-division algebra. This shows that F ⊕Aδ(x) ⊆M and ∆ ∪ {δ(x)} is strictly larger than ∆. This
contradiction proves the statement.

Lemma 3.2. Let (D,∂) be a dg-division algebra and let (M,δ) be a dg-module over (D,∂). Suppose
that (N,δ) is a dg-submodule of M . If (M,δ) is of finite dimension n over D, i.e. M = ⊕m

i=1D ⋅ xi

for xi ∈ ker(δ). Then if N =⊕n
i=1 Dyi for yi ∈ ker(δ). Then yj =∑

m
i=1 dj,ixi for dj,i ∈ ker(∂).

If D is graded commutative, then n ≤m and m = n is equivalent with M = N .

Proof. By definition we get

yj =
m

∑
i=1

dj,ixi

for uniquely determined homogeneous di,j ∈D. But then,

0 = δ(yj) =
m

∑
i=1

∂(dj,i)xi

since xi ∈ ker(δ). By the direct sum decomposition M =⊕m
i=1D ⋅ xi we get ∂(dj,i) = 0.
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Suppose now that D is graded commutative. Then the set of left and the set of right regular
homogenous elements of D coincide, and hence any homogeneous element of ker(∂) is invertible in
ker(∂). Further, this implies, using that D is graded commutative, that ker(∂) is concentrated in
even degrees (or D is of characteristic 2). In any case, ker(∂) is commutative. By the classification
of Z-graded gr-division algebras (cf Corollary 2.7 or [12, Section A.1.4; Section B.1.1]), either ker(∂)
is a field concentrated in degree 0, or ker(∂) ≃K[X,X−1] for X an element in degree 2k for some k,
and K being the degree 0 component.

Consider the matrix ∆ formed by the elements di,j . The elementary divisors of ∆ are unique, and
give the embedding of N into M . Since N is a graded submodule of M , the elementary divisors have
to be homogeneous in X as well, whence all invertible. Whence n ≤m and if n <m, then N <M . If
n =m, then ∆ is invertible. This shows the statement.

4. The graded center

Lemma 4.1. Let (A,d) be a differential graded ring. Then (Zgr(A), d) is a differential graded
subalgebra. For all even degrees 2k, the homogeneous components of the centre and the graded centre
coincide. More precisely,

(Zgr(A), d)2k = Z(A)2k ∀ k ∈ Z.

Proof. By construction, Zgr(A) is a subalgebra. Further, for any a ∈ Zgr(A) we get

d(a)b = d(ab) − (−1)∣a∣a ⋅ d(b)

= (−1)∣a∣∣b∣d(ba) − (−1)∣a∣+(∣a∣(∣b∣+1))d(b)a

= (−1)∣a∣∣b∣ (d(ba)− d(b)a)

= (−1)∣a∣∣b∣+∣b∣b ⋅ d(a)

= (−1)∣d(a)∣∣b∣b ⋅ d(a)

Hence (Zgr(A), d∣Zgr(A)) is a dg-algebra again. Further, by definition,

(Zgr(A))2k ∶={a ∈ A2k ∣ ab = (−1)∣2a∣∣b∣ba ∀b homogeneous in A.}

={a ∈ A2k ∣ ab = ba ∀b homogeneous in A.}

=Z(A)2k.

Hence, the even degree elements of Zgr(A) coincide with those of Z(A).

Lemma 4.2. Let (A,d) be a dg-simple dg-algebra. Then Zgr(A,d) is a dg-division algebra.

Proof. Let (I, d) be a dg-ideal of Zgr(A,d). Then (IA, d) is a twosided dg-ideal of (A,d). Hence
IA contains 1, whence also I has to contain 1. This shows the lemma.

Lemma 4.3. Let (A,dA) and (B,dB) be two dg-simple dg-algebras with ZA = Zgr(A,dA) and
ZB = Zgr(B,dB). Let Z be a common dg-subsalgebra of ZA and ZB. Then ZA ⊗Z ZB is in the
graded centre of (A⊗Z B,dA⊗ZB).

Proof. Indeed, ZA ⊗Z ZB is in the graded center, as

(z1 ⊗ z2) ⋅ (a⊗ b) = (−1)∣a∣∣z2∣(z1a⊗ z2b)

= (−1)∣a∣∣z2∣+∣z1 ∣∣a∣+∣z2 ∣∣b∣(az1 ⊗ bz2)

= (−1)∣a∣∣z2∣+∣z1 ∣∣a∣+∣z2 ∣∣b∣+∣b∣∣z1 ∣(a⊗ b)(z1 ⊗ z2)

= (−1)∣z1⊗z2∣∣a⊗b∣(a⊗ b)(z1 ⊗ z2)

This shows the lemma.

Lemma 4.4. Let (A,dA) and (B,dB) be two dg-simple dg-algebras with Zgr(A,dA) = Z = Zgr(B,dB).
Then Z ⊗Z Z is the graded centre of (A⊗Z B,dA⊗ZB).
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Proof. By Lemma 4.3, we get that Z ⊗Z Z is in the graded center. We shall adapt the usual
proof from the classical case (cf e.g. [15, Theorem 7.6]) to this situation. By Proposition 3.1 and
Lemma 4.2 we get B =⊕i∈I Z ⋅ bi for bi ∈ ker(dB) and hence

A⊗Z B =⊕
i∈I

A⊗Z bi

for homogeneous bi ∈ B. If x = ∑i∈I ai ⊗ bi ∈ Zgr(A ⊗Z B) is homogeneous of degree ∣x∣, then for all
homogeneous a ∈ A we get

0 = (a⊗ 1) ⋅ x − (−1)∣a∣⋅∣x∣x ⋅ (a⊗ 1)

= ∑
i∈I

(a⊗ 1) ⋅ (ai ⊗ bi) − (−1)∣a∣∣x∣(ai ⊗ bi) ⋅ (a⊗ 1)

= ∑
i∈I

(aai − (−1)∣a∣(∣x∣+∣bi∣)aia)⊗ bi

and hence (aai − (−1)∣a∣(∣x∣+∣bi ∣)aia) = 0 for all i. However, (−1)∣x∣+∣bi∣ = (−1)∣ai∣, which shows that
ai ∈ Zgr(A) for all i ∈ I. But this shows that x ∈ Zgr(Z ⊗Z B) = Z ⊗Z Z.

Theorem 4.5. Let (DA, ∂A) and (DB, ∂B) be dg-division algebras over a dg-division algebra (Z,∂).
Suppose that Z = Zgr(A) = Zgr(B) and suppose that the set of left regular elements of ker∂A equals
the set of right regular elements of ker∂A, and likewise the set of left regular elements of ker∂B equals
the set of right regular elements of ker∂B. Then (DA ⊗Z DB, ∂A⊗ZB) is a dg-simple dg-algebra.

Proof. Recall that Z is of characteristic different from 2 implies that the cycles of Z are supported
in even degrees. As (DB, ∂B) is a dg-module over the dg-division algebra (ZA, dA) =∶ (Z,d), by
Proposition 3.1 there is a set {ai ∣ i ∈ IA} of homogeneous elements in ker(∂A) and a set {bi ∣ i ∈ IB}
of homogeneous elements in ker(∂B) such that

DA = ⊕
i∈IA

ai ⋅Z and DB = ⊕
i∈IB

Z ⋅ bi.

Put I ∶= IA × IB, which is a Z-basis for DA ⊗Z DB. Then, any z in DA ⊗Z DB can be written as

DA ⊗Z DB ∋ z = ∑
(iA,iB)∈I

(aiA ⊗ biB)λ(iA,iB)

for elements λ(iA,iB) ∈ Z. All elements are homogeneous, and hence

∣z∣ = ∣aiA ∣ + ∣biB ∣ + ∣λ(iA,iB)∣.

Since ai ∈ ker∂A, we get

∂DA⊗DB
(z) = ∑

(iA,iB)∈I

(∂A ⊗ 1 + 1⊗ ∂B)((aiA ⊗ biB)λ(iA,iB))

= ∑
(iA,iB)∈I

(−1)∣aiA
∣+∣biB ∣(aiA ⊗ biB)∂(λ(iA,iB))

and hence z ∈ ker(∂DA⊗DB
) if and only if λ(iA,iB) ∈ ker(∂) for all (iA, iB) ∈ I. Suppose that J is a

twosided dg-ideal in DA⊗DB. As J is a dg-ideal, a non zero element x in J is either in ker(∂DA⊗DB
),

or ∂DA⊗DB
(x) ≠ 0 is in J ∩ ker(∂DA⊗DB

). Hence, ker(d) ∩ J ≠ 0. Let

x = ∑
(iA,iB)∈I

(aiA ⊗ biB)λ(iA,iB) = (ai1,A ⊗ bi1,B)λ(i1,A;i1,B) + ⋅ ⋅ ⋅ + (ain,A ⊗ bin,B)λ(in,A;in,B)

be a non zero homogeneous element of minimal length n within the non zero elements in J ∩
ker(∂DA⊗DB

). Note that this is equivalent with λ(ij ,A;ij ,B) ≠ 0 for all j ∈ {1, . . . , n}.
In case DB is dg-simple only, and not a dg-division algebra, then we may like to proceed as in

[10] as follows. Since DB is dg-simple, and since 0 ≠ bi1,B ∈ ker(∂B), we see that DB ⋅ bi1,B ⋅DB is
a twosided dg-ideal of DB. Since DB is dg-simple, we may multiply from the left with an element
bℓ ∈ DB and an element br ∈ DB from the right such that bℓbi1,Abr = 1. Moreover, the length of z
and of bℓzbr coincide. However, bℓzbr may no longer be in ker(∂A⊗ZB). This would hold, if one had
that ker∂B is gr-simple as well.
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Since we assumed that DB is a dg-division algebra, by Corollary 2.5 we get that each bij ,B is

invertible for all j, and multiplying by 1 ⊗ b−1i1,B from the right, we may assume that bi1,B = 1. For

any homogeneous non zero y ∈ ker(∂B), we consider

uy ∶= (1⊗ y)x(1⊗ y−1) =
n

∑
j=1

(1⊗ y)(aij ⊗ bij)λ(ij ,A;ij ,B)(1⊗ y−1)

= (−1)(∣ai1,A∣+∣λ(ij ,A;ij ,B)
∣)∣y∣(ai1,A ⊗ 1)λ(i1,A;i1,B)

+
n

∑
j=2

(−1)∣y∣∣aij ,A
∣(aij ,A ⊗ ybij ,Bλ(ij ,A;ij,B)y

−1)

But
x − (−1)(∣ai1,A∣+∣λ(i1 ,A;i1,B)∣)∣y∣uy ∈ J ∩ ker(∂DA⊗DB

)
has length at most n−1, which is strictly smaller than the length of x, and still is in J ∩ker∂DA⊗DB

.

Since the length of x was assumed to be minimal we get x−(−1)(∣ai1,A
∣+∣λ(i1,A;i1,B)∣)∣y∣uy = 0. Therefore,

bij ,Bλ(ij ,A;ij ,B) = (−1)
∣y∣∣ai1,A∣+∣y∣∣λ(i1 ,A;i1;B)∣+∣y∣∣aij ,A ∣ybij ,Bλ(ij ,A;ij ,B)y

−1

for all j. Since x is homogeneous,

∣x∣ = ∣aij ,A∣ + ∣bij ,B ∣ + ∣λ(ij ,A;ij ,B)∣ = ∣ai1,A∣ + ∣1∣ + ∣λ(i1,A;i1,B)∣ = ∣ai1,A∣ + ∣λ(i1,A;i1,B)∣

and therefore,

bij ,Bλ(ij ,A;ij ,B)y = (−1)∣y∣∣ai1,A ∣+∣y∣∣λ(i1 ,A;i1;B)∣+∣y∣∣aij ,A∣ybij,Bλ(ij ,A;ij ,B)y
−1y

= (−1)∣y∣(∣aij ,A
∣+∣ai1,A∣+∣λ(i1 ,A;i1,B)∣)ybij ,Bλ(ij ,A;ij ,B)

= (−1)∣y∣(∣aij ,A
∣+∣x∣)

ybij ,Bλ(ij ,A;ij ,B)

= (−1)∣y∣(∣bij ,B+∣λ(iJ ,A;ij ,B)
)∣
ybij ,Bλ(ij ,A;ij ,B)

for all j. This means that bij ,Bλ(iJ ,A;ij ,B) ∈ Zgr(B), and also in ker(∂B), which shows that x is
homogeneous in ker(∂A)⊗ 1. This element is invertible. Therefore J = DA ⊗Z DB. This shows the
statement.

Remark 4.6. Recall from [16, Lemma 4.22] that under the hypotheses and in the notations of
Theorem 4.5 and up to isomorphism there is a unique dg-simple dg-module LDADB

over DA⊗Z DB.

5. Dg-Primitive dg-algebras

Definition 5.1. Let K be a commutative ring and let (A,d) be a dg-K-algebra.

● A dg-module (M,δ) over a dg-algebra (A,d) is dg-faithful if for each homogeneous element
a ∈ A we get aM = 0⇒ a = 0.
● A dg-K-algebra (A,d) is called left (resp. right) dg-primitive if there is a dg-simple dg-faithful
left (resp. right) dg-module over (A,d).
● A twosided dg-ideal (I, d) of (A,d) is called left (resp. right) dg-primitive if (A/I, d) is a left
(resp. right) dg-primitive algebra.

Lemma 5.2. Let (A,d) be a dg-algebra and let (M,δ) be a left dg-(A,d)-module. Then (M,δ) is
faithful if and only if the action of A on M yields an embedding of dg-algebras

(A,d) ↪ (End●A(M,δ), dHom).

If (M,δ) is a right dg-module, then the action is faithful if and only if the action of A on M yields
an embedding of dg-algebras

(A,d) ↪ (End●A(M,δ), dHom)op.

Proof. Suppose that M is dg-faithful. Let 0 ≠ a ∈ A be homogeneous. Then

M
µa

Ð→ M

m ↦ am
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is a K-linear endomorphism of M of degree ∣a∣. Further, M is faithful if and only if µa is injective
for all non zero homogeneous a ∈ A. Observe that µa+b = µa + µb and

µab(m) = abm = µa(µb(m)) = (µa ○ µb)(m).

If M is a right module, then µa(m) =ma and

µab(m) =mab = µb(µb(m)) = (µb ○ µa)(m).

Now, denote by µ ∶ A Ð→ End●K(M) the morphism given by the action. We need to show
µ ○ d = dHom ○ µ. For all homogeneous a ∈ A and all m ∈M we get

(dHom(µ(a)))(m) = (δ ○ µa − (−1)∣a∣µa ○ δ) (m)

= δ(a ⋅m) − (−1)∣a∣a ⋅ δ(m)
= d(a) ⋅m
= ((µ ○ d)(a)) (m)

by the Leibniz formula. This shows the lemma.

Corollary 5.3. Let (A,d) be a differential graded K-algebra over a field K. If (A,d) admits a faithful
finite dimensional (over K) dg-module, then (A,d) is isomorphic to a subalgebra of a differential
graded matrix algebra over K.

Proof. Indeed, forgetting the grading and the differential, (End●A(M,δ), dHom) is a matrix algebra
over K.The rest follows from Lemma 5.2 .

Lemma 5.4. Let (A,d) be a dg-K-algebra. Then a twosided dg-ideal (I, d) of (A,d) is left (resp.
right) dg-primitive if and only if there is a left (resp. right) dg-simple dg-module (S, δ) over (A,d)
such that I = annℓ(S) (resp. I = annr(S)), i.e. I is the left (resp. right) annihilator of S. .

Proof. By symmetry, it is sufficient to consider the left case.
The left annihilator of a differential graded left module is a twosided dg-ideal (cf [18]). Since

(S, δ) is a simple dg-module over (A,d), it is also a dg-simple (A/annℓ(S, δ), d)-module. Since we

take the quotient modulo the annihilator, (S, δ) is a faithful module over (A/annℓ(S, δ), d). Hence,
(A/annℓ(S, δ), d) is left dg-primitive.

If (A/I, d) is left dg-primitive, then there is a faithful dg-simple left dg-module (S, δ) over (A/I, d).
Then, (S, δ) is a dg-module over (A,d) as well. Hence, the twosided ideal J ∶= annℓ(S, δ) of (A,d)
contains I, by definition. Further, (J/I, d) is the annihilator of (S, δ) in (A/I, d). Hence, (S, δ) is a
faithful (A/I, d)-module if and only if I = J .

Corollary 5.5. Let (A,d) be a dg-algebra over K. Then dgrad2(A,d) is the intersection of all left
dg-primitive dg-ideals of (A,d).

Proof. This is a direct consequence of Lemma 5.4.

Lemma 5.6. A dg-simple dg-ring admitting a dg-simple module is left dg-primitive.
A left dg-primitive dg-ring (A,d) is dg-prime.

Proof. Let (A,d) be dg-simple. Since (A,d) admits a dg-simple module, its annihilator is a
twosided dg-ideal, whence 0 by the simplicity of (A,d). Hence (A,d) is primitive.

Let (I, d) and (J, d) be non zero twosided dg-ideals with IJ = 0, and let (S, δ) be a faithful dg-
simple dg-module. Then JS is a dg-submodule of S, and hence JS = 0 or JS = S. Since S is faithful,
the first case implies J = 0, which was excluded. Hence JS = S. Similarly, IS = S. Therefore

0 = (IJ)S = I(JS) = IS = S

and we obtain a contradiction. This shows that (A,d) is dg-prime.

Corollary 5.7. Let (A,d) be a dg-algebra and suppose that (A,d) is left dg-artinian and left dg-
Noetherian. Then

(A,d) dg-prime⇔ (A,d) left dg-primitive⇔ (A,d) dg-simple
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Proof. Since (A,d) is dg-artinian and dg-Noetherian it allows a dg-composition series, and hence
admits a dg-simple module (S, δ). By Lemma 5.6 if (A,d) is dg-simple. we get that (A,d) is dg-
simple, and if (A,d) is assumed to be left dg-primitive, then (A,d) is dg-prime. This shows the two
implications ’⇐’.

Suppose now that (A,d) is dg-prime. Since (A,d) is supposed to be left dg-artinian and left
dg-Noetherian, we get that dgrad2(A,d) is nilpotent by the dg-Nakayama Lemma (cf [16]). Since
(A,d) is dg-prime, we get that dgrad2(A,d) = 0. By [16, Proposition 4.28] we get that (A,d) is
dg-simple. This prove that the left most statement implies the right most statement, and with the
first step the equivalence of all three.

6. A differential graded Jacobson-Chevalley density theorem

Let (A,d) be a differential graded algebra and suppose that (A,d) is left dg-Noetherian and left
dg-artinian. By Corollary 5.7 we get that (A,d) is dg-simple if and only if (A,d) is dg-primitive.
Hence there is a faithful dg-simple dg-module (S(A,d), δ) over (A,d). Since (A,d) is dg-simple, [16,
Proposition 4.28] shows that any other dg-simple dg-module over (A,d) is isomorphic to (S(A,d), δ).
By Proposition 2.9 we get that End●A(S(A,d), δ) is a dg-division algebra.

A very basic result in ring theory is the Chevalley-Jacobson density theorem. A graded version of
the Chevalley-Jacobson density theorem can be found in Chen et al. [6]. The result actually follows
from earlier work of Liu, Beattie and Fang [11].

Theorem 6.1. [6, 11] Let A be a group graded algebra. Let M be a gr-simple graded A-module
and let D = EndA−graded(M). Let x1, . . . , xk be homogeneous D-independent elements of M , and let
y1, . . . , yk be any elements of M . Then there is a ∈ A with axi = yi for any i ∈ {1, . . . , k}.

We shall need to show that if (A,d) is a dg-algebra and (M,δ) is a dg-simple dg-module over
(A,d), then ker(δ) is a Z-gr-simple ker(d)-module. In the special case of an acyclic (A,d)-algebra,
this follows from a result due to Aldrich and Garcia-Rozas [1].

Theorem 6.2. [1, Theorem 4.7] Let (A,d) be a differential graded K-algebra. Then the following
statements are equivalent.

(1) the regular dg-module is a projective object in the category of (A,d)-dg-modules.
(2) (A,d) is acyclic.
(3) 1 ∈ im(d).
(4) Any left dg-module over (A,d) is acyclic.
(5) Taking the kernel of the differential is a right exact functor Z(−) from the category of left

dg-modules over (A,d) to the category of Z-graded modules over ker(d).
(6) The pair of adjoint functors (A⊗ker(d)−, Z(−)) are inverse equivalences between the category

of left dg-modules over (A,d) to the category of Z-graded modules over ker(d).

As a consequence, if (A,d) is acyclic, then a dg-module (M,δ) over (A,d) is dg-simple if and
only if ker(δ) is a graded-simple ker(d)-module. We hence may apply Theorem 6.1 to dg-simple
dg-modules in this case.

Further,

Lemma 6.3. [1, Lemma 4.1, Lemma 4.2] Let (A,d) be a dg-algebra. Then (A,d) is acyclic if and
only if 1 ∈ im(d).

Let (A,d) be an acyclic dg-algebra over a commutative ring R. Then, as an R-module A =
ker(d)⊕ ker(d) ⋅ y = ker(d)⊕ y ⋅ ker(d) for any homogeneous element y ∈ A with d(y) = 1.

We shall need to use Lemma 6.3 to determine the cycles of a tensor product of acyclic algebras.

Lemma 6.4. Let (A,dA) and (B,dB) be acyclic dg-algebras over some graded commutative dg-ring
K. Then for any homogeneous z ∈ A with dA(z) = 1 and any homogeneous w ∈ B with dB(w) = 1 we
get that

ker(dA⊗KB) = (ker(dA)⊗K ker(dB))⊕ (1⊗w − z ⊗ 1) ⋅ (ker(dA)⊗K ker(dB))
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Proof. By Lemma 6.3 we get that

A = ker(dA)⊕ z ⋅ ker(dA) and B = ker(dB)⊕w ⋅ ker(dB).

Then

A⊗B = (ker(dA)⊗ker(dB))⊕(ker(dA)⊗w ker(dB))⊕(z ker(dA)⊗ker(dB))⊕(z ker(dA)⊗w ker(dB))

Now,
dA⊗B = dA ⊗ idB + idA ⊗ dB .

Hence
dA⊗B(ker(dA)⊗ ker(dB)) = 0,

dA⊗B(ker(dA)⊗w ker(dB)⊕ z ker(dA)⊗ ker(dB)) ⊆ ker(dA)⊗ ker(dB)
and

dA⊗B(z ker(dA)⊗w ker(dB)) ⊆ ker(dA)⊗w ker(dB)⊕ z ker(dA)⊗ ker(dB).
Let

u ∈ ker(dA)⊗w ker(dB)⊕ z ker(dA)⊗ ker(dB)
be homogeneous with dA⊗B(u) = 0. Then

u = (z ⊗ 1)u1 + (1⊗w)u2

and
dA⊗B(u) = u1 + u2.

Hence
ker(dA⊗B) = ker(dA)⊗ ker(dB)⊕ (1⊗w − z ⊗ 1) ⋅ (ker(dA)⊗K ker(dB)).

This shows the lemma.

Remark 6.5. ● An unpublished result [4] due to G.M.Bergman shows that for Z-graded rings,
the Jacobson radical (ungraded version) is homogeneous. This means that any simple module
is automatically graded.
● Recall that Bahturin, Zaicev and Sehgal classified in [2] finite-dimensional simple G-graded
K-algebras A for a group G and an algebraically closed field K, subject to some hypotheses
with respect to G and to the base field. In particular, if either K is of characteristic 0 or the
order of any finite subgroup of G is coprime to the characteristic of K, then A is a matrix
algebra over a graded skew-field KαH for some finite subgroup H of G and α a 2-cocycle
with values in K×.

If G = Z, then there is no non trivial finite subgroup. Hence, considering finite dimensional
graded simple algebras we are left with gradings on full matrix algebras over F .
● Lemma 6.4 indicates that if ker(dA) and ker(dB) are graded semisimple, then this is might
not be true for ker(dA⊗KB). Compare with the classification of graded-simple algebras by
Bahturin et al. as mentioned in the item above in case of algebraically closed base fields.

Theorem 6.6. Let (A,d) be an acyclic dg-algebra, i.e. a dg-algebra with H(A,d) = 0. Let (M,δ)
be a dg-simple dg-module over (A,d) and let

(D,∂) ∶= End●A((M,δ), dHom).

Then (D,∂) is a dg-division algebra, and also a Z-gr-division algebra. Moreover, for each family
x1, . . . , xk of D-independent elements of ker(δ) and each family y1, . . . , yk of elements of ker(δ), there
is an element a ∈ ker(d) with axi = yi for all i ∈ {1, . . . , k}.

Proof. Let N ∶= ker(δ) and B ∶= ker(d) to shorten the notation. As (M,δ) is dg-simple over
(A,d), by the equivalence of categories in Theorem 6.2.(6) we get that N is Z-graded simple as
graded B-module. Further, EndB−graded(N) ≃ D = End●A((M,δ), dHom) again by the equivalence of
categories in Theorem 6.2.(6). Hence, D is also a Z-gr-division algebra. The statement now follows
directly from Theorem 6.1.

Lemma 6.7. Let (A,dA) and (B,dB) be dg-algebras with Zgr(A,dA) = Zgr(B,dB) = Z and suppose
that (A,dA) or (B,dB) is acyclic. Then (A⊗Z B,dA⊗ZB) is acyclic as well.
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Proof. Indeed, by Lemma 6.3 we need to show that 1A⊗ZB ∈ im(dA⊗ZB). Since (A,dA) or (B,dB)
is acyclic, there is a homogeneous element zA ∈ A or zB ∈ B with dA(zA) = 1A or dB(zB) = 1B.
However, dA⊗ZB = dA ⊗Z idB + idA ⊗Z dB. Suppose that (A,dA) is acyclic. But then

dA⊗ZB(zA ⊗ 1B) = dA(zA)⊗ 1B = 1A ⊗Z 1B

This shows the statement.
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